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Short Summary 11 

Updated global maps of greenhouse gas emissions and sequestration by forests from 2001 onwards using satellite-derived data 12 

show that forests are strong net carbon sinks, capturing about as much CO2 each year on average as the United States emitted 13 

from fossil fuels in 2019. After reclassifying fluxes to countries’ reporting categories for national greenhouse gas inventories, 14 

we found that roughly two-thirds of the net CO2 flux from forests is anthropogenic and one-third is non-anthropogenic. 15 

Abstract  16 

Earth observation data are increasingly used to estimate the magnitude and geographic distribution of greenhouse gas (GHG) 17 

fluxes and reduce overall uncertainty in the global carbon budget, including for forests. Here we report on a revised and updated 18 

geospatial, Earth observation-based modelling framework that maps GHG emissions, carbon removals, and the net balance 19 

between them globally for forests from 2001 to 2023 at roughly 30-meter resolution, hereafter referred to as the Global Forest 20 

Watch (GFW) model (see Data and Code Availability section). Revisions address some of the original model’s limitations, 21 

improve model inputs, and refine the uncertainty analysis. We found that between 2001 and 2023, global forest ecosystems 22 

were, on average, a net sink of -5.5 ± 8.1 (one standard deviation) gigatonnes CO2 equivalent yr-1 (Gt CO2e yr-1), which reflects 23 

the balance of 9.0 ± 2.7 Gt CO2e yr-1 of GHG emissions and -14.5 ± 7.7 Gt CO2 yr-1 of removals, with an additional -0.20 Gt 24 

CO2 yr-1 transferred into harvested wood products. Uncertainty in gross removals was greatly reduced compared to the original 25 

model due to refinement of temperate secondary forest carbon removal factor uncertainties. After reallocating GFW’s gross 26 

CO2 fluxes into anthropogenic fluxes from forest land and deforestation categories to increase the conceptual similarity with 27 

national greenhouse gas inventories (NGHGIs), we estimated a global net anthropogenic forest sink of -3.6 Gt CO2 yr-1, 28 

excluding harvested wood products, with the remaining net CO2 flux of -2.2 Gt CO2 yr-1 reported by the GFW model as non-29 
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anthropogenic. Although the magnitude of GFW’s translated estimates align relatively well with aggregated NGHGIs, their 30 

temporal trends differ. Translating Earth observation-based flux estimates into the same reporting framework as countries use 31 

for NGHGIs helps build confidence around land use carbon fluxes and support independent evaluation of progress towards 32 

Paris Agreement goals. 33 

1 Introduction 34 

Land is the most uncertain component of the global carbon cycle (Friedlingstein et al. 2023). The highly dynamic and bi-35 

directional nature of terrestrial carbon fluxes, both spatially and temporally, as well as the contributions of anthropogenic and 36 

non-anthropogenic processes, pose unique challenges for monitoring fluxes. Top-down atmospheric observations, e.g. from 37 

sensors such as NASA’s Orbiting Carbon Observatory, are not precise enough to attribute fluxes to specific drivers, and the 38 

current suite of bottom-up approaches for estimating global terrestrial carbon fluxes (Friedlingstein et al. 2023) is based on 39 

models that are not fully consistent with each other (i.e., bookkeeping models and dynamic global vegetation models (DGVMs) 40 

to estimate anthropogenic and natural fluxes, respectively) (Dorgeist et al. 2024, Walker et al. 2024). An additional 41 

complication is that these models separate anthropogenic and natural fluxes from land differently from how national 42 

greenhouse gas inventories (NGHGIs) do, which are used within climate policy treaties to drive national climate actions (IPCC 43 

2024). This makes it difficult for models to provide estimates directly relevant to climate policy frameworks and national 44 

climate action. Top-down atmospheric approaches do not make this separation, while global estimates of anthropogenic land 45 

use fluxes from bookkeeping models (Friedlingstein et al. 2023) are 6.7 Gt CO2 yr-1 higher than aggregate NGHGIs (Grassi et 46 

al. 2023). This gap is due primarily to definitional and conceptual differences around what is classified as anthropogenic vs. 47 

natural fluxes from forests (Grassi et al. 2018), with recent studies focusing on reconciling these differences (e.g., 48 

Schwingshackl et al. 2022, Grassi et al. 2023). Thus, despite improved data acquisition and advances in modelling capabilities, 49 

large uncertainty and variation in estimates of land emissions and sinks remain. Moreover, the spatial distribution of forest 50 

emissions and, even more so, forest carbon removals are not well understood, impeding the ability of a range of actors, such 51 

as governments, companies, and civil society, to monitor the effectiveness of land-based climate mitigation actions that reduce 52 

emissions from forest loss and maintain or increase forest carbon sinks.  53 

To address some of these limitations, Global Forest Watch (GFW) introduced an Earth observation-based framework and 54 

model for estimating forest carbon fluxes globally (Harris et al. 2021) that aligns with calls for geospatial monitoring of forest 55 

carbon fluxes (EC 2018; Nyawira et al. 2024; Ochiai et al. 2023; Turubanova et al. 2023). It was designed to fill a gap among 56 

existing forest carbon monitoring approaches by combining global forest change maps, benchmark carbon density maps, and 57 

other Earth observation data based on the Intergovernmental Panel on Climate Change (IPCC) Guidelines for National 58 

Greenhouse Gas Inventories (IPCC 2006, IPCC 2019) that countries use to estimate emissions and removals for their NGHGIs. 59 

Within the scope of the Agriculture, Forestry, and Other Land Uses (AFOLU) sector, only GHG fluxes from forest-related 60 
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land uses and land-use changes (forest remaining forest, non-forest converted to forest, forest converted to non-forest) were 61 

included. The framework was designed around the UNFCCC guiding principles for NGHGI preparation: transparency, 62 

accuracy, completeness, comparability and consistency. All GFW carbon flux model inputs and outputs and code are publicly 63 

available (see Data and Code Availability section).  64 

Recognizing that both Earth observation and ground data increase and improve through time, we designed GFW’s flux 65 

monitoring framework and the model implementing it with the flexibility to accommodate updates to existing components and 66 

add new components. Here we document updates to the model, report results from the current version, present a revised 67 

uncertainty analysis, and - following the recommendations of a recent IPCC expert meeting on reconciling land use emissions 68 

(IPCC 2024) - introduce a new translation of GFW model of CO2 emissions and removals into NGHGI reporting categories 69 

of deforestation and forest land that provides an Earth observation perspective on forest fluxes conceptually similar to what 70 

countries are expected to report under IPCC guidelines.  71 

2 Methods  72 

Harris et al. 2021 includes a detailed explanation of the GFW forest flux monitoring framework, but some key elements are 73 

described here. The framework encompasses gross CO2 emissions from loss of carbon in aboveground and belowground 74 

biomass pools, dead wood, litter, and soil organic carbon in mineral soils due to stand-replacing disturbances, carbon loss from 75 

drainage of organic soils, and methane (CH4) and nitrous oxide (N2O) emissions from forest fires and drainage of organic soils. 76 

Carbon removals include sequestration into aboveground and belowground forest biomass. All model inputs are resampled to 77 

the spatial resolution of a Landsat pixel (0.00025x0.00025°, roughly 30x30 m at the equator), and outputs are generated at the 78 

same resolution. The model uses Landsat resolution because it is the highest resolution for which the global forest change 79 

maps and an aboveground biomass map for the year 2000 are publicly available. Higher-resolution maps of forest change and 80 

biomass exist but are not publicly available, are available only for recent years, and/or include only certain regions (e.g., 81 

Vancutsem et al. 2019, Yang and Zeng 2023).  82 

The IPCC GHG inventory guidelines, the methodological basis of GFW’s forest carbon flux monitoring framework, lay out 83 

two methods by which terrestrial carbon stock changes associated with land use, land-use change, and forestry (LULUCF, part 84 

of the broader AFOLU sector) can be calculated: gain-loss and stock-difference (IPCC 2006). Methods can be applied 85 

according to different Tiers (from 1 to 3) with increasing complexity and presumed accuracy. In the gain-loss method, carbon 86 

emissions and removals are calculated separately by multiplying activity data such as forest area lost, gained, or maintained 87 

(ha) by emission or removal factors (t C ha-1); the net carbon stock change, or flux, is the difference between gross emissions 88 

and gross removals. In the stock-difference method, carbon stocks are measured during repeated inventories and the difference 89 

between remeasurements is the estimate of net carbon stock change, or flux. GFW’s framework employs the gain-loss 90 
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approach, in which the activity data and other contextual information are estimated using global, Earth observation-based maps 91 

trained on local ground plot data and/or airborne and spaceborne lidar observations.  92 

GFW’s gain-loss modeling approach is initialized in the year 2000 with global maps of carbon densities in five forest ecosystem 93 

carbon pools (Fig. 1). The model runs for all pixels with canopy density >1% in 2000 (Hansen et al. 2023) but default outputs 94 

define forests as: 1) >30% canopy cover in 2000 (Hansen et al. 2013) or subsequent tree cover gain (Potapov et al. 2022), 2) 95 

non-zero aboveground biomass in 2000 (Harris et al. 2021), 3) mangroves in 2000 (Giri et al. 2011), and 4) exclusion of oil 96 

palm plantations in 2000 (see Table 2). We use this definition of forests because a canopy density of >30% is a common 97 

threshold in for national definitions of forests (Harris et al. 2018) and because some of the input removal factors are applicable 98 

specifically to denser forest. All outputs and results use canopy density >30%, unless otherwise specified. However, because 99 

the model runs without any a priori canopy density threshold and the forest definition is applied after the fact, fluxes can be 100 

estimated for lower canopy density thresholds. Within pixels with canopy cover in 2000, gross removals are mapped based on 101 

locations of forest extent and regrowth, while gross emissions are subsequently mapped based on locations of stand-replacing 102 

forest disturbances. In this system of tracking the forest/non-forest status of individual pixels over time, the model adheres to 103 

IPCC Approach 3 for land representation (IPCC 2019).  104 

For activity data, rather than combining and reconciling national or regional geospatial forest monitoring data in the limited 105 

places where it exists continuously since 2000, we deliberately use global, independent (non-governmental) data sources to 106 

maintain global consistency and comparability within the framework, recognizing that global data are generally not the most 107 

locally accurate or relevant data, but remain useful for large-scale analyses and potentially for verification purposes of other 108 

approaches. To identify forest loss, the GFW model uses the Global Forest Change (GFC) data of Hansen et al. 2013, updated 109 

annually. Because of the framework’s use of GFC, emissions are limited to those from stand-replacing disturbances or other 110 

disturbances severe enough to be detected by GFC. Tree cover gain (Potapov et al. 2022) is gross gain and is assigned to the 111 

period 2000-2020, not to a specific year. In the model, forest pixels can have loss only (assigned to a specific year), neither 112 

loss nor gain (i.e., no change), or both loss and gain (in which the order is unknown). Non-forest pixels can have either tree 113 

cover gain or no gain; in the latter case they are outside the framework as they are non-forest remaining non-forest. 114 

Emission and removal factors likewise use spatially explicit data as much as possible to capture spatial variation in forest 115 

properties and dynamics and move beyond ecozone-level representation of forests. GFW model emission and removal factors 116 

are generally independent of national data sources, with the exception of some removal factors in temperate forests, which are 117 

derived directly from the Forest Inventory and Analysis (FIA) database maintained by the USDA Forest Service (see Harris et 118 

al. 2021 and Glen et al. 2024 for details). The model uses a combination of IPCC default (Tier 1) and localized (Tier 2) 119 

emission/removal factors, with the goal of using more Tier 2 factors over time, just as countries are encouraged to do in their 120 

NGHGIs. (Note that some Tier 1 removal factors come from national forest inventories, particularly USFS FIA data (IPCC 121 
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2019).) For example, removal factors in primary forests use IPCC defaults (IPCC 2019, Tier 1), while initial (year 2000) 122 

aboveground biomass carbon densities use a global benchmark map of woody biomass developed from field data and remote 123 

sensing (Harris et al. 2021, Tier 2). Removal factors are applied in a hierarchy from six sources: 1) mangrove-specific rates 124 

(IPCC 2014a), 2) Europe-specific rates by forest type (combination of Table 4.11 of the updated IPCC Guidelines, FAO 125 

Planted Forest Assessment and factors published in national forest inventories), 3) planted tree rates from the Spatial Database 126 

of Planted Trees (SDPT) Version 2.0 (Richter et al. 2024), 4) US-specific rates by region, forest type and age class derived 127 

from the FIA database (Glen et al. 2024), 5) young secondary forest rates (Cook-Patton et al. 2020), and ) IPCC default rates 128 

for all other areas (e.g., primary forest, older secondary forest in the tropics and in temperate forests outside Europe and the 129 

US) (IPCC 2019). The framework supports the addition of other geospatial removal factors as they become available. Gross 130 

removals are added to pre-disturbance biomass until the year of loss to determine the biomass in the year of loss. Emission 131 

factors are estimated using a map of tree cover loss drivers (Curtis et al. 2018) and burned area (Tyukavina et al. 2022); the 132 

combination of these determine the extent to which carbon pools (including soil organic carbon in mineral soils) are emitted 133 

by forest disturbance. Emission factors are estimated using “committed” emissions (Hansis et al. 2015) or instantaneous 134 

oxidation (IPCC 2019), whereby carbon loss from all relevant pools is assumed to occur in the year of disturbance rather than 135 

modeling delayed carbon fluxes through time.  136 
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 137 

Figure 1. Updated conceptual framework for modeling forest-related GHG fluxes. The model estimates gross forest-related emissions 138 
and removals as the product of activity data and emission/removal factors for each ~30-m pixel. The net forest GHG flux is the sum of gross 139 
emissions (+) and removals (-). Text and arrows in orange are portions of the removals methodology that are passed into the emissions 140 
methodology. 141 

2.1 Changes to GFW model input data 142 

Since the original release of GFW’s carbon model framework in 2021, which estimated forest carbon flux results through 143 

2019, we have made several changes to the model inputs because new data were published or existing data were improved 144 

(Table 1). These changes keep the model aligned with recent advances in global Earth observation data and address some 145 

limitations in the original version but do not change the underlying conceptual framework. The updated geospatial inputs are 146 
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shown in the context of all inputs in Table 2. We summarize changes to the input data with respect to extension of the model 147 

from 2019 to 2023 (Sect. 2.1.1), changes to activity data (Sect. 2.1.2), and changes to emission and removal factors (Sect. 148 

2.1.3).  149 

 150 

Table 1. Changes to GFW model inputs since the original version (Harris et al. 2021).  151 

Framework 

component (article 

section)  

Original version  Current version  
Affects 

emissions  

Affects 

removals  

Temporal coverage 

of tree cover loss 

(2.1.1) 

Tree cover loss through 2019 

(Hansen et al. 2013, updated 

annually on GFW) 

Tree cover loss through 2023 

(Hansen et al. 2013, updated 

annually on GFW) 

Yes Yes 

Temporal coverage 

of drivers of tree 

cover loss (2.1.1) 

Dominant driver of tree cover loss 

through 2015 (Curtis et al. 2018) 

Dominant driver of tree cover loss 

through 2023 (Curtis et al. 2018, 

updated annually on GFW) 

Yes No 

Temporal coverage 

of burned area 

(2.1.1) 

Burned area through 2019 Burned area through 2023 Yes No 

Transfers to 

harvested wood 

products (country-

level only) (2.1.1) 

Transfers to HWP through 2015 

(FAOSTAT 2021) 

Transfers to HWP through 2021 

(FAOSTAT 2024) 
No Yes 

Temporal coverage 

of tree cover gain 

(2.1.2) 

2000–2012 (Hansen et al. 2013)  2000–2020 (Potapov et al. 2022) Yes  Yes  

Burned area extent 

(2.1.2) 

MODIS burned area (Giglio et al. 

2018, updated annually)  

Tree cover loss from fires 

(Tyukavina et al. 2022, updated 

annually)  

Yes  No  

Organic soil extent 

(2.1.2)  

• Indonesia and Malaysia 

(Miettinen et al. 2016) 

• Below 40° N (Gumbricht et al. 

2017) 

• Above 40° N (Hengl et al. 2017) 

• Indonesia and Malaysia 

(Miettinen et al. 2016) 

• Central Africa (Crezee et al. 

2022) 

• Lowland Amazonian Peru 

(Hastie et al. 2022) 

• Below 40° N (Gumbricht et al. 

2017) 

• Above 40° N (Xu et al. 2018) 

Yes  No  

Planted tree extent 

(2.1.2) 

Spatial Database of Planted Trees 

v1.0 (Harris et al. 2019) 

Spatial Database of Planted Trees 

v2.0 (Richter et al. 2024) 
Yes Yes 

Belowground 

biomass (R:S ratio) 

(2.1.3) 

Global ratio of 0.26 for 

belowground carbon to 

aboveground carbon for non-

mangrove forests (Mokany et al. 

2006) 

Map of ratio of belowground 

carbon to aboveground carbon for 

non-mangrove forests (Huang et al. 

2021)1  

Yes  Yes  

Planted tree 

removal factors and 

their uncertainties 

(2.1.3)  

Spatial Database of Planted Trees 

v1.0 (Harris et al. 2019) 

Spatial Database of Planted Trees 

v2.0 (Richter et al. 2024) 
Yes Yes 
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Older secondary 

(>20 year) 

temperate forest 

removal factors and 

their uncertainties 

(2.1.3) 

2019 Refinement to the 2006 IPCC 

Guidelines for National 

Greenhouse Gas Inventories, 

Volume 4, Chapter 4, pages 4.34–

4.38 Table 4.9 (IPCC 2019) 

4th Corrigenda to the 2019 

Refinement to the 2006 IPCC 

Guidelines for National 

Greenhouse Gas Inventories, 

Volume 4, Chapter 4, pages 4.18–

21, Table 4.9 (IPCC 2023)2 

Yes  Yes  

Global Warming 

Potential (GWP) 

values (2.1.3) 

IPCC Fifth Assessment Report, 

Table 8.7 (100-year, no climate-

carbon feedback) (IPCC 2014b) 

IPCC Sixth Assessment Report, 

Table 7.15 (100-year, no climate-

carbon feedback) (IPCC 2022) 

Yes  No  

1 The R:S map was extended outwards to fill gaps in the original map.   152 
2 Removal factors for other climate domains and ages were not updated. 153 

 154 

 155 
Table 2. Geospatial data components and sources currently used in the GFW model. Updated components and sources are denoted 156 
with an * and italics. This updates Table S3 in Harris et al. 2021.  157 

Model component Source 

Forest extent 2000   

Tree cover extent Hansen et al. 2013  

Mangrove forest extent Giri et al. 2018 

Tropical humid primary forest extent Turubanova et al. 2018 

Intact forest landscapes (boreal/temperate) Potapov et al. 2017 

Planted tree extent (plantations and tree crops) *Richter et al. 2024 (Spatial Database of Planted Trees v2.0) 

*Peatland extent 

Miettinen et al. 2016 (Indonesia and Malaysia) 

*Crezee et al. 2022 (Congo Basin) 

*Hastie et al. 2022 (Amazonian Peru) 

  Gumbricht et al. 2017 (<40° N) 

  *Xu et al. 2018 (>40° N) 

Oil palm extent 2000 Austin et al.  2017 (Indonesia) 

(areas excluded from model) Gaveau et al. 2014 (Borneo) 

 Miettinen et al.  2016 (Sumatra, Borneo) 

 Gunarso et al. 2013 (peninsular Malaysia) 

Carbon density 2000   

Aboveground live woody biomass density Updated from Zarin et al. 2016 (non-mangrove) 

 Simard et al. 2019 (mangrove) 

*Belowground biomass density ratio *Huang et al. 2021 (root:shoot ratio for non-mangrove forests), 

with Mokany et al. 2006 filling in gaps 

Soil organic carbon density Hengl et al. 2017 (non-mangrove) 

  Sanderman et al. 2018 (mangrove) 

Ecological zone (for deadwood and litter) FAO 2012 

Elevation (for deadwood and litter) Farr et al. 2007  

Mean annual precipitation (for deadwood and 

litter) 

Fick and Hijmans 2017  

Activity data   

*Tree cover loss *Hansen et al. 2013 (2001–2023) 

*Tree cover gain *Potapov et al. 2022 (2000–2020) 
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*Burned areas 

*Tyukavina et al. 2022 (tree cover loss from fires, updated 

through the year 2023) 

Emission factors   

*Drivers of forest loss *Curtis et al. 2018 (updated through year 2023) 

Climate zone  FAO 2012 

Fire combustion and emission factors IPCC 2019 (Tables 2.5 and 2.6) 

Removal Factors   

Ecological zone FAO 2012 

Mangrove removal factors IPCC 2014a (Wetlands Supplement, Tables 4.4 and 4.5)  

US forest type Ruefenacht et al. 2008 

US stand age Pan et al. 2011 

US removal factors (by region x type x age class) Forest Inventory and Analysis Program 

Europe forest type Brus et al. 2011 

Europe removal factors (by forest type) IPCC 2019 (Table 4.11) 

 FAO Planted Forest Thematic Study 

 Portugal’s National GHG inventory 

*Planted tree removal factors *Richter et al. 2024 (Spatial Database of Planted Trees v2.0) 

(including uncertainties) 

Agroforestry removal factors IPCC 2019 (Tables 5.1 and 5.3) 

Natural regrowth removal factors (<20 yrs) Cook-Patton et al. 2020 

Primary forest removal factors IPCC 2019 (Table 4.9) 

*Old secondary forest removal factors (>20 yrs) *IPCC 2019 (Table 4.9 for non-temperate forests only) 

*IPCC 2019/IPCC 2023 (Table 4.9 Corrigenda 4 for temperate 

forests (including uncertainties)) 

Harvested wood products (country only)  

*Production, import and export statistics of 

sawnwood, wood-based panels and paper & 

paperboard 

*FAOSTAT (2001–2021) 

 158 

2.1.1 Annually updated data 159 

We have updated four inputs to the framework annually since the original GFW model was published: tree cover loss, dominant 160 

driver of tree cover loss, burned area, and country-level transfers to harvested wood products (HWP). In the original version, 161 

they extended to 2019, 2015, 2019, and 2015, respectively. The first three inputs now extend through 2023 and we plan to 162 

continue to update them annually, lagging one year behind the calendar year. Country-level HWP transfers now extend through 163 

year 2021 based on data from FAOSTAT that currently extend through year 2022 (Access date: 5 May 2024). These constitute 164 

the core updates to the model each year.  165 

2.1.2 Updated activity data  166 

Beyond the annual updates described above, we made four additional updates to the model’s activity data: 167 
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1. Temporal coverage of tree cover gain: Tree cover gain originally covered 2000–2012 but now covers 2000–2020. In 168 

the original version, tree cover gain covered seven fewer years than tree cover loss did (12 years of tree cover gain 169 

vs. 19 years of tree cover loss); currently, tree cover gain covers three fewer years than tree cover loss (20 years vs. 170 

23 years). Tree cover gain is still reported in one interval, so the framework does not assign gain to a specific year 171 

within 2000–2020. The shorter duration of tree cover gain and its lack of information on timing is an ongoing 172 

limitation of the inputs to the framework (see Sects. 4.3 and 4.4).  173 

2. Burned area extent: The original version of the GFW model used MODIS burned area (500-m resolution) (Giglio et 174 

al. 2018), but now it uses Global Land Analysis & Discovery Lab tree cover loss due to fires (TCLF) (30-m resolution) 175 

(Tyukavina et al. 2022). This burned area product is designed to be used with GFC. As in the original version of the 176 

model, emissions from fires are included only where stand-replacing disturbances are detected by GFC, meaning that 177 

emissions from relatively low severity forest fires remain unquantified in the model.  178 

3. Organic soils extent: We added two new regional tropical peatland maps (Peru and Congo basin, Hastie et al. 2022 179 

and Crezee et al. 2022) and replaced the peat map above 40° N (Xu et al. 2018). These maps reflect a more recent 180 

understanding of the extent of organic soils in those regions. This is one of the few inputs to the model that composites 181 

regional maps with pan-tropical and global maps.   182 

4. Planted tree extent: Planted trees are part of managed ecosystems, and using distinct removal factors for planted trees 183 

instead of removal factors for natural forests better represents the associated carbon sequestration of these managed 184 

landscapes. The original version of the GFW model used SDPT v1.0 (Harris et al. 2019) but now it uses SDPT v2.0 185 

(Richter et al. 2024), which includes planted tree extent in 45 additional countries. Richter et al. defines planted trees 186 

as plantation forests and tree crops. This dataset aggregates maps of tree crops and planted forests globally in a 187 

bottom-up approach that captures roughly 90% of planted tree area globally circa 2020. Each polygon in the database 188 

has the most taxonomically resolved information available, from broad type of production (e.g. orchard) to species.  189 

2.1.3 Updated emission and removal factors 190 

We made four updates to emission and removal factors:  191 

1. Belowground biomass (R:S ratio): The original version of the GFW model used a single R:S ratio of 0.26 to estimate 192 

belowground biomass applied globally to non-mangrove forests (Mokany et al. 2006). (Mangroves had separate ratios 193 

from IPCC 2014a.) The updated model uses a global R:S map from Huang et al. 2021 to incorporate spatial variability 194 

in R:S, ranging from less than 0.15 to greater than 0.5. Because the R:S map does not cover all land where forest is 195 

present in our framework (e.g., some near-shore islands), we interpolated missing R:S pixels from nearby ones; where 196 

interpolation was not possible (e.g., remote Pacific islands), we retained the original default ratio of 0.26. We applied 197 

this ratio map to aboveground biomass in the year of tree cover loss to calculate carbon emissions from loss of 198 

belowground biomass. We also used the R:S map to calculate carbon removals by belowground biomass based on 199 
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carbon removals by aboveground biomass. Including this input makes the belowground carbon stocks and removal 200 

factors reflect local forest types better than using a single, global ratio.  201 

2. Planted tree removal factors and their uncertainties: SDPT v2.0 (Richter et al. 2024) has a removal factor and 202 

uncertainty associated with every planted tree (planted forest and tree crop) polygon included in the database. The 203 

removal factors of polygons that were in SDPT v1.0 are largely unchanged in SDPT v2.0, but polygons newly 204 

included in SDPT v2.0 have been assigned removal factors based on information about what kind of planted tree is 205 

present using the most taxonomically resolved information available.  206 

3. Older secondary (>20 year) temperate forest removal factors and their uncertainties: The original version of the 207 

framework applied Tier 1 removal factors published in Table 4.9 of IPCC 2019 for primary and some secondary (>20 208 

years) temperate forests. In 2023, IPCC released corrected default removal factors and their uncertainties for 209 

temperate secondary forests in North and South America, which are also applied in the GFW model to >20 year old 210 

forests in temperate ecozones outside of the United States and Europe where no better sources of data are currently 211 

available. In the model update, we replaced the original IPCC defaults with the corrected ones.  212 

4. Global Warming Potential (GWP) values: The original version of the framework converted non-CO2 emissions from 213 

CH4 and N2O into equivalent units of CO2 using GWP values published in IPCC’s Fifth Assessment Report. The 214 

framework now uses GWP values for CH4 and N2O from IPCC’s Sixth Assessment Report. This affects gross 215 

emissions and net flux outputs only where non-CO2 emissions are estimated (organic soil drainage, fires in organic 216 

soils, or biomass burning).  217 

2.2 Updated uncertainty analysis 218 

With the original version of the framework, we presented an uncertainty analysis that used an error propagation approach for 219 

inputs for which uncertainties (variances) were available and potentially substantial. This approach underlies Approach 1 220 

(simple error propagation) outlined in the IPCC Guidelines and produces similar results but reflects exact calculations of 221 

variances and standard deviations, whereas IPCC Approach 1 to uncertainty analysis is an approximated approach that yields 222 

95% confidence intervals (IPCC 2019). For the model update, we repeated this uncertainty analysis with all the changes and 223 

updates to the framework described in Sect. 2.1, using the same error propagation approach and the same components as used 224 

in the original analysis.  225 

2.3 Anthropogenic fluxes from “managed” forests 226 

GFW’s Earth observation-based modelling framework does not (and cannot) differentiate anthropogenic and non-227 

anthropogenic fluxes from forests. Rather, it includes fluxes from all forest land and therefore the combination of direct 228 

anthropogenic, indirect anthropogenic, and natural fluxes. Thus, results from our model are not directly comparable with those 229 

from NGHGIs or bookkeeping models, each of which define anthropogenic fluxes with different system boundaries for their 230 
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specific purposes (Grassi et al. 2022, Grassi et al. 2023). Under UNFCCC decisions and IPCC methodological guidance, 231 

countries report only anthropogenic fluxes in their NGHGIs, approximated by “managed land” (IPCC 2006, Ogle et al. 2018). 232 

Therefore, if GFW’s forest carbon flux monitoring framework is to serve as an independent, Earth observation-based point of 233 

reference for NGHGIs, its results must be able to be reported in a conceptually similar way covering the same scope. In doing 234 

so, we adopted the proposal of Grassi et al. (2023) in adjusting global data to the NGHGI framework for analyses focused on 235 

country policy or action. In translating the GFW model’s fluxes into the NGHGI reporting framework, we did what IPCC 236 

guidelines direct countries to do when compiling and reporting their inventories rather than what countries necessarily do in 237 

practice for their inventories. The goal of this translation exercise was not to reproduce as closely as possible how countries 238 

prepare their NGHGIs using the GFW model, to achieve maximum quantitative similarity to NGHGIs, or to reconcile the 239 

GFW flux model with NGHGIs but rather to present CO2 fluxes from a globally consistent, geospatial approach in the same 240 

conceptual terms that national policymakers use. 241 

We developed a three-step process to translate the GFW model’s gross CO2 emissions and removals into three IPCC reporting 242 

categories: anthropogenic flux from managed forest land, emissions from deforestation (anthropogenic), and non-243 

anthropogenic flux from unmanaged forest (Table 3). It builds upon the simpler comparison between the GFW model and 244 

NGHGIs conducted in the IPCC Sixth Assessment Report (Nabuurs et al. 2022), in which anthropogenic flux from the GFW 245 

model were those outside primary forests in the tropics and intact forest landscapes in the non-tropics. This translation process 246 

does not change the GFW model’s bottom-line net flux estimates; rather, it reclassifies the gross CO2 fluxes by intersecting 247 

the GFW model fluxes with other contextual geospatial data to provide fluxes more conceptually aligned with those of 248 

NGHGIs. The first step (Sect. 2.3.1) assigned each country to one of three cases based on how their NGHGI applies the 249 

managed land proxy (Fig. 2). The second and third steps reclassified the GFW model’s emissions (Sect. 2.3.2) and removals 250 

(Sect. 2.3.3), respectively, into three IPCC reporting categories according to the three cases assigned in step 1 (Fig. 2). 251 

Emissions and removals within each IPCC reporting category were then summed to calculate net anthropogenic and non-252 

anthropogenic forest-related CO2 fluxes for each country. The GFW model calculates annual emissions, corresponding to the 253 

year of tree cover loss, but does not calculate annual removals and instead calculates removals as an annualized average over 254 

the entire model period. Thus, to generate timeseries from the GFW model using the NGHGI reporting categories, we 255 

calculated the average annual removals in each reporting category by dividing gross removals by the number of model years. 256 

The resulting time series for each reporting category is therefore the difference between the annual emissions for that year and 257 

the average annual removals.  258 

For this analysis, we used data from the GFW model for 2001–2022 to align with the temporal coverage of NGHGIs. We 259 

limited our comparison to CO2 fluxes only (i.e. excluding CH4 and N2O emissions from the GFW model) but note that some 260 

developing countries report do not separately report CO2 and non-CO2 emissions. Because the GFW model cannot currently 261 

report emissions from organic soil separately from all other emissions, we combined NGHGIs’ deforestation and organic soil 262 
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emissions (including emissions from forest land, from peat decomposition and peat fires typically associated to deforestation, 263 

and from agriculture soils) to achieve the same scope as the model. We excluded transfers into the harvested wood products 264 

pool from both data sources in this translation analysis because that is not a core element of our geospatial framework.  265 

Table 3. Translating GFW flux model gross CO2 emissions and removals to national greenhouse gas inventory (NGHGI) reporting 266 
categories. To calculate total net CO2 flux for IPCC reporting categories, GFW flux model emissions and removals were reclassified 267 
according to managed land status (managed vs. unmanaged) and driver of tree cover loss. Following IPCC guidelines, for Case 2 countries 268 
we used information about the driver of tree cover loss to reassign initially delineated unmanaged forest to managed forest where direct 269 
human activity is observed to result in tree cover loss (i.e. forestry, commodity-driven deforestation (CDD), urbanization, and shifting 270 
agriculture). Thus, all associated fluxes from unmanaged forests reassigned to managed forests are reported in the corresponding 271 
anthropogenic IPCC reporting category (anthropogenic forest land flux and deforestation).  272 

 273 

 274 

* Includes emissions from not only the initial delineation of managed forests, but also from tree cover loss in unmanaged forests reassigned to managed forests due to direct human 275 
activity.  276 

1 To calculate the maximum emissions in anthropogenic forest land, we count emissions from shifting agriculture (shifting ag) in secondary forest toward the anthropogenic forest 277 
land flux and emissions from shifting agriculture in primary forests toward deforestation.  278 

2 To calculate the maximum emissions from deforestation, we count all emissions from shifting agriculture in both primary and secondary forest toward deforestation. This also 279 
corresponds to a larger sink in anthropogenic forest land. 280 

 281 
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2.3.1 Managed land delineation   282 

In the first step (top of Table 3), we assigned countries to one of three cases based on careful review of NGHGIs and the 283 

availability of in-country information on the distribution of managed and unmanaged forests. These cases describe which land 284 

is considered managed and unmanaged according to information that countries provide in their NGHGIs regarding their use 285 

of the managed land proxy (Fig. 2). Case 1 included 46 countries (primarily UNFCCC Annex 1 countries, i.e. advanced 286 

economies with annual GHG reporting commitments) that explicitly consider all forest land managed and another three 287 

countries (China, India, Indonesia) for which we assumed that all forest land is considered managed, based on the information 288 

provided in their NGHGIs. Case 2 included all other countries, which do not consider all forest to be managed and thus consider 289 

some forest to be unmanaged. For the three Case 2a countries (Brazil, the United States, and Canada), we used the 290 

georeferenced boundaries of managed and unmanaged lands that they use in their NGHGIs. The remaining 143 countries 291 

(UNFCCC non-Annex 1 countries, i.e. countries with historically less stringent GHG reporting commitments) either report no 292 

information or not enough details regarding the use of the managed land proxy and its extent. For example, Russia’s inventory 293 

explicitly includes unmanaged land but reports areas by administrative unit rather than spatially, which is not adequate for our 294 

analysis. For these Case 2b countries, we approximated managed forest in tropical regions as forests outside humid tropical 295 

primary forests from 2001 (Turubanova et al. 2018) and in extratropical regions as forests outside intact forest landscapes from 296 

2000 (Potapov et al. 2017). For Case 2 countries, the initial managed forest delineation was modified in steps 2 and 3 to include 297 

unmanaged land reassigned to managed land due to direct anthropogenic activity. We note that while countries’ definitions of 298 
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forest land differ, we instead used a single, global definition of forest as defined in Sect. 2, with a tree cover density >30% 299 

(Hansen et al. 2013).  300 

 301 

Figure 2. Country representation of managed land in their national greenhouse gas inventories (NGHGIs). Countries consider fluxes 302 
by forests in several ways in their national greenhouse gas inventories (Melo et al. in preparation). Some countries explicitly or implicitly 303 
consider all forests to be managed and thus include all forest fluxes in their NGHGIs (Case 1). The rest do not consider all forests to be 304 
managed. Only a few countries (Case 2a) use maps of managed lands to delineate anthropogenic fluxes from non-anthropogenic fluxes. The 305 
rest are not clear in their NGHGIs about the spatial extent to which forests are or are not considered managed and thus which forest fluxes 306 
are included in their inventories (Case 2b). 307 

 308 

 309 
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2.3.2 Reclassifying gross carbon dioxide emissions 310 

In the second step (middle of Table 3), we combined the initial delineation of managed forests described in Sect. 2.3.1 with a 311 

map of drivers of tree cover loss (Curtis et al. 2018, updated through 2023) to partition the GFW model’s gross CO2 emissions 312 

into IPCC reporting categories because not all of the GFW model’s gross emissions are from deforestation. For Case 1 313 

countries, which classify all forests as managed, all emissions occurring within country borders were anthropogenic and no 314 

emissions were non-anthropogenic. For Case 2 countries, all emissions within managed forest boundaries (defined in Sect. 315 

2.3.1) were anthropogenic and the remaining emissions within initially delineated unmanaged forest boundaries were either 316 

anthropogenic or non-anthropogenic depending on the driver of the tree cover loss. We expanded our definition of managed 317 

forests to include initial unmanaged forest as defined in Sect. 2.3.1 where there is a direct human activity, such as forest harvest 318 

or deforestation (IPCC 2006). Thus, we considered all emissions from direct human activity to be anthropogenic. The 319 

remaining emissions—from natural or semi-natural drivers of tree cover loss, such as wildfire, occurring within unmanaged 320 

forest boundaries—were the only emissions we considered to be non-anthropogenic.  321 

Using this delineation of anthropogenic vs. non-anthropogenic, we reclassified the GFW model’s gross emissions into three 322 

categories that are conceptually aligned with IPCC reporting categories (Table. 3): anthropogenic emissions on managed forest 323 

land (“forest remaining forest” plus “non-forest land converted to forest”), anthropogenic emissions from deforestation (“forest 324 

converted to non-forest land”), and emissions on unmanaged forest land that are non-anthropogenic by definition (“forest 325 

remaining forest”). 326 

Anthropogenic emissions from managed forest land. For all countries, this category included emissions from wildfire and the 327 

negligible emissions not assigned to a driver (Curtis et al. 2018) occurring within managed forest areas. This category also 328 

included emissions from forestry regardless of where they occurred (inside or outside initial delineated managed land 329 

boundaries as defined in Sect. 2.3.1) because harvest activity is a direct human activity and thus any tree cover loss from 330 

forestry activity results in the reclassification of unmanaged forest to managed forest. 331 

Anthropogenic emissions from deforestation. For all countries, this category was the sum of all emissions from tree cover loss 332 

due to commodity-driven deforestation and urbanization, regardless of where they occurred, as well as emissions from the loss 333 

of intact/primary forests in areas of shifting agriculture because this is considered a permanent change in land use.  334 

Non-anthropogenic emissions from unmanaged forests. For Case 1 countries, we assumed based on their NGHGIs that all 335 

forests are considered managed and thus no emissions are considered non-anthropogenic. The two categories above represent 336 

all CO2 emissions from the GFW model for those countries. For Case 2 countries, which have some unmanaged forest (as 337 

defined in Sect. 2.3.1), non-anthropogenic emissions were the sum of the remaining emissions outside managed forests: 338 

emissions from tree cover loss due to wildfires and the (small) unassigned drivers class (Curtis et al. 2018). Although some 339 
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fires in unmanaged land can be caused by humans, we classified emissions from them as non-anthropogenic to be consistent 340 

with IPCC guidelines; separating emissions from human-caused fires in unmanaged land and reporting them as anthropogenic 341 

forest land emissions could be improved in further iterations of this analysis.  342 

It is often not clear to which land use categories emissions from shifting agriculture cycles are allocated in NGHGIs, because 343 

this distinction is not required by the IPCC Guidelines (IPCC 2019). Following Curtis et al. (2018), shifting agriculture 344 

landscapes are defined as “small- to medium-scale forest and shrubland conversion for agriculture that is later abandoned and 345 

followed by subsequent forest regrowth.” To highlight the sensitivity of how emissions from shifting agriculture landscapes 346 

are estimated, we created two scenarios for our emissions reclassification. In one scenario, we calculated the maximum 347 

emissions from deforestation by including all emissions from the loss of both primary and secondary forests within shifting 348 

agriculture landscapes and therefore no emissions from shifting agriculture are considered to occur in forest remaining forest. 349 

In the other scenario, we calculated the maximum emissions from managed forest land by including emissions from the loss 350 

of secondary forests in shifting agriculture landscapes in the anthropogenic forest land flux. This transferred a subset of 351 

emissions considered to be deforestation under the alternative scenario to forest land. The remaining emissions from loss of 352 

intact/primary forests due to shifting agriculture were still considered deforestation emissions, as described above. The two 353 

scenarios do not change the total net anthropogenic forest flux (fluxes from forest land plus deforestation) because the same 354 

emissions are assigned to either category. In both scenarios, emissions from the loss of intact/primary forests due to shifting 355 

agriculture were always classified as deforestation because we considered them to arise from a permanent change from forest 356 

to a non-forest land use.  357 

 358 

2.3.3 Reclassifying gross removals 359 

In the third step (bottom of Table 3), we partitioned carbon removals occurring on forest land as either anthropogenic or non-360 

anthropogenic. No forest carbon removals were included in deforested land; any removals in pixels with tree cover loss were 361 

assigned to either anthropogenic forest land removals or non-anthropogenic forest removals, as described below. Since 362 

NGHGIs do not treat removals uniformly, we used the three managed land proxy cases to align GFW flux model removal 363 

estimates with how countries report removals in their NGHGIs (Fig. 2). 364 

For Case 1 countries, which explicitly or implicitly consider all forest land to be managed, we classified all removals across 365 

the full GFW model extent as anthropogenic forest land. No removals for these countries were considered non-anthropogenic. 366 

For Case 2 countries, we separated removals into anthropogenic and non-anthropogenic categories following the same spatial 367 

proxy used to delineate managed forests (Sect. 2.3.1). In this approach, we classified all removals in managed forest land as 368 

anthropogenic, including unmanaged forest reclassified as managed forest due to tree cover loss from forestry and shifting 369 

agriculture. All removals in unmanaged forest land were classified as non-anthropogenic.  370 
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3 Results 371 

3.1 Emissions, removals, and net fluxes from GFW’s updated flux model 372 

In the updated GFW flux model, average annual global gross emissions from stand-replacing forest disturbances were 9.0 Gt 373 

CO2e yr-1 between 2001 and 2023 (with 98% from CO2 and 2.4% from CH4 and N2O), average annual gross removals were 374 

14.5 Gt CO2 yr-1, and the average annual net forest ecosystem sink was -5.5 Gt CO2e yr-1 (Table 4). Globally, the HWP pool 375 

was an additional net carbon sink of -0.20 Gt CO2 yr-1, resulting from the transfer of carbon out of forest ecosystems and into 376 

the HWP pool. Although the original and revised values in Table 4 are not directly comparable due to different temporal 377 

coverage and model updates, it does give a high-level view of the degree to which the collective changes to the model have 378 

affected (or not affected) fluxes. Figure 3 maps the updated gross emissions, gross removals, and net GHG flux for forests, 379 

and are derived from Gibbs et al. 2024a, b and c, respectively.  380 

Our framework allows flexible, yet consistent, estimates of carbon fluxes in a variety of forest types, spatial scales, and regions. 381 

For example, defining forest as tree cover >10% instead of >30% (Hansen et al. 2013) results in gross emissions of 9.4 Gt 382 

CO2e yr-1, gross removals of -17.5 CO2 yr-1, and a net sink of -8.1 CO2e yr-1. Tropical and subtropical forests continued to be 383 

the largest contributors to global forest carbon fluxes, contributing 74% of gross emissions (6.7 Gt CO2e yr-1) and 60% of gross 384 

removals (-8.8 Gt CO2 yr-1). However, temperate forests are the largest net sink, comprising 40% of the global net sink (-2.2 385 

Gt CO2e yr-1). Together, humid tropical primary forests (Turubanova et al. 2018) and intact forest landscapes (Potapov et al. 386 

2017) outside the tropics were a net sink of -0.26 Gt CO2e yr-1 (average annual emissions of 2.8 Gt CO2e yr-1 and removals of 387 

3.1 Gt CO2 yr-1). Forests within protected areas (UNEP-WCMC 2024) accounted for 31% (-1.7 Gt CO2e yr-1) of the global 388 

net sink. In 2023, gross emissions from Canada’s wildfires exceeded emissions from all humid tropical primary forests loss 389 

that year (3.0 vs. 2.4 Gt CO2e, respectively; MacCarthy et al. 2024). Updated emissions, removals, and net flux statistics by 390 

country and smaller administrative levels can be found on www.globalforestwatch.org.   391 

Table 4. Average annual forest GHG fluxes by climate domain and globally, with uncertainties expressed as standard deviations, 392 
for the original (2010-2019) and revised models (2001-2023). Values in parentheses are the percent of the global flux that occurred in 393 
each climate domain. * denotes fluxes with major changes in the uncertainties in the revised GFW model (see Sect. 3.3). In addition, average 394 
annual gross emissions from the revised model for 2001-2019 is provided. The original and updated values are not directly comparable due 395 
to different temporal coverage and model updates. 396 

  Forest GHG fluxes Gt CO2e yr-1 (+ standard deviation) 

Climate 

domain 

Gross emissions Gross removals a Net GHG flux a 

Original Revised Revised Original Revised Original Revised 

(2001–2019) (2001-2019) (2001–2023) (2001–2019) (2001–2023) (2001–2019) (2001–2023) 

Boreal 0.88 ± 0.42 (11) 1.3 (15) 1.4 ± 0.75 (16) -2.5 ± 0.96 (16) -2.5 ± 0.95 (17) -1.6 ± 1.1 (21) -1.1 ± 1.2 (20) 

Temperate 0.87 ± 0.60 (11) 1.0 (11) 0.93 ± 0.62 (10) -4.4 ± 48* (28) -3.1 ± 0.55* (22) -3.6 ± 48* (47) -2.2 ± 0.83* (41) 

Subtropical 1.0 ± 0.59 (12) 0.9 (10) 1.0 ± 0.93 (11)  -1.6 ± 0.56 (10) -1.7 ± 0.56 (12) -0.65±0.81 (8.6) -0.70± 0.80 (13) 

http://www.globalforestwatch.org/
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Tropical 5.3 ± 2.4 (66) 5.4 (64) 5.7 ± 2.4 (63) -7.0 ± 7.6 (45) -7.1 ± 7.6 (49) -1.7 ± 8.0 (22) -1.4 ± 7.9 (26) 

Global  8.1 ± 2.5 (100) 8.5 (100) 9.0 ± 2.7 (100) -16 ± 49* (100) -14.5 ± 7.7* (100) -7.6 ± 49* (100) -5.5 ± 8.1* (100) 

a The revised model does not have gross removals and net flux values for 2001-2019 because they are an annual average over the entire model period rather 397 

than a timeseries and thus cannot be subset by year.  398 
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 399 

Figure 3. Forest-related GHG fluxes (annual average, 2001–2023). a) Gross GHG emissions. b) Gross CO2 removals. c) Net GHG flux. 400 
Fluxes are aggregated to 0.04 x 0.04° (approximately 4x4 km) cells for display purposes.  401 
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3.2 Effect of GFW model changes on forest carbon flux estimates 402 

Updates to the GFW flux model changed gross emissions, gross removals, and net flux over all spatial scales. Average annual 403 

gross emissions in the updated GFW model are 12% higher than in the original version, primarily due to higher gross annual 404 

emissions since 2019 (8.5 Gt CO2e yr-1 between 2001 and 2019 vs. 11.4 Gt CO2e yr-1 between 2020 and 2023). Updated gross 405 

annual removals are 7.3% lower than in the original model, primarily due to the use of corrected, lower IPCC Tier 1 removal 406 

factors for temperate forests, which are applied to 290 Mha of secondary forests in the framework, primarily throughout Eurasia 407 

and Canada. Annual average net GHG flux decreased accordingly by 28% from the original version because of both higher 408 

gross emissions and lower gross removals.  409 

Although we did not quantify the degree to which each change to the model individually affects emissions and removals 410 

because we implemented multiple changes simultaneously, we describe how the inputs changed and some general impacts on 411 

gross emissions and removals.  412 

Activity data: 413 

1. Temporal coverage of tree cover gain: The area of tree cover gain increased globally from 78 Mha in the original 414 

version (gain through 2012) to 130 Mha in the current version (gain through 2020). Carbon removals associated with 415 

areas of tree cover gain increased from -0.57 to -0.62 Gt CO2 yr-1. As in the original model, carbon removals occurring 416 

in these young (<20 years) forests remain relatively small compared to gross removals occurring in older, established 417 

forests that are much more extensive in total area (96% of gross removals occurred in older forests).   418 

2. Data source for burned area: Use of the new source of fire data with higher spatial resolution (TCLF) combined with 419 

an increase in forest fires across Australia, Spain, the United States and Canada between 2020 and 2023 led to an 420 

increase of global average annual burned area that coincided with tree cover loss from 4.3 Mha yr-1 (2001–2019) to 421 

6.0 Mha yr-1 (2001–2023). Global average emissions increased from 1.0 to 1.7 Gt CO2e yr-1 in areas where tree cover 422 

loss was attributed to fire.  423 

3. Data sources for organic soil extent: Improved data led to an increase in the extent of organic soils from 477 Mha to 424 

760 Mha and the area of tree cover loss on organic soils increased from 0.77 Mha yr-1 to 2.4 Mha yr-1. Emissions from 425 

organic soil drainage in areas with tree cover loss increased from 0.21 to 0.91 Gt CO2e yr-1, occurring primarily in 426 

Indonesia and Malaysia (17% and 3.1% of global total, respectively). Higher emissions from organic soil drainage is 427 

due to a combination of increased organic soil extent, planted tree extent, and tree cover loss compared to the original 428 

model.  429 

4. Data sources for planted tree extent: Planted forest and tree crop extent increased from 140 Mha to 230 Mha and tree 430 

cover loss in planted tree polygons increased from 42 Mha to 64 Mha.  431 

Emission and removal factors: 432 



   

 

22 

 

1. Data source for R:S ratios: The previous global R:S used across the full model extent was 0.26. Now, the average 433 

ratio of aboveground removals to belowground removals is 0.27 but with considerable geographic variation.     434 

2. Planted tree removal factors and their uncertainties: The average aboveground removal factor in planted trees 435 

originally was 3.2 t C ha-1 yr-1 but using SDPT v2.0 it is 2.3 t C ha-1 yr-1. Global planted forests and trees were 436 

originally estimated to be a net sink of -0.30 Gt CO2e yr-1 but using SDPT v2.0 they are now a net sink of -0.54 Gt 437 

CO2e yr-1, with the increased area of planted trees compensating for the lower average removal factor.  438 

3. Older secondary (>20 year) temperate forest removal factors and their uncertainties: Older secondary temperate 439 

forests using IPCC Tier 1 removal factors (i.e., areas affected by this change) originally covered 310 Mha and now 440 

cover 290 Mha. Gross removals in these forests declined from -2.7 to -1.3 Gt CO2 yr-1.  441 

4. Global Warming Potentials: Updated model results of non-CO2 emissions associated with biomass burning and 442 

drainage of organic soils were negligibly impacted by using updated GWPs.  443 

3.3 Updated uncertainty analysis 444 

Nearly all changes to the framework are represented in the error propagation approach and therefore affect the global and 445 

climate domain uncertainty analyses to some degree. However, the largest change to the uncertainty analysis in terms of input 446 

values was the corrected IPCC Tier 1 temperate forest removal factors, which the model applies across large areas of Eurasian 447 

and Canadian forests. Some of the largest changes for removal factors and their uncertainties include temperate mountain 448 

forest >20 years old [previously 4.4 t aboveground biomass (AGB) ha-1 yr-1 + 100.7 (+ standard deviation); now 2.1 + 0.02 t 449 

AGB ha-1 yr-1)] and temperate oceanic forest >20 years old [previously 9.1 t AGB ha-1 yr-1 + 20.2; now 4.9 + 0.25 t AGB ha-1 450 

yr-1]. We did not formally assess the contributions of individual model changes to uncertainty because the change in IPCC Tier 451 

1 temperate forest removal factor uncertainties was so dominant.  452 

Uncertainty (reported as one standard deviation) in temperate gross removals declined from 48 Gt CO2 yr-1 in the original 453 

GFW model to 0.55 Gt CO2 yr-1, with uncertainty for gross emissions in temperate forests increasing slightly from 0.60 to 0.62 454 

Gt CO2e yr-1 and uncertainty for net flux decreasing from 48 to 0.83 Gt CO2e yr-1 (Table 4). Reduced uncertainty in temperate 455 

forest gross removals propagated to reduced uncertainty in global gross removals and net flux. In the uncertainty analysis for 456 

the current version of the model, tropical gross removals has the highest uncertainty, driven by relatively high uncertainty in 457 

IPCC’s Tier 1 removal factors, which the GFW model applies to tropical primary forests and older secondary forests. Large 458 

uncertainties for climate domain and global net flux estimates should be interpreted with caution; their uncertainties are 459 

proportionately very large in part because net flux they reflect the sum of negative (removals) and positive (emissions) terms, 460 

compounding the addition of their uncertainties. 461 
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3.4 Anthropogenic fluxes from “managed” forests 462 

When gross CO2 emissions and removals from the GFW flux model for 2001–2022 were reclassified into NGHGI reporting 463 

categories, the anthropogenic net flux in managed forest land ranged between -6.9 and -8.6 Gt CO2 yr-1 (with and without 464 

emissions from shifting agriculture in secondary forests, respectively) and emissions from deforestation ranged between 3.3 465 

and 5.0 Gt CO2 yr-1 (without and with emissions from shifting agriculture in secondary forests, respectively) (Fig. 4, Table 466 

A1). The resulting net anthropogenic forest flux—the combined flux from both anthropogenic forest land and deforestation—467 

was -3.6 Gt CO2 yr-1. The non-anthropogenic net sink was -2.2 Gt CO2 yr-1, comprised of -2.5 Gt CO2 yr-1 removals and 0.32 468 

Gt CO2 yr-1 emissions from fires and tree cover loss without an assigned driver in unmanaged forests. The combined NGHGI-469 

translated anthropogenic and non-anthropogenic forest sink is about 0.3 Gt CO2 yr-1 larger than the untranslated net flux (-5.8 470 

vs. -5.5 Gt CO2e yr-1, respectively) because the former does not include CH4 and N2O emissions, does not include fluxes from 471 

2023, and does not include fluxes from 32 countries (mostly small island countries) which do not have comparable NGHGIs. 472 

Under the scenario which included emissions from shifting agriculture from secondary forests in deforestation (Fig. 4, hatched 473 

bars), GFW's maximum estimate for global deforestation emissions aligned with the combined NGHGI deforestation and 474 

organic soil emissions (5.0 Gt CO2 yr-1). In that scenario, GFW's corresponding maximum estimate for global net sink in 475 

anthropogenic forest land was larger than estimated by NGHGIs. Under the alternative scenario, which included emissions 476 

from shifting agriculture in secondary forests in the anthropogenic forest land flux (Fig. 4, non-hatched bars), GFW's minimum 477 

estimate for global net sink in anthropogenic forest land was similar to the NGHGI net forest sink (-6.6 Gt CO2 yr-1), but 478 

GFW's corresponding minimum estimate for global deforestation emissions was lower than estimated by NGHGIs. The 479 

combined GFW flux model net anthropogenic forest sink in managed lands is 2.0 Gt CO2 yr-1 greater than in NGHGIs (-1.5 480 

Gt CO2 yr-1).  481 

For Non-Annex 1 countries, the GFW model high and low estimates for forest land and deforestation bracketed the 482 

corresponding NGHGI fluxes. However, GFW estimated the net anthropogenic forest flux for Non-Annex 1 countries to be a 483 

small net anthropogenic sink while NGHGIs estimates them to be a small net anthropogenic source. For Annex 1 countries, 484 

deforestation emissions from the GFW model were much lower than from NGHGIs (0.046–0.049 and 0.55 Gt CO2 yr-1
,
 485 

respectively) and the net forest sink was somewhat larger (-3.2 and -2.3 Gt CO2 yr-1
,
 respectively).  486 
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 487 

Figure 4. Comparison of average annual forest carbon fluxes (2001–2022) between national greenhouse gas inventories (NGHGI) 488 
and the updated GFW flux model. For the GFW flux model, net anthropogenic forest flux is calculated as the sum of the net anthropogenic 489 
forest land flux in managed forests and deforestation (Sect. 2.3). Non-anthropogenic forest flux is calculated as emissions and removals 490 
occurring outside managed forests. Because country reporting on emissions from the loss of secondary forests associated with cycles of 491 
shifting agriculture is ambiguous, these emissions are shown for the GFW model as hatched bars to indicate how they impact totals depending 492 
on the reporting category (forest land or deforestation). Results from the GFW model are for CO2 fluxes only and NGHGI results have also 493 
been limited to CO2 fluxes except for a few developing countries where non-CO2 emissions could not be separated.   494 

Although the magnitude of the global GFW model estimates for deforestation emissions and the anthropogenic sink in 495 

forests align with the aggregated NGHGIs for 2001–2022 under different scenarios, their trends from 2001 to 2022 do not 496 

agree (Fig. 5). Both globally and for Non-Annex 1 countries, the NGHGIs suggest that from 2001 to 2022 forest land 497 

became a slightly larger sink and deforestation emissions lacked a clear trend. However, the GFW flux model results suggest 498 

the opposite: a reduced sink in forest land and increased deforestation emissions. The forest land flux and deforestation 499 

emissions from NGHGIs and the GFW model for Non-Annex 1 countries appear to converge in the last 10 years (roughly -6 500 
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Gt CO2 yr-1 and 5 Gt CO2 yr-1, respectively). For Annex 1 countries, the forest land sink decreased much more according to 501 

the GFW model than NGHGIs, while deforestation emissions stayed fairly constant in both. 502 

 503 

Figure 5. Comparison of forest carbon fluxes timeseries (2001–2022) between national greenhouse gas inventories (NGHGIs) and 504 
the updated GFW flux model for Non-Annex 1, Annex 1 countries, and globally. NGHGI values shown here exclude any fluxes from 505 
harvested wood products, and deforestation emissions are the combined emissions from both deforestation and organic soils to conceptually 506 
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align with the scope of fluxes from the GFW framework. For the world and Non-Annex 1 countries, GFW model results are shown in two 507 
timeseries: one where emissions from shifting agriculture in secondary forests is included in that reporting category and one where those 508 
emissions are not included. For the GFW model in Annex 1 countries, the two scenarios are essentially the same and thus we show only one 509 
line. The GFW model has been limited to CO2 only; NGHGI data includes only CO2 except for a few developing countries where non-CO2 510 
emissions could not be separated. 511 

4 Discussion 512 

We focus our discussion on the following topics. First, we examine how the updated GFW forest flux model compares with 513 

results from a recent global estimate of forest fluxes by Pan et al. (2024) and the Global Carbon Budget (GCB). Second, we 514 

discuss how fully geospatial, Earth observation-based forest flux estimates can be translated into the reporting categories of 515 

NGHGIs and how transparency in both approaches can result in methodological improvements. Third, we discuss strengths 516 

and limitations of GFW’s Earth observation-based forest carbon flux model. Fourth, we outline future research priorities which 517 

provide partial solutions to the model’s current limitations. 518 

4.1 Comparison with other recent global flux estimates 519 

Pan et al. (2024) is a relevant comparison for the GFW model because both include only forests and report gross rather than 520 

net fluxes. Pan et al. (2024) estimated gross removals by forests, gross emissions from tropical deforestation, and the global 521 

forest carbon sink by synthesizing forest plot data (inventories and long-term monitoring sites) from 1990 onwards. The 522 

removals estimates are conceptually similar (e.g., both include established and new forests), but the emissions estimates have 523 

different geographic scope (global for GFW, tropical for Pan et al. 2024) (Table 5). The global net fluxes from Pan et al. 2024 524 

and the updated GFW model are remarkably similar given their entirely different approaches, and thus provide multiple lines 525 

of evidence for a net forest sink of approximately 6 Gt CO2 yr-1. Differences in gross emissions and removals between the data 526 

sources likely arise from different scopes and system boundaries, but may be balanced out when combined in the global net 527 

flux. Pan et al. estimated higher tropical gross emissions than the GFW model did for the tropics and subtropics for 2001-2019. 528 

When the GFW model’s gross emissions (CO2 only) are limited to the tropics and subtropics and one geospatially implemented 529 

definition of deforestation (tree cover loss due shifting agriculture in primary forest, and all commodity- and urbanization-530 

driven tree cover loss), it estimates 3.2 Gt CO2 yr-1, well below the tropical deforestation estimate of Pan et al. 2024. More 531 

broadly including all tree cover loss in the tropics and subtropics, the GFW model estimates gross emissions of 6.3 Gt CO2 yr-532 

1.  533 

 534 

 535 

 536 



   

 

27 

 

 537 

Table 5. Comparison of GFW flux model results to Pan et al. 2024 and the Global Carbon Budget (GCB). Estimates from the three 538 
data sources are not directly comparable due to differences in scope, data, methodologies and reporting structure. GFW model fluxes are 539 
limited to 2001–2022 for comparability with the GCB. The GFW model and Pan et al. 2024 are for forests only, while the GCB also includes 540 
non-forest land. 541 

Flux 
GFW model, 2001-2022  

(Gt CO2 yr-1) 

Pan et al. 2024, 2000-2019 

(Gt CO2 yr-1) 

Global Carbon Budget, 2001-2022 

(Gt CO2 yr-1) 

Emissions 
8.6 (gross, all observed 

disturbances)a 

7.4 (gross, tropical 

deforestation)b 
4.9 (net, anthropogenic)c 

Removals 
-14.7 (gross, all forest ecosystems 

(-14.5) and HWP (-0.20))d 
-13 (gross, global) -11.4 (net, non-anthropogenic)e 

Net -6.1 (net, all forests)f -5.6 (net, global) -6.4 (net, all land) 

a Gross emissions from all forest disturbances (anthropogenic and non-anthropogenic) for 2001–2022. Estimate includes CO2 only for comparability with 542 

GCB; non-CO2 emissions are 0.19 Gt CO2e yr-1. This value is lower than that of Table 4 (9.0 Gt CO2e yr-1) because this one includes emissions for 2001–543 

2022 only and excludes non-CO2 gases. 544 
b Includes emissions from degradation.  545 
c Estimates only net direct anthropogenic effects, including deforestation, afforestation/reforestation, organic soils, and wood harvest. Gross fluxes higher but 546 

not reported. 547 
d Gross removals from all forest processes (direct, indirect and natural). HWP = transfers to harvested wood products. Removals are the annual average from 548 

2001-2023.  549 
e Represents the land sink associated with indirect human-induced effects such as CO2 fertilization, nitrogen deposition, etc. 550 
f Calculated as the net balance between gross forest ecosystem emissions and removals (8.6 – 14.5 Gt CO2 yr-1) in this table plus an additional net removal of 551 

-0.20 Gt CO2 yr-1 into HWP. This value differs from that of Table 4 (-5.5 Gt CO2e yr-1) because this one uses lower gross emissions (see note a).  552 

 553 

Another point of comparison is the GCB, released by the Global Carbon Project each year. The GCB provides annual estimates 554 

of GHG emissions and carbon sinks, when relevant, for all sectors. The GFW flux model is not designed to represent the land 555 

portion of the global carbon cycle, nor is it directly comparable with the land use fluxes included in the GCB because of 556 

differences in definitions, scope, reporting structure, and methods (Friedlingstein et al. 2023). Three overarching differences 557 

are: 1) The GCB reports net sources and sinks for all land (including croplands, grasslands, semi-arid savannas and shrublands), 558 

while the GFW model reports gross emissions and removals for forests only; 2) the GCB categorizes fluxes by process into 559 

net anthropogenic emissions from land use change and forestry and the “natural” land sink, while the GFW model categorizes 560 

fluxes by activity data; 3) the GCB uses global bookkeeping models to estimate net anthropogenic carbon fluxes from land 561 

use and dynamic global vegetation models (DGVMs) to estimate net carbon fluxes from the natural land sink (Walker et al. 562 

2024), while the GFW flux model uses a single integrated approach to estimate emissions and removals. Nevertheless, 563 

comparison of the GFW model with the GCB is useful because they use entirely different data sources and approaches, and, 564 

as such, convergence between them would represent multiple lines of evidence towards the magnitude of the land sink. 565 
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We estimated a global net CO2 sink by forest ecosystems of -6.1 Gt CO2 yr-1 between 2001 and 2022, which is similar to the 566 

net CO2 land sink of -6.4 Gt CO2 yr-1 in the GCB for all terrestrial fluxes over the same period (Table 5). The GCB’s net 567 

emission estimate (4.9 Gt CO2 yr-1) is lower than GFW’s gross emissions estimate (8.6 Gt CO2 yr-1) partially because the 568 

GCB’s land-use change emissions (sources) reflect the net balance between anthropogenic emissions and anthropogenic 569 

removals associated with forest regrowth. Similarly, the GFW model’s gross removals reflect removals across all forest lands, 570 

including removals implicit (but unreported) in the GCB net land-use change estimate (Friedlingstein et al. 2023). Additional 571 

reclassification of fluxes from the GFW model into net anthropogenic fluxes from land-use change and the natural land sink 572 

may be possible for further comparisons with the GCB, as has been done between the GCB and NGHGIs (Schwingshackl et 573 

al. 2022).  574 

In the comparison of the original GFW model with the GCB, we included a non-spatial estimate of emissions from tropical 575 

forest degradation of 2.1 Gt CO2e yr-1 from Pearson et al. 2017 that potentially included some emissions from small-scale 576 

disturbances which we assumed our original model did not capture. For this and subsequent comparisons between the GFW 577 

flux framework and the GCB, we are discontinuing the inclusion of a non-spatial estimate of degradation emissions from a 578 

source external to our framework to maintain its internal consistency and fully geospatial nature. We acknowledge that the 579 

GFW model itself is likely omitting both emissions (e.g., from degradation not detected by TCL) and removals (e.g., from low 580 

canopy density or regenerating forest), but those are gaps that the model should be able to fill over time (see Sect. 4.4). Adding 581 

external data such as Pearson et al. 2017 risks double-counting emissions in the global total. As more geospatial data on 582 

distinguishing deforestation from degradation (Vancutsem et al., 2021) becomes available globally, and geospatial data on the 583 

emission and removal factors associated with forest degradation (Holcomb et al., 2024) and recovery (Heinrich et al., 2023b) 584 

is developed, it may be possible to reintegrate forest degradation and its associated fluxes.  585 

4.2 Translating between Earth observation-based fluxes and NGHGIs  586 

The 6.7 Gt CO2 yr-1 gap in global land use emissions between NGHGIs and the GCB has been largely explained (Grassi et al. 587 

2023) and translation between NGHGIs on the one hand and bookkeeping models and DGVMs on the other is becoming 588 

routine (e.g., Schwingshackl et al. 2022); this work is the start of a similar process for explaining the gap between NGHGIs 589 

and Earth observation-based models, primarily through reallocation of emissions and removals to match NGHGIs’ land use 590 

categories and filtering the results with maps of managed forest as a proxy to delineate anthropogenic from non-anthropogenic 591 

fluxes. This approach follows the recommendations of a recent IPCC expert meeting on reconciling land use emissions (IPCC 592 

2024). Our goal in translating GFW model results into a NGHGI reporting framework was to provide independent estimates 593 

of forest-based GHG fluxes based on globally consistent, Earth observation-based data in the reporting categories that national 594 

policymakers use. It was not to reproduce how countries classify their managed land, report their forest fluxes in practice, or 595 

compare fluxes for individual countries. For example, we did not rely solely on the use of managed land polygons for Case 2a 596 

countries to define managed forest; if our observations detected direct human activity in unmanaged polygons, we assigned 597 
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those fluxes as anthropogenic forest land fluxes or deforestation. Thus, although this translation makes the GFW model more 598 

conceptually similar with NGHGIs in that the outputs are supposed to represent the same fluxes, they are still not necessarily 599 

entirely comparable because we did not exactly reproduce what countries do in practice within their NGHGIs. This 600 

demonstrates that the GFW model is sufficiently flexible to approximate the system boundaries of anthropogenic fluxes in the 601 

IPCC reporting framework and that Earth observation-based models can be used to independently monitor anthropogenic GHG 602 

fluxes from forests if adequate country data are made publicly available.  603 

Although the conceptual alignment produces quantitatively similar annual average fluxes for the GFW model and NGHGIs 604 

globally and for Non-Annex 1 countries, the trends from NGHGIs and the GFW model differ (Fig. 5). For Non-Annex 1 605 

countries, where the trends in each data source are most evident, NGHGIs reported the forest land sink strengthening slightly 606 

while deforestation emissions fluctuated but were generally steady. The GFW model, on the other hand, reported a weakening 607 

sink in forest land and deforestation emissions that increased correspondingly. The decreasing forest land sink in the GFW 608 

model is due to the use of average annual gross removals over time (i.e. a constant value), combined with increasing (i.e. 609 

annually variable) tree cover losses not associated with deforestation. In NGHGIs, forest land and deforestation can both 610 

change through time. The differing trends between the GFW flux model and aggregated NGHGIs is likely driven by generally 611 

increasing annual tree cover loss used in GFW (Hansen et al. 2013), as that has the greatest interannual variability present in 612 

either dataset. Quantitative similarity between the GFW model and NGHGIs may be further improved when the GFW model’s 613 

gross removals can vary through time as well (Sect. 4.4). Moreover, for Non-Annex 1 countries, results from the GFW model 614 

and NGHGIs have converged for forest land and deforestation since around 2010, with the two GFW model scenarios 615 

bracketing NGHGI fluxes from both reporting categories after that year. This indicates that the GFW model, and the tree cover 616 

loss data that underlies its gross emissions, were perhaps under-detecting loss relative to NGHGIs in the early part of the time 617 

series.  618 

Exploration of the differences between the GFW model and specific countries’ NGHGIs is beyond the scope of this paper ; 619 

future work may include more detailed reclassification of the GFW model’s fluxes and comparisons with specific regions or 620 

countries. As an initial resource for country-level data, the European Union Joint Research Centre LULUCF Data Hub presents 621 

graphs of national land fluxes according to their NGHGIs, the Global Carbon Budget, and the translated fluxes from the GFW 622 

model (https://forest-observatory.ec.europa.eu/carbon/fluxes). Further sub-setting results from our framework to differentiate 623 

anthropogenic and non-anthropogenic fluxes for comparison with NGHGIs for individual regions, countries, and other local-624 

scale analyses is possible and encouraged. Indeed, comparison of the GFW model and countries’ inventories is a way to explore 625 

the complementarity and discrepancies between Earth observation data and inventories, encourage transparency for both, and 626 

improve both approaches (Heinrich et al. 2023a). For example, one advantage of the GFW model, which includes forest fluxes 627 

undifferentiated by human contribution, is that it encompasses both anthropogenic and non-anthropogenic fluxes. When this 628 

translation exercise is conducted, GHG fluxes from managed forests can be put in the context of all forest fluxes and compared 629 



   

 

30 

 

with fluxes from unmanaged forests. Because NGHGIs are not required to estimate fluxes from unmanaged land (just report 630 

the area of unmanaged land), aggregation of NGHGIs does not provide context for managed land fluxes with unmanaged land 631 

fluxes. In other words, the GFW model can indicate the scale of non-anthropogenic fluxes that countries are not reporting in 632 

their NGHGIs (which nevertheless affect atmospheric CO2 concentrations and global temperature), while NGHGIs are 633 

necessary for the GFW model to approximate the anthropogenic fluxes that are being monitored by countries and the focus of 634 

the Paris Agreement. An alternative approach for reconciling global models and NGHGIs would be for NGHGIs to report all 635 

land fluxes in the country, in both managed and unmanaged land (Nabuurs et al. 2023), but adoption of this seems unlikely. 636 

While our geospatial, Earth observation-based framework permits estimation of fluxes for any geospatially defined forest and 637 

the inclusion (or exclusion) of any area of interest, it cannot distinguish between managed versus unmanaged land without 638 

relevant spatial data. Thus, the ability of the GFW model, and Earth observation models in general, to be translated into IPCC 639 

categories largely depends on the transparency with which countries report on their managed lands. Only three countries have 640 

publicly available maps of managed and unmanaged forest (Canada, Brazil, and the United States) (Ogle et al. 2018). For all 641 

remaining countries, the use and application of the managed land proxy was assumed based on the available information from 642 

country reports. In the absence of this information, primary or intact forest have been used as proxy for unmanaged forest. 643 

With sufficient transparency and flexibility in both the Earth observation-based products and NGHGIs, the differences between 644 

them can be explored. 645 

A key driver of forest disturbance, and thus emissions, in the GFW model is shifting agriculture. However, the comparison 646 

between GFW and NGHGI is complicated by the fact that countries typically do not provide specific information on shifting 647 

agriculture in their land representation; according to the IPCC guidelines it can be implicitly included either in forest or in 648 

other land uses (e.g., cropland) (Grassi et al. 2023). Thus, we developed two scenarios for the treatment of fluxes from shifting 649 

agriculture (Fig. 4). Hopefully, as countries begin to submit their Biennial Transparency Reports under the Paris Agreement, 650 

their use of the managed land proxy, the treatment of shifting agriculture, and other exclusions from inventories will be 651 

progressively clarified and translation between approaches will become more accurate. Although they are time-consuming to 652 

implement, the goal should be for the kinds of Earth-observation based adjustments described by Heinrich et al. 2023a for 653 

Brazil to be achievable for all countries. This will ultimately facilitate comparisons between global models such as the GFW 654 

model and NGHGIs, provide national policymakers with timely geospatial data in their own reporting terms, and build 655 

confidence in the magnitude and trends of land-based anthropogenic emissions and sinks (Grassi et al. 2023).  656 

Future improvements to our flux reclassifications, which may improve regional or country-level comparisons, could include 657 

customizing tree cover density thresholds that align more closely with countries’ forest definitions to filter forest extent and 658 

thus the associated fluxes on a country-by-country basis. Additionally, we used maps of primary forests and intact forest 659 

landscapes from 2001 and 2000, respectively, to approximate the extent of unmanaged forests at the initial year of our model 660 
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framework. Further refinement to the GFW model’s estimates of fluxes from managed lands could include recategorizing 661 

forests as “managed” or “unmanaged” using updated primary/intact forest boundaries in different years to reflect changes to 662 

countries’ managed land area over time whenever known. Furthermore, for simplicity, we considered all forest removals as 663 

forest land and did not differentiate the relatively small amount of removals from forest gain as “other land converted to forest”, 664 

which is a category that countries report in their NGHGIs. Another improvement would be to separate the emissions from 665 

drainage of organic soils and the emissions from deforestation in the GFW model; in the current translation, deforestation 666 

emissions and organic soil emissions are combined in both data sources. Separating them would refine the conceptual 667 

similarity. This would matter most in countries with high emissions from organic soils. Finally, emissions from fires occurring 668 

in unmanaged land could theoretically be differentiated into anthropogenic vs. non-anthropogenic using additional geospatial 669 

data, rather than our simplified assumption that all fires in unmanaged forests are non-anthropogenic in origin.   670 

4.3 Strengths and limitations of the GFW flux monitoring framework  671 

The strengths of the current GFW flux model are broadly similar to those described in Harris et al. 2021. Strengths include its 672 

transparency, operational nature, flexibility, and updatability as new information becomes available. Here we focus on the 673 

complementarity of the GFW model with other land flux monitoring approaches. A strength of flux monitoring based on Earth 674 

observation, and therefore geospatial, data is its geographic specificity, while maintaining spatial consistency. Knowing where 675 

changes in land use and land cover—and the emissions and removals they have caused—occurred may help identify what 676 

factors are responsible for these changes and how to attribute them to specific human activities. While detailed information 677 

from ground surveys and activity data generated using local training data may provide more detail and accuracy at local scales, 678 

understanding the magnitude and distribution of global change requires a combination of both ground- and space-based 679 

observations (Houghton and Castanho 2023). In this sense, it fills in the gaps among other flux monitoring approaches. In 680 

terms of global consistency, the GFW model’s key data are global in breadth and independent of data from the United Nations 681 

Food and Agriculture Organization, giving it a separate source for forest change data from bookkeeping models (Hansis et al. 682 

2015, Gasser et al. 2020, Houghton and Castanho 2023). Moreover, by having an open-source model based on publicly 683 

available data, others can evaluate the model, make improvements, and/or adapt it to use national or local rather than global 684 

data. Users can keep some defaults while replacing others with better or more specific information, and understand how results 685 

are impacted by the various changes made for regions or at scales that interest them most.  686 

Limitations are also broadly similar to those described in Harris et al. 2021. First, combining multiple spatially explicit data 687 

sources compounds the errors present in each individual source used in the framework. The GFW model partially manages 688 

this over larger areas through uncertainty propagation analysis to identify the relative contributions of different model 689 

components to uncertainty in each climate domain but cannot provide a pixel-level accuracy or uncertainty map. Extending 690 

the uncertainty framework to smaller regions (e.g., biomes or countries) would require uncertainty information for each of the 691 

individual data sources to be available at the desired scale of uncertainty propagation analysis. Second, the gain-loss approach 692 
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of starting with baseline carbon densities and adding gains and subtracting losses over time has the potential to generate 693 

unrealistic estimates over longer periods due to drift from the original benchmark map. The GFW model could potentially 694 

address this through recalibration of carbon densities and forest extent at one or more intermediate years (e.g., 2010, 2015). 695 

Finally, the GFW model continues to have temporal limitations for both activity data and removal factors. The shorter gain 696 

period compared to tree cover loss in the original publication (12 vs. 19 years, respectively) has largely been addressed with 697 

the extension of tree cover gain through 2020. More limiting than the mismatch of tree cover loss and gain durations is the 698 

one-time nature of tree cover gain. Because the year of tree cover gain is not known, the model does not necessarily include 699 

post-disturbance gross regrowth and removals, which may underestimate removals and decrease the net sink. This effect would 700 

be particularly pronounced in forest where disturbance occurs earlier in the model and regrowth is substantial. The tree cover 701 

loss timeseries also has its own inconsistencies (Weisse and Potapov 2021). The improvement in Earth observation data and 702 

changes to processing confounds apparent trends in gross emissions based on tree cover loss; it is difficult to determine how 703 

much the trends in emissions are due to real increases vs. better detection of disturbances through time. For removal factors, 704 

the concern is not so much temporal inconsistency as temporal constancy; the model makes the simplifying assumption of 705 

static removal factors, i.e. removal factors do not change as forests grow or climate changes over the 23-year model period. 706 

Thus, the GFW model does not incorporate growth-response curves or climate feedbacks, unlike in Earth System Models.  707 

4.4 Research priorities and anticipated model developments 708 

Beyond annual updates to the GFW model, we anticipate continued, substantial changes to and research around both activity 709 

data and emission and removal factors. These do not change the underlying conceptual framework but rather its implementation 710 

as the model.  711 

For activity data, anticipated model developments include: 712 

1. Global forest change data: The model will use annual forest extent, loss, and gain maps for greater temporal detail 713 

(similar to Potapov et al. 2019 or Turubanova et al. 2023) and improved representation of carbon dynamics. For 714 

example, the year of tree cover gain will be known (at least approximately) and repeated forest disturbances in the 715 

same location will be captured (unlike in Hansen et al. 2013), allowing the generation of annual time series of gross 716 

emissions, gross removals, and net flux. This should further enhance comparability of  temporal trends in GFW’s 717 

fluxes with the GCB and NGHGIs.  718 

2. Drivers of forest loss: The model currently uses a global map of drivers of forest loss at 10-km resolution (Curtis et 719 

al. 2018, updated to 2023) but research on mapping drivers of forest loss is advancing. An anticipated 1-km resolution 720 

global map of drivers of forest loss (Sims et al., in review) will detect drivers that are not dominant at 10-km (and are 721 

therefore not mapped) but are important at smaller scales, such as loss due to small-scale infrastructure and built-up 722 

areas amid loss due to agricultural commodity expansion. Moreover, a separate class of forest loss due to natural 723 
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disturbances will further help with parsing natural and anthropogenic fluxes for translation into NGHGI reporting 724 

categories.  725 

3. Delineation of organic soils and their drainage status: The GFW model currently compiles several different data 726 

sources (Table 2), which have different definitions and resolutions, to map organic soil extent. The GFW model would 727 

benefit from a globally consistent organic soil map based on comprehensive aggregation of soil samples and 728 

standardized mapping methods (Hengl et al. in prep). However, it is not just the extent of organic soils but their 729 

drainage that affects emissions in the GFW model. Thus, we are exploring improved mapping of organic soil drainage 730 

using recent improvements in delineating road networks (OSM 2010; Meijer et al. 2018; Engert et al. 2024), drainage 731 

canal networks (Dadap et al. 2021), and land cover (Potapov et al. 2022). More comprehensive maps of organic soil 732 

extent and drainage will improve where the GFW model reports these emissions, particularly affecting non-CO2 GHG 733 

emissions.  734 

4. Improved initial forest age map: The GFW model currently classified forested pixels into primary forest, secondary 735 

forest > 20 years, and secondary forest < 20 years old in 2000 using a few simple rules (described in Harris et al. 736 

2021). However, a forest age map such as Besnard et al. 2021 could be used to refine the assignment of starting age 737 

categories—particularly for secondary forests—or to determine where forest is along age-growth curves.  738 

5. Extent of planted forests and trees: The model currently uses SDPT v2.0 (Richter et al. 2024) but plans are underway 739 

for SDPT 3.0, which will improve differentiation between natural and artificial stands in the United States and 740 

Canada, along with other improvements for delineating planted tree extent in other countries. 741 

For emission and removal factors, anticipated model developments include:  742 

1. Improved spatial and temporal resolution of forest carbon removals: The dominant role of removal factor uncertainties 743 

in the uncertainty analysis highlights the need to further improve understanding of spatial and temporal variation in 744 

forest carbon removals. Combining plot-level biomass estimates with spaceborne observations to produce static 745 

biomass maps is well established (e.g., Saatchi et al. 2011, Santoro et al. 2021) and mapping biomass change is being 746 

explored (Xu et al. 2021) but these do not provide spatiotemporally variable removal factors. An ecology-based, yet 747 

still spatial, way to map removal factors could combine tree-level information collected in field plots with machine 748 

learning methods to map forest population structure through time, including variables that influence biomass change 749 

like upgrowth, mortality and recruitment for different forest types (Ma et al. 2020, Liang et al. in review). Such an 750 

approach can generate spatial and temporal predictions of how biomass changes across space and time that can be 751 

validated with forest plot data. In conjunction with a time series of tree cover gain (in activity data list above), this 752 

would result in fully temporal gross removals. Alternatively, growth curves for natural regeneration of forests could 753 

be revised and expanded to include a greater range of forest ages, using similar methods to Cook-Patton et al. 2020 754 

(Robinson et al. under review).  755 
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2. Improved maps of soil carbon dynamics in mineral soils: The GFW model currently uses a benchmark map of soil 756 

organic carbon density in mineral soil in 2000 and assumes loss of specific fractions of carbon under certain types of 757 

tree cover loss, following a Tier 1 approach from IPCC 2019. However, a timeseries of soil organic carbon density 758 

in mineral soil would support more realistic mapping of SOC losses and gains. 759 

3. Improved maps of emissions from organic soil drainage: The GFW model currently assumes that organic soils are 760 

drained only wherever tree cover loss, organic soils, and planted trees (Richter et al. 2024) coincide. Future 761 

improvements could include expanding the proxies used to map organic soil drainage, as well as including emissions 762 

from extraction of organic soils.  763 

Additionally, opportunities remain to compare GFW model emissions and removals with NGHGIs, bookkeeping models, and 764 

regional or local data (e.g., Araza et al. 2023, Heinrich et al. 2023b). Such work would further our understanding of the 765 

complementary roles of Earth observation-based forest carbon models and other approaches to forest flux monitoring.  766 

5 Data and code availability 767 

Gross emissions, gross removals, and net flux are available for download as 10x10 degree geotifs in 0.00025x0.00025-degree 768 

resolution. Data that correspond to the model version presented in this publication are as follows: gross emissions (Gibbs et 769 

al. 2024a)--  https://doi.org/10.7910/DVN/LNPSGP; gross removals (Gibbs et al. 2024b)-- 770 

https://doi.org/10.7910/DVN/V2ISRH; net flux (Gibbs et al. 2024c)-- https://doi.org/10.7910/DVN/TVZVBI. Data are also 771 

available as assets on Google Earth Engine at https://code.earthengine.google.com/ae55707e335894d7be515386195390d2. 772 

Note that more recent versions of these datasets may be available from www.globalforestwatch.org. Code is available at 773 

https://github.com/wri/carbon-budget.  774 

6 Conclusion 775 

The updated Earth observation-based GFW forest carbon flux framework continues to show a substantial net sink for CO2 in 776 

forests globally, while also reporting gross emissions over half as large as gross removals since 2001. This highlights ongoing 777 

opportunities to protect the forest carbon sink across a broad area and also reduce emissions from forest loss, especially in 778 

hotspots of emissions that are discernable with our geospatial framework. The revised uncertainty analysis—with its dramatic 779 

reduction in uncertainty in gross removals—demonstrates the importance of refining forest carbon sequestration rate estimates. 780 

The flexibility of the model supports analyses at a range of spatial scales, while its operational nature means it can incorporate 781 

new and existing Earth observation products and provide timely maps and data. Our translation of the GFW model’s fluxes 782 

into the reporting framework that NGHGIs use—following the recommendations of a recent IPCC expert meeting on 783 

reconciling land use emissions (IPCC 2024)—provides another lens through which to look at country-level, land-based climate 784 

https://doi.org/10.7910/DVN/LNPSGP
https://doi.org/10.7910/DVN/V2ISRH
https://doi.org/10.7910/DVN/TVZVBI
https://code.earthengine.google.com/ae55707e335894d7be515386195390d2
http://www.globalforestwatch.org/
https://github.com/wri/carbon-budget
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mitigation and is a resource for national policymakers interested in timely, spatial data on land fluxes. It also demonstrates the 785 

two approaches’ ability to improve, assess, and potentially confirm each other. Ultimately, confidence and transparency are 786 

needed in assessments of progress towards the Paris Agreement, and Earth observation-based forest carbon models are another 787 

tool to build consensus.  788 
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Appendix A 1070 

Table A1. Comparison of forest carbon fluxes in Annex 1 countries, Non-Annex 1 countries, and globally between the GFW flux 1071 
model and national greenhouse gas inventories (NGHGIs).  Ranges in reported GFW values here come from two different scenarios: one 1072 
scenario where emissions from shifting agriculture in secondary forests is included in forest land, while the other scenario includes all 1073 
emissions from shifting agriculture in deforestation. Results from the GFW model are for CO2 fluxes only and NGHGI results have also 1074 
been limited to CO2 fluxes except for a few developing countries where non-CO2 emissions could not be separated. 1075 

 

Net flux in forest land 

(Gt CO2 yr-1)  

Deforestation emissions  

(Gt CO2 yr-1)  

Net anthropogenic forest flux  

(Gt CO2 yr-1)  

Non-anthropogenic forest flux  

(Gt CO2 yr-1)  

    GFW  NGHGI  GFW  NGHGI  GFW  NGHGI  GFW  NGHGI  

Annex 1 

countries  

   -3.2 – 

-3.2 
-2.3 

   0.046 – 

0.049 
0.55  -3.0  -1.8  -0.34  N/A  

Non-Annex 

1 countries  

   -3.7 – 

-5.5 
-4.2 

   3.3 – 

5.0 
4.5  -0.46  0.2  -1.8  N/A  

Global  
   -6.9 – 

-8.6 
-6.6 

   3.3 – 

5.0 
5.0  -3.6  -1.5  -2.2  N/A 
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