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Abstract. Understanding the land surface morphology and its relief components, which record the dynamics of the planet's evolution 19 

and interaction of multiple environmental factors, constitutes a critical aspect of Earth system science.Landforms are fundamental 20 

components of the Earth surface, providing the base on which surface processes operate. Understanding and classifying global 21 

landforms, which record the internal and external dynamics of the planet's evolution, constitutes a critical aspect of Earth system 22 

science.  Advances in Earth observation technologies have enabled access to higher resolution data, for example, remote sensing 23 

imagery and digital elevation models (DEMs).  However, classified landform relief and landform data with a resolution of 24 

approximately 1 arc-second (approximately 30 m) are lacking at the global scale, which limits the progress of geomorphologic 25 

related studies at finer scales. Here, we propose a novel framework for global landform relief classification and release a unique 26 

dataset called Global global Basic relief Landform Unitsclasses (GBLUGRC), which incorporates a comprehensive set of objects 27 

that constitute the range of landforms terrains and landforms on Earth. Constructed from multiple 1 arc-second DEMs, GBLUGRC 28 

covers global land and ranks among the highest-resolution global geomorphic geomorphology datasets to date. Its development 29 

integrates geomorphological land surface ontologies, with core, transitions and boundaries, and key derivatives to strike a balance 30 

between mitigating local noise and preserving valuable landform details. GBLUGRC categorizes the Earth's landforms land relief 31 

into three levels with 26 classes two levels, yielding raster files and discrete vector units that record landform relief type and 32 

distribution. Comparative analyses with previous datasets reveal that GBLUGRC enhances is beneficial in captureing of landform 33 

details of surface morphology, enabling more precise depiction of geomorphological boundaries. This refinement facilitates the 34 

identification of finer and novel more precise spatial disparities in landform patterns than before, exemplified by marked contrasts 35 

between Asia and other continents, and highlights the distinct prominence of Peru and China in terms of landform relief diversity. 36 

Given that the fundamental data resolution of GBLUGRC accords well with available accessible remote sensing imagery and other 37 

Earth scientific datasets, it is readily incorporated into analytical workflows, exploring the relationship between landformsland 38 

morphology, surface runoff, climate and land cover. The full data set is available on the Deep-time Digital Earth Geomorphology 39 

platform and Zenodo (Yang et al., 2024; https://doi.org/10.5281/zenodo.15641257https://doi.org/10.5281/zenodo.13187969). 40 

1. Introduction  41 

Approaches to geomorphology vary, and include research on, for example, genesis, processes, materials, hazard and risk, and 42 

chronology, but the essential basis of all of these studies is the landform (Evans, 2012), which can be regarded as the ‘final surface 43 

status’ resulting from the combined influence of various forces. The morphology of landforms and their associated evolutionary 44 

processes have long been a source of fascination, leading ultimately to the development of the formal science of geomorphology 45 

(MacMillan and Shary, 2009). Classifying and mapping the Earth’s surface into landform types according to morphological 46 

characteristics is a primary means of understanding surface patterns and processes on planet Earth (Evans, 2012; Xiong et al., 2022) 47 

and advancement in this field has potential benefits for the more efficient allocation of global resources to promote sustainable 48 

development (Dramis, 2009).Understanding the morphology of the Earth's surface and its constituent types is one of the fundamental 49 



3 

 

tasks of Earth system science (Evans, 2012; Pepin et al., 2022). In this domain, surface relief is a significant characteristic,  which 50 

playing a critical role in regulating energy flows and material transport across terrestrial environments and exerting significant 51 

influence on geomorphic evolution, hydrological balance, and human activity (Thornton et al., 2022; Viviroli et al., 2020; Xiong et 52 

al., 2023; Zhou and Chen, 2025). Although different disciplines may adopt varying terminologies—such as “landform,” “terrain,” 53 

or “relief class” (Drăguţ and Eisank, 2012; Meybeck et al., 2001; Thornton et al., 2021; Viviroli et al., 2020) —to describe these 54 

morphological features, their conceptual essence remains broadly consistent: to represent spatial patterns of vertical variation that 55 

shape the Earth’s surface and influence key environmental processes. Classifying and mapping the Earth’s surface into relief classes 56 

according to morphological characteristics is a primary means of understanding surface patterns and processes on planet Earth 57 

(Evans, 2012; Xiong et al., 2022) and advancement in this field has potential benefits for the more efficient allocation of global 58 

resources to promote sustainable development (Dramis, 2009). 59 

Traditional landform mapping of relief classes primarily relies upon manual interpretation, the survey based on the field work, 60 

topographic maps and aerial photographs supported by field investigations (Drăguţ and Blaschke, 2006; Hammond, 1954; Iwahashi 61 

et al., 2018; Pennock et al., 1987).  However, a series of technological developments has facilitated the automation of landform 62 

classification in recent decades, largely dependent on topographic derivatives calculated from DEMs, such as slope, aspect, relief, 63 

curvature, and roughness (Jasiewicz and Stepinski, 2013; Amatulli et al., 2018, 2020; Dyba and Jasiewicz, 2022; Snethlage et al., 64 

2022). With the development of earth observation systems and DEM refinement, several global landform datasets based on this 65 

framework have been proposed using various data sources and at different levels of spatial resolution (Florinsky, 2017; Iwahashi 66 

and Yamazaki, 2022). Using a decision tree algorithm and 1-km SRTM30 data, Iwahashi and Pike (2007) generated a global terrain 67 

classification gridded dataset containing 16 undefined topographic types determined by slope gradient, local convexity, and surface 68 

texture. Relying on elevation and the standard deviation of elevation, Drăguţ and Eisank (2012) adopted an object-based method to 69 

automatically classify global landforms from SRTM data resampled to 1 km. Meanwhile, Iwahashi et al. (2018) improved their 70 

previous work and established 15 landform classes based on MERIT DEM.  To further eliminate issues involved in detecting narrow 71 

valley bottom plains, metropolitan areas, and slight inclines in otherwise largely flat plains, Iwahashi and Yamazaki (2022) 72 

introduced the elevation above the nearest drainage line measure, and achieved landform land surface classification based on a DEM 73 

at 90m resolution. However, as the authors stated, unsupervised classification-based methods to perform higher-resolution global 74 

landform classification require an international team with knowledge of geomorphological development in a variety of climatic and 75 

physiographic settings (Iwahashi and Yamazaki, 2022). In addition, at regional and/or global scales, several researchers have 76 

achieved automated landform classification methods following the Hammond procedure (Gallant et al., 2005; Karagulle et al., 2017; 77 

Martins et al., 2016). All these datasets have provided valuable resources to explore surface patterns, and also played important roles 78 

in supporting related disciplines such as hydrology, pedology, and ecology among others. 79 

However, shortfalls remain in current relief and landform classification research and require attention to the following points. 80 
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Firstly, most previous studies have adopted relatively coarse resolution DEMs, resulting in an inaccurate depiction of topographic 81 

morphological information. Recent developments in Earth observation technology have concentrated on the deployment of digital 82 

elevation models (DEMs), which contain abundant geometric information about surface relief (Drăguţ and Eisank, 2011), although 83 

the approach and methods of implementing relief landform classification have not kept pace with advances in DEM resolution and 84 

quality. Nevertheless, Hhigher DEM data resolution can be regarded as a double-edged sword, in that it at once provides the 85 

opportunity for landform relief class mapping at a finer scale while at the same time increasing the challenge of reducing the negative 86 

effect of the data noise and abrupt terrain variations (Jasiewicz and Stepinski, 2013) and maintaining the morphological integrity of 87 

the identified landformsobjects. Secondly, at the global scale, diverse and complex environmental factors have increase the 88 

complexity of landform land surface morphology  that poses substantial challenges to the generalizability of classification methods 89 

(Li et al., 2020). With increasing human impact on landformsland surface, a re-evaluation of relief and landform classification that 90 

takes advantage of an increasingly potent digital database and ongoing improvements in human understanding of landform 91 

evolutionland surface morphology and processes seemsseems opportune. Finally, landform geomorphic alinformation obtained from 92 

a particular metric is derived at a particular spatial scale, determined jointly by the DEM resolution and window size in the 93 

neighborhood analysis, giving rise to uncertainties in the landform classification results.  94 

Therefore, the development of innovative classification approaches and systems based on high high-resolution DEMs remains 95 

a priority for research on global relief classes and landforms. In this study, we conduct a classification and mapping of global 96 

landforms relief classes based on a DEM at 1 arc-second resolution. We focus on the classification of basic landforms  97 

geomorphologicgeomorphic objects that emphasizes morphological differences and, in so doing, we present the practical expression 98 

of landform object ontology at the global scale that offers valuable insights into the Earth’s surface structure comprising the 99 

constellation of landform relief types and their boundaries. The objectives of this research are: (1) to construct a global classification 100 

system and framework for landforms land relief classes that integrates domain consideration of landform-related studies , (2) to 101 

design a novel framework for global basic landform classification, (32) to develop an automated classification and mapping model 102 

for global landformsrelief classes, and (43) to make available a comprehensive global dataset of landform relief units. 103 

2. Methodology 104 

2.1 Hierarchical classification system and data 105 

In aiming to provide a comprehensive classification of relief and landforms landform classes at the global scale, our study 106 

encompasses all terrestrial regions worldwide, including islands and polar areas. Identifying landform objects and constructing a 107 

classification system is a preliminary and significant step in geomorphological and landform classification related studies. It is 108 

crucial to recognize that land surface objects landforms not only represent assemblages of quantitative characteristics but also 109 

convey the basic human understanding of nature (Smith and Mark, 2001). For example, the identification of what is acknowledged 110 

as a ‘mountain’ is as much a product of human perception as of its natural characteristics (Smith and Mark, 2003), thus emphasizing 111 
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the importance of incorporating human understanding and domain application into relief landform classification and mapping. In 112 

this study, we focus here on the classification of basic landformsrelief classes that emphasizes vertical variation and relief intensity 113 

across different landforms morphological differences that are not only perceptible to humans but also constitute vital components 114 

in the analysis of surface environments. 115 

In taking into consideration the complexity of global landform topographic characteristics, the classification criteria should 116 

satisfy the following requirements: (1) the determined classes should be globally applicable; (2) the  setting of relief classes of the 117 

landform types should conform with the current knowledge domain of geomorphologythe Earth system science; and (3) specific 118 

criteria should be able to be interpreted and applied. The term “landform” is inherently scale- and context-dependent. In this study, 119 

we specifically emphasize force accumulation, mountain ecosystems, and microclimatic gradients before constructing the 120 

classification system. After a comprehensive consideration of numerous previous classification systems (Meybeck et al., 2001; Zhou 121 

et al., 2009), we propose a set of criteria for basic landformrelief classification, primarily based on (Zhou et al., 2009). The new 122 

criteria integrate the typical rules of relief and landform classification with indices proposed in this work, and are aimed at reflecting 123 

human knowledge in a quantitative way. We establish a hierarchical classification system comprising 3 2 levels and 23 9 classes 124 

(Table A1), thereby advancing a structured framework for understanding Earth's diverse landscapes. The first-level (L1) corresponds 125 

to the conventional concept of a complete landform entity, while the second level (L2) provides progressively finer-scale 126 

morphological information. The L1 classification primarily aims to distinguish broadly distributed rugged uplands and their 127 

counterpart—flat lowlands (Meybeck et al., 2001; Viviroli et al., 2020). To ensure clarity and interdisciplinary compatibility, we 128 

deliberately avoided using terms in a strict geomorphological sense (e.g., "mountain," "plain") and instead adopted extended 129 

geographic terms. In this study, we refer to the two primary surface types as flat landflat terrain and rugged landrugged terrain, based 130 

on their differences in slope characteristics. While flat landflat terrain and rugged landrugged terrain largely correspond to traditional 131 

concepts of plains and mountains, respectively, they are defined based on quantifiable morphological characteristics, thereby 132 

offering a more flexible and reproducible framework. These two contrasting relief classes provide essential support for 133 

understanding landform processes, analyzing hydrological patterns, and assessing the spatial distribution of human activities across 134 

diverse environmental contexts (Viviroli et al., 2020). This classification perspective aids researchers in conducting macro-scale 135 

studies. At L2, the flat landflat terrain retainsed elevation-based characteristics and areis further divided into low-altitude, middle-136 

altitude, high-altitude, and very high-altitude flat landflat terrain. The rugged lands areRugged terrain is subdivided at L2 into low-137 

relief, gentle-relief, moderate-relief, high-relief and very high-relief rugged landrugged terrain. 138 

 The first-level (L1) corresponds to the conventional concept of a complete landform entity, while the second level (L2) and 139 

third level (L3) provide progressively finer-scale morphological information. L1 types are defined as ‘plain’ and ‘mountain’, 140 

reflecting the most fundamental morphological characteristics of landforms. Plains and mountains are the most direct reflection of 141 

the combined effects of geomorphological processes and profoundly influence biological activities. This classification perspective 142 
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aids researchers in conducting macro-scale studies. At L2, plain landforms retain their labels to guarantee completeness of the 143 

classification system, and are further divided into low-altitude, middle-altitude, high-altitude, and highest-altitude plains based on 144 

elevation.  Mountains are subdivided at L2 into hills and other mountains with varying degrees of relief. At L3, we provide a further 145 

detailed classification of hills and mountains based on elevation. 146 

To attain global coverage, we utilize three DEM datasets (Table 1). These datasets are publicly available for access and have 147 

been widely used in geomorphological studies, ensuring their accuracy and validity. In this work, the ‘Forest and Buildings removed 148 

Copernicus DEM’ (FABDEM) (Hawker et al., 2022) is the primary data for latitudes 60°S-80°N. This dataset is the first bare-earth 149 

DEM dataset at a global scale at 1 arc-second (approximately 30-meter) resolution, developed using machine learning techniques 150 

from Copernicus DEM. By eliminating the bias resulting from building and vegetation heights, some terrain features, such as slope, 151 

aspect, and watersheds, can be estimated more accurately, which is of significant benefit in landform classification. Meanwhile, the 152 

Advanced Land Observing Satellite (ALOS) World 3D - 30 m (AW3D30) (Tadono et al., 2014) dataset and Reference Elevation 153 

Model of Antarctica (REMA) (Howat et al., 2022) is are used to supply data for the area missing from FABDEM. In addition, to 154 

avoid the negative impact of ocean pixels on landform classification results, the OpenStreetMap (OSM) Land Polygon was utilized 155 

as a mask to eliminate the sea. 156 

Table 1. Data sources and attributes 157 

 FABDEM AW3D30 V3.2 REMA 

Spatial Coverage 60°S-80°N 82°S-82°N 56°S-88°S 

Spatial Resolution 1 arc-second 1 arc-second 32 m 

Vertical Accuracy <4 m 4.4 m (RMSE) 4 m (RMSE) 

Release Date 2021 2021 2022 

Data link 
https://data.bris.ac.uk/data/datas

et/s5hqmjcdj8yo2ibzi9b4ew3sn 

https://www.eorc.jaxa.jp/ALOS/jp/da

taset/aw3d30/aw3d30_j.htm 

https://www.pgc.umn.edu/

data/rema/ 

2.2 Global landform cClassification method 158 

In this study, we propose a new framework and provide the corresponding implementation workflow. The proposed method of 159 

global landform classification has a hierarchical structure, involving data pre-processing, identification of mountains and plains, 160 

calculation of the surface relief index (SRI), landform relief classification, and post-processing. Figure 1 illustrates the workflow. 161 

The following sections provide details that should allow users to reproduce our results. In this study, we built characteristic 162 

quantification and landform classification models based on tools in ArcGIS Pro. A detailed description of the step-by-step procedures 163 

follows below. 164 
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 166 

Figure 1. Workflow for global landform classification used in this studyof the proposed classification method. 167 

2.2.1 Data preprocessing 168 

As shown in Figure 1b, data pre-processing focuses primarily on land area extraction and data merging. We use the OSM land 169 

polygon as the land mask to eliminate the marine pixels that negatively influence subsequent processes. To improve processing 170 

efficiency, the original DEM elements with size of 1×1 degree are mosaiced to tiles of 10×10 degrees. Meanwhile, due to the 171 

requirement of calculating landform derivatives, we determine the projection principles as follows: Tiles between 70° N/S are 172 

reprojected to the equal area Behrmann projection, and the tiles polewards of 70° N/S to Lambert azimuthal equal-area. To 173 

mitigate border effects between the two projection zones, we have implemented an overlapping strategy in our processing. 174 

Specifically, we processed the DEMs in 11° × 11° tiles, ensuring that the main 10° × 10° area is used as the final output. This 175 

approach helps maintain consistency and minimizes distortions at the transition between projection zones. For consistency and ease 176 

of use, the final TIFF files have been reprojected into a single coordinate system (EPSG:3857) 177 

2.2.2 Identifying plains and mountainsobjects inat Level 1 178 

Identifying and distinguishing contrasting plains and mountainsflat and rugged landrugged terrain represents the initial step in 179 
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basic landform classification and mappingin the proposed framework. To achieve itthis, we propose re-examining classification 180 

from an ontological perspective. In information science, an ontology is a neutral and. computationally tractable description of a 181 

given individual or category which can be accepted and reused by all information gatherers (Smith and Mark, 2003). In this study, 182 

based on the spatial information theory, we propose a conceptual description of relief objects that enhances the generalization of 183 

land surface and reduces the negative influence of vagueness. Considering that the characteristics of flat landsterrain are more 184 

distinct and their definition is clearer, we will use flat landsterrain as the foundation for expanding the relief ontology. As shown in 185 

Figure 2a, the conceptual model of flat landterrain includes three elements, viz. core, transition and boundary. The core represents 186 

areas with the most typical flat characteristics, i.e. very low slope. Transitions areoccur around cores and contain areas with higher 187 

slope than typical flat landflat terrain, i.e. areas that in part satisfy their classification as flat landflat terrain but also exhibit sloping 188 

characteristics not typical of flat landflat terrain. In a general geographic context, these areas should also be classified as flat landflat 189 

terrain. However, current methods that emphasize local topographic characteristics often fail to identify them correctly. The 190 

boundary is defined as the spatial margin of the flat landterrain where topographic properties and classification labels shift gradually 191 

toward those associated with rugged terrain. In this context, misclassification tends to occur in transitional zones, which exhibit 192 

mixed topographic features that do not fully align with either flat or rugged landrugged terrain characteristics. We have designed a 193 

practical framework based on landform ontology to classify  plains and mountainsthese two objects. The plains can be separated 194 

into core, transition and boundary, whereby the core represents areas with the most typical flat characteristics, i.e. very low relief. 195 

Transitions have plain cores but also contain sloping elements, i.e. areas that in part satisfy their classification as plain but also 196 

exhibit sloping characteristics not typical of plain.   as shown in Figure 2.Misclassifications usually occur in transition areas due to 197 

their atypical characteristics. Meanwhile, the boundary represents the part of the plain area where the geomorphological semantics 198 

and labels change to the mountain. 199 

 200 
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  201 
Figure 2. Illustration of calculation methods. a Conceptualization of plainsflat landflat terrain. b calculation principle and results 202 

of accumulated slope (AS), respectively. c schematic diagram of the cost-distance algorithm. The cost refers to the slope in this 203 

process. d profile reflecting landform land surface composition according to the proposed conceptual model of plains, segmented 204 

based on the slope; e calculated result of the AS and f calculated result of slope, where 𝑇𝐴𝑆 is the threshold of AS, and 𝑇𝑆𝑆 is the 205 

threshold of surface slope. For Figures 2c and d, areas smaller than the threshold are classified as plains flat landflat terrain (marked 206 

in green), while the remaining areas are classified as mountains rugged landrugged terrain (marked in brown). g and h comparison 207 

of the AS and slope indicators in the division of plains and mountainsLevel 1 classes. 208 

In conducting the classification processes, Ffirstly, we regard the areas with low slope angles as the plain flat cores. Here, the 209 

slope threshold (T1SS) is recommended to be set as 1.5 -3 degrees according to our global pre-assessment experiments. Areas where 210 

the slope angle lies below the threshold T1SS are classified as plain flat cores. A block must be greater than 0.1 km² to be classified 211 

as a core plain area.  In landform classification, the core areas of each landform are typically distinct and can be accurately identified. 212 

However, there is significant ambiguity in the transitional zones and boundaries between different landform types. To address this 213 

issue, we propose reexamining landform classification from an ontological perspective. In information science, an ontology is a 214 

neutral and computationally tractable description of a given individual or category which can be accepted and reused by all 215 

information gatherers (Smith and Mark, 2003). In this study, based on the spatial information theory, we propose a conceptual 216 

description of landforms that enhances the generalization of landform and reduce the negative influence of vagueness. Considering 217 

that the characteristics of plains are more distinct and their definition is clearer, we will use plains as the foundation for expanding 218 

the landform ontology. As shown in Figure 2a, the conceptual model of plains includes three elements, viz. core, transition and 219 

boundary. The plain core represents areas with the most typical plain characteristics, i.e. very low relief. Transitions are areas with 220 

elements consistent with the plain cores but also contain non-standard slope characteristics. In other words, transitions in part satisfy 221 

their identification as plains but also exhibit characteristics that may not be typical of plans, and this may lead to an inaccurate 222 

classification. The boundary represents the part of the plain where the geomorphological semantics and labels change. The 223 

fundamental characteristics of plains, i.e. flat terrain, are defined as the plain core and quantified by slope angle in the previous step. 224 

The other elements are determined based on the cores. For exampleA, s we discussed beforenoted above, areas outside the plain 225 

core thatbeyond the core have awith relatively low relief should also be considered plains flat landsterrain in the geomorphological 226 
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geographic sense, .  although However, segmentation based on slope characteristics may usually fails to identify them as such due 227 

to emphasis being placed on local changes in topography (Figure 2g). These introduces patches in the extraction of plains that may 228 

fragment the integrity of larger plains. FurthermoreMeanwhile, the resulting landscape segments may themselves contain fragments 229 

that reflect local topographic changes but do not represent actual landform objects as recognized geomorphologically. It is 230 

challenging to correct all such fragments across complex terrain scenarios at the global scale, thus limiting the feasibility of 231 

automated global landform relief classification.  232 

To address these issues, as the second step in our classification process, we introduce the concept of accumulated cost slope 233 

(AS) and develop an AS derivative that quantifies the attributes of plain transitions by calculating the AS along a path that has the 234 

lowest slope cost (Figure 2b). In this process, the core is the typical areaas extracted in the previous step, and the cost surface is the 235 

slope gradient. The AS is calculated as the minimum cumulative cost of each position to the nearest plain core along a specific path. 236 

In the AS calculation of general position, this algorithm employs an iteration starting from the cell closest to the cores and follows 237 

the calculation principle shown in Figure 2c to compute the minimum accumulated slope of each cell to the core. The completed 238 

area is then expanded until all grids are associated with increasing costs. This process follows the geospatial analysis principle of 239 

the minimum accumulated cost (Sechu et al., 2021). The tool of distance accumulation in ArcGIS Pro can achieve this calculation. 240 

Segmenting landforms through the determination of the thresholds for landform topographic derivatives is one of the most common 241 

methods used in geomorphological studies and transforms geomorphological qualitative perception towards quantitative 242 

computation. As shown in Figure 2d, due to differences in topographic characteristics between plains flat and mountainsrugged 243 

landsterrain, the AS has a low rate of increase in the areas classified as plains flat landterrains and a high rate of increase in rugged 244 

areas. This phenomenon reduces the difficulty of determining an appropriate AS threshold, which can be achieved by searching for 245 

abrupt changes in the AS profile. In this step, taking into consideration the geomorphological perspective, the threshold of AS (T2TAS) 246 

is recommended to be 1500-2000 based on the pre-experimental results conducted on numerous samples worldwide. Areas where 247 

the AS value is less than TAS are merged are merged with the cores to form the complete flat landterrain, while the remaining areas 248 

are classified as rugged landrugged terrain. This threshold range is provided as a reference but gentle adjustments to the thresholds 249 

may be required in some special areas, such as small islands, through human-computer interaction. In some cases, such as small 250 

islands where traditional watershed and TIN-based methods tend to struggle, it may exceed the recommended threshold range. Areas 251 

where the AS value is less than T2 are regarded as plains, and the remaining areas are mountains. Through the above segmentation, 252 

we can obtain the boundary of plain flat landsflat terrain and construct the complete flat plain area consisting of core, variant and 253 

boundary. As shown in Figures 2g and h, this novel workflow exaggerates the difference between the plains and mountainsflat and 254 

rugged landsterrain and converts the local slope into an indicator of global landform characteristics. This novel method avoids the 255 

negative effect of local window analysis and is beneficial for maintaining the landform semantics for each block. 256 
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2.2.3 ClassifyingQuantifying landform surface relief types in level 2in the rugged landrugged terrain 257 

 258 
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 259 
Figure 3. Uncertainty in relief calculation based on the window analysis. a and b the relationship between different windows 260 

and topographical surface relief in rugged areas. c schematic diagram illustrating the base terrain for calculating surface relief 261 

indexof mountains. d features used to create TIN and build base terrain. 262 

In this step, we focus on the differences of quantifying terrain relief difference to achieve the comprehensive classification of 263 

L2 landformsclasses. It should be noted that the term terrain relief in this study emphasizes the use of quantitative terrain metrics 264 

(i.e., relief index) to measure the degree of vertical variation across the Earth’s surface. Terrain relief refers to the difference in 265 

elevation between the highest and lowest points within a particular spatial unit. This factor significantly influences landform land 266 

surface classification. However, commonly employed indices reflecting topographic relief are achieved using a window of fixed 267 

size such as 3×3, 5×5 pixels, or larger (Maxwell and Shobe, 2022), a method that fails to account for geomorphological semantics, 268 

and which therefore disregards the integrity of a mountain or hill. Window size has a significant impact on the results of relief 269 

calculationquantification. As shown in Figures 3a and b, window analysis tends to disrupt the integrity and continuity of 270 

geomorphological elements. Moreover, a small window size is insufficient to capture the entire mountainelements, particularly in 271 

the case of large mountains, while a large window size may incorporate other mountains elements and fail effectively to capture the 272 

real relief. The uncertainty introduced by window size further increases the difficulty of global classification and mapping based on 273 

relief index. Even the multi-scale synthesis approaches can effectively mitigate scale-dependent limitations, : these methods still 274 
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inherently face challenges associated with determining appropriate scales ranges in algorithms.  275 

Therefore, we propose a new method for relief quantification method which does not rely on the traditional window-based 276 

calculation. In this paper, the surface relief index (SRI) is defined as the degree of relative relief relative to the flat areas surrounding 277 

the mountainrugged landterrain. We regard the elevation at the foot of the mountain rugged landrugged terrain as the base elevation 278 

and then calculate the elevation difference between each position on the mountains rugged landrugged terrain and the base elevation. 279 

Compared to the traditional method of relief calculation (e.g., difference in elevation within a particular window size), SRI considers 280 

the vertical elevation differences between the surface and the mountain base, which is more suitable for the objectives in landform-281 

related studies such as mountainous mountain climate and biodiversity. 282 

This step includes three sub-procedures. Firstly, we constructed the mountain rugged landrugged terrain extent as the 283 

foundation for subsequent calculation. The plain flat landflat terrain boundary lies at the foot of landforms classified as mountain, 284 

which is suitable tois primarily used to define represent the extent of mountainsrugged terrainlands. However, when the area of 285 

rugged terrain (such as mountains) is large, and the base elevation is constructed solely from the boundary of the flat terrain, the 286 

result may not accurately reflect the actual terrain reliefHowever, when the area of the mountain rugged land (such as mountains) is 287 

large, and if the base elevation is constructed only on the basis of the plain flat land boundary, the result cannot reflect the real terrain 288 

relief. To refine the representation of surface relief, we introduce linear features representing the rivers. These additional lines can 289 

be obtained through DEM DEM-based hydro-analysis (Li et al., 2021). In order to ensure that plains flat landsflat terrain at high 290 

elevations does not interfere with the definition of the mountain rugged unit, since these areit is, in effect, part of the mountain 291 

rugged landrugged terrain range (Figure 3c). ), Wwe exclude high elevation plains-altitude flats (marked in light green in Figure 3d) 292 

that have no fluvial features to retain the integrity of the associated mountain rugged landrugged terrain range. Figure 3d shows the 293 

final elements involved in establishing the base elevation, which corresponds to the boundary of the low low-altitude plains flats 294 

and fluvial features (marked in red in Figure 3d). Secondly, we constructed the base elevation to support the calculation of the SRI. 295 

In this case, the mountain rugged landrugged terrain extent, which replaces the analysis window in traditional relief calculation, is 296 

used to construct the base elevation. Specifically, we constructSpecially, we constructed the triangulated irregular network (TIN) 297 

based on the position extracted in the first step and then regard the elevation value in TIN as the base elevation. The construction of 298 

TIN can be achieved in ArcGIS Pro through createthe creation of TIN. Thirdly, the SRI is obtained by calculating the difference 299 

between each cell height altitude and its corresponding base elevation. This novel method provides a more appropriate representation 300 

of the underlying terrain. 301 

2.2.4 Type refinement for L2 classes 302 

According to the results of previous studies (Meybeck et al., 2001; Zhou et al., 2009), we constructed the classification criteria 303 

shown in aAppendix of Table A1. For the flat lanterraind, we use altitudes of 1000m, 3500m and 5000m as break points to generate 304 

low-, middle-, high- and highest-altitude classes. The rugged lands areRugged terrain is classified as low-relief, gentle-relief, 305 
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moderate-relief, high-relief, and very high-relief classes, based on threshold SRI values of 200m, 1000m, 3500m and 5000m. In all, 306 

this yields 6six classes in L2. 307 

2.2.4 Type refinement for L3 308 

According to the results of previous studies (Zhou et al., 2009), we constructed the classification criteria shown in appendix 309 

of Table A1. For the plains, we use altitudes of 1000m, 3500m and 5000m as break points to generate low-, middle-, high- 310 

and highest-altitude landforms. Mountains are classified as hill, low-relief, middle-relief, high-relief, and highest-relief 311 

mountains, based on threshold SRI values of 200m, 1000m, 3500m and 5000m. In all, this yields 6 classes in L2 and 23 classes 312 

in L3. 313 

2.2.5 5 Post-processing 314 

Following the completion of the above processes, a map is generated that includes all the basic landform unitsrelief classes. 315 

However, due to interference caused by the existence of locally steep changes in topographic relief, this output still contains some 316 

features in the plain flat areas misclassified as hillsrugged landrugged terrain. Meanwhile, although the data we used areisare of 317 

high resolution and good quality, outliers and/or data noise remain.  Such anomalies may result in small landform blocks with 318 

relatively low terrain relief. and, in In accommodating this limitation, we designed an optimization process to correct hill 319 

misclassificationthese misclassifications. We used area and SRI asto reflecting their characteristics (e.g., fragmented and relatively 320 

low relief). Considering the application of geomorphologic landform data and in geomorphologic mapping and the resolution of 321 

basic fundamental data, we determined that our study corresponds approximately to the equivalent of 1:200,000 geomorphological 322 

mapping. Under the conditions of 1:200,000 scale, the minimum displayable patch size is approximately 0.16 km2. The SRI 323 

threshold is derived from (Zhou et al., 2009), which defines plains as the blocks with relief of less than 30 metres. Therefore, blocks 324 

with areas of less than 0.16 km2 and SRIs below 30 metres are regarded as misclassified blocks which are then integrated as part of 325 

the surrounding plainsflat landflat terrains. 326 

Meanwhile, we designed an additional step to optimize the results for desert areas. Many arid regions are characterized by 327 

dunes, which are distinctive aeolian landforms of varying shape and size constructed from unconsolidated sand (Hugenholtz et al., 328 

2012). Dunes are generally smaller in scale than mountains and this challenges our approach to  basic landformrelief classification 329 

mapping (Shumack et al., 2020), increasing the difficulty of accurate dune mapping. In this study, we regarded sand dunes as hills 330 

low-relief rugged landrugged terrain due to their morphological similarity. However, the variation of dune size and shape poses 331 

significant challenges to the accuracy of dune classification under the current unified framework.  due to the variation of dune size 332 

and shape, it is challenging to correctly classify these dunes as hills according to our proposed method. Therefore, we design an 333 

optimization step to correct the classification results in which dunes and inter-dune areas are separated and identified according to 334 

their altitude and SRI. Firstly, on the basis of on their geomorphological characteristics, remote sensing images, and hillshade maps, 335 

we demarcated the major global sand desert regions. Secondly, we used the DEM to extract the topographic feature lines by surface 336 
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analysis of extracting desert feature lines. Employing the SURI calculation as for other regions, we then constructed the base terrain, . 337 

iIn this case, the river drainage networks were extracted with the threshold TD1 of 20000, and then we extracted sampling points 338 

from these networks to construct TINs. We calculated the SRI and then set the segmented threshold TD2. Due to inconsistencies in 339 

the scale of dunes worldwide, we applied an adjustable TD2 ranging from 2m to 10m. Areas less than TD2 are defined as inter-dunes 340 

(equivalent to plains in the basic landform classification). All patches smaller than TD3 0.02km2 were regarded as fragments and 341 

integrated into the surrounding vector blocks. Finally, we employed the smoothing tool to ensure appropriateness of their  landform 342 

boundary. 343 

3 Results and discussion 344 

3.1 Global landform relief classification results 345 

346 
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 347 

Figure 4. Results of the basic global landformglobal relief classes classification with 30 m resolution. a, and b and c 348 

represent the L1, L2 and L3 landforms and L2 classes, respectively. 349 

Figure 4 shows the global reliefglobal landform classification (GRC) results based on the abovementioned framework. This 350 

hierarchical dataset provides a more comprehensive understanding of the Earth’s surface. To visualize the results in detail, three 351 

typical regions are selected to demonstrate the performance of the GBLUGRC dataset. Figure 5 shows the GBLUGRC in typical 352 
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regions and corresponding remote sensing image from Esri world imagery. The selected regions contain examples of the main 353 

landforms land surface on Earth, as well as transition areas of different landformsrelief classes. In the mountainous areas, as shown 354 

in Figure 5a, mountain rugged landrugged terrain range and valley orientation are clearly discernible, which together form the 355 

fundamental structure for expressing mountains. The GBLUGRC clearly illustrates the transition zones between mountains 356 

(represented by the rugged landrugged terrain) and plains (represented by the flat landterrain), as well as potential floodplains. While 357 

such phenomena are visually discernible in remote sensing imagery, using our proposed framework, they are extracted based on 358 

quantified morphological characteristics. The abundant information on the landform landform composition provided by GBLUGRC 359 

can facilitate study of areas with high geomorphological value, such as fjords (Figure 5b). In desert areas Figure 5c, GBLUGRC 360 

effectively illustrates the transitional patterns between dunes and depressions.  Based on abundant morphological characteristics, 361 

GBLUGRC can depict sand dune boundaries that are strikingly consistent with those visible in imagery. This further underscores 362 

underscoring the performance of GBLUGRC in capturing detailed geomorphic features across varied terrains. 363 
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 365 

Figure 5. Comparison of landform the classification results constructed in this paper and remote sensing imagery. a eastern 366 

part of the Tibetan Plateau. b the Fjord coast in western Norway. c desert area in the central Sahara. e-h are local enlarged areas.  367 
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3.2 Result comparison and validation 368 

 369 
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 370 

Figure 6. Comparison of GBLUGRC with other landform classification results. Selected study areas, from top to bottom, are 371 

as follows: a. the Kilimanjaro, b. Namcha Barwa in Himalaya, c. Greater Khingan Mountains, d. Fjords in New Zealand, e. 372 

Badain Jaran Desert and f. Central Alps.  373 
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We conducted comparisons between the GBLUGRC dataset and multiple other datasets (including landform, terrain and 374 

relief classification) to comprehensively evaluate our results. Specifically, we compared the outcomes of five landform 375 

classifications across a range of sample areas. The most significant improvement achieved by applying GBLUGRC is the 376 

increased detail in representing terrain features. The GBLUGRC-based landform classification markedly enhances the 377 

delineation of independent landforms, such as dunes and mountains, which have clear boundaries and serve as key elements 378 

in the analysis of spatial structure and interactions. Meanwhile, the valley-liked objects can also be reflected by GBLUGRC. 379 

The classification systems of Drăguţ and Blaschke (2006) are similar to GBLUGRC but have a coarser resolution of 1 km, 380 

making them less effective in capturing terrain details.  Figure 6 illustrates that there is a variation in the understanding of 381 

landform types among different scholars. As noted above, Iwahashi’s results align more closely with terrain classification 382 

systems in capturing slope features, such as flow channels on volcanic flanks, which occur at finer spatial scales than the 383 

terrain objects represented by GRCAs mentioned before, Iwahashi’s results align more closely with terrain classification 384 

systems. They represent a lot of slope details, such as flow channels on the volcanic slopes. In this paper, we consider 385 

landforms of plain or mountain to represent, which represent larger lower scales relative to terrain objects than GRC like 386 

"slope.".  Therefore, in designing the classification system, we think that categorizing 'slope' at the same level as 'plain' or 387 

'mountain' can lead to some comprehension difficulties. Therefore, GBLU offers a more comprehensive landform 388 

classification system and expresses the integrity of landform objects more closely aligned with the ontological understanding 389 

of landforms.It is worth noting that, as illustrated in Figure 6e, the incorporation of the SRI leads to the classification of dunes 390 

into three distinct sub-classes: ridge, slope, and interdune. While this finer-level classification provides enhanced information 391 

on relief variations, it may be perceived as compromising landform integrity in certain application contexts. Therefore, we 392 

recommend that users select either the L1 or L2 classification level depending on their specific research or application needs 393 

in desert areas. 394 
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 395 

 396 

Figure 7. Comparison between the GBLUGRC and three mountain definitions presented on the Global Mountain 397 

Explorer (https://rmgsc.cr.usgs.gov/gme/https://rmgsc.cr.usgs.gov/gme/). 398 
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We conducted a more detailed comparison forof mountain regions with to reference from the Global Mountain Explorer (GME) 399 

as reference data. The GMBA GME dataset contains three subsets using the DEM with spatial resolutions of 1000 m, 1000 m and 400 

250 m to generate global mountain maps. These three datasets (e.g., K1, K2 and K3) are produced by analyzing the morphological 401 

derivatives, using a moving neighbourhood analysis window for relief, elevation, and slopederivative calculation (Kapos et al., 2000; 402 

Karagulle et al., 2017; Körner et al., 2011). Differences in application objectives and the selection of input variables have led to 403 

notable discrepancies among the classification results of the three datasets. K1 was established to support the global mapping of 404 

mountain forests by identifying mountainous regions where a combination of elevation, slope, and terrain ruggedness 405 

surpasseexceeds certain threshold values. K2, aimed at enabling comparative studies of mountain biodiversity, employed a 406 

comparable methodology but relied exclusively on ruggedness as the determining factor. Meanwhile, K3 emerged from efforts to 407 

construct a global ecosystem map, in which mountainous areas were defined by extracting this particular category from a broader 408 

classification of “ecological land units” (Sayre et al., 2018; Thornton et al., 2022). That similar indicators are used in the associated 409 

classification and mapping processes indicates the comparability of the GMBA and the GBLU datasets, although due to differences 410 

in the category settings among the GBLU and the GMBA datasets, the comparison in this study focused only mountains. As shown 411 

in Figure 7, the GBLUGRC dataset clearly outperforms the other three datasets in depicting mountain details, especially in 412 

representing valleys. This can be seen in Figures 7a-h, whereby the K1, K2 and K3 data exhibits separated upland blocks in 413 

mountainous regions with complex and intense terrain variations, and fails to represent continuous valleys. 414 

Due to differences in classification systems and indices, it is challenging to conduct further quantitative comparisons between GBLU 415 

and other results. To facilitate comparison between these datasets, we merged some classes in the datasets to maintain classification 416 

consistency. For example, we merged mountain summit and cliff slope sections into ‘mountain’ as per merging criteria described in 417 

Table A2. Overall, GBLU results are consistent with other systems in terms of the macroscopic landform patterns. The merged 418 

results indicate that Iwahashi and Yamazaki's dataset performs better in representing plains boundaries and their shapes. 419 
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 420 

Figure 8. Classification result of the GBLU for an existing landform mapping dataset in the Amazon River basin.  421 

a Iwahashi and Yamazaki (2022) original result; b adjusted Iwahashi and Yamazaki ,2022 result through merging landform 422 

classes; c GBLU result; d Drăguţ and Eisank (2012) result (level 3); e Drăguţ and Eisank, 2012 result (level 2). 423 
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3.4 3 Global landform compositionContinental and national composition of relief classes 424 

 425 
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 426 

Figure 98. Area and proportional area statistics at continental and national scales. a Proportion of primary landformsGRC 427 

classes on each continent. b The square represents the proportion of each continent's relief types relative to the total global land area. 428 

A larger square indicates a greater areas of that relief type for the continent. b c Area of GRC classesprimary landform types in the 429 

top 30 countries ranked by area. c d Proportion of GRC classesprimary landform types in the top 30 countries ranked by arealow-430 

altitude flat landflat terrain. Full names of countries listed can be found in Table A3A2. 431 

 432 

 433 

We have used a cell size of 500 100 m x 500 100 m to accurately assess the proportions of GRC L2 classesprimary landforms 434 

across continents worldwide, thereby yielding insights into their spatial variations. WeOur re-quantified the global distribution of 435 

relief classes and providedprovides the most detailed estimates to date of the proportion of flat and rugged landsterrain. The findings 436 

indicate that approximately 75% of the global land area comprises plainsterrain, while some 16% consists of hillsrugged terrain, 437 

with the remaining portion is classified as mountains rugged terrain(Figure 9a). In terms of the distribution of landform composition, 438 

Asia exhibits a very distinctive pattern, since plains the flat landflat terrain cover only 59% of its land area, the lowest among all 439 

continents, while there is a significantly higher proportion of hills and mountainsrugged landsterrain, consistent with its pronounced 440 

topographic diversity. Africa is characterized by the dominance of extensive flat lands terrain in terms of relative area. However, in 441 

absolute terms, Asia contains a significantly larger extent of flat landflat terrain, exceeding that of Africa by approximately 4.1%. 442 



29 

 

(Figure 8b). Compared to the global averagescale, the presence of continental marginal mountain chains results in a significantly 443 

lower proportion of plainsflat landterrains, and correspondingly higher proportion of mountainsrugged landsterrain, in both North 444 

and South America. Indeed, South America has very substantial areas of high relief mountains, while Africa is distinguished by the 445 

dominance of extensive plains. 446 

We further conducted a comprehensive analysis of landform relief classes types and their proportions at the national and 447 

regional scale across all countries and regions worldwide to reveal patterns of variation. Figure 9b 8c illustrates the proportion of 448 

L2 classes primary landform types in the top 30 countries ranked by area, while Figure 9c 8d depicts the standardized proportion of 449 

the landform relief classestypes within these countries, sorted based on the proportion of plainslow-altitude flat landflat terrain. 450 

China contains a significantly high proportion of rugged terrainlands, indicating its diverse and rugged landform composition, ’s 451 

diverse and rugged topography is evident in its significantly high proportion of mountains, while Peru contains the lowest proportion 452 

of plainsflat lanterrainds (40.5%)., as mountainous terrain there occupies over 60% of its land area. 453 

3.4 Geographic relationships: runoff, climate and land use Dataset usage note 454 

 455 

Figure 9. The spatial distribution of GRC and surface runoff in different areas. a and b show the GRC L2 for the Rocky 456 

Mountains in North America, while c and d display the corresponding runoff patterns in the same region. e and f show the GRC L2 457 
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for the Andes Mountains in South America, while g and h display the corresponding runoff patterns in the same region. i and j show 458 

the GRC L2 and runoff in the southern areas of the Himalayas, while k and l display the corresponding runoff patterns in the same 459 

region.  460 

In this section, we highlight the results of experiments performed to analyseanalyze the relationships between landformsrelief 461 

classes, surface runoff, climate and land cover to highlight the potential applications of GBLUGRC. Based on the high high-462 

resolution landform classesresults provided by GBLUGRC, we can explore the complex and in-depth relationships between various 463 

factorslandforms, climate, and land cover. Runoff data used in this study were obtained from GCN250 (Sujud and Jaafar, 2022), a 464 

global mean monthly runoff dataset for April 2015–2021 available in GeoTIFF format at a 250-meter resolution. This high-465 

resolution dataset is valuable for a wide range of water-related applications, such as hydrologic design, land management, water 466 

resource allocation, and flood risk assessment. As shown in Figure 9 marked by red circles, we found that the spatial distribution of 467 

runoff closely aligns with the patterns represented by the GRC dataset. Notably, as shown in Figures 9e to l, substantial differences 468 

in runoff values are observed at the boundaries between flat and rugged landrugged terrain, suggesting a strong association between 469 

runoff and terrain relief. This phenomenon indicates that the GRC data can help reveal such underlying spatial relationships. 470 

Moreover, in mountainous areas, the runoff values tend to follow valley-aligned patterns, which correspond well to the L2 classes 471 

in the GRC dataset. However, due to the coarse resolution of the GCN250, these gradual transitions are not fully captured. As a 472 

detailed representation of terrain relief, the GRC dataset holds potential for supporting downscaling of global runoff data. Integrating 473 

both datasets could provideoffers novel insights into surface water dynamics and improves our understanding of water resource 474 

management under complex topographic conditions. The climate data is the widely used 1-km Köppen-Geiger climate classification 475 

maps in 1991–2020 (Beck et al., 2023) and the land cover data is from FROM-GLC 30m in 2017 (Yu et al., 2013). 476 



31 

 

477 



32 

 

 478 

Figure 10. Relationship of landform types relief classes to climate and land cover. (a) and (b) show the proportions of the three 479 

classes of landform typesrelief class in different climatic and land cover regions respectively. Values less than 0.2% are not labeled 480 

with numbers. The cClimate data is the widely usedclasses are as per the 1-km Köppen-Geiger climate classification maps infor 481 

1991–2020 (Beck et al., 2023); and the land cover data isare from FROM-GLC 30m in 2017 (Yu et al., 2013). LA, MA, HA, VHA 482 

represent low-altitude, middle-altitude, high-altitude, very high-altitude, respectively. LR, GR, MR, HR, VHR represent low-relief, 483 

gentle- relief, moderate- relief, high- relief, very high- relief, respectively. 484 

 485 

The enhanced resolution and detail of the GBLU enables subtle variations in the Earth's surface to be captured, which is highly 486 

valuable in understanding interactions between geomorphology and other factors. As shown in Figure 10, landform relief class 487 

distribution in temperate zones suggests a unique blend of climatic conditions and geomorphologic land surface processes, fostering 488 

a diverse array of landformsrelief classes. In the climatic zones of tropical, arid, and cold regions, we observe that low-altitude 489 

plains flat landflat terrain and hills low-relief rugged landrugged terrain are most prominent. A special case occurs in the polar 490 

regions, where a large share of the surface area is situated at higher altitudes compared to other climate zones. This pattern is 491 

primarily attributed to the extensive presenceoccurrence of ice sheets, which substantially elevateraise surface elevation and modify 492 

the observed relief patterns in these regions. For polar areas, a larger proportion of the area is located at higher altitudes than in other 493 
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climate zones. Regarding land cover analysis (excluding the South Polar area), cropland occupies 8483.2765% of plains flat landflat 494 

terrain and 1516.7335% of mountainsrugged landrugged terrain, yielding useful insights for analyzing cultivated land productivity. 495 

Meanwhile, forests and bare land are more prevalent in mountains moderately to highly rugged landrugged terrain, more especially 496 

in hillslow-relief areas. Additionally, the percentage of many ecologically significant biomes, such as forests, grasslands, wetlands, 497 

tundra, and water bodies, in plains flat and mountainous rugged regions has been brought up to date. This is potentially valuable for 498 

assessing the quality of ecological environments and carbon stocks. 499 

The GBLUGRC provided in this work has obvious applications in geomorphology but also in other fields and can, moreover, 500 

play a fundamental role in supporting the identification of landforms that incorporates domain background. For example, 501 

identification of a landscape element as ‘tableland’ is complex, differs between disciplines, and requires that both morphological 502 

and evolutionary characteristics be accounted for. The GBLUGRC can be integrated with additional observations to map the 503 

occurrence and distribution of tablelands through the delineation of segments that are elevated, flat, and surrounded by steep 504 

escarpments. There is also significant potential for the application of GBLUGRC to other fields (such as geology, hydrology and 505 

ecology) focusing on the natural environment. For example, for ecologists, biodiversity distribution across different landform 506 

regions is one of the most significant issues and central to understanding the nature of ecosystem change. At the regional scale, 507 

contrasting geomorphological conditions are known to promote isolation of biological populations, influencing community structure 508 

and function, as well as evolution. Meanwhile, the interaction between geomorphology and biogeography may result in complex 509 

bio-geomorphological dynamics. The feedback between physical, ecological and evolutionary components constituting bio-510 

geomorphological systems is an important element of the evolution of the Earth’s surface. 511 

4. Dataset access 512 

Global relief classification-(GRC·v1.0) data is stored in the Deep-time Digital Earth Geomorphology platform and Zenodo 513 

(Yang et al., 2024; https://doi.org/10.5281/zenodo.15641257)., wWe employed a 1° x 1° grid to tile the data for storage, with. 25,252 514 

file tiles in all. We distinguish the types of landform units by coding attributes of the elements. Additionally, we provide a rasterized 515 

dataset (at 30m resolution) using the coordinate system of WGS84 Web Mercator. Values of the cells represent the codes of L2 types. 516 

Meanwhile, in order to further the application, we also stored data in Esri shapefile format using the coordinate system WGS84. 517 

Total size of the dataset is·150GB. In tThe attribute table, field “code 1" is the landform type code of the first level L1, field “code 518 

2" is the landform type code of the sub -level L2.Global Basic Landform Units (GBLU v1.0) is stored in the Deep-time Digital 519 

Earth Geomorphology platform and Zenodo (Yang et al., 2024; https://doi.org/10.5281/zenodo.13187969). The data are stored in 520 

Esri shapefile format using the coordinate system WGS84. Total size of the dataset is 150GB, with 6,849,306 independent landform 521 

blocks. In order to facilitate application, we employed a 1° × 1° grid to tile the data for storage, with 25,252 file tiles in all. We 522 

distinguish the types of landform units by coding attributes of the elements. Additionally, we provide a rasterized dataset (at 30m 523 

resolution) using the coordinate system of WGS84. Values of the cells represent the codes of L3 types. In the attribute table, field 524 
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“code0” is the landform type code of the first level, field “code1” is the landform type code of the second level and field “code2” is 525 

the landform type code of the L3. 526 

5. Conclusion 527 

This study provides a novel global landform relief classification dataset (GBLU) dataset with a resolution of 1 arc-528 

second (approximately 30 m). In this study, we propose a novel framework for global landform land surface mapping to 529 

significantly improve the quantitative evaluation of geomorphological topographic features. The key output is the release 530 

of the GBLUGRC dataset that is suited to applications across multiple disciplines, including geography, geology, ecology, and 531 

hydrology. Global-scale analysis of attributes within the GBLUGRC reveals the composition and distribution of global landforms 532 

that enables comparison between regions and continents. The results emphasize the notable heterogeneity of Asia in general, and of 533 

China in particular, in terms of geomorphological relief diversity. The GBLUGRC outperforms previous datasets in expressing 534 

landform object details, providing an opportunity to investigate the Earth’s natural resources. The resolution of the 535 

GBLUGRC is similar to that of the current mainstream remote sensing data, which makes combined use of the data 536 

relatively simple. We believe that this dataset can provide abundant and detailed geomorphological information for the 537 

field of earth sciences, facilitating further advancements in related research.  538 
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Appendix A 539 

Table A1. Classification of global global basic landform relief.types 540 

L1 Code1 
Colors 

(RGB) 
L2 Code2 

Colors 

(RGB) 
Note 

Flat 

landFlat 

terrain 

1 129,168,0  

Low-altitude  

flat landflat terrain 
11 90,138,55  

Classifying L2 

flat lad based on 

the altitude. 

Middle-altitude  

flat landflat terrain 
12 209,235,152  

High-altitude  

flat landflat terrain 
13 237,242,179  

Highest-altitude  

flat landflat terrain 
14 213,217,164  

Rugged 

landRugg

ed terrain 

2 255,255,190  

Low-relief  

rugged landrugged 

terrain 

21 230,216,106  

Classifying L2 

rugged lad based 

on the surface 

relief index. 

Gentle-relief  

rugged landrugged 

terrain 

22 244,100,18  

Moderate-relief  

rugged landrugged 

terrain 

23 220,0,0  

High-relief  

rugged landrugged 

terrain 

24 86,20,24  

Very high-relief 

 rugged landrugged 

terrain 

25 255,255,255  

 541 

L1 Code 
Colors 

(RGB) 
L2 Code 

Colors 

(RGB) 
L3 Code 

Colors 

(RGB) 

Plain 1 
 

129,168,0 
Plain 11 

 
76,115,0 

Low-altitude plain 111 
 

112,168,0 

Middle-altitude plain 112 
 

209,235,152 

High-altitude plain 113 
 

237,242,179 
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Highest-altitude plain 114 
 

213,217,164 

Mountain 2 
 

255,255,190 

Hill 21 
 

240,242,148 

Low-altitude hill 211 
 

230,216,106 

Middle-altitude hill 212 
 

220,191,75 

High-altitude hill 213 
 

217,155,110 

Highest-altitude hill 214 
 

170,141,117 

Low-relief  

Mountain 
22 

 
168,112,0 

Low-altitude low-relief 

mountain slope 
221 

 
209,145.28 

Middle-altitude low-relief 

mountain slope 
222 

 
198,106,20 

High-altitude low-relief 

mountain slope 
223 

 
237,122,24 

Highest-altitude low-relief 

mountain slope 
224 

 
244,100,18 

Middle-relief 

Mountain 
23 

 
137,65,47 

Low-altitude middle-relief 

mountain slope 
231 

 
253,120,25 

Middle-altitude middle-

relief mountain slope 
232 

 
255,76,0 

High-altitude middle-relief 

mountain slope 
233 

 
201,30,9 

Highest-altitude middle-

relief mountain slope 
234 

 
220,0,0 

High-relief  

Mountain 
24 

 
86,20,24 

Low-altitude high-relief 

mountain slope 
241 

 
193,119,120 

Middle-altitude high-relief 

mountain slope 
242 

 
110,50,20 

High-altitude high-relief 

mountain slope 
243 

 
114,4,9 

Highest-altitude high-relief 

mountain slope 
244 

 
115,0,0 

Highest-relief 

Mountain 
25 

 
255,255,255 

Middle-altitude highest-

relief mountain slope 
252 

 
156,156,156 

High-altitude highest-relief 

mountain slope 
253 

 
225,225,225 

Highest-altitude highest-

relief mountain slope 
254 

 
255,255,255 

 542 

 543 
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Table A2. Merging the GBLU results to enable comparison with the results of Iwahashi and Yamazaki. 544 

 545 

Table A2. Countries’ names and their abbreviations. 546 

Abbreviations Name 

AGO Angola 

ARG Argentina 

AUS Australia 

BOL Bolivia 

BRA Brazil 

CAN Canada 

CHN China 

COD Congo (Democratic Republic) 

COL Colombia 

DZA Algeria 

EGY Egypt 

ETH Ethiopia 

IDN Indonesia 

IND India 

IRN Iran 

KAZ Kazakhstan 

LBY Libya 

MEX Mexico 

MLI Mali 

MNG Mongolia 

MRT Mauritania 

NER Niger 

PER Peru 

RUS Russia 

SAU Saudi Arabia 

SDN Sudan 

TCD Chad 

TZA Tanzania 

USA United States of America 
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ZAF South Africa 

547 
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