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Short Summary 11 

Updated global maps of greenhouse gas emissions and sequestration by forests from 2001 onwards using satellite-derived data 12 

show that forests are strong net carbon sinks, capturing about as much CO2 each year on average as the United States emits 13 

from fossil fuels. After reclassifying fluxes to countries’ reporting categories for national greenhouse gas inventories, we found 14 

that roughly two-thirds of the total net flux from forests is anthropogenic and one-third is non-anthropogenic. 15 

Abstract  16 

Forests are a key component of climate change mitigation strategies because they both emit and remove atmospheric carbon 17 

dioxide. Earth observation data are increasingly used to estimate the magnitude and geographic distribution of greenhouse gas 18 

(GHG) fluxes and reduce overall uncertainty in the global carbon budget, including for forests. Here we report on a revised 19 

and updated geospatial, Earth observation-based forest carbon flux modelling framework that maps GHG emissions (Gibbs et 20 

al. 2024a), carbon removals (Gibbs et al. 2024b), and the net balance between them (Gibbs et al. 2024c) globally from 2001 21 

onwards at roughly 30-meter resolution (Harris et al. 2021, hereafter referred to as the Global Forest Watch (GFW) model). 22 

Beyond updating the model to include the most recent years, revisions address some of the original model’s limitations, 23 

improve model inputs, and refine the uncertainty analysis. We found that between 2001 and 2023, global forest ecosystems 24 

were, on average, a net carbon sink of -5.5 ± 8.1 (one standard deviation) gigatonnes CO2 equivalent yr-1 (Gt CO2e yr-1), which 25 

reflects the balance of 9.0 ± 2.7 Gt CO2e yr-1 of GHG emissions and -14.5 ± 7.7 of carbon removals, with an additional -0.20 26 

Gt CO2e yr-1 transferred into harvested wood products. Uncertainty in gross removals was greatly reduced compared to the 27 

original model due to refinement of temperate secondary forest carbon removal factor uncertainties.  28 
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To increase the conceptual similarity between fluxes from the GFW model and national greenhouse gas inventories (NGHGIs) 29 

and further policy relevance, we translated (re-allocated) GFW’s estimates of gross emissions and removals into fluxes from 30 

forest land and deforestation, i.e. the land use categories that countries use to report anthropogenic forest-related fluxes from 31 

managed land in their NGHGIs. We estimated a global net anthropogenic forest-related sink of -3.5 Gt CO2e yr-1 (-3.7 Gt CO2e 32 

yr-1 including transfers into harvested wood products). Emissions from deforestation ranged between 3.3 and 5.0 Gt CO2yr-1 33 

and the net anthropogenic sink in managed forest land ranged between -6.8 and -8.5 Gt CO2e yr-1, reflecting ambiguity about 34 

the reporting category to which countries assign emissions from loss of secondary forests within shifting agriculture systems. 35 

We categorized the remaining net flux of -2.2 Gt CO2e yr-1 reported by the GFW model as non-anthropogenic (0.37 Gt CO2e 36 

yr-1 emissions and -2.5 Gt CO2e yr-1 removals). The magnitude of the GFW model’s annual average deforestation emissions 37 

and the global anthropogenic forest sink aligned well with aggregated NGHGIs, although their temporal trends differed; 38 

NGHGIs reported a slightly increasing forest land sink and fluctuating deforestation emissions, while the GFW model reported 39 

a declining sink and increasing deforestation emissions.  40 

Updates to the model and the revised uncertainty analysis demonstrate a spatially explicit forest carbon flux monitoring 41 

framework that is increasingly transparent, operational, timely, and flexible enough to answer research and policy questions. 42 

Moreover, the translation of Earth observation-based flux estimates into the same reporting framework as countries use for 43 

NGHGIs can help build consensus on land use carbon fluxes, support the independent evaluation of progress towards Paris 44 

Agreement goals, and assist national policymakers in locating sources and sinks of forest carbon and their drivers. 45 

1 Introduction 46 

Land is among the most uncertain components of the global carbon cycle (Friedlingstein et al. 2023). The highly dynamic and 47 

bi-directional nature of forest carbon fluxes, both spatially and temporally, as well as the contributions of anthropogenic and 48 

non-anthropogenic processes, cause unique challenges for monitoring fluxes. Top-down atmospheric observations, e.g. from 49 

sensors such as NASA’s Orbiting Carbon Observatory, are not precise enough to attribute fluxes to specific drivers, and the 50 

current suite of bottom-up approaches for estimating global terrestrial carbon fluxes (Friedlingstein et al. 2023) is based on 51 

models that are not fully consistent with each other (i.e., bookkeeping models and dynamic global vegetation models (DGVMs) 52 

to estimate anthropogenic and natural fluxes, respectively). An additional complication is that these models separate 53 

anthropogenic and natural fluxes from land differently from how national greenhouse gas inventories (NGHGIs) do, which are 54 

used within climate policy treaties and to drive national climate actions. This makes it difficult for models to provide estimates 55 

directly relevant to climate policy frameworks and national climate action. Top-down atmospheric approaches do not make 56 

this separation, while global estimates of anthropogenic land use fluxes from bookkeeping models (Friedlingstein et al. 2023) 57 

are 6.7 Gt CO2 yr-1 higher than aggregate NGHGIs (Grassi et al. 2023). This gap is due primarily to definitional and conceptual 58 

differences around what is classified as anthropogenic vs. natural fluxes from forests (Grassi et al. 2018), with recent studies 59 

https://doi.org/10.5194/essd-2024-397
Preprint. Discussion started: 8 October 2024
c© Author(s) 2024. CC BY 4.0 License.



   

 

3 

 

focusing on reconciling these differences (e.g., Schwingshackl et al. 2022, Grassi et al. 2023). Thus, despite improved data 60 

acquisition and advances in modelling capabilities, large uncertainty and variation in estimates of land emissions and sinks 61 

remain. Moreover, the spatial distribution of forest emissions and, even more so, forest carbon removals are not well 62 

understood, impeding the ability of a range of actors, such as governments, companies, and civil society, to monitor the 63 

effectiveness of land-based climate mitigation actions that reduce emissions from forest loss and maintain or increase forest 64 

carbon sinks.  65 

To address some of these limitations, Global Forest Watch (GFW) introduced an Earth observation-based framework and 66 

model for estimating forest carbon fluxes globally (Harris et al. 2021) that aligns with calls for geospatial monitoring of forest 67 

carbon fluxes (EC 2018; Nyawira et al. 2024; Ochiai et al. 2023; Turubanova et al. 2023). It was designed to fill a gap among 68 

existing forest carbon monitoring approaches by combining global forest change maps, benchmark carbon density maps, and 69 

other Earth observation data based on the IPCC Guidelines for National Greenhouse Gas Inventories (IPCC 2006, IPCC 2019) 70 

that countries use to estimate emissions and removals for their NGHGIs. Within the scope of the Agriculture, Forestry, and 71 

Other Land Uses (AFOLU) sector, only GHG fluxes from forest-related land uses and land-use changes (forest remaining 72 

forest, non-forest converted to forest, forest converted to non-forest) were included. The framework was designed around the 73 

UNFCCC guiding principles for NGHGI preparation: transparency, accuracy, completeness, comparability and consistency. 74 

All GFW carbon flux model inputs and outputs and code are publicly available.  75 

Recognizing that both Earth observation and ground data increase and improve through time, we designed GFW’s flux 76 

framework and the model implementing it with the flexibility to accommodate updates to existing components and add new 77 

components. Here we document updates to the model, report the results from the current version, present a revised uncertainty 78 

analysis, and introduce a new translation  of GFW model emissions and removals into NGHGI reporting categories of 79 

deforestation and forest land that provides an Earth observation perspective on forest fluxes conceptually similar to what 80 

countries are expected to report under IPCC guidelines.  81 

2 Methods  82 

Harris et al. 2021 includes a detailed explanation of the GFW forest flux monitoring framework, but some key elements are 83 

described here. The framework encompasses gross CO2 emissions from loss of carbon in aboveground and belowground 84 

biomass pools, dead wood, litter, and soil organic carbon in mineral soils due to stand-replacing disturbances, carbon loss from 85 

drainage of organic soils, and methane (CH4) and nitrous oxide (N2O) emissions from forest fires and drainage of organic soils. 86 

Carbon removals include sequestration into aboveground and belowground forest biomass. All model inputs are resampled to 87 

the spatial resolution of a Landsat pixel (0.00025x0.00025°, roughly 30x30 m at the equator), and outputs are generated at the 88 

same resolution. The model uses Landsat resolution because it is the highest resolution for which the global forest change 89 
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maps and an aboveground biomass map for the year 2000 are publicly available. Higher resolution maps of forest change and 90 

biomass exist but are not publicly available, only for more recent years, and/or include only certain regions (e.g., Vancutsem 91 

et al. 2019, Yang and Zeng 2023).  92 

The IPCC GHG inventory guidelines, the methodological basis of GFW’s forest carbon flux monitoring framework, lay out 93 

two methods by which terrestrial carbon stock changes associated with land use, land-use change, and forestry (LULUCF, part 94 

of the broader AFOLU sector) can be calculated: gain-loss and stock-difference (IPCC 2006). Methods can be applied 95 

according to different Tiers (from 1 to 3) with increasing complexity and presumed accuracy. In the gain-loss method, at a 96 

high level, carbon emissions and removals are calculated separately by multiplying activity data such as forest area lost, gained, 97 

or maintained (ha) by emission or removal factors (t C ha-1); the net carbon stock change, or flux, is the difference between 98 

gross emissions and gross removals. In the stock-difference method, carbon stocks are measured during repeated inventories 99 

and the difference between remeasurements is the estimate of net carbon stock change, or flux. GFW’s framework employs 100 

the gain-loss approach, in which the activity data and other contextual information are estimated using global, Earth 101 

observation-based maps trained on local ground plot data and/or airborne and spaceborne lidar observations.  102 

GFW’s gain-loss modeling approach is initialized in the year 2000 with global maps of carbon densities in five forest ecosystem 103 

carbon pools (Fig. 1). We define forest as follows: 1) >30% canopy cover in 2000 (Hansen et al. 2013) or subsequent tree 104 

cover gain (Potapov et al. 2022), 2) non-zero aboveground biomass in 2000 (Harris et al. 2021), 3) mangroves in 2000 (Giri 105 

et al. 2011), and 4) exclusion of oil palm plantations in 2000 (see Table 2). Within the resulting forest mask, gross emissions 106 

are subsequently mapped based on locations of stand-replacing forest disturbances, while gross removals are mapped based 107 

on locations of forest extent and regrowth. In this system of tracking the forest/non-forest status of individual pixels over time, 108 

the model adheres to IPCC Approach 3 for land representation. 109 

For activity data, rather than combining and reconciling national or regional geospatial forest monitoring data in the limited 110 

places where it exists continuously since 2000, we deliberately use global, independent (non-governmental) data sources to 111 

maintain global consistency and comparability within the framework, recognizing that global data are generally not the most 112 

locally accurate or relevant data, but remain useful for large-scale analyses and potentially for verification purposes of other 113 

approaches. To identify forest loss, the GFW model uses the Global Forest Change (GFC) data of Hansen et al. 2013, updated 114 

annually. Because of the framework’s use of GFC, emissions are limited to those from stand-replacing disturbances or other 115 

disturbances severe enough to be detected by GFC. Tree cover gain (Potapov et al. 2022) is gross gain and is not assigned to 116 

a specific year. In the model, forest pixels can have loss only (assigned to a specific year), neither loss nor gain (i.e., no change), 117 

or both loss and gain (although the sequence is unknown). Non-forest pixels can have either tree cover gain or no gain; in the 118 

latter case they are outside the framework as they are non-forest remaining non-forest. 119 
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Emission and removal factors likewise use spatially explicit data as much as possible to capture spatial variation in forest 120 

properties and dynamics and move beyond ecozone-level representation of forests. GFW model emission and removal factors 121 

are generally independent of national data sources, with the exception of some removal factors in temperate forests, which are 122 

derived directly from the Forest Inventory and Analysis (FIA) database maintained by the USDA Forest Service (see Harris et 123 

al. 2021 and Glen et al. 2024 for details). The model uses a combination of IPCC default (Tier 1) and localized (Tier 2) 124 

emission/removal factors, with the goal of using more Tier 2 factors over time, just as countries are encouraged to do in their 125 

NGHGIs. (Note that some Tier 1 removal factors come from national forest inventories, particularly USFS FIA data (IPCC 126 

2019).) For example, removal factors in primary forests use IPCC defaults (IPCC 2019, Tier 1), while pre-disturbance (year 127 

2000) aboveground biomass carbon densities use a global benchmark map of woody biomass developed from field data and 128 

remote sensing (Harris et al. 2021, Tier 2). Removal factors are applied in a hierarchy from six sources: mangrove-specific 129 

rates (IPCC 2014a), Europe-specific rates by forest type (combination of Table 4.11 of the updated IPCC Guidelines, FAO 130 

Planted Forest Assessment and factors published in national forest inventories), planted tree rates from the Spatial Database 131 

of Planted Trees (SDPT) Version 2.0 (Richter et al. 2024), US-specific rates by region, forest type and age class derived from 132 

the FIA database (Glen et al. 2024), young secondary forest rates (Cook-Patton et al. 2020), and IPCC default rates for all 133 

other areas (e.g., primary forest, older secondary forest in the tropics and in temperate forests outside Europe and the US) 134 

(IPCC 2019). The framework supports the addition of other geospatial removal factors as they become available. Gross 135 

removals are added to pre-disturbance biomass until the year of loss to determine the biomass in the year of loss. Emission 136 

factors are estimated using a map of tree cover loss drivers (Curtis et al. 2018) and burned area (Tyukavina et al. 2022); the 137 

combination of these determine the extent to which carbon pools (including soil organic carbon in mineral soils) are emitted 138 

by forest disturbance. Emission factors are estimated using “committed” emissions (Hansis et al. 2015) or instantaneous 139 

oxidation (IPCC 2019), whereby carbon loss from all relevant pools is assumed to occur in the year of disturbance rather than 140 

modeling delayed carbon fluxes through time.  141 
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 142 

Figure 1. Updated conceptual framework for modeling forest-related GHG fluxes. The model estimates gross forest-related emissions 143 
and removals as the product of activity data and emission/removal factors for each ~30-m pixel. The net forest GHG flux is the sum of gross 144 
emissions (+) and removals (-). Text and arrows in orange are portions of the removals methodology that are passed into the emissions 145 
methodology. 146 

2.1 Changes to GFW model input data 147 

Since the original release of GFW’s carbon model framework in 2021, which estimated forest carbon flux results through 148 

2019, we have made several changes to the model inputs because new data were published or existing data were improved 149 

(Table 1). These changes keep the model aligned with advances in global Earth observation and address some limitations in 150 

the original version but do not change the underlying conceptual framework. The updated geospatial inputs are shown in the 151 

https://doi.org/10.5194/essd-2024-397
Preprint. Discussion started: 8 October 2024
c© Author(s) 2024. CC BY 4.0 License.



   

 

7 

 

context of all inputs in Table 2. We summarize changes to the input data with respect to extension of the model from 2019 to 152 

2023 (Sect. 2.1.1), changes to activity data (Sect. 2.1.2), and changes to emission and removal factors (Sect. 2.1.3).  153 

 154 

Table 1. Changes to GFW model inputs since the original version (Harris et al. 2021).  155 

Framework 

component (article 

section)  

Original version  Current version  
Affects 

emissions  

Affects 

removals  

Temporal coverage 

of tree cover loss 

(2.1.1) 

Tree cover loss through 2019 

(Hansen et al. 2013, updated 

annually on GFW) 

Tree cover loss through 2023 

(Hansen et al. 2013, updated 

annually on GFW) 

Yes Yes 

Temporal coverage 

of drivers of tree 

cover loss (2.1.1) 

Dominant driver of tree cover loss 

through 2015 (Curtis et al. 2018) 

Dominant driver of tree cover loss 

through 2023 (Curtis et al. 2018, 

updated annually on GFW) 

Yes No 

Temporal coverage 

of burned area 

(2.1.1) 

Burned area through 2019 Burned area through 2023 Yes No 

Transfers to 

harvested wood 

products (country-

level only) (2.1.1) 

Transfers to HWP through 2015 

(FAOSTAT 2021) 

Transfers to HWP through 2021 

(FAOSTAT 2024) 
No Yes 

Temporal coverage 

of tree cover gain 

(2.1.2) 

2000–2012 (Hansen et al. 2013)  2000–2020 (Potapov et al. 2022) Yes  Yes  

Burned area extent 

(2.1.2) 

MODIS burned area (Giglio et al. 

2018, updated annually)  

Tree cover loss from fires 

(Tyukavina et al. 2022, updated 

annually)  

Yes  No  

Organic soils extent 

(2.1.2)  

• Indonesia and Malaysia 

(Miettinen et al. 2016) 

• Below 40° N (Gumbricht et al. 

2017) 

• Above 40° N (Hengl et al. 2017) 

• Indonesia and Malaysia 

(Miettinen et al. 2016) 

• Central Africa (Crezee et al. 

2022) 

• Lowland Amazonian Peru 

(Hastie et al. 2022) 

• Below 40° N (Gumbricht et al. 

2017) 

• Above 40° N (Xu et al. 2018) 

Yes  No  

Planted tree extent 

(2.1.2) 

Spatial Database of Planted Trees 

v1.0 (Harris et al. 2019) 

Spatial Database of Planted Trees 

v2.0 (Richter et al. 2024) 
Yes Yes 

Belowground 

biomass (R:S ratio) 

(2.1.3) 

Global ratio of 0.26 for 

belowground carbon to 

aboveground carbon for non-

mangrove forests (Mokany et al. 

2006) 

Map of ratio of belowground 

carbon to aboveground carbon for 

non-mangrove forests (Huang et al. 

2021)1  

Yes  Yes  

Planted tree 

removal factors and 

their uncertainties 

(2.1.3)  

Spatial Database of Planted Trees 

v1.0 (Harris et al. 2019) 

Spatial Database of Planted Trees 

v2.0 (Richter et al. 2024) 
Yes Yes 

Older secondary 

(>20 year) 

2019 Refinement to the 2006 IPCC 

Guidelines for National 

4th Corrigenda to the 2019 

Refinement to the 2006 IPCC 
Yes  Yes  

https://doi.org/10.5194/essd-2024-397
Preprint. Discussion started: 8 October 2024
c© Author(s) 2024. CC BY 4.0 License.



   

 

8 

 

temperate forest 

removal factors and 

their uncertainties 

(2.1.3) 

Greenhouse Gas Inventories, 

Volume 4, Chapter 4, pages 4.34–

4.38 Table 4.9 (IPCC 2019) 

Guidelines for National 

Greenhouse Gas Inventories, 

Volume 4, Chapter 4, pages 4.18–

21, Table 4.9 (IPCC 2023)2 

Global Warming 

Potential (GWP) 

values (2.1.3) 

IPCC Fifth Assessment Report, 

Table 8.7 (100-year, no climate-

carbon feedback) (IPCC 2014b) 

IPCC Sixth Assessment Report, 

Table 7.15 (100-year, no climate-

carbon feedback) (IPCC 2022) 

Yes  No  

1 The R:S map was extended outwards to fill gaps in the original map.   156 
2 Removal factors for other climate domains and ages were not updated. 157 

 158 

 159 
Table 2. Geospatial data components and sources currently used in the GFW model. Updated components and sources are denoted 160 
with an * and italics. This updates Table S3 in Harris et al. 2021.  161 

Model component Source 

Forest extent 2000   

Tree cover extent Hansen et al. 2013  

Mangrove forest extent Giri et al. 2018 

Tropical humid primary forest extent Turubanova et al. 2018 

Intact forest landscapes (boreal/temperate) Potapov et al. 2017 

Planted tree extent (plantations and tree crops) *Richter et al. 2024 (Spatial Database of Planted Trees v2.0) 

*Peatland extent 

Miettinen et al. 2016 (Indonesia and Malaysia) 

*Crezee et al. 2022 (Congo Basin) 

*Hastie et al. 2022 (Amazonian Peru) 

  Gumbricht et al. 2017 (<40° N) 

  *Xu et al. 2018 (>40° N) 

Oil palm extent 2000 Austin et al.  2017 (Indonesia) 

(areas excluded from model) Gaveau et al. 2014 (Borneo) 

 Miettinen et al.  2016 (Sumatra, Borneo) 

 Gunarso et al. 2013 (peninsular Malaysia) 

Carbon density 2000   

Aboveground live woody biomass density Updated from Zarin et al. 2016 (non-mangrove) 

 Simard et al. 2019 (mangrove) 

*Belowground biomass density ratio *Huang et al. 2021 (root:shoot ratio for non-mangrove forests), 

with Mokany et al. 2006 filling in gaps 

Soil organic carbon density Hengl et al. 2017 (non-mangrove) 

  Sanderman et al. 2018 (mangrove) 

Ecological zone (for deadwood and litter) FAO 2012 

Elevation (for deadwood and litter) Farr et al. 2007  

Mean annual precipitation (for deadwood and 

litter) 

Fick and Hijmans 2017  

Activity data   

*Tree cover loss *Hansen et al. 2013 (2001–2023) 

*Tree cover gain *Potapov et al. 2022 (2000–2020) 

*Burned areas 

*Tyukavina et al. 2022 (tree cover loss from fires, updated 

through the year 2023) 
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Emission factors   

*Drivers of forest loss *Curtis et al. 2018 (updated through year 2023) 

Climate zone  FAO 2012 

Fire combustion and emission factors IPCC 2019 (Tables 2.5 and 2.6) 

Removal Factors   

Ecological zone FAO 2012 

Mangrove removal factors IPCC 2014a (Wetlands Supplement, Tables 4.4 and 4.5)  

US forest type Ruefenacht et al. 2008 

US stand age Pan et al. 2011 

US removal factors (by region x type x age class) Forest Inventory and Analysis Program 

Europe forest type Brus et al. 2011 

Europe removal factors (by forest type) IPCC 2019 (Table 4.11) 

 FAO Planted Forest Thematic Study 

 Portugal’s National GHG inventory 

*Planted tree removal factors *Richter et al. 2024 (Spatial Database of Planted Trees v2.0) 

(including uncertainties) 

Agroforestry removal factors IPCC 2019 (Tables 5.1 and 5.3) 

Natural regrowth removal factors (<20 yrs) Cook-Patton et al. 2020 

Primary forest removal factors IPCC 2019 (Table 4.9) 

*Old secondary forest removal factors (>20 yrs) *IPCC 2019 (Table 4.9 for non-temperate forests only) 

*IPCC 2019/IPCC 2023 (Table 4.9 Corrigenda 4 for temperate 

forests (including uncertainties)) 

Harvested wood products (country only)  

*Production, import and export statistics of 

sawnwood, wood-based panels and paper & 

paperboard 

*FAOSTAT (2001–2021) 

 162 

2.1.1 Annually updated data 163 

We have updated four inputs to the framework annually since the original GFW model was published: tree cover loss, dominant 164 

driver of tree cover loss, burned area, and country-level transfers to harvested wood products (HWP). In the original version, 165 

they extended to 2019, 2015, 2019, and 2015, respectively. The first three inputs now extend through 2023 and we plan to 166 

continue to update them annually, lagging one year behind the calendar year. Country-level HWP transfers now extend through 167 

year 2021 based on data from FAOSTAT that currently extend through year 2022 (Access date: 5 May 2024). These constitute 168 

the core updates to the model each year.  169 

2.1.2 Updated activity data  170 

Beyond the annual updates described above, we have made four additional updates to the model’s activity data: 171 
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1. Temporal coverage of tree cover gain: Tree cover gain originally covered 2000–2012 but now covers 2000–2020. In 172 

the original version, tree cover gain covered seven fewer years than tree cover loss did (12 years of tree cover gain 173 

vs. 19 years of tree cover loss); currently, tree cover gain covers three fewer years than tree cover loss (20 years vs. 174 

23 years). Tree cover gain is still reported in one interval, so the framework does not assign gain to a specific year 175 

within 2000–2020. The shorter duration of tree cover gain and its lack of information on timing is an ongoing 176 

limitation of the inputs to the framework (see Sects. 4.3 and 4.4).  177 

2. Burned area extent: The original version of the GFW model used MODIS burned area (500-m resolution) (Giglio et 178 

al. 2018), but now it uses Global Land Analysis & Discovery Lab tree cover loss due to fires (TCLF) (30-m resolution) 179 

(Tyukavina et al. 2022). This burned area product is designed to be used with GFC. As in the original version of the 180 

model, emissions from fires are included only where stand-replacing disturbances are detected by GFC, meaning that 181 

emissions from relatively low severity forest fires remain unquantified in the model.  182 

3. Organic soils extent: We added two new regional tropical peatland maps (Peru and Congo basin, Hastie et al. 2022 183 

and Crezee et al. 2022) and replaced the peat map above 40° N (Xu et al. 2018). These maps reflect a more recent 184 

understanding of the extent of organic soils in those regions. This is one of the few inputs to the model that composites 185 

regional maps with pan-tropical and global maps.   186 

4. Planted tree extent: Planted trees are part of managed ecosystems, and using distinct removal factors for planted trees 187 

instead of removal factors for natural forests better represents the associated carbon sequestration of these managed 188 

landscapes. The original version of the GFW model used SDPT v1.0 (Harris et al. 2019) but now it uses SDPT v2.0 189 

(Richter et al. 2024), which includes planted tree extent in 45 additional countries. Richter et al. defines planted trees 190 

as plantation forests and tree crops. This dataset aggregates maps of tree crops and planted forests globally in a 191 

bottom-up approach that captures roughly 90% of planted tree area globally circa 2020. Each polygon in the database 192 

has the most taxonomically resolved information available, from broad type of production (e.g. orchard) to species.  193 

2.1.3 Updated emission and removal factors 194 

We have made four updates to emission and removal factors:  195 

1. Belowground biomass (R:S ratio): The original version of the GFW model used a single R:S ratio of 0.26 to estimate 196 

belowground biomass applied globally to non-mangrove forests (Mokany et al. 2006) (mangroves had separate ratios 197 

from IPCC 2014a). The updated model uses a global R:S map from Huang et al. 2021 to incorporate spatial variability 198 

in R:S, ranging from less than 0.15 to greater than 0.5. Because the R:S map does not cover all land where forest is 199 

present in our framework (e.g., some near-shore islands), we interpolated missing R:S pixels from nearby ones; where 200 

interpolation was not possible (e.g., remote Pacific islands), we retained the original default ratio of 0.26. We applied 201 

this ratio map to aboveground biomass in the year of tree cover loss to calculate carbon emissions from loss of 202 

belowground biomass. We also used the R:S map to calculate carbon removals by belowground biomass based on 203 
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carbon removals by aboveground biomass. Including this input makes the belowground carbon stocks and removal 204 

factors reflect local forest types better than using a single, global ratio.  205 

2. Planted tree removal factors and their uncertainties: SDPT v2.0 (Richter et al. 2024) has a removal factor and 206 

uncertainty associated with every planted tree (planted forest and tree crop) polygon included in the database. The 207 

removal factors of polygons that were in SDPT v1.0 are largely unchanged in SDPT v2.0, but polygons newly 208 

included in SDPT v2.0 have been assigned removal factors based on information about what kind of planted tree is 209 

present using the most taxonomically resolved information available.  210 

3. Older secondary (>20 year) temperate forest removal factors and their uncertainties: The original version of the 211 

framework applied Tier 1 removal factors published in Table 4.9 of IPCC 2019 for primary and some secondary (>20 212 

years) temperate forests. In 2023, IPCC released corrected default removal factors and their uncertainties for 213 

temperate secondary forests in North and South America, which are also applied in the GFW model to >20 year old 214 

forests in temperate ecozones outside of the United States and Europe where no better sources of data are currently 215 

available. In the model update, we replaced the original IPCC defaults with the corrected ones.  216 

4. Global Warming Potential (GWP) values: The original version of the framework converted non-CO2 emissions from 217 

CH4 and N2O into equivalent units of CO2 using GWP values published in IPCC’s Fifth Assessment Report. The 218 

framework now uses GWP values for CH4 and N2O from IPCC’s Sixth Assessment Report. This affects gross 219 

emissions and net flux outputs only where non-CO2 emissions are estimated (organic soil drainage, fires in organic 220 

soils, or biomass burning).  221 

2.2 Updated uncertainty analysis 222 

With the original version of the framework, we presented an uncertainty analysis that used an error propagation approach for 223 

inputs for which uncertainties (variances) were available and potentially substantial. This approach underlies Approach 1 224 

(simple error propagation) outlined in the IPCC Guidelines and produces similar results but reflects exact calculations of 225 

variances and standard deviations, whereas IPCC Approach 1 to uncertainty analysis is an approximated approach that yields 226 

95% confidence intervals (IPCC 2019). For the model update, we repeated this uncertainty analysis with all the changes and 227 

updates to the framework described in Sect. 2.1, using the same error propagation approach and the same components as used 228 

in the original analysis.  229 

2.3 Anthropogenic fluxes from “managed” forests 230 

GFW’s Earth observation-based modelling framework does not (and cannot) differentiate anthropogenic and non-231 

anthropogenic fluxes from forests. Rather, it includes fluxes from all forest land and therefore the combination of direct 232 

anthropogenic, indirect anthropogenic, and natural fluxes. Thus, results from our model are not directly comparable with those 233 

from NGHGIs or bookkeeping models, each of which define anthropogenic fluxes with different system boundaries for their 234 
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specific purposes (Grassi et al. 2022, Grassi et al. 2023). Under UNFCCC decisions and IPCC methodological guidance, 235 

countries report only anthropogenic fluxes in their NGHGIs, approximated by “managed land” (Ogle et al. 2018). Therefore, 236 

if GFW’s forest carbon monitoring framework is to serve as an independent, Earth observation-based point of reference for 237 

NGHGIs, its results must be reported in a conceptually similar way covering the same scope. In doing so, we adopted the 238 

proposal of Grassi et al. (2023) in adjusting global data to the NGHGI framework for analyses focused on country policy or 239 

action. In translating the GFW model’s fluxes into the NGHGI reporting framework, we did what IPCC guidelines direct 240 

countries to do when compiling and reporting their inventories rather than what countries necessarily do in practice for their 241 

inventories. The goal of this translation exercise was not to reproduce how countries prepare their NGHGIs as closely as 242 

possible using the GFW model, to achieve maximum quantitative similarity to NGHGIs, or to reconcile the GFW flux model 243 

with NGHGIs but rather to present GHG fluxes from a globally consistent, geospatial approach in the same conceptual terms 244 

that national policymakers use. 245 

We developed a three-step process to translate the GFW model’s gross emissions and removals into three IPCC reporting 246 

categories: anthropogenic flux from managed forest land, emissions from deforestation (anthropogenic), and non-247 

anthropogenic flux from unmanaged forest (Table 3). It builds upon the simpler comparison between the GFW model and 248 

NGHGIs conducted in the IPCC Sixth Assessment Report (Nabuurs et al. 2022), in which anthropogenic fluxes from the 249 

former were those outside primary forests in the tropics and intact forest landscapes in the non-tropics. This translation process 250 

does not change the GFW model’s bottom-line net flux estimates; rather, it reclassifies the gross fluxes by intersecting the 251 

GFW model fluxes with other contextual geospatial data to provide fluxes more conceptually aligned with those of NGHGIs. 252 

The first step (Sect. 2.3.1) assigned each country to one of three cases based on how their NGHGI applies the managed land 253 

proxy (Fig. 2). The second and third steps reclassified the GFW model’s emissions (Sect. 2.3.2) and removals (Sect. 2.3.3), 254 

respectively, into three IPCC reporting categories according to the three cases assigned in step 1 (Fig. 2). Emissions and 255 

removals within each IPCC reporting category were then summed to calculate net anthropogenic and non-anthropogenic forest-256 

related fluxes for each country. The GFW model calculates annual emissions, corresponding to the year of tree cover loss, but 257 

does not calculate annual removals and instead calculates removals as an annualized average over the entire model period. 258 

Thus, to generate timeseries from the GFW model using the NGHGI reporting categories, we calculated the average annual 259 

removals in each reporting category by dividing gross removals by the number of model years. The resulting time series for 260 

each reporting category is therefore the difference between the annual emissions for that year and the average annual removals. 261 

For this analysis, we used data from the GFW model for 2001–2022 to align with the temporal coverage of NGHGIs. Because 262 

the GFW model cannot currently report emissions from organic soil separately from all other emissions, we combined 263 

NGHGIs’ deforestation and organic soil emissions (including emissions from forest land, from peat decomposition and peat 264 

fires typically associated to deforestation, and from agriculture soils) to achieve the same scope as the model. We excluded 265 

transfers into the harvested wood products pool from both data sources in this translation analysis because that is not a core 266 

element of our geospatial framework.  267 
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Table 3. Translating GFW flux model gross emissions and removals to national greenhouse gas inventory (NGHGI) reporting 268 
categories. To calculate total net flux for IPCC reporting categories, GFW flux model emissions and removals were reclassified according 269 
to managed land status (managed vs. unmanaged) and driver of tree cover loss. Following IPCC guidelines, for Case 2 countries we used 270 
information about the driver of tree cover loss to reassign initially delineated unmanaged forest to managed forest where direct human 271 
activity is observed to result in tree cover loss (i.e. forestry, commodity-driven deforestation (CDD), urbanization, and shifting agriculture). 272 
Thus, all associated fluxes from unmanaged forests reassigned to managed forests are reported in the corresponding anthropogenic IPCC 273 
reporting category (anthropogenic forest land flux and deforestation).  274 

 275 

 276 

* Includes emissions from not only the initial delineation of managed forests, but also from tree cover loss in unmanaged forests reassigned to managed forests due to direct human 277 
activity.  278 

1 To calculate the maximum emissions in anthropogenic forest land, we count emissions from shifting agriculture (shifting ag) in secondary forest toward the anthropogenic forest 279 
land flux and emissions from shifting agriculture in primary forests toward deforestation.  280 

2 To calculate the maximum emissions from deforestation, we count all emissions from shifting agriculture in both primary and secondary forest toward deforestation. This also 281 
corresponds to a larger sink in anthropogenic forest land. 282 

 283 

2.3.1 Managed land delineation   284 

In the first step (Table 3), we assigned countries to one of three cases based on careful review of NGHGIs (Melo et al., in 285 

preparation). These cases describe which land is considered managed and unmanaged according to information that countries 286 

provide in their NGHGIs regarding their use of the managed land proxy (Fig. 2). Case 1 included 46 countries (primarily 287 
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UNFCCC Annex 1 countries, i.e. advanced economies with annual GHG reporting commitments) that explicitly consider all 288 

forest land managed and another three countries (China, India, Indonesia) for which we assumed that all forest land is 289 

considered managed, based on the information provided in their NGHGIs. Case 2 included all other countries, which do not 290 

consider all forest to be managed and thus consider some forest to be unmanaged. For the three Case 2a countries (Brazil, the 291 

United States, and Canada), we used the georeferenced boundaries of managed and unmanaged lands that they use in their 292 

NGHGIs. The remaining 143 countries (UNFCCC non-Annex 1 countries, i.e. countries with historically less stringent GHG 293 

reporting commitments) either report no information or not enough details regarding the use of the managed land proxy and 294 

its extent. For example, Russia’s inventory explicitly includes unmanaged land but reports areas by administrative unit rather 295 

than spatially, which is not adequate for our analysis. For these Case 2b countries, we approximated managed forest in tropical 296 

regions as forests outside humid tropical primary forests from 2001 (Turubanova et al. 2018) and in extratropical regions as 297 

forests outside intact forest landscapes from 2000 (Potapov et al. 2017). For Case 2 countries, the initial managed forest 298 

delineation was modified in steps 2 and 3 to include unmanaged land reassigned to managed land due to direct anthropogenic 299 
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activity. We note that while countries’ definitions of forest land differ, we instead used a single, global definition of forest as 300 

defined in Sect. 2, with a tree cover density >30% (Hansen et al. 2013).  301 

 302 

Figure 2. Country representation of managed land in their national greenhouse gas inventories (NGHGIs). Countries consider fluxes 303 
by forests in several ways in their national greenhouse gas inventories (Melo et al. in preparation). Some countries explicitly or implicitly 304 
consider all forests to be managed and thus include all forest fluxes in their NGHGIs (Case 1). The rest do not consider all forests to be 305 
managed. Only a few countries (Case 2a) use maps of managed lands to delineate anthropogenic fluxes from non-anthropogenic fluxes. The 306 
rest are not clear in their NGHGIs about the spatial extent to which forests are or are not considered managed and thus which forest fluxes 307 
are included in their inventories (Case 2b). 308 

 309 

 310 
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2.3.2 Reclassifying gross emissions 311 

In the second step (Table 3), we combined the initial delineation of managed forests described in Sect. 2.3.1 with a map of 312 

drivers of tree cover loss (Curtis et al. 2018, updated through 2023) to partition the GFW model’s gross emissions into IPCC 313 

reporting categories because not all of the GFW model’s gross emissions are from deforestation. For Case 1 countries, which 314 

classify all forests as managed, all emissions occurring within country borders were anthropogenic and no emissions were non-315 

anthropogenic. For Case 2 countries, all emissions within managed forest boundaries (defined in Sect. 2.3.1) were 316 

anthropogenic and the remaining emissions within initially delineated unmanaged forest boundaries were either anthropogenic 317 

or non-anthropogenic depending on the driver of the tree cover loss. We expanded our definition of managed forests to include 318 

initial unmanaged forest as defined in Sect. 2.3.1 where there is a direct human activity, such as forest harvest or deforestation 319 

(IPCC 2006). Thus, we considered all emissions from direct human activity to be anthropogenic. The remaining emissions—320 

from natural or semi-natural drivers of tree cover loss, such as wildfire, occurring within unmanaged forest boundaries—were 321 

the only emissions we considered to be non-anthropogenic.  322 

Using this delineation of anthropogenic vs. non-anthropogenic, we reclassified the GFW model’s gross emissions into three 323 

categories that are conceptually aligned with IPCC reporting categories (Table. 3): anthropogenic emissions on managed forest 324 

land (“forest remaining forest” plus “non-forest land converted to forest”), anthropogenic emissions from deforestation (“forest 325 

converted to non-forest land”), and emissions on unmanaged forest land that are non-anthropogenic by definition (“forest 326 

remaining forest”). 327 

Anthropogenic emissions from managed forest land. For all countries, this category included emissions from wildfire and the 328 

small amount of emissions not assigned to a driver (Curtis et al. 2018) occurring within managed forest areas. This category 329 

also included emissions from forestry regardless of where they occurred (inside or outside initial delineated managed land 330 

boundaries as defined in Sect. 2.3.1) because harvest activity is a direct human activity and thus any tree cover loss from 331 

forestry activity results in the reclassification of unmanaged forest to managed forest. 332 

Anthropogenic emissions from deforestation. For all countries, this category was the sum of all emissions from tree cover loss 333 

due to commodity-driven deforestation and urbanization, regardless of where they occurred, as well as emissions from the loss 334 

of intact/primary forests in areas of shifting agriculture because this is a permanent change in land use.  335 

Non-anthropogenic emissions from unmanaged forests. For Case 1 countries, we assumed based on their NGHGIs that all 336 

forests are considered managed and thus no emissions are considered non-anthropogenic. The two categories above represent 337 

all emissions from the GFW model. For Case 2 countries, which have some unmanaged forest (as defined in Sect. 2.3.1), non-338 

anthropogenic emissions were the sum of the remaining emissions outside managed forests: emissions from tree cover loss 339 

due to wildfires and the (small) unassigned drivers class (Curtis et al. 2018). Although some fires in unmanaged land can be 340 
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caused by humans, we classified emissions from them as non-anthropogenic to be consistent with IPCC guidelines; separating 341 

emissions from human-caused fires in unmanaged land and reporting them as anthropogenic forest land emissions could be 342 

improved in further iterations of this analysis.  343 

It is often not clear to which land use categories emissions from shifting agriculture cycles are allocated in NGHGIs, because 344 

this distinction is not required by the IPCC Guidelines (IPCC 2019). Following Curtis et al. (2018), shifting agriculture 345 

landscapes are defined as “small- to medium-scale forest and shrubland conversion for agriculture that is later abandoned and 346 

followed by subsequent forest regrowth.” To highlight the sensitivity of how emissions from shifting agriculture landscapes 347 

are estimated, we created two scenarios for our emissions reclassification. In one scenario, we calculated the maximum 348 

emissions from deforestation by including all emissions from the loss of both primary and secondary forests within shifting 349 

agriculture landscapes and therefore no emissions from shifting agriculture are considered to be occurring in forest remaining 350 

forest. In the other scenario, we calculated the maximum emissions from managed forest land by including emissions from the 351 

loss of secondary forests in shifting agriculture landscapes in the anthropogenic forest land flux. This transferred a subset of 352 

emissions considered to be deforestation under the alternative scenario to forest land. The remaining emissions from loss of 353 

intact/primary forests due to shifting agriculture were still considered deforestation emissions, as described above. The two 354 

scenarios do not change the total net anthropogenic forest flux (fluxes from forest land plus deforestation) because the same 355 

emissions are assigned to either category. In both scenarios, emissions from the loss of intact/primary forests due to shifting 356 

agriculture were always classified as deforestation because we considered them to arise from a permanent change from forest 357 

to a non-forest land use.  358 

 359 

2.3.3 Reclassifying gross removals 360 

In the third step (Table 3), we partitioned carbon removals occurring on forest land as either anthropogenic or non-361 

anthropogenic. No forest carbon removals were included in deforested land; any removals in pixels with tree cover loss were 362 

assigned to either anthropogenic forest land removals or non-anthropogenic forest removals, as described below. Since 363 

NGHGIs do not treat removals uniformly, we used the three managed land proxy cases to align GFW flux model removal 364 

estimates with how countries report removals in their NGHGIs (Fig. 2). 365 

For Case 1 countries, which explicitly or implicitly consider all forest land to be managed, we classified all removals across 366 

the full GFW model extent as anthropogenic forest land. No removals for these countries were considered non-anthropogenic. 367 

For Case 2 countries, we separated removals into anthropogenic and non-anthropogenic categories following the same spatial 368 

proxy used to delineate managed forests (Sect. 2.3.1). In this approach, we classified all removals in managed forest land as 369 

anthropogenic, including unmanaged forest reclassified as managed forest due to tree cover loss from forestry and shifting 370 

agriculture. All removals in unmanaged forest land were classified as non-anthropogenic.  371 
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3 Results 372 

3.1 Emissions, removals, and net fluxes from GFW’s updated flux model 373 

In the updated GFW flux model, average annual global gross emissions from stand-replacing forest disturbances were 9.0 Gt 374 

CO2e yr-1 between 2001 and 2023 (with 98% from CO2 and 2.4% from CH4 and N2O), average annual gross removals were 375 

14.5 Gt CO2 yr-1, and the average annual net forest ecosystem sink was -5.5 Gt CO2e yr-1 (Table 4). Globally, the HWP pool 376 

was an additional net carbon sink of -0.20 Gt CO2 yr-1, resulting from the transfer of carbon out of forest ecosystems and into 377 

the HWP pool. Although the original and revised values in Table 4 are not directly comparable due to different temporal 378 

coverage and model updates, it does give a high-level view of the degree to which the collective changes to the model have 379 

affected (or not affected) fluxes. Figure 3 maps the updated gross emissions, gross removals, and net GHG flux for forests, 380 

and are derived from Gibbs et al. 2024a, Gibbs et al. 2024b, and Gibbs et al. 2024c, respectively.  381 

Our framework allows flexible, yet consistent, estimates of carbon fluxes in a variety of forest types, spatial scales, and regions. 382 

Tropical and subtropical forests continued to be the largest contributors to global forest carbon fluxes, contributing 74% of 383 

gross emissions (6.7 Gt CO2e yr-1) and 60% of gross removals (-8.8 Gt CO2 yr-1). However, temperate forests are the largest 384 

net sink, comprising 40% of the global net sink (-2.2 Gt CO2e yr-1). Together, humid tropical primary forests (Turubanova et 385 

al. 2018) and intact forest landscapes (Potapov et al. 2017) outside the tropics were a net carbon sink of -0.26 Gt CO2e yr-1 386 

(average annual emissions of 2.8 Gt CO2e yr-1 and removals of 3.1 Gt CO2 yr-1). Forests within protected areas (UNEP-WCMC 387 

2024) accounted for 31% (-1.7 Gt CO2e yr-1) of the global net carbon sink. In 2023, gross emissions from Canada’s wildfires 388 

exceeded emissions from all humid tropical primary forests loss that year (3.0 vs. 2.4 Gt CO2e, respectively; MacCarthy et al. 389 

2024). Updated emissions, removals, and net flux statistics by country and smaller administrative levels can be found on 390 

www.globalforestwatch.org.   391 

 392 

Table 4. Forest GHG fluxes by climate domain and globally, with uncertainties expressed as standard deviations, for the original 393 
and updated models. Values in parentheses are the percent of the global flux that occurred in each climate domain. * denotes fluxes with 394 
major changes in the uncertainties in the revised GFW model (see Sect. 3.3). The original and updated values are not directly comparable 395 
due to different temporal coverage and model updates. 396 

 Forest GHG fluxes Gt CO2e yr-1 (+ standard deviation) 

Climate 

domain 

Gross emissions Gross removals Net GHG flux 

Original Updated Original Updated Original Updated 

(2001–2019) (2001–2023) (2001–2019) (2001–2023) (2001–2019) (2001–2023) 

Boreal 0.88 ± 0.42 (11) 1.4 ± 0.75 (16) -2.5 ± 0.96 (16) -2.5 ± 0.95 (17) -1.6 ± 1.1 (21) -1.1 ± 1.2 (20) 

Temperate 0.87 ± 0.60 (11) 0.93 ± 0.62 (10) -4.4 ± 48* (28) -3.1 ± 0.55* (22) -3.6 ± 48* (47) -2.2 ± 0.83* (41) 

Subtropical 1.0 ± 0.59 (12) 1.0 ± 0.93 (11)  -1.6 ± 0.56 (10) -1.7 ± 0.56 (12) -0.65±0.81 (8.6) -0.70± 0.80 (13) 
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Tropical 5.3 ± 2.4 (66) 5.7 ± 2.4 (63) -7.0 ± 7.6 (45) -7.1 ± 7.6 (49) -1.7 ± 8.0 (22) -1.4 ± 7.9 (26) 

Global  8.1 ± 2.5 (100) 9.0 ± 2.7 (100) -16 ± 49* (100) -14.5 ± 7.7* (100) -7.6 ± 49* (100) -5.5 ± 8.1* (100) 

 397 
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Figure 3. Forest-related GHG fluxes (annual average, 2001–2023). a) Gross GHG emissions. b) Gross carbon dioxide removals. c) Net 398 
GHG flux. Fluxes are aggregated to 0.04 x 0.04° cells for display purposes.  399 

3.2 Effect of GFW model changes on forest carbon flux estimates 400 

Updates to the GFW flux model changed gross emissions, gross removals, and net flux over all spatial scales. Average annual 401 

gross emissions in the updated GFW model are 12% higher than in the original version, primarily due to higher gross annual 402 

emissions since 2019 (8.5 Gt CO2e yr-1 between 2001 and 2019 vs. 11.4 Gt CO2e yr-1 between 2020 and 2023). Updated gross 403 

annual removals are 7.3% lower than in the original model, primarily due to the use of corrected, lower IPCC Tier 1 removal 404 

factors for temperate forests, which are applied to 290 Mha of secondary forests in the framework, primarily throughout Eurasia 405 

and Canada. Annual average net GHG flux decreased accordingly by 28% from the original version because of both higher 406 

emissions and lower removals.  407 

Although we did not quantify the degree to which each change to the model individually affects emissions and removals 408 

because we implemented multiple changes simultaneously, we describe how the inputs changed and some general impacts on 409 

gross emissions and removals.  410 

Activity data: 411 

1. Temporal coverage of tree cover gain: The area of tree cover gain increased globally from 78 Mha in the original 412 

version (gain through 2012) to 130 Mha in the current version (gain through 2020). Carbon removals associated with 413 

areas of tree cover gain increased from -0.57 to -0.62 Gt CO2 yr-1. As in the original model, carbon removals occurring 414 

in these young (<20 years) forests remain relatively small compared to gross removals occurring in older, established 415 

forests that are much more extensive in total area (96% of gross removals occurred in older forests).   416 

2. Data source for burned area: Use of the new source of fire data with higher spatial resolution (TCLF) combined with 417 

an increase in forest fires across Australia, Spain, the United States and Canada between 2020 and 2023 led to an 418 

increase of global average annual burned area that coincided with tree cover loss from 4.3 Mha yr-1 (2001–2019) to 419 

6.0 Mha yr-1 (2001–2023). Global average emissions increased from 1.0 to 1.7 Gt CO2e yr-1 in areas where tree cover 420 

loss was identified as burned.  421 

3. Data sources for organic soils extent: Improved data led to an increase in the extent of organic soils from 477 Mha to 422 

760 Mha and the area of tree cover loss on organic soils increased from 0.77 Mha yr-1 to 2.4 Mha yr-1. Emissions from 423 

organic soil drainage in areas with tree cover loss increased from 0.21 to 0.91 Gt CO2e yr-1, occurring primarily in 424 

Indonesia and Malaysia (17% and 3.1% of global total, respectively). Higher emissions from organic soil drainage is 425 

due to a combination of increased organic soil extent, planted tree extent, and tree cover loss compared to the original 426 

model.  427 

4. Data sources for planted tree extent: Planted forest and tree crop extent increased from 140 Mha to 230 Mha and tree 428 

cover loss in planted tree polygons increased from 42 Mha to 64 Mha.  429 
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Emission and removal factors: 430 

1. Data source for R:S ratios: The previous global R:S used across the full model extent was 0.26. Now, the average 431 

ratio of aboveground removals to belowground removals is 0.27 but with considerable geographic variation.     432 

2. Planted tree removal factors and their uncertainties: The average aboveground removal factor in planted trees 433 

originally was 3.2 t C ha-1 yr-1 but using SDPT v2.0 it is 2.3 t C ha-1 yr-1. Global planted forests and trees were 434 

originally estimated to be a net carbon sink of -0.30 Gt CO2e yr-1 but using SDPT v2.0 they are now a net sink of -435 

0.54 Gt CO2e yr-1, with the increased area of planted trees compensating for the lower average removal factor.  436 

3. Older secondary (>20 year) temperate forest removal factors and their uncertainties: Older secondary temperate 437 

forests using IPCC Tier 1 removal factors (i.e., areas affected by this change) originally covered 310 Mha and now 438 

cover 290 Mha. Gross removals in these forests declined from -2.7 to -1.3 Gt CO2 yr-1.  439 

4. Global Warming Potentials: Updated model results of non-CO2 emissions associated with biomass burning and 440 

drainage of organic soils were negligibly impacted by using updated GWPs.  441 

3.3 Updated uncertainty analysis 442 

Nearly all changes to the framework are represented in the error propagation approach and therefore affect the global and 443 

climate domain uncertainty analyses to some degree. However, the largest change to the uncertainty analysis in terms of input 444 

values was the corrected IPCC Tier 1 temperate forest removal factors, which the model applies across large areas of Eurasian 445 

and Canadian forests. Some of the largest changes for removal factors and their uncertainties include temperate mountain 446 

forest >20 years old (previously 4.4 t aboveground biomass (AGB) ha-1 yr-1 + 100.7 (+ standard deviation); now 2.1 + 0.02 t 447 

AGB ha-1 yr-1) and temperate oceanic forest >20 years old (previously 9.1 t AGB ha-1 yr-1 + 20.2; now 4.9 + 0.25 t AGB ha-1 448 

yr-1). We did not formally assess the contributions of individual model changes to uncertainty because the change in IPCC Tier 449 

1 temperate forest removal factor uncertainties was so dominant.  450 

Uncertainty (reported as one standard deviation) in temperate gross removals declined from 48 Gt CO2 yr-1 in the original 451 

GFW model to 0.55 Gt CO2 yr-1, with uncertainty for gross emissions in this biome increasing slightly from 0.60 to 0.62 Gt 452 

CO2e yr-1 and uncertainty for net flux decreasing from 48 to 0.83 Gt CO2e yr-1 (Table 4). Reduced uncertainty in temperate 453 

gross removals propagated to reduced uncertainty in global gross removals and net flux. In the uncertainty analysis for the 454 

current version of the model, tropical gross removals has the highest uncertainty, driven by relatively high uncertainty in 455 

IPCC’s Tier 1 removal factors, which the GFW model applies to tropical primary forests and older secondary forests. Large 456 

uncertainties for climate domain and global net flux estimates should be interpreted with caution; their uncertainties are 457 

proportionately very large in part because net flux they reflect the sum of negative (removals) and positive (emissions) terms, 458 

compounding the addition of their uncertainties. 459 
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3.4 Anthropogenic fluxes from “managed” forests 460 

When gross emissions and removals from the GFW flux model for 2001–2022 were reclassified into NGHGI reporting 461 

categories, the anthropogenic net flux in managed forest land ranged between -6.8 and -8.5 Gt CO2e yr-1 (with and without 462 

emissions from shifting agriculture in secondary forests, respectively) and emissions from deforestation ranged between 3.3 463 

and 5.0 Gt CO2e yr-1 (without and with emissions from shifting agriculture in secondary forests, respectively) (Fig. 4, Table 464 

A1). The resulting net anthropogenic forest flux—the combined flux from both anthropogenic forest land and deforestation—465 

was -3.5 Gt CO2e yr-1. The non-anthropogenic net sink was -2.2 Gt CO2e yr-1, comprised of -2.5 Gt CO2e yr-1 removals and 466 

0.37 Gt CO2e yr-1 emissions from fires and tree cover loss without an assigned driver in unmanaged forests. The difference in 467 

global net flux estimates between the untranslated GFW model (-5.5 Gt CO2e yr-1) and the NGHGI-translated one is that the 468 

latter includes only anthropogenic forest-related fluxes in managed land, while the former also includes fluxes from unmanaged 469 

land. The combined NGHGI-translated anthropogenic and non-anthropogenic forest flux differs by about 0.2 Gt CO2e yr-1 470 

from the untranslated net flux because the former does not include fluxes from 2023 and does not include fluxes from 32 471 

countries (mostly small island countries), which did not have comparable NGHGIs. 472 

Under the scenario which included emissions from shifting agriculture from secondary forests in deforestation (Fig. 4, hatched 473 

bars), GFW's maximum estimate for global deforestation emissions aligned with the combined NGHGI deforestation and 474 

organic soil emissions (5.0 Gt CO2e yr-1). In that scenario, GFW's corresponding maximum estimate for global net sink in 475 

anthropogenic forest land was larger than estimated by NGHGIs. Under the alternative scenario, which included emissions 476 

from shifting agriculture in secondary forests in the anthropogenic forest land flux (Fig. 4, non-hatched bars), GFW's minimum 477 

estimate for global net sink in anthropogenic forest land was similar to the NGHGI net forest sink (-6.6 Gt CO2 yr-1), but 478 

GFW's corresponding minimum estimate for global deforestation emissions was lower than estimated by NGHGIs. The 479 

combined GFW flux model net anthropogenic forest sink in managed lands is 1.9 Gt CO2e yr-1 greater than in NGHGIs (-1.5 480 

Gt CO2 yr-1).  481 

For Non-Annex 1 countries, the GFW model high and low estimates for forest land and deforestation bracketed the 482 

corresponding NGHGI fluxes. However, GFW estimated the net anthropogenic forest flux for Non-Annex 1 countries to be a 483 

small net anthropogenic sink while NGHGIs estimates them to be a small net anthropogenic source. For Annex 1 countries, 484 

deforestation emissions from the GFW model were much lower than from NGHGIs (0.046–0.049 and 0.55 Gt CO2e yr-1
,
 485 

respectively) and the net forest sink was somewhat larger (-3.1 and -2.3 Gt CO2e yr-1
,
 respectively).  486 
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 487 

 488 

Figure 4. Comparison of average annual forest carbon fluxes (2001–2022) between national greenhouse gas inventories (NGHGI) 489 
and the updated GFW flux model. For the GFW flux model, net anthropogenic forest flux is calculated as the sum of the net anthropogenic 490 
forest land flux in managed forests and deforestation (Sect. 2.3). Non-anthropogenic forest flux is calculated as emissions and removals 491 
occurring outside managed forests. Because country reporting on emissions from the loss of secondary forests associated with cycles of 492 
shifting agriculture is ambiguous, these emissions are shown for the GFW model as hatched bars to indicate how they impact totals depending 493 
on the reporting category (forest land or deforestation).  494 

Although the magnitude of the global GFW model estimates for deforestation emissions and the anthropogenic sink in 495 

forests align with the aggregated NGHGIs for 2001–2022 under different scenarios, their trends through time do not agree 496 

(Fig. 5). Both globally and for Non-Annex 1 countries, the NGHGIs suggest that from 2001 to 2022 forest land became a 497 

slightly larger sink and deforestation emissions lacked a clear trend. However, the GFW flux model results suggest the 498 

opposite: a reduced sink in forest land and increased deforestation emissions. The forest land flux and deforestation 499 

emissions from NGHGIs and the GFW model for Non-Annex 1 countries appear to converge in the last 10 years (roughly -6 500 
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Gt CO2 yr-1 and 5 Gt CO2 yr-1, respectively). For Annex 1 countries, the forest land sink decreased much more according to 501 

the GFW model than NGHGIs, while deforestation emissions stayed fairly constant in both. 502 

 503 

Figure 5. Comparison of forest carbon fluxes timeseries (2001–2022) between national greenhouse gas inventories (NGHGIs) and 504 
the updated GFW flux model for Non-Annex 1, Annex 1 countries, and globally. NGHGI values shown here exclude any fluxes from 505 
harvested wood products, and deforestation emissions are the combined emissions from both deforestation and organic soils to conceptually 506 
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align with the scope of fluxes from the GFW framework. For the world and Non-Annex 1 countries, GFW model results are shown in two 507 
timeseries: one where emissions from shifting agriculture in secondary forests is included in that reporting category and one where those 508 
emissions are not included. For the GFW model in Annex 1 countries, the two scenarios are essentially the same and thus we show only one 509 
line. 510 

4 Discussion 511 

We focus our discussion on the following topics. First, we examine how the updated GFW forest flux model compares with 512 

results from a recent global estimate of forest fluxes by Pan et al. (2024) and the Global Carbon Budget (GCB). Second, we 513 

discuss how fully geospatial, Earth observation-based forest flux estimates can be translated into the reporting categories of 514 

NGHGIs and how transparency in both approaches can result in methodological improvements. Third, we discuss strengths 515 

and limitations of GFW’s Earth observation-based forest carbon flux model. Fourth, we outline future research topics which 516 

provide partial solutions to the model’s current limitations. 517 

4.1 Comparison with other recent global flux estimates 518 

Pan et al. (2024) is a relevant comparison for the GFW model because both include only forests and report gross rather than 519 

net fluxes. Pan et al. (2024) estimated gross removals by forests, gross emissions from tropical deforestation, and the global 520 

forest carbon sink by synthesizing forest plot data (inventories and long-term monitoring sites) from 1990 onwards. The 521 

removals estimates are conceptually similar (e.g., both include established and new forests), but the emissions estimates have 522 

different scope (global for GFW, tropical for Pan et al. 2024) (Table 5). The global net fluxes from Pan et al. 2024 and the 523 

updated GFW model are remarkably similar given their entirely different approaches, and thus provide multiple lines of 524 

evidence for a forest sink of around 6 Gt CO2 yr-1. Differences in gross emissions and removals between the data sources likely 525 

arise from different scopes and system boundaries, but may be balanced out when combined in the global net flux. Pan et al. 526 

estimated higher tropical gross emissions than the GFW model did for the tropics and subtropics for 2001-2019. When the 527 

GFW model’s gross emissions (CO2 only) are limited to the tropics and subtropics and one geospatially implemented definition 528 

of deforestation (tree cover loss due shifting agriculture in primary forest, and all commodity- and urbanization-driven tree 529 

cover loss), it estimates 3.2 Gt CO2 yr-1, well below the tropical deforestation estimate of Pan et al. 2024. More broadly 530 

including all tree cover loss in the tropics and subtropics, the GFW model estimates gross emissions of 6.3 Gt CO2 yr-1.  531 

 532 

 533 

 534 

 535 
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Table 5. Comparison of GFW flux model results to Pan et al. 2024 and the Global Carbon Budget (GCB). Estimates from the three 536 
data sources are not directly comparable due to differences in scope, data, methodologies and reporting structure. GFW model fluxes are 537 
limited to 2001–2022 for comparability with the GCB.  538 

Flux 
GFW model, 2001-2022  

(Gt CO2 yr-1) 

Pan et al. 2024, 2000-2019 

(Gt CO2 yr-1) 

Global Carbon Budget, 2001-2022 

(Gt CO2 yr-1) 

Emissions 
8.6 (gross, all observed 

disturbances)a 

7.4 (gross, tropical 

deforestation)b 
4.9 (net, anthropogenic)c 

Removals 
-14.7 (gross, all forest ecosystems 

(-14.5) and HWP (-0.2))d 
-13 (gross, global) -11.4 (net, non-anthropogenic) 

Net -6.1 (net, all forests)e -5.6 (net, global) -6.4 (net, all land) 

a Gross emissions from all forest disturbances (anthropogenic and non-anthropogenic) observed from Landsat data for the period 2001–2022. Estimate includes 539 

CO2 only for comparability with GCB; non-CO2 emissions are 0.19 Gt CO2e yr-1. This value is lower than that of Table 4 (9.0 Gt CO2e yr-1) because this one 540 

includes emissions for 2001–2022 only and excludes non-CO2 gases. 541 
b Includes emissions from degradation.  542 
c Estimates only net direct anthropogenic effects, including deforestation, afforestation/reforestation and wood harvest. Gross fluxes higher but not reported. 543 
d Gross removals from all forest processes (direct, indirect and natural). HWP = transfers to harvested wood products.  544 
e Calculated as the net balance between gross forest ecosystem emissions and removals (8.6 – 14.5 Gt CO2 yr-1) in this table plus an additional net removal of 545 

-0.20 Gt CO2 yr-1 into HWP. This value differs from that of Table 4 (-5.5 Gt CO2e yr-1) because this one uses lower gross emissions (see note a).  546 

 547 

Another point of comparison is the GCB, released by the Global Carbon Project each year. The GCB provides annual estimates 548 

of GHG emissions and carbon sinks, when relevant, for all sectors. The GFW flux model is not designed to represent the land 549 

portion of the global carbon cycle, nor is it directly comparable with the land use fluxes included in the GCB because of 550 

differences in definitions, scope, reporting structure, and methods (Friedlingstein et al. 2023). Three overarching differences 551 

are: 1) The GCB reports net sources and sinks for all land (including croplands, grasslands, semi-arid savannas and shrublands), 552 

while the GFW model reports gross emissions and removals for forests only; 2) the GCB categorizes fluxes by process into 553 

net anthropogenic emissions from land use change and forestry and the “natural” land sink, while the GFW model categorizes 554 

fluxes by activity data; 3) the GCB uses global bookkeeping models to estimate anthropogenic carbon fluxes from land use 555 

and DGVMs to estimate the natural land sink, while the GFW flux model uses a single integrated approach to estimate 556 

emissions and removals. Nevertheless, comparison of the GFW model with the GCB is useful because they use entirely 557 

different data sources and approaches, and, as such, convergence between them would represent multiple lines of evidence. 558 

We estimated a global net CO2 sink by forest ecosystems of -6.1 Gt CO2 yr-1 between 2001 and 2022, which is similar to the 559 

net CO2 land sink of -6.4 Gt CO2 yr-1 in the GCB for all terrestrial fluxes over the same period (Table 5). The GCB’s net 560 

emission estimate (4.9 Gt CO2 yr-1) is lower than GFW’s gross emissions estimate (8.6 Gt CO2 yr-1) partially because the 561 

GCB’s land-use change emissions (sources) reflect the net balance between anthropogenic emissions and anthropogenic 562 

removals associated with forest regrowth. Similarly, the GFW model’s gross removals reflect removals across all forest lands, 563 

https://doi.org/10.5194/essd-2024-397
Preprint. Discussion started: 8 October 2024
c© Author(s) 2024. CC BY 4.0 License.



   

 

27 

 

including removals implicit (but unreported) in the GCB net land-use change estimate (Friedlingstein et al. 2023). Additional 564 

reclassification of fluxes from the GFW model into net anthropogenic from land-use change and the natural land sink may be 565 

possible for further comparisons with the GCB, as has been done between the GCB and NGHGIs (Schwingshackl et al. 2022).  566 

In the comparison of the original GFW model with the GCB, we included a non-spatial estimate of emissions from tropical 567 

forest degradation of 2.1 Gt CO2e yr-1 from Pearson et al. 2017 that potentially included some emissions from small-scale 568 

disturbances which we assumed our original model did not capture. For this and subsequent comparisons between the GFW 569 

flux framework and the GCB, we are discontinuing the inclusion of a non-spatial estimate of degradation emissions from a 570 

source external to our framework to maintain its internal consistency and fully geospatial nature. We acknowledge that the 571 

GFW model itself is likely omitting both emissions (e.g., from degradation not detected by TCL) and removals (e.g., from low 572 

canopy density or regenerating forest), but those are gaps that the model should be able to fill over time (see Sect. 4.4). Adding 573 

external data such as Pearson et al. 2017 risks double-counting emissions in the global total. As more geospatial data on 574 

distinguishing deforestation from degradation (Vancutsem et al., 2021) becomes available globally, and geospatial data on the 575 

emission and removal factors associated with forest degradation (Holcomb et al., 2024) and recovery (Heinrich et al., 2023b) 576 

becomes available, it may be possible to reintegrate forest degradation and its associated fluxes.  577 

4.2 Translating between Earth observation-based fluxes and NGHGIs  578 

Our goal in translating GFW model results into a NGHGI reporting framework was to provide independent estimates of forest-579 

based GHG fluxes based on globally consistent, Earth observation-based forest flux data in the reporting categories that 580 

national policymakers use. It was not to reproduce how countries classify their managed land, report their forest fluxes in 581 

practice, or compare fluxes for individual countries. For example, we did not rely solely on the use of managed land polygons 582 

for Case 1 countries to define managed forest; if our observations detected direct human activity in unmanaged polygons, we 583 

assigned those fluxes as anthropogenic forest land fluxes or deforestation. Thus, although this translation makes the GFW 584 

model more conceptually similar with NGHGIs in that the outputs are supposed to represent the same fluxes, they are still not 585 

necessarily entirely comparable because we did not exactly reproduce what countries do in practice within their NGHGIs. It 586 

demonstrates that the GFW model is sufficiently flexible to approximate the system boundaries of anthropogenic fluxes in the 587 

IPCC reporting framework and that Earth observation models can be used to independently monitor anthropogenic GHG fluxes 588 

from forests if adequate country data are made publicly available. The 6.7 Gt CO2 yr-1 gap in global land use emissions between 589 

NGHGIs and the GCB has been largely explained (Grassi et al. 2023) and translation between NGHGIs on the one hand and 590 

bookkeeping models and DGVMs on the other is becoming routine (e.g., Schwingshackl et al. 2022); this work is the start of 591 

a similar process for explaining the gap between NGHGIs and Earth observation-based models, primarily through reallocation 592 

of emissions and removals to match NGHGIs’ land use categories and filtering the results with maps of managed forest as a 593 

proxy to delineate anthropogenic from non-anthropogenic fluxes.  594 
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Although the conceptual alignment produces quantitatively similar annual average fluxes for the GFW model and NGHGIs 595 

globally and for Non-Annex 1 countries, the trends from NGHGIs and the GFW model differ (Fig. 5). For Non-Annex 1 596 

countries, where the trends in each data source are most evident, NGHGIs reported the forest land sink strengthening slightly 597 

while deforestation emissions fluctuated but were generally steady. The GFW model, on the other hand, reported a weakening 598 

sink in forest land and deforestation emissions that increased correspondingly. The tight association between the decreasing 599 

forest land sink and increasing deforestation emissions in the GFW model is due to the use of average annual gross removals 600 

over time (i.e. a constant value), with only gross emissions varying year to year. In NGHGIs, forest land and deforestation can 601 

both change through time and are therefore not driven by the trajectory of just one flux. Quantitative similarity between the 602 

GFW model and NGHGIs may be further improved when the GFW model’s gross removals can vary through time as well 603 

(Sect. 4.4). Moreover, for Non-Annex 1 countries, results from the GFW model and NGHGIs have converged for forest land 604 

and deforestation since around 2010, with the two GFW model scenarios bracketing NGHGI fluxes from both reporting 605 

categories after that year. This indicates that the GFW model, and the tree cover loss data that underlies its gross emissions, 606 

were perhaps under-detecting loss as detected by NGHGIs in the early part of the time series.  607 

Exploration of the differences between the GFW model and specific countries’ NGHGIs is beyond the scope of this paper ; 608 

future work may include more detailed reclassification of the GFW model’s fluxes and comparisons with specific regions or 609 

countries. Further sub-setting results from our framework to differentiate anthropogenic and non-anthropogenic fluxes for 610 

comparison with NGHGIs for individual regions, countries and other local-scale analyses is possible and encouraged. Indeed, 611 

comparison of the GFW model and countries’ inventories is a way to explore the complementarity and discrepancies between 612 

Earth observation data and inventories, encourage transparency for both, and improve both approaches (Heinrich et al. 2023a). 613 

For example, one advantage of the GFW model, which includes forest fluxes undifferentiated by human contribution, is that 614 

it encompasses both anthropogenic and non-anthropogenic fluxes. When this translation exercise is conducted, GHG fluxes 615 

from managed land can be put in the context of all land fluxes and compared with fluxes from unmanaged land. Because 616 

NGHGIs are not required to estimate fluxes from unmanaged land (just report the area of unmanaged land), aggregation of 617 

NGHGIs does not provide context for managed land fluxes with unmanaged land fluxes. In other words, the GFW model can 618 

indicate the scale of non-anthropogenic fluxes that countries are not reporting in their NGHGIs (which are nevertheless affect 619 

atmospheric CO2 concentrations and global temperature), while NGHGIs are necessary for the GFW model to approximate 620 

the anthropogenic fluxes that are being monitored by countries and the focus of the Paris Agreement. An alternative approach 621 

for reconciling global models and NGHGIs would be for NGHGIs to report all land fluxes in the country, in both managed 622 

and unmanaged land (Nabuurs et al. 2023), but adoption of this seems unlikely. 623 

Future improvements to our flux reclassifications, which may improve regional or country-level comparisons, could include 624 

customizing tree cover density thresholds that align more closely with countries’ forest definitions to filter forest extent and 625 

thus the associated fluxes on a country-by-country basis. Additionally, we used maps of primary forests and intact forest 626 
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landscapes from 2001 and 2000, respectively, to approximate the extent of unmanaged forests at the initial year of our model 627 

framework. Further refinement to the GFW model’s estimates of fluxes from managed lands could include recategorizing 628 

forests as “managed” or “unmanaged” using updated primary/intact forest boundaries in different years to reflect changes to 629 

countries’ managed land area over time whenever known. Furthermore, for simplicity, we considered all forest removals as 630 

forest land and did not differentiate the relatively small amount of removals from forest gain as “other land converted to forest”, 631 

which is a category that countries report in their NGHGIs. Another improvement would be to separate the emissions from 632 

drainage of organic soils and the emissions from deforestation in the GFW model; in the current translation, deforestation 633 

emissions and organic soil emissions are combined in both data sources. Separating them would further narrow the conceptual 634 

similarity, which would matter most in countries with high emissions from organic soils. Finally, emissions from fires 635 

occurring in unmanaged land could theoretically be differentiated into anthropogenic vs. non-anthropogenic using additional 636 

geospatial data, rather than our simplified assumption that all fires in unmanaged forests are non-anthropogenic in origin.   637 

While our geospatial, Earth observation-based framework permits estimation of fluxes for any geospatially defined forest and 638 

the inclusion (or exclusion) of any area of interest, it cannot distinguish between managed versus unmanaged land without 639 

relevant spatial data. Thus, the ability of the GFW model, and Earth observation models in general, to be translated into IPCC 640 

categories largely depends on the transparency with which countries report on their managed lands. Three countries that 641 

currently apply the managed land proxy (Canada, Brazil, and the United States) have publicly available managed land maps 642 

(Ogle et al. 2018). For all remaining countries, the use and application of the managed land proxy was assumed based on the 643 

available information from country reports. In the absence of this information, primary or intact forest have been used as proxy 644 

for unmanaged forest. With sufficient transparency and flexibility in both the Earth observation-based products and NGHGIs, 645 

the differences between them can be explored. 646 

A crucial driver of forest disturbance, and thus emissions, in the GFW model is shifting agriculture. However, the comparison 647 

between GFW and NGHGI is complicated by the fact that countries typically do not provide specific information on shifting 648 

agriculture in their land representation; according to the IPCC guidelines it can be implicitly included either in forest or in 649 

other land uses (e.g., cropland) (Grassi et al. 2023). Thus, we developed two scenarios for the treatment of fluxes from shifting 650 

agriculture (Fig. 4). Hopefully, as countries begin to submit their Biennial Transparency Reports under the Paris Agreement, 651 

their use of the managed land proxy, the treatment of shifting agriculture, and other exclusions from inventories will be 652 

progressively clarified and translation between approaches will become more accurate. Although they are time-consuming to 653 

implement, the goal should be for the kinds of Earth-observation based adjustments described by Heinrich et al. 2023a for 654 

Brazil to be achievable for all countries. This will ultimately facilitate comparisons between global models such as the GFW 655 

model and NGHGIs, provide national policymakers with timely geospatial data in their own reporting terms, and build 656 

confidence in the magnitude and trends of land-based anthropogenic emissions and sinks (Grassi et al. 2023).  657 
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4.3 Strengths and limitations of the GFW flux monitoring framework  658 

The strengths of the current GFW flux model are broadly similar to those described in Harris et al. 2021. Strengths include its 659 

transparency, operational nature, flexibility, and updatability as new information becomes available. Here we focus on the 660 

complementarity of the GFW model with other land flux monitoring approaches. A strength of flux monitoring based on Earth 661 

observation, and therefore geospatial, data is its geographic specificity, while maintaining spatial consistency. Knowing where 662 

changes in land use and land cover—and the emissions and removals they have caused—occurred may help identify what 663 

factors are responsible for these changes and how to attribute them to specific human activities. While detailed information 664 

from ground surveys and activity data generated using local training data may provide more detail and accuracy at local scales, 665 

understanding the magnitude and distribution of global change requires a combination of both ground- and space-based 666 

observations (Houghton and Castanho 2023). In this sense, it fills in the gaps among other flux monitoring approaches. In 667 

terms of global consistency, the GFW model’s key data are global in breadth and independent of data from the United Nations 668 

Food and Agriculture Organization, giving it a separate source for forest change data from bookkeeping models (Hansis et al. 669 

2015, Gasser et al. 2020, Houghton and Castanho 2023). Moreover, by having an open-source model based on publicly 670 

available data, others can evaluate the model, make improvements, and/or adapt it to use national or local rather than global 671 

data. Users can keep some defaults while replacing others with better or more specific information, and understand how results 672 

are impacted by the various changes made for regions or at scales that interest them most.  673 

Limitations are also broadly similar to those described in Harris et al. 2021. First, combining multiple spatially explicit data 674 

sources compounds the errors present in each individual source used in the framework. The GFW model partially manages 675 

this over larger areas through uncertainty propagation analysis to identify the relative contributions of different model 676 

components to uncertainty in each climate domain but cannot provide a pixel-level accuracy or uncertainty map. Extending 677 

the uncertainty framework to smaller regions (e.g., biomes or countries) would require uncertainty information for each of the 678 

individual data sources to be available at the desired scale of uncertainty propagation analysis. Second, the gain-loss approach 679 

of starting with baseline carbon densities and adding gains and subtracting losses over time has the potential to generate 680 

unrealistic estimates over longer periods due to drift from the original benchmark map. The GFW model could potentially 681 

address this through recalibration of carbon densities and forest extent at one or more intermediate years (e.g., 2010, 2015). 682 

Finally, the GFW model continues to have temporal limitations for both activity data and removal factors. The shorter gain 683 

period compared to tree cover loss in the original publication (12 vs. 19 years, respectively) has largely been addressed with 684 

the extension of tree cover gain through 2020, but the tree cover loss timeseries has its own inconsistencies (Weisse and 685 

Potapov 2021). The improvement in Earth observation data and changes to processing confounds apparent trends in gross 686 

emissions based on tree cover loss; it is difficult to determine how much the trends in emissions are due to real increases vs. 687 

better detection of disturbances through time. For removal factors, the concern is not so much temporal inconsistency as 688 

temporal constancy; the model makes the simplifying assumption of static removal factors, i.e. removal factors do not change 689 
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as forests grow or climate changes. Thus, the GFW model does not incorporate growth-response curves or climate feedbacks, 690 

unlike in Earth System Models.  691 

4.4 Anticipated model developments 692 

Beyond annual updates to the GFW model, we anticipate continued, substantial changes to and research around both activity 693 

data and emission and removal factors. These do not change the underlying conceptual framework but rather its implementation 694 

as the model.  695 

For activity data, anticipated model developments include: 696 

1. Global forest change data: The model will use annual forest extent, loss, and gain maps for greater temporal detail 697 

(similar to Potapov et al. 2019 or Turubanova et al. 2023) and improved representation of carbon dynamics. For 698 

example, the year of tree cover gain will be known (at least approximately) and repeated forest disturbances in the 699 

same location will be captured (unlike in Hansen et al. 2013), allowing the generation of annual time series of gross 700 

emissions, gross removals, and net flux. This should further enhance comparability of flux trends with the GCB and 701 

NGHGIs.  702 

2. Drivers of forest loss: The model currently uses a global map of drivers of forest loss at 10-km resolution (Curtis et 703 

al. 2018, updated to 2023) but research on mapping drivers of forest loss is advancing. An anticipated 1-km resolution 704 

global map of drivers of forest loss will detect drivers that are not dominant at 10-km (and are therefore not mapped) 705 

but are important at smaller scales, such as loss due to small-scale infrastructure and built-up areas amid loss due to 706 

agricultural commodity expansion. Moreover, a separate driver class of forest loss due to natural disturbances would 707 

further help with parsing natural and anthropogenic fluxes for translation into NGHGI reporting categories.  708 

3. Delineation of organic soils and their drainage status: The GFW model currently compiles several different data 709 

sources (Table 2), which have different definitions and resolutions, to map organic soil extent. The GFW model would 710 

benefit from a globally consistent organic soil map based on comprehensive aggregation of soil samples and 711 

standardized mapping methods. However, it is not just the extent of organic soils but their drainage that affects 712 

emissions in the GFW model. Thus, we are exploring improved mapping of organic soil drainage using recent 713 

improvements in delineating road networks (OSM 2010; Meijer et al. 2018; Engert et al. 2024), drainage canal 714 

networks (Dadap et al. 2021), and land cover (Potapov et al. 2022). More comprehensive maps of organic soil extent 715 

and drainage will improve where the GFW model reports these emissions, particularly affecting non-CO2 GHG 716 

emissions.  717 

4. Improved initial forest age map: The GFW model currently classified forested pixels into primary forest, secondary 718 

forest > 20 years, and secondary forest < 20 years old in 2000 using a few simple rules (described in Harris et al. 719 
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2021). However, a forest age map such as Besnard et al. 2021 could be used to refine the assignment of starting age 720 

categories—particularly for secondary forests—or to determine where forest is along age-growth curves.  721 

5. Extent of planted forests and trees: The model currently uses SDPT v2.0 (Richter et al. 2024) but plans are underway 722 

for SDPT 3.0, which will improve differentiation between natural and artificial stands in the United States and 723 

Canada, along with other improvements for delineating planted tree extent in other countries. 724 

For emission and removal factors, anticipated model developments include:  725 

1. Improved spatial and temporal resolution of forest carbon removals: The dominant role of removal factor uncertainties 726 

in the uncertainty analysis highlights the need to further improve understanding of spatial and temporal variation in 727 

forest carbon removals. Combining plot-level biomass estimates with spaceborne observations to produce static 728 

biomass maps is well established (e.g., Saatchi et al. 2011, Santoro et al. 2021) and mapping biomass change is being 729 

explored (Xu et al. 2021) but these do not provide spatiotemporally variable removal factors. An ecology-based, yet 730 

still spatial, way to map removal factors could combine tree-level information collected in field plots with machine 731 

learning methods to map forest population structure through time, including variables that influence biomass change 732 

like upgrowth, mortality and recruitment for different forest types (Ma et al. 2020). Such an approach can generate 733 

spatial and temporal predictions of how biomass changes across space and time that can be validated with forest plot 734 

data. In conjunction with a time series of tree cover gain (in activity data list above), this would result in fully temporal 735 

gross removals. Alternatively, growth curves for natural regeneration of forests could be developed, using methods 736 

similar to Cook-Patton et al. 2020.  737 

2. Improved maps of soil carbon dynamics: The GFW model currently uses a benchmark map of soil organic carbon 738 

density in mineral soil in 2000 and assumes loss of specific fractions of carbon under certain types of tree cover loss, 739 

following a Tier 1 approach from IPCC 2019. However, a timeseries of soil organic carbon density in mineral soil 740 

would support more realistic mapping of SOC dynamics.  741 

Additionally, opportunities remain to compare GFW model emissions and removals with NGHGIs, bookkeeping models, and 742 

regional or local data (e.g., Araza et al. 2023, Heinrich et al. 2023b). Such work would further our understanding of the 743 

complementary roles of Earth observation-based forest carbon models and other approaches to forest flux monitoring.  744 

5 Data and code availability 745 

Gross emissions, gross removals, and net flux are available for download as 10x10 degree geotifs in 0.00025x0.00025-degree 746 

resolution. Gross emissions files (Gibbs et al. 2024a) are at https://doi.org/10.7910/DVN/LNPSGP/ Gross removals files 747 

(Gibbs et al. 2024b) are at https://doi.org/10.7910/DVN/V2ISRH. Net flux files (Gibbs et al. 2024c) are at 748 

https://doi.org/10.7910/DVN/TVZVBI. Data are also available as assets on Google Earth Engine at 749 
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https://code.earthengine.google.com/ae55707e335894d7be515386195390d2. Code is available at 750 

https://github.com/wri/carbon-budget.  751 

6 Conclusion 752 

The updated Earth observation-based GFW forest carbon flux framework continues to show a substantial net sink for CO2 in 753 

forests globally, while also reporting sizeable gross emissions over half as large as gross removals since 2000. This highlights 754 

ongoing opportunities to protect the forest carbon sink across a broad area and also reduce emissions from forest loss, especially 755 

in hotspots of emissions that are discernable with our geospatial framework. The revised uncertainty analysis—with its 756 

dramatic reduction in uncertainty in gross removals—demonstrates the importance of refining forest carbon sequestration rate 757 

estimates. The flexibility of the model supports analyses at a range of spatial scales, while its operational nature means it can 758 

incorporate new and existing Earth observation products and provide timely maps and data. Our translation of the GFW 759 

model’s fluxes into the reporting framework that NGHGIs use provides another lens through which to look at country-level, 760 

land-based climate mitigation and is a resource for national policymakers interested in timely, spatial data on land fluxes. It 761 

also demonstrates the two approaches’ ability to improve, assess, and potentially confirm each other. Ultimately, confidence 762 

and transparency are needed in assessments of progress towards the Paris Agreement, and Earth observation-based forest 763 

carbon models are another tool to build consensus.  764 
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Appendix A 1036 

Table A1. Comparison of forest carbon fluxes in Annex 1 countries, Non-Annex 1 countries, and globally between the GFW flux 1037 
model and national greenhouse gas inventories (NGHGIs).  Ranges in reported GFW values here come from two different scenarios: one 1038 
scenario where emissions from shifting agriculture in secondary forests is included in forest land, while the other scenario includes all 1039 
emissions from shifting agriculture in deforestation.  1040 

 

Net flux in forest land 

(Gt CO2 yr-1)  

Deforestation emissions  

(Gt CO2e yr-1)  

Net anthropogenic forest flux  

(Gt CO2e yr-1)  

Non-anthropogenic forest flux  

(Gt CO2e yr-1)  

    GFW  NGHGI  GFW  NGHGI  GFW  NGHGI  GFW  NGHGI  

Annex 1 

countries  

   -3.1 – 

-3.1 
-2.3 

   0.046 – 

0.049 
0.55  -3.0  -1.8  -0.34  N/A  

Non-Annex 

1 countries  

   -3.7 – 

-5.5 
-4.2 

   3.3 – 

5.0 
4.5  -0.46  0.2  -1.8  N/A  

Global  
   -6.8 – 

-8.5 
-6.6 

   3.3 – 

5.0 
5.0  -3.5  -1.6  -2.2  N/A 
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