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Abstract. Landforms are fundamental components of the Earth surface, providing the base on which surface processes operate. 17 

Understanding and classifying global landforms, which record the internal and external dynamics of the planet's evolution, 18 

constitutes a critical aspect of Earth system science. Advances in Earth observation technologies have enabled access to higher 19 

resolution data, for example remote sensing imagery and digital elevation models (DEMs).  However, landform data with a 20 

resolution of approximately 1 arc-second (approximately 30 m) are lacking at the global scale, which limits the progress of 21 

geomorphologic studies at finer scales. Here, we propose a novel framework for global landform classification and release a unique 22 

dataset called Global Basic Landform Units (GBLU), which incorporates a comprehensive set of objects that constitute the range 23 

of landforms on Earth. Constructed from multiple 1 arc-second DEMs, GBLU ranks among the highest-resolution global 24 

geomorphology datasets to date. Its development integrates geomorphological ontologies and key derivatives to strike a balance 25 

between mitigating local noise and preserving valuable landform details. GBLU categorizes the Earth's landforms into three levels 26 

with 26 classes, yielding discrete vector units that record landform type and distribution. Comparative analyses with previous 27 

datasets reveal that GBLU enhances capture of landform details, enabling more precise depiction of geomorphological boundaries. 28 

This refinement facilitates the identification of novel spatial disparities in landform patterns, exemplified by marked contrasts 29 

between Asia and other continents, and highlights the distinct prominence of China in terms of landform diversity. Given that the 30 

fundamental data resolution of GBLU accords well with available remote sensing datasets, it is readily incorporated into analytical 31 

workflows, exploring the relationship between landforms, climate and land cover. The full data set is available on the Deep-time 32 

Digital Earth Geomorphology platform and Zenodo (Yang et al., 2024; https://doi.org/10.5281/zenodo.13187969). 33 

1. Introduction  34 

Approaches to geomorphology vary, and include research on, for example, processes, materials, hazard and risk, and 35 

chronology, but the essential basis of all of these studies is the landform (Evans, 2012), which can be regarded as the ‘final surface 36 

status’ resulting from the combined influence of various forces.  The morphology of landforms and their associated evolutionary 37 

processes have long been a source of fascination, leading ultimately to the development of the formal science of geomorphology  38 

(MacMillan and Shary, 2009). Classifying and mapping the Earth’s surface into landform types according to morphological 39 

characteristics is a primary means of understanding surface patterns and processes on planet Earth (Evans, 2012; Xiong et al., 2022) 40 

and advancement in this field has potential benefits for the more efficient allocation of global resources to promote sustainable 41 

development (Dramis, 2009). 42 

Traditional landform mapping primarily relies upon manual interpretation based on the topographic maps and aerial 43 

photographs supported by field investigations (Drăguţ and Blaschke, 2006; Hammond, 1954; Iwahashi et al., 2018; Pennock et al., 44 

1987).  However, a series of technological developments has facilitated the automation of landform classification in recent decades, 45 

largely dependent on topographic derivatives calculated from DEMs, such as slope, aspect, relief, curvature, roughness (Amatulli 46 

et al., 2018; Dyba and Jasiewicz, 2022; Jasiewicz and Stepinski, 2013). With the development of earth observation systems and 47 
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DEM refinement, several global landform datasets based on this framework have been proposed using various data sources and at 48 

different levels of spatial resolution (Florinsky, 2017; Iwahashi and Yamazaki, 2022). Using a decision tree algorithm and 1-km 49 

SRTM30 data, Iwahashi and Pike (2007) generated a global terrain classification gridded dataset containing 16 undefined 50 

topographic types determined by slope gradient, local convexity, and surface texture. Relying on elevation and the standard deviation 51 

of elevation, Drăguţ and Eisank (2012) adopted an object-based method to automatically classify global landforms from SRTM data 52 

resampled to 1 km. Meanwhile, Iwahashi et al. (2018) improved their previous work and established 15 landform classes based on 53 

MERIT DEM.  To further eliminate issues involved in detecting narrow valley bottom plains, metropolitan areas, and slight inclines 54 

in otherwise largely flat plains, Iwahashi and Yamazaki (2022) introduced the elevation above the nearest drainage line measure, 55 

and achieved landform classification based on a DEM at 90m resolution. However, as the authors stated, unsupervised classification-56 

based methods to perform higher-resolution global landform classification require an international team with knowledge of 57 

geomorphological development in a variety of climatic and physiographic settings. In addition, at regional and/or global scales, 58 

several researchers have achieved automated landform classification following the Hammond procedure (Gallant et al., 2005; 59 

Karagulle et al., 2017; Martins et al., 2016). All these datasets have provided valuable resources to explore surface patterns, and 60 

also played important roles in supporting related disciplines such as hydrology, pedology, and ecology among others.  61 

However, shortfalls remain in current landform classification research and require attention to the  following points. Firstly, 62 

previous studies have adopted relatively coarse resolution DEMs, resulting in an inaccurate depiction of topographic information. 63 

Recent developments in Earth observation technology have concentrated on the deployment of digital elevation models (DEMs), 64 

which contain abundant geometric information about surface relief (Drăguţ and Eisank, 2011), although the approach and methods 65 

of implementing landform classification have not kept pace with advances in DEM resolution and quality. Nevertheless, higher 66 

DEM data resolution can be regarded as a double-edged sword, in that it at once provides the opportunity for landform mapping at 67 

a finer scale while at the same time increasing the challenge of reducing the noise effect (Jasiewicz and Stepinski, 2013) and 68 

maintaining the integrity of the identified landforms. Secondly, at the global scale, diverse and complex environmental factors have 69 

shaped different types of landforms that pose substantial challenges to the generalizability of classification methods (Li et al., 2020). 70 

With increasing human impact on landforms, a re-evaluation of landform classification that takes advantage of an increasingly 71 

potent digital database and ongoing improvements in human understanding of landform evolution and processes seems opportune. 72 

Finally, landform information obtained from a particular metric is derived at a particular spatial scale, determined jointly by the 73 

DEM resolution and window size in the neighborhood analysis,  giving rise to uncertainties in the landform classification results.  74 

Therefore, the development of innovative classification approaches and systems based on high resolution DEMs remains a 75 

priority for research on global landforms. In this study, we conduct a classification and mapping of global landforms based on a 76 

DEM at 1 arc-second resolution. We focus on the classification of basic landforms that emphasizes morphological differences and, 77 

in so doing, we present the practical expression of landform ontology at the global scale that offers valuable insights into the Earth’s 78 

surface structure comprising the constellation of landform types and their boundaries. The objectives of this research are: (1) to 79 
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construct a global classification system for landforms that integrates geomorphological knowledge, (2) to design a novel framework 80 

for global basic landform classification, (3) to develop an automated classification and mapping model for global landforms, and 81 

(4) to make available a comprehensive high-resolutiojn dataset of global landform units. 82 

2. Methodology 83 

2.1 Hierarchical classification system and data 84 

In aiming to provide a comprehensive classification of landforms at the global scale, our study encompasses all terrestrial 85 

regions worldwide, including islands and polar areas. Identifying landform objects and constructing a classification system is a 86 

preliminary and significant step in geomorphological and landform classification studies. It is crucial to recognize that landforms 87 

not only represent assemblages of quantitative characteristics but also convey the basic human understanding of nature (Smith and 88 

Mark, 2001). For example, the identification of what is acknowledged as a ‘mountain’ is as much a product of human perception as 89 

of its natural characteristics (Smith and Mark, 2003), thus emphasizing the importance of incorporating human understanding into 90 

landform classification and mapping. Therefore, we focus here on the classification of basic landforms that emphasizes 91 

morphological differences that are not only perceptible to humans but also constitute vital components in the analysis of surface 92 

environments. In taking into consideration the complexity of global landform characteristics, the classification criteria should satisfy 93 

the following requirements: (1) the determined classes should be globally applicable; (2) the setting of the landform types should 94 

conform with the current knowledge domain of geomorphology; and (3) specific criteria should be able to be interpreted and applied. 95 

In employing existing landform classification principles (Zhou et al., 2009), here we propose the set of criteria for basic landform 96 

classification. The new criteria integrate the typical rules of landform classification with indices proposed in this work, and are 97 

aimed at reflecting human knowledge in a quantitative way. We establish a hierarchical classification system comprising 3 levels 98 

and 23 classes (Table A1), thereby advancing a structured framework for understanding Earth's diverse landscapes. The first-level 99 

(L1) types are defined as ‘plain’ and ‘mountain’, reflecting the most fundamental morphological characteristics of landforms. Plains 100 

and mountains are the most direct reflection of the combined effects of geomorphological processes and profoundly influence 101 

biological activities. This classification perspective aids researchers in conducting macro-scale studies. At the second level (L2),  102 

plain landforms retain their labels to guarantee completeness of the classification system, and are further divided into low-altitude, 103 

middle-altitude, high-altitude, and highest-altitude plains based on elevation.  Mountains are subdivided at L2 into hills and other 104 

mountains with varying degrees of relief. At L3, we provide a further detailed classification of hills and mountains based on elevation. 105 

To attain global coverage, we utilize three DEM datasets (Table 1). These datasets are publicly available for access and have 106 

been widely used in geomorphological studies, ensuring their accuracy and validity. In this work, the ‘Forest and Buildings removed 107 

Copernicus DEM’ (FABDEM) (Hawker et al., 2022) is the primary data for latitudes 60°S-80°N. This dataset is the first bare-earth 108 

DEM dataset at a global scale at 1 arc-second (approximately 30-meter) resolution, developed using machine learning techniques 109 

from Copernicus DEM. By eliminating the bias resulting from building and vegetation heights, some terrain features, such as slope, 110 
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aspect, and watersheds, can be estimated more accurately, which is of significant benefit in landform classification. Meanwhile, the 111 

Advanced Land Observing Satellite (ALOS) World 3D - 30 m (AW3D30) (Tadono et al., 2014) dataset is used to supply data for 112 

the area the missing from FABDEM. In addition, to avoid the negative impact of ocean pixels on landform classification results, the 113 

OpenStreetMap (OSM) Land Polygon was utilized as a mask to eliminate the sea. 114 

Table 1. Data sources and attributes 115 

 FABDEM AW3D30 V3.2 REMA 

Spatial Coverage 60°S-80°N 82°S-82°N 56°S-88°S 

Spatial Resolution 1 arc-second 1 arc-second 32 m 

Vertical Accuracy <4 m 4.4 m (RMSE) 4 m (RMSE) 

Release Date 2021 2021 2022 

Data link 
https://data.bris.ac.uk/data/datas

et/s5hqmjcdj8yo2ibzi9b4ew3sn 

https://www.eorc.jaxa.jp/ALOS/jp/da

taset/aw3d30/aw3d30_j.htm 

https://www.pgc.umn.edu/

data/rema/ 

2.2 Global landform classification method 116 

In this study, we propose a knowledge-guided framework and provide the corresponding implementation workflow. The 117 

proposed method of global landform classification has a hierarchical structure, involving data pre-processing, identification of 118 

mountains and plains, calculation of the mountain uplift index (SUI), landform classification, and post-processing. Figure 1 119 

illustrates the workflow. The following sections provide details that should allow users to reproduce our results. In this study, we 120 

built factor calculation and landform classification models based on tools in ArcGIS Pro. A detailed description of the step-by-step 121 

procedures follows below. 122 

 123 

Figure 1. Workflow for global landform classification used in this study. 124 
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2.2.1 Data pre-processing 125 

As shown in Figure 1b, data pre-processing focuses primarily on land area extraction and data merging. We use the OSM 126 

land polygon as the land mask to eliminate the marine pixels that negatively influence subsequent processes. To improve processing 127 

efficiency, the original DEM elements with size of 1×1 degree are mosaiced to tiles of 10×10 degrees. Meanwhile, due to the 128 

requirement of calculating landform derivatives, we determine the projection principles as follows: data from latitudes below 70° 129 

are transposed onto the Behrmann projection, and the remaining data are transported onto the Lambert azimuth equal-area projection. 130 

2.2.2 Identifying plains and mountains 131 

Landforms represent the most fundamental elements of the Earth’s terrestrial surface and reflect both internal and external 132 

forces acting over time. Identifying and distinguishing contrasting plains and mountains represents the initial step in basic landform 133 

classification and mapping. We have designed a practical framework based on landform ontology to classify plains and mountains. 134 

The plains can be separated into core, transition and boundary, whereby the core represents areas with the most typical flat 135 

characteristics, i.e. very low relief. Transitions have plain cores but also contain sloping elements, i.e. areas that in part satisfy their 136 

classification as plain but also exhibit sloping characteristics not typical of plain.  Misclassifications usually occur in transition areas 137 

due to their atypical characteristics. Meanwhile, the boundary represents the part of the plain area where the geomorphological 138 

semantics and labels change to the mountain. 139 

 140 
Figure 2. Illustration of calculation methods. a schematic diagram of the cost-distance algorithm. b profile reflecting landform 141 

composition according to the proposed conceptual model of plains, segmented based on the slope; c calculated result of the AS and 142 

d calculated result of slope, where 𝑇𝐴𝑆 is the threshold of AS, and 𝑇𝑆𝑆 is the threshold of surface slope. For Figures 2c and d, areas 143 

smaller than the threshold are classified as plains (marked in green), while the remaining areas are classified as mountains (marked 144 

in brown). e and f comparison of the AS and slope indicators in the division of plains and mountains. 145 

Firstly, we regard the areas with low slope angles as the plain cores. Here, the slope threshold (T1) is recommended to be 146 

set as 1.5-3 degrees according to our global pre-assessment experiments. Areas where the slope angle lies below the threshold T1 147 

are classified as plain cores. Secondly, we employ the accumulated slope (AS) as representing the different slope attributes of 148 
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landforms. The AS is calculated as the minimum cumulative cost of each position to the nearest landform core along a specific path 149 

(Sechu et al., 2021). The algorithm follows the geospatial analysis principle whereby the lowest cost is computed through the 150 

creation of least-cost paths between cores and general positions. The tool of distance accumulation in ArcGIS Pro can achieve this 151 

calculation. In its implementation, this algorithm employs an iteration starting from the cell closest to the cores and follows the 152 

calculation principle shown in Figure 2a to compute the minimum cumulative cost of each cell to the core. The completed area is 153 

then expanded until all grids are associated with increasing costs. Segmenting landforms through the determination of the thresholds 154 

for landform derivatives is one of the most common methods used in geomorphological studies and achieves the most direct 155 

integration of geomorphological knowledge and expertise. As shown in Figure 2b, due to differences in topographic characteristics 156 

between plains and mountains, the AS has a low rate of increase in the areas classified as plains and a high rate of increase in rugged 157 

areas. This phenomenon reduces the difficulty of determining an appropriate AS threshold, which can be achieved by searching for 158 

abrupt changes in the AS profile. In this step, taking into consideration the geomorphological perspective, the threshold of AS (T2) 159 

is recommended to be 1500-2000 based on the pre-experimental results conducted on numerous samples worldwide. This threshold 160 

range is provided as a reference, but needs to be determined by integration with expert knowledge within different geomorphic 161 

regions. In some cases, it may exceed the recommended threshold range. Areas where the AS value is less than T2 are regarded as 162 

plains, and the remaining areas are mountains. Through the above segmentation, we can obtain the boundary of plain and construct 163 

the complete plain area consisting of core, variant and boundary. As shown in Figures 2e and f, this novel workflow exaggerates the 164 

difference between the plains and mountains and converts the local slope into an indicator of global landform characteristics. This 165 

novel method avoids the negative effect of local window analysis and is beneficial for maintaining the landform semantics for each 166 

block. 167 
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2.2.3 Classifying landform types in level 2 168 

 169 

Figure 3. Uncertainty in relief calculation based on the window analysis. a and b the relationship between different windows 170 

and topographical relief. c schematic diagram illustrating the base terrain of mountains. d features used to create TIN and build base 171 

terrain. 172 

Then, we focus on the differences of terrain relief to achieve the comprehensive classification of L2 landforms. Terrain 173 

relief refers to the difference in elevation between the highest and lowest points within a particular spatial unit. This factor 174 

significantly influences landform classification. However, commonly employed indices reflecting topographic relief are achieved 175 

using a window of fixed size such as 3×3, 5×5 pixels, or larger (Maxwell and Shobe, 2022), a method that fails to account for 176 

geomorphological semantics, and which therefore disregards the integrity of a mountain. Window size has a significant impact on 177 

results of relief calculation. As shown in Figures 3a and b, window analysis tends to disrupt the integrity and continuity of 178 

geomorphological elements. Moreover, a small window size is insufficient to capture the entire mountain, particularly in the case 179 

of large mountains, while a large window size may incorporate other mountains and fail effectively to capture the relief. The 180 

uncertainty introduced by window size further increases the difficulty of global classification and mapping based on relief. Therefore, 181 

we propose a new method for surface relief calculation. 182 

In quantitative analysis, it is crucial to consider the underlying terrain of mountains to accurately assess changes in elevation.  183 

According to the above consideration, we construct mountain units as fundamental analysis units and propose a novel derivative 184 

named the surface uplift index (SUI). In this paper, surface relief is defined as the degree of uplift relative to the flat areas surrounding 185 

the mountains. We regard the elevation at the foot of the mountain as the base elevation and then calculate the elevation difference 186 
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between each position on the mountains and the base elevation. Compared to the traditional method of relief calculation (e.g., 187 

difference in elevation within a particular window size), SUI considers the vertical elevation differences between the surface and 188 

the mountain base, which is more consistent with the human perception of mountain morphology. 189 

This step includes three sub-procedures. Firstly, we constructed the unit ‘rugged’ and associated fluvial features based on 190 

the boundary of plain. The plain boundary then lies at the foot of landforms classified as mountain. However, when the area of the 191 

mountain is large, and the base elevation is constructed only on basis of the plain boundary, the result may be inaccurate. To refine 192 

the representation of surface relief, we also take into account linear features representing the rivers. These additional lines can be 193 

obtained through DEM based hydro-analysis (Li et al., 2021). In order to ensure that plains at high elevations do not interfere with 194 

the definition of the mountain unit, since these are, in effect, part of the mountain range (Figure 3c) we exclude high elevation plains 195 

that have no fluvial features to retain the integrity of the associated mountain range. Figure 3d shows the elements involved in 196 

establishing the base elevation, which corresponds to the boundary of the low altitude plains and fluvial features (marked in red in 197 

Figure 3d), therefore excluding high altitude plains (marked in light green in Figure 3d). Secondly, we constructed the base elevation 198 

to underpin the calculation of the SUI. In this case, the rugged unit replaces the analysis window. In this step, we constructed the 199 

triangulated irregular network (TIN) based on the position extracted in the first step and then regard these TIN data as the base 200 

elevation. The construction of TIN can be achieve in ArcGIS Pro through create TIN. Thirdly, the SUI is obtained by calculating 201 

the difference between each cell height and its corresponding base elevation. This novel method provides a more appropriate 202 

representation of the underlying terrain. 203 

2.2.4 Type refinement for L3 204 

According to the results of previous studies (Zhou et al., 2009), we constructed the classification criteria shown in appendix 205 

of Table A1. For the plains, we use altitudes of 1000m, 3500m and 5000m as break points to generate low-, middle-, high- and 206 

highest-altitude landforms. Mountains are classified as hill, low-relief, middle-relief, high-relief, and highest-relief mountains, based 207 

on threshold SUI values of 200m, 1000m, 3500m and 5000m. In all, this yields 6 L2 and 23 L3classifications. 208 

2.2.5 Post-processing 209 

Following completion of the above processes, a map is generated that includes all the basic landform units. However, due 210 

to interference caused by the existence of locally steep changes in topographic relief, this output still contains some features in the 211 

plain areas misclassified as hills. Meanwhile, although the data we used are of high resolution and good quality, outliers and/or data 212 

noise remain.  Such anomalies may result in small landform blocks with relatively low terrain relief and, in accommodating this, 213 

we designed an optimization process to correct hill misclassification. We used area and SUI as reflecting their characteristics (e.g. 214 

fragmented and relatively low relief). Considering the application of landform data in geomorphologic mapping and the resolution 215 

of basic data, we determined that our study corresponds approximately to the equivalent of 1:200,000 geomorphological mapping. 216 

Under the conditions of 1:200,000 scale, the minimum displayable patch size is approximately 0.16 km2. The SUI threshold is 217 

derived from (Zhou et al., 2009), which defines plains as the blocks with relief of less than 30 metres. Therefore, blocks with areas 218 
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of less than 0.16 km2 and SUIs below 30 metres are regarded as misclassified blocks which are then integrated as part of the 219 

surrounding plains. 220 

Meanwhile, we designed an additional step to optimize the results for desert areas. Many arid regions are characterized by 221 

dunes, which are distinctive aeolian landforms of varying shape and size constructed from unconsolidated sand (Hugenholtz et al., 222 

2012). Dunes are generally smaller in scale than mountains and this challenges our approach to basic landform mapping (Shumack 223 

et al., 2020), increasing the difficulty of accurate dune mapping. In this study, we regarded sand dunes as hills due to their 224 

morphological similarity. However, due to the variation of dune size and shape, it is challenging to correctly classify these dunes as 225 

hills according to our proposed method. Therefore, we design an optimization step to correct the classification results in which dunes 226 

and inter-dune areas are separated and identified according to their altitude and SUI. Firstly, on the basis of on their 227 

geomorphological characteristics, remote sensing images, and hillshade maps, we demarcated the major global sand desert regions. 228 

Secondly, we used the DEM to extract the topographic feature lines by surface analysis of extracting desert feature lines. Employing 229 

the SUI calculation as for other regions, we then constructed the base terrain, in this case, the river networks were extracted with 230 

the threshold TD1 of 20000, and then we extracted sampling points from these networks to construct TINs. We calculated the SUI 231 

and then set the segmented threshold TD2. Due to inconsistencies in the scale of dunes worldwide, we applied an adjustable TD2 232 

ranging from 2m to 10m. Areas less than TD2 are defined as inter-dunes (equivalent to plains in the basic landform classification). 233 

All patches smaller than TD3 0.02km2 were regarded as fragments and integrated into the surrounding vector blocks. Finally, we 234 

employed the smoothing tool to ensure appropriateness of the landform boundary. 235 
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3 Results and discussion 236 

3.1 Global landform classification results 237 

 238 

Figure 4. Results of the basic global landform classification with 30 m resolution. a, b and c represent the L1, L2 and L3 239 

landforms, respectively. 240 
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Figure 4 shows the global landform classification results based on the abovementioned framework. This hierarchical dataset 241 

provides a more comprehensive understanding of the Earth surface. To visualize the results in detail, three typical regions are 242 

selected to demonstrate the performance of the GBLU dataset. Figure 5 shows the GBLU in typical regions and corresponding 243 

remote sensing image from Esri world imagery. The selected regions contain examples of the main landforms on Earth, as well as 244 

transition areas of different landforms. In the mountainous areas as shown in Figure 5a, mountain range and valley orientation is 245 

clearly discernible. The GBLU clearly illustrates the transition zones between mountains and plains, as well as potential floodplains. 246 

While such phenomena are visually discernible in remote sensing imagery, using our proposed framework, they are extracted based 247 

on quantified morphological characteristics. The abundant textural information provided by GBLU can facilitate study of areas with 248 

high geomorphological value, such as fjords (Figure 5b). In desert areas Figure 5c, GBLU effectively illustrates the transitional 249 

patterns between dunes and depressions.  Based on abundant morphological characteristics, GBLU can depict sand dune boundaries 250 

that are strikingly consistent with those visible in imagery. This further underscoring the performance of GBLU in capturing detailed 251 

geomorphic features across varied terrains. 252 
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  253 

Figure 5. Comparison of landform classification results and remote sensing imagery. a eastern part of the Tibetan Plateau. b 254 

the Fjord coast in western Norway. c desert area in the central Sahara. e-h are local enlarged areas.  255 

3.2 Result comparison and validation 256 

We conducted comparisons between the GBLU dataset and multiple other datasets to comprehensively evaluate our 257 

results.  Specifically, we compared the outcomes of five landform classifications across a range of sample areas. The most 258 

significant improvement achieved by applying GBLU is the increased detail in representing terrain features. The GBLU-based 259 

landform classification markedly enhances delineation of independent landforms, such as dunes and mountains, which have 260 

clear boundaries and serve as key elements in the analysis of spatial structure and interactions. The classification systems of 261 

RefData 3 and 4 are similar to GBLU but have a coarser resolution of 1 km, making them less effective in capturing terrain 262 

details.  Figure 6 illustrates that there is a variation in the understanding of landform types among different scholars. As stated 263 
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by the authors, RefData1 and RefData2 align more closely with terrain classification systems. Although these categories do 264 

include common landforms such as plain and mountains etc., they also encompass other types of terrain features like slope. 265 

In this paper, we consider landforms of plain or mountain to represent larger scales relative to terrain objects like "slope." 266 

Therefore, in designing the classification system, we think that categorizing 'slope' at the same level as 'plain' or 'mountain' 267 

can lead to some comprehension difficulties. Therefore, GBLU offers a more comprehensive landform classification system 268 

and expresses the integrity of landform objects more closely aligned with the ontological understanding of landforms. 269 

 270 

Figure 6. Comparison of GBLU with RefData 1 - 4. Selected study areas, from top to bottom, are as follows: a. the Kilimanjaro, 271 

b. Namcha Barwa in Himalaya, c. Greater Khingan Mountains, d. Fjords in New Zealand, e. Badain Jaran Desert and f. Central 272 

Alps. Refdata1 is the 15-class global terrain classification created by Iwahashi et al. (2018) based on 280m DEM. Refdata2 is the 273 

The 22-class global terrain classification created by Iwahashi and Yamazaki (2022) based on 90m DEM. Drăguţ and Eisank’s 274 

results include three levels; here we present results of their level 2 (RefData 3) and level 3 (RefData 4) classification.  275 
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 276 

Figure 7. Comparison between the GBLU and the Global Mountain Biodiversity Assessment (GMBA) projects. 277 

We conducted a more detailed comparison for mountain regions using the Global Mountain Biodiversity Assessment (GMBA) 278 

(Snethlage et al., 2022) as reference data. The GMBA dataset contains three subsets using the DEM with spatial resolutions of 1000 279 

m, 1000 m and 250 m to generate global mountain maps. These three datasets (e.g., K1, K2 and K3) are produced by analyzing the 280 

morphological derivatives, using a moving neighbourhood analysis window for relief, elevation, and slope (Kapos et al., 2000; 281 

Karagulle et al., 2017; Körner et al., 2011). That similar indicators are used in the associated classification and mapping processes 282 

indicates the comparability of the GMBA and the GBLU datasets, although due to differences in the category settings among the 283 

GBLU and the GMBA datasets, the comparison in this study focused only mountains. As shown in Figure 7, the GBLU dataset 284 

clearly outperforms the other three datasets in depicting mountain details, especially in representing valleys. This can be seen in 285 

Figures 7a-h, whereby the K1,K2 and K3 data exhibits separated upland blocks in mountainous regions with complex and intense 286 

terrain variations, and fails to represent continuous valleys. 287 

Due to differences in classification systems and indices, it is challenging to conduct further quantitative comparisons between 288 

GBLU and other results. To facilitate comparison between these datasets, we merged some classes in the datasets to maintain 289 

classification consistency. For example, we merged mountain summit and cliff slope sections into ‘mountain’ as per merging criteria 290 

described in Table A2. Overall, GBLU results are consistent with other systems in terms of the macroscopic landform patterns. The 291 

merged results indicate that Iwahashi and Yamazaki's dataset performs better in representing plains boundaries and their shapes. 292 
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 293 

Figure 8. Classification result of the GBLU for an existing landform mapping dataset in the Amazon River basin.  294 

a Iwahashi and Yamazaki (2022) original result; b adjusted Iwahashi and Yamazaki ,2022 result through merging landform 295 

classes; c GBLU result; d Drăguţ and Eisank (2012) result (level 3); e Drăguţ and Eisank, 2012 result (level 2). 296 

3.4 Global landform composition 297 

 298 
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Figure 9. Area and proportional area statistics at continental and national scales. a Proportion of primary landforms on each 299 

continent. b Area of primary landform types in the top 30 countries ranked by area. c Proportion of primary landform types in the 300 

top 30 countries ranked by area. Full names of countries listed can be found in Table A3. 301 

We have used a cell size of 500 m x 500 m to accurately assess the proportions of primary landforms across continents 302 

worldwide, thereby yielding insights into their spatial variations. The findings indicate that approximately 75% of the global land 303 

area comprises plains, while some 16% consists of hills, with the remaining portion classified as mountains (Figure 9a). In terms of 304 

the distribution of landform composition, Asia exhibits a very distinctive pattern, since plains cover only 59% of its land area, the 305 

lowest among all continents, while there is a significantly higher proportion of hills and mountains, consistent with its pronounced 306 

topographic diversity. Compared to the global average, the presence of continental marginal mountain chains results in a 307 

significantly lower proportion of plains, and correspondingly higher proportion of mountains, in both North and South America. 308 

Indeed, South America has very substantial areas of high relief mountains, while Africa is distinguished by the dominance of 309 

extensive plains. 310 

We further conducted a comprehensive analysis of landform types and their proportions at the national and regional scale 311 

across all countries and regions worldwide to reveal patterns of variation. Figure 9b illustrates the proportion of primary landform 312 

types in the top 30 countries ranked by area, while Figure 9c depicts the standardized proportion of the landform types within these 313 

countries, sorted based on the proportion of plains. China’s diverse and rugged topography is evident in its significantly high 314 

proportion of mountains, while Peru contains the lowest proportion of plains, as mountainous terrain there occupies over 60% of its 315 

land area. 316 

3.4 Dataset usage note 317 

In this section, we highlight the results of experiments performed to analyse the relationship between landforms, climate and 318 

land cover to highlight the potential applications of GBLU. Based on the high resolution landform classes provided by GBLU, we 319 

can explore the complex and in-depth relationships between landforms, climate, and land cover. The climate data is the widely used 320 

1-km Köppen-Geiger climate classification maps in 1991–2020 (Beck et al., 2023) and the land cover data is from FROM-GLC 321 

30m in 2017 (Yu et al., 2013). 322 

The enhanced resolution and detail of the GBLU enables subtle variations in the Earth's surface to be captured, which is highly 323 

valuable in understanding interactions between geomorphology and other factors. As shown in Figure 10, landform distribution in 324 

temperate zones suggests a unique blend of climatic conditions and geomorphologic processes, fostering a diverse array of landforms. 325 

In the climatic zones of tropical, arid, and cold regions, we observe that low-altitude plains and hills are most prominent. For polar 326 

areas, a larger proportion of the area is located at higher altitudes than in other climate zones. Regarding land cover analysis 327 

(excluding the South Polar area), cropland occupies 84.27% of plains and 15.73% of mountains, yielding useful insights for 328 

analyzing cultivated land productivity. Meanwhile, forests and bare land are more prevalent in mountains, more especially in hills. 329 
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Additionally, the percentage of many ecologically significant biomes, such as forests, grasslands, wetlands, tundra, and water bodies, 330 

in plains and mountainous regions has been brought up to date. This is potentially valuable for assessing the quality of ecological 331 

environments and carbon stocks. 332 

 333 

Figure 10. Relationship of landform types to climate and land cover. (a) and (b) show the proportions of the three classes of 334 

landform types in different climatic and land cover regions respectively. Values less than 0.2% are not labeled with numbers.  335 

The GBLU provided in this work has obvious applications in geomorphology but also in other fields and can, moreover, play 336 

a fundamental role in supporting the identification of landforms that incorporates complex semantics. For example, identification 337 

of a landscape element as ‘tableland’ is complex, differs between disciplines, and requires that both morphological and evolutionary 338 

characteristics be accounted for. The GBLU can be integrated with additional observations to map the occurrence and distribution 339 

of tablelands through the delineation of segments that are elevated, flat, and surrounded by steep escarpments. There is also 340 

significant potential for the application of GBLU to other fields (such as geology, hydrology and ecology) focusing on the natural 341 

environment. For example, for ecologists, biodiversity distribution across different landform regions is one of the most significant 342 

issues and central to understanding the nature of ecosystem change. At the regional scale, contrasting geomorphological conditions 343 

are known to promote isolation of biological populations, influencinge community structure and function, as well as evolution. 344 

Meanwhile, the interaction between geomorphology and biogeography may result in complex biogeomorphological dynamics. The 345 

feedback between physical, ecological and evolutionary components constituting biogeomorphological systems is an important 346 
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element of the evolution of the Earth’s surface. 347 

4. Dataset access 348 

Global Basic Landform Units (GBLU v1.0) is stored in the Deep-time Digital Earth Geomorphology platform and Zenodo 349 

(Yang et al., 2024; https://doi.org/10.5281/zenodo.13187969). The data are stored in Esri shapefile format using the coordinate 350 

system WGS84. Total size of the dataset is 150GB, with 6,849,306 independent landform blocks. In order to facilitate application, 351 

we employed a 1° × 1° grid to tile the data for storage, with 25,252 file tiles in all. We distinguish the types of landform units by 352 

coding attributes of the elements. Additionally, we provide a rasterized dataset (at 30m resolution) using the coordinate system of 353 

WGS84. Values of the cells represent the codes of L3 types. In the attribute table, field “code0” is the landform type code of the 354 

first level, field “code1” is the landform type code of the second level and field “code2” is the landform type code of the L3. 355 

5. Conclusion 356 

This study provides a novel global landform classification dataset (GBLU) with a resolution of 1 arc -second 357 

(approximately 30 m). In this study, we propose a novel framework for global landform mapping to significantly improve 358 

the quantitative evaluation of geomorphological features. The key output is the release of the GBLU dataset that is suited to 359 

applications across multiple disciplines, including geography, geology, ecology, and hydrology. Global-scale analysis of attributes 360 

within the GBLU reveals the composition and distribution of global landforms that enables comparison between regions and 361 

continents. The results emphasize the notable heterogeneity of Asia in general, and of China in particular, in terms of 362 

geomorphological diversity. The GBLU outperforms previous datasets in expressing landform details , providing an 363 

opportunity to investigate the Earth’s natural resources. The resolution of the GBLU is similar to that of the current 364 

mainstream remote sensing data, which makes combined use of the data relatively simple. We believe that this dataset 365 

can provide abundant and detailed geomorphological information for the field of earth sciences, facilitating further 366 

advancements in related research. 367 
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Appendix A 368 

Table A1. Classification of global basic landform types 369 

L1 Code 
Colors 

(RGB) 
L2 Code 

Colors 

(RGB) 
L3 Code 

Colors 

(RGB) 

Plain 1 
 

129,168,0 
Plain 11 

 
76,115,0 

Low-altitude plain 111 
 

112,168,0 

Middle-altitude plain 112 
 

209,235,152 

High-altitude plain 113 
 

237,242,179 

Highest-altitude plain 114 
 

213,217,164 

Mountai

n 
2 

 
255,255,190 

Hill 21 
 

240,242,148 

Low-altitude hill 211 
 

230,216,106 

Middle-altitude hill 212 
 

220,191,75 

High-altitude hill 213 
 

217,155,110 

Highest-altitude hill 214 
 

170,141,117 

Low-relief  

Mountain 
22 

 
168,112,0 

Low-altitude low-relief 

mountain 
221 

 
209,145.28 

Middle-altitude low-relief 

mountain 
222 

 
198,106,20 

High-altitude low-relief 

mountain 
223 

 
237,122,24 

Highest-altitude low-relief 

mountain 
224 

 
244,100,18 

Middle-relief 

Mountain 
23 

 
137,65,47 

Low-altitude middle-relief 

mountain 
231 

 
253,120,25 

Middle-altitude middle-

relief mountain 
232 

 
255,76,0 

High-altitude middle-relief 

mountain 
233 

 
201,30,9 

Highest-altitude middle-

relief mountain 
234 

 
220,0,0 

High-relief  

Mountain 
24 

 
86,20,24 

Low-altitude high-relief 

mountain 
241 

 
193,119,120 

Middle-altitude high-relief 

mountain 
242 

 
110,50,20 

High-altitude high-relief 

mountain 
243 

 
114,4,9 

Highest-altitude high-relief 

mountain 
244 

 
115,0,0 

Highest-relief 

Mountain 
25 

 
255,255,255 

Middle-altitude highest-

relief mountain 
252 

 
156,156,156 

High-altitude highest-relief 

mountain 
253 

 
225,225,225 

Highest-altitude highest-

relief mountain 
254 

 
255,255,255 

 370 

 371 
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Table A2. Merging the GBLU results to enable comparison with the results of Iwahashi and Yamazaki. 372 

 373 

Table A3. Countries’ names and their abbreviations. 374 

NAME Abbreviations 

Russian Federation RUS 

Canada CAN 

Peoples Republic of China CHN 

United States of America USA 

Federative Republic of Brazil BRA 

Commonwealth of Australia AUS 

Republic of India IND 

Argentina ARG 

Republic of Kazakhstan KAZ 

Democratic Republic of Congo COD 

Democratic People DZA 

Kingdom of Saudi Arabia SAU 

United States of Mexico MEX 

Republic of Indonesia IDN 

Republic of the Sudan SDN 

Islamic Republic of Iran IRN 

Great Socialist People LBY 

Mongolia MNG 

Republic of Peru PER 

Republic of Chad TCD 

Republic of Mali MLI 

Angola AGO 

Republic of South Africa ZAF 

Republic of Niger NER 

Republic of Colombia COL 

Federal Democratic Republic of Ethiopia ETH 

Republic of Bolivia BOL 

Islamic Republic of Mauritania MRT 

Arab Republic of Egypt EGY 

United Republic of Tanzania TZA 

375 
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