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Short Summary 11 

Updated global maps of greenhouse gas emissions and sequestration by forests from 2001 onwards using satellite-derived data 12 

show that forests are strong net carbon sinks, capturing about as much CO2 each year on average as the United States emitteds 13 

from fossil fuels in 2019. After reclassifying fluxes to countries’ reporting categories for national greenhouse gas inventories, 14 

we found that roughly two-thirds of the total net CO2 flux from forests is anthropogenic and one-third is non-anthropogenic. 15 

Abstract  16 

Forests are a key component of climate change mitigation strategies because they both emit and remove atmospheric carbon 17 

dioxide. Earth observation data are increasingly used to estimate the magnitude and geographic distribution of greenhouse gas 18 

(GHG) fluxes and reduce overall uncertainty in the global carbon budget, including for forests. Here we report on a revised 19 

and updated geospatial, Earth observation-based forest carbon flux modelling framework that maps GHG emissions (Gibbs et 20 

al. 2024a), carbon removals (Gibbs et al. 2024b), and the net balance between them (Gibbs et al. 2024a, Gibbs et al. 2024b, 21 

Gibbs et al. 2024c, respectively) globally for forests from 2001 onwards to 2023 at roughly 30-meter resolution (Harris et al. 22 

2021, hereafter referred to as the Global Forest Watch (GFW) model (see Data and Code Availability section). Beyond 23 

updating the model to include the most recent yearsthrough 2023, rRevisions address some of the original model’s limitations, 24 

improve model inputs, and refine the uncertainty analysis. We found that between 2001 and 2023, global forest ecosystems 25 

were, on average, a net carbon sink of -5.5 ± 8.1 (one standard deviation) gigatonnes CO2 equivalent yr-1 (Gt CO2e yr-1), which 26 

reflects the balance of 9.0 ± 2.7 Gt CO2e yr-1 of GHG emissions and -14.5 ± 7.7 Gt CO2 yr-1 of carbon removals, with an 27 

additional -0.20 Gt CO2e yr-1 transferred into harvested wood products. Uncertainty in gross removals was greatly reduced 28 

compared to the original model due to refinement of temperate secondary forest carbon removal factor uncertainties. After re-29 



   

 

2 

 

allocating GFW’s gross CO2 fluxes estimates into anthropogenic fluxes from forest land and deforestation categories to 30 

increase the conceptual similarity with national greenhouse gas inventories (NGHGIs), we estimated a global net 31 

anthropogenic forest sink of -3.65 Gt CO2e yr-1, includingexcluding harvested wood products, and considerwith the remaining 32 

net CO2 flux of -2.2 Gt CO2e yr-1 reported by the GFW model as non-anthropogenic. Although the magnitude of GFW’s 33 

translated estimates align relatively well with aggregated NGHGIs, their temporal trends differ. Translating Earth -observation- 34 

based flux estimates into the same reporting framework as countries use for NGHGIs can helps build consensusconfidence 35 

and build confidence onaround land use carbon fluxes and support independent evaluation of progress towards Paris 36 

Agreement goals. 37 

 38 

1 Introduction 39 

Land is among the most uncertain components of the global carbon cycle (Friedlingstein et al. 2023). The highly dynamic and 40 

bi-directional nature of forest terrestrial carbon fluxes, both spatially and temporally, as well as the contributions of 41 

anthropogenic and non-anthropogenic processes, poscause unique challenges for monitoring fluxes. Top-down atmospheric 42 

observations, e.g. from sensors such as NASA’s Orbiting Carbon Observatory, are not precise enough to attribute fluxes to 43 

specific drivers, and the current suite of bottom-up approaches for estimating global terrestrial carbon fluxes (Friedlingstein et 44 

al. 2023) is based on models that are not fully consistent with each other (i.e., bookkeeping models and dynamic global 45 

vegetation models (DGVMs) to estimate anthropogenic and natural fluxes, respectively) (Dorgeist et al. 2024, Walker et al. 46 

2024). An additional complication is that these models separate anthropogenic and natural fluxes from land differently from 47 

how national greenhouse gas inventories (NGHGIs) do, which are used within climate policy treaties and to drive national 48 

climate actions (IPCC 2024). This makes it difficult for models to provide estimates directly relevant to climate policy 49 

frameworks and national climate action. Top-down atmospheric approaches do not make this separation, while global estimates 50 

of anthropogenic land use fluxes from bookkeeping models (Friedlingstein et al. 2023) are 6.7 Gt CO2 yr-1 higher than 51 

aggregate NGHGIs (Grassi et al. 2023). This gap is due primarily to definitional and conceptual differences around what is 52 

classified as anthropogenic vs. natural fluxes from forests (Grassi et al. 2018), with recent studies focusing on reconciling these 53 

differences (e.g., Schwingshackl et al. 2022, Grassi et al. 2023). Thus, despite improved data acquisition and advances in 54 

modelling capabilities, large uncertainty and variation in estimates of land emissions and sinks remain. Moreover, the spatial 55 

distribution of forest emissions and, even more so, forest carbon removals are not well understood, impeding the ability of a 56 

range of actors, such as governments, companies, and civil society, to monitor the effectiveness of land-based climate 57 

mitigation actions that reduce emissions from forest loss and maintain or increase forest carbon sinks.  58 

To address some of these limitations, Global Forest Watch (GFW) introduced an Earth observation-based framework and 59 

model for estimating forest carbon fluxes globally (Harris et al. 2021) that aligns with calls for geospatial monitoring of forest 60 
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carbon fluxes (EC 2018; Nyawira et al. 2024; Ochiai et al. 2023; Turubanova et al. 2023). It was designed to fill a gap among 61 

existing forest carbon monitoring approaches by combining global forest change maps, benchmark carbon density maps, and 62 

other Earth observation data based on the IPCC Intergovernmental Panel on Climate Change (IPCC) Guidelines for National 63 

Greenhouse Gas Inventories (IPCC 2006, IPCC 2019) that countries use to estimate emissions and removals for their NGHGIs. 64 

Within the scope of the Agriculture, Forestry, and Other Land Uses (AFOLU) sector, only GHG fluxes from forest-related 65 

land uses and land-use changes (forest remaining forest, non-forest converted to forest, forest converted to non-forest) were 66 

included. The framework was designed around the UNFCCC guiding principles for NGHGI preparation: transparency, 67 

accuracy, completeness, comparability and consistency. All GFW carbon flux model inputs and outputs and code are publicly 68 

available (see Data and Code Availability section).  69 

Recognizing that both Earth observation and ground data increase and improve through time, we designed GFW’s flux 70 

monitoring framework and the model implementing it with the flexibility to accommodate updates to existing components and 71 

add new components. Here we document updates to the model, report the results from the current version, present a revised 72 

uncertainty analysis, and - following the recommendations of a recent IPCC expert meeting on reconciling land use emissions 73 

(IPCC 2024) - introduce a new translation  of GFW model of CO2 emissions and removals into NGHGI reporting categories 74 

of deforestation and forest land that provides an Earth observation perspective on forest fluxes conceptually similar to what 75 

countries are expected to report under IPCC guidelines.  76 

2 Methods  77 

Harris et al. 2021 includes a detailed explanation of the GFW forest flux monitoring framework, but some key elements are 78 

described here. The framework encompasses gross CO2 emissions from loss of carbon in aboveground and belowground 79 

biomass pools, dead wood, litter, and soil organic carbon in mineral soils due to stand-replacing disturbances, carbon loss from 80 

drainage of organic soils, and methane (CH4) and nitrous oxide (N2O) emissions from forest fires and drainage of organic soils. 81 

Carbon removals include sequestration into aboveground and belowground forest biomass. All model inputs are resampled to 82 

the spatial resolution of a Landsat pixel (0.00025x0.00025°, roughly 30x30 m at the equator), and outputs are generated at the 83 

same resolution. The model uses Landsat resolution because it is the highest resolution for which the global forest change 84 

maps and an aboveground biomass map for the year 2000 are publicly available. Higher -resolution maps of forest change and 85 

biomass exist but are not publicly available, are available only for more recent years, and/or include only certain geographic 86 

regions (e.g., Vancutsem et al. 2019, Yang and Zeng 2023).  87 

The IPCC GHG inventory guidelines, the methodological basis of GFW’s forest carbon flux monitoring framework, lay out 88 

two methods by which terrestrial carbon stock changes associated with land use, land-use change, and forestry (LULUCF, part 89 

of the broader AFOLU sector) can be calculated: gain-loss and stock-difference (IPCC 2006). Methods can be applied 90 



   

 

4 

 

according to different Tiers (from 1 to 3) with increasing complexity and presumed accuracy. In the gain-loss method, at a 91 

high level, carbon emissions and removals are calculated separately by multiplying activity data such as forest area lost, gained, 92 

or maintained (ha) by emission or removal factors (t C ha-1); the net carbon stock change, or flux, is the difference between 93 

gross emissions and gross removals. In the stock-difference method, carbon stocks are measured during repeated inventories 94 

and the difference between remeasurements is the estimate of net carbon stock change, or flux. GFW’s framework employs 95 

the gain-loss approach, in which the activity data and other contextual information are estimated using global, Earth 96 

observation-based maps trained on local ground plot data and/or airborne and spaceborne lidar observations.  97 

GFW’s gain-loss modeling approach is initialized in the year 2000 with global maps of carbon densities in five forest ecosystem 98 

carbon pools (Fig. 1). The model is runs for all pixels with canopy density >1% in 2000 (Hansen et al. 2023) but our default 99 

outputs define forests as:We define forest as follows: 1) >30% canopy cover in 2000 (Hansen et al. 2013) or subsequent tree 100 

cover gain (Potapov et al. 2022), 2) non-zero aboveground biomass in 2000 (Harris et al. 2021), 3) mangroves in 2000 (Giri 101 

et al. 2011), and 4) exclusion of oil palm plantations in 2000 (see Table 2). We use this definition of forests because a canopy 102 

density of >30% is a common threshold usedin for national definitions of forests (Harris et al. 2018) and because some of the 103 

input removal factors are applicable specifically to denser forest. All outputs and results use canopy density >30%, unless 104 

otherwise specified. However, because the model is runs without any a priori canopy density threshold and the forest definition 105 

is applied after the fact, resultsfluxes can be generatedestimated users can obtain results for a lower canopy density thresholds 106 

applied. Within the resulting forest maskWithin pixels with canopy cover in 2000, gross removals are mapped based on 107 

locations of forest extent and regrowth, while gross emissions are subsequently mapped based on locations of stand-replacing 108 

forest disturbances, while gross removals are mapped based on locations of forest extent and regrowth. In this system of 109 

tracking the forest/non-forest status of individual pixels over time, the model adheres to IPCC Approach 3 for land 110 

representation (IPCC 2019).  111 

For activity data, rather than combining and reconciling national or regional geospatial forest monitoring data in the limited 112 

places where it exists continuously since 2000, we deliberately use global, independent (non-governmental) data sources to 113 

maintain global consistency and comparability within the framework, recognizing that global data are generally not the most 114 

locally accurate or relevant data, but remain useful for large-scale analyses and potentially for verification purposes of other 115 

approaches. To identify forest loss, the GFW model uses the Global Forest Change (GFC) data of Hansen et al. 2013, updated 116 

annually. Because of the framework’s use of GFC, emissions are limited to those from stand-replacing disturbances or other 117 

disturbances severe enough to be detected by GFC. Tree cover gain (Potapov et al. 2022) is gross gain and is assigned to the 118 

period 2000-2020, not assigned to a specific year. In the model, forest pixels can have loss only (assigned to a specific year), 119 

neither loss nor gain (i.e., no change), or both loss and gain (although in which the sequence order is unknown). Non-forest 120 

pixels can have either tree cover gain or no gain; in the latter case they are outside the framework as they are non-forest 121 

remaining non-forest. 122 
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Emission and removal factors likewise use spatially explicit data as much as possible to capture spatial variation in forest 123 

properties and dynamics and move beyond ecozone-level representation of forests. GFW model emission and removal factors 124 

are generally independent of national data sources, with the exception of some removal factors in temperate forests, which are 125 

derived directly from the Forest Inventory and Analysis (FIA) database maintained by the USDA Forest Service (see Harris et 126 

al. 2021 and Glen et al. 2024 for details). The model uses a combination of IPCC default (Tier 1) and localized (Tier 2) 127 

emission/removal factors, with the goal of using more Tier 2 factors over time, just as countries are encouraged to do in their 128 

NGHGIs. (Note that some Tier 1 removal factors come from national forest inventories, particularly USFS FIA data (IPCC 129 

2019).) For example, removal factors in primary forests use IPCC defaults (IPCC 2019, Tier 1), while pre-disturbanceinitial 130 

(year 2000) aboveground biomass carbon densities use a global benchmark map of woody biomass developed from field data 131 

and remote sensing (Harris et al. 2021, Tier 2). Removal factors are applied in a hierarchy from six sources: 1) mangrove-132 

specific rates (IPCC 2014a), 2) Europe-specific rates by forest type (combination of Table 4.11 of the updated IPCC 133 

Guidelines, FAO Planted Forest Assessment and factors published in national forest inventories), 3) planted tree rates from 134 

the Spatial Database of Planted Trees (SDPT) Version 2.0 (Richter et al. 2024), 4) US-specific rates by region, forest type and 135 

age class derived from the FIA database (Glen et al. 2024), 5) young secondary forest rates (Cook-Patton et al. 2020), and ) 136 

IPCC default rates for all other areas (e.g., primary forest, older secondary forest in the tropics and in temperate forests outside 137 

Europe and the US) (IPCC 2019). The framework supports the addition of other geospatial removal factors as they become 138 

available. Gross removals are added to pre-disturbance biomass until the year of loss to determine the biomass in the year of 139 

loss. Emission factors are estimated using a map of tree cover loss drivers (Curtis et al. 2018) and burned area (Tyukavina et 140 

al. 2022); the combination of these determine the extent to which carbon pools (including soil organic carbon in mineral soils) 141 

are emitted by forest disturbance. Emission factors are estimated using “committed” emissions (Hansis et al. 2015) or 142 

instantaneous oxidation (IPCC 2019), whereby carbon loss from all relevant pools is assumed to occur in the year of 143 

disturbance rather than modeling delayed carbon fluxes through time.  144 
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 145 

Figure 1. Updated conceptual framework for modeling forest-related GHG fluxes. The model estimates gross forest-related emissions 146 
and removals as the product of activity data and emission/removal factors for each ~30-m pixel. The net forest GHG flux is the sum of gross 147 
emissions (+) and removals (-). Text and arrows in orange are portions of the removals methodology that are passed into the emissions 148 
methodology. 149 

2.1 Changes to GFW model input data 150 

Since the original release of GFW’s carbon model framework in 2021, which estimated forest carbon flux results through 151 

2019, we have made several changes to the model inputs because new data were published or existing data were improved 152 

(Table 1). These changes keep the model aligned with the latestrecent advances in global Earth observation data and address 153 

some limitations in the original version but do not change the underlying conceptual framework. The updated geospatial inputs 154 
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are shown in the context of all inputs in Table 2. We summarize changes to the input data with respect to extension of the 155 

model from 2019 to 2023 (Sect. 2.1.1), changes to activity data (Sect. 2.1.2), and changes to emission and removal factors 156 

(Sect. 2.1.3).  157 

 158 

Table 1. Changes to GFW model inputs since the original version (Harris et al. 2021).  159 

Framework 

component (article 

section)  

Original version  Current version  
Affects 

emissions  

Affects 

removals  

Temporal coverage 

of tree cover loss 

(2.1.1) 

Tree cover loss through 2019 

(Hansen et al. 2013, updated 

annually on GFW) 

Tree cover loss through 2023 

(Hansen et al. 2013, updated 

annually on GFW) 

Yes Yes 

Temporal coverage 

of drivers of tree 

cover loss (2.1.1) 

Dominant driver of tree cover loss 

through 2015 (Curtis et al. 2018) 

Dominant driver of tree cover loss 

through 2023 (Curtis et al. 2018, 

updated annually on GFW) 

Yes No 

Temporal coverage 

of burned area 

(2.1.1) 

Burned area through 2019 Burned area through 2023 Yes No 

Transfers to 

harvested wood 

products (country-

level only) (2.1.1) 

Transfers to HWP through 2015 

(FAOSTAT 2021) 

Transfers to HWP through 2021 

(FAOSTAT 2024) 
No Yes 

Temporal coverage 

of tree cover gain 

(2.1.2) 

2000–2012 (Hansen et al. 2013)  2000–2020 (Potapov et al. 2022) Yes  Yes  

Burned area extent 

(2.1.2) 

MODIS burned area (Giglio et al. 

2018, updated annually)  

Tree cover loss from fires 

(Tyukavina et al. 2022, updated 

annually)  

Yes  No  

Organic soils extent 

(2.1.2)  

• Indonesia and Malaysia 

(Miettinen et al. 2016) 

• Below 40° N (Gumbricht et al. 

2017) 

• Above 40° N (Hengl et al. 2017) 

• Indonesia and Malaysia 

(Miettinen et al. 2016) 

• Central Africa (Crezee et al. 

2022) 

• Lowland Amazonian Peru 

(Hastie et al. 2022) 

• Below 40° N (Gumbricht et al. 

2017) 

• Above 40° N (Xu et al. 2018) 

Yes  No  

Planted tree extent 

(2.1.2) 

Spatial Database of Planted Trees 

v1.0 (Harris et al. 2019) 

Spatial Database of Planted Trees 

v2.0 (Richter et al. 2024) 
Yes Yes 

Belowground 

biomass (R:S ratio) 

(2.1.3) 

Global ratio of 0.26 for 

belowground carbon to 

aboveground carbon for non-

mangrove forests (Mokany et al. 

2006) 

Map of ratio of belowground 

carbon to aboveground carbon for 

non-mangrove forests (Huang et al. 

2021)1  

Yes  Yes  

Planted tree 

removal factors and 

their uncertainties 

(2.1.3)  

Spatial Database of Planted Trees 

v1.0 (Harris et al. 2019) 

Spatial Database of Planted Trees 

v2.0 (Richter et al. 2024) 
Yes Yes 
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Older secondary 

(>20 year) 

temperate forest 

removal factors and 

their uncertainties 

(2.1.3) 

2019 Refinement to the 2006 IPCC 

Guidelines for National 

Greenhouse Gas Inventories, 

Volume 4, Chapter 4, pages 4.34–

4.38 Table 4.9 (IPCC 2019) 

4th Corrigenda to the 2019 

Refinement to the 2006 IPCC 

Guidelines for National 

Greenhouse Gas Inventories, 

Volume 4, Chapter 4, pages 4.18–

21, Table 4.9 (IPCC 2023)2 

Yes  Yes  

Global Warming 

Potential (GWP) 

values (2.1.3) 

IPCC Fifth Assessment Report, 

Table 8.7 (100-year, no climate-

carbon feedback) (IPCC 2014b) 

IPCC Sixth Assessment Report, 

Table 7.15 (100-year, no climate-

carbon feedback) (IPCC 2022) 

Yes  No  

1 The R:S map was extended outwards to fill gaps in the original map.   160 
2 Removal factors for other climate domains and ages were not updated. 161 

 162 

 163 
Table 2. Geospatial data components and sources currently used in the GFW model. Updated components and sources are denoted 164 
with an * and italics. This updates Table S3 in Harris et al. 2021.  165 

Model component Source 

Forest extent 2000   

Tree cover extent Hansen et al. 2013  

Mangrove forest extent Giri et al. 2018 

Tropical humid primary forest extent Turubanova et al. 2018 

Intact forest landscapes (boreal/temperate) Potapov et al. 2017 

Planted tree extent (plantations and tree crops) *Richter et al. 2024 (Spatial Database of Planted Trees v2.0) 

*Peatland extent 

Miettinen et al. 2016 (Indonesia and Malaysia) 

*Crezee et al. 2022 (Congo Basin) 

*Hastie et al. 2022 (Amazonian Peru) 

  Gumbricht et al. 2017 (<40° N) 

  *Xu et al. 2018 (>40° N) 

Oil palm extent 2000 Austin et al.  2017 (Indonesia) 

(areas excluded from model) Gaveau et al. 2014 (Borneo) 

 Miettinen et al.  2016 (Sumatra, Borneo) 

 Gunarso et al. 2013 (peninsular Malaysia) 

Carbon density 2000   

Aboveground live woody biomass density Updated from Zarin et al. 2016 (non-mangrove) 

 Simard et al. 2019 (mangrove) 

*Belowground biomass density ratio *Huang et al. 2021 (root:shoot ratio for non-mangrove forests), 

with Mokany et al. 2006 filling in gaps 

Soil organic carbon density Hengl et al. 2017 (non-mangrove) 

  Sanderman et al. 2018 (mangrove) 

Ecological zone (for deadwood and litter) FAO 2012 

Elevation (for deadwood and litter) Farr et al. 2007  

Mean annual precipitation (for deadwood and 

litter) 

Fick and Hijmans 2017  

Activity data   

*Tree cover loss *Hansen et al. 2013 (2001–2023) 

*Tree cover gain *Potapov et al. 2022 (2000–2020) 
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*Burned areas 

*Tyukavina et al. 2022 (tree cover loss from fires, updated 

through the year 2023) 

Emission factors   

*Drivers of forest loss *Curtis et al. 2018 (updated through year 2023) 

Climate zone  FAO 2012 

Fire combustion and emission factors IPCC 2019 (Tables 2.5 and 2.6) 

Removal Factors   

Ecological zone FAO 2012 

Mangrove removal factors IPCC 2014a (Wetlands Supplement, Tables 4.4 and 4.5)  

US forest type Ruefenacht et al. 2008 

US stand age Pan et al. 2011 

US removal factors (by region x type x age class) Forest Inventory and Analysis Program 

Europe forest type Brus et al. 2011 

Europe removal factors (by forest type) IPCC 2019 (Table 4.11) 

 FAO Planted Forest Thematic Study 

 Portugal’s National GHG inventory 

*Planted tree removal factors *Richter et al. 2024 (Spatial Database of Planted Trees v2.0) 

(including uncertainties) 

Agroforestry removal factors IPCC 2019 (Tables 5.1 and 5.3) 

Natural regrowth removal factors (<20 yrs) Cook-Patton et al. 2020 

Primary forest removal factors IPCC 2019 (Table 4.9) 

*Old secondary forest removal factors (>20 yrs) *IPCC 2019 (Table 4.9 for non-temperate forests only) 

*IPCC 2019/IPCC 2023 (Table 4.9 Corrigenda 4 for temperate 

forests (including uncertainties)) 

Harvested wood products (country only)  

*Production, import and export statistics of 

sawnwood, wood-based panels and paper & 

paperboard 

*FAOSTAT (2001–2021) 

 166 

2.1.1 Annually updated data 167 

We have updated four inputs to the framework annually since the original GFW model was published: tree cover loss, dominant 168 

driver of tree cover loss, burned area, and country-level transfers to harvested wood products (HWP). In the original version, 169 

they extended to 2019, 2015, 2019, and 2015, respectively. The first three inputs now extend through 2023 and we plan to 170 

continue to update them annually, lagging one year behind the calendar year. Country-level HWP transfers now extend through 171 

year 2021 based on data from FAOSTAT that currently extend through year 2022 (Access date: 5 May 2024). These constitute 172 

the core updates to the model each year.  173 

2.1.2 Updated activity data  174 

Beyond the annual updates described above, we have made four additional updates to the model’s activity data: 175 
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1. Temporal coverage of tree cover gain: Tree cover gain originally covered 2000–2012 but now covers 2000–2020. In 176 

the original version, tree cover gain covered seven fewer years than tree cover loss did (12 years of tree cover gain 177 

vs. 19 years of tree cover loss); currently, tree cover gain covers three fewer years than tree cover loss (20 years vs. 178 

23 years). Tree cover gain is still reported in one interval, so the framework does not assign gain to a specific year 179 

within 2000–2020. The shorter duration of tree cover gain and its lack of information on timing is an ongoing 180 

limitation of the inputs to the framework (see Sects. 4.3 and 4.4).  181 

2. Burned area extent: The original version of the GFW model used MODIS burned area (500-m resolution) (Giglio et 182 

al. 2018), but now it uses Global Land Analysis & Discovery Lab tree cover loss due to fires (TCLF) (30-m resolution) 183 

(Tyukavina et al. 2022). This burned area product is designed to be used with GFC. As in the original version of the 184 

model, emissions from fires are included only where stand-replacing disturbances are detected by GFC, meaning that 185 

emissions from relatively low severity forest fires remain unquantified in the model.  186 

3. Organic soils extent: We added two new regional tropical peatland maps (Peru and Congo basin, Hastie et al. 2022 187 

and Crezee et al. 2022) and replaced the peat map above 40° N (Xu et al. 2018). These maps reflect a more recent 188 

understanding of the extent of organic soils in those regions. This is one of the few inputs to the model that composites 189 

regional maps with pan-tropical and global maps.   190 

4. Planted tree extent: Planted trees are part of managed ecosystems, and using distinct removal factors for planted trees 191 

instead of removal factors for natural forests better represents the associated carbon sequestration of these managed 192 

landscapes. The original version of the GFW model used SDPT v1.0 (Harris et al. 2019) but now it uses SDPT v2.0 193 

(Richter et al. 2024), which includes planted tree extent in 45 additional countries. Richter et al. defines planted trees 194 

as plantation forests and tree crops. This dataset aggregates maps of tree crops and planted forests globally in a 195 

bottom-up approach that captures roughly 90% of planted tree area globally circa 2020. Each polygon in the database 196 

has the most taxonomically resolved information available, from broad type of production (e.g. orchard) to species.  197 

2.1.3 Updated emission and removal factors 198 

We have made four updates to emission and removal factors:  199 

1. Belowground biomass (R:S ratio): The original version of the GFW model used a single R:S ratio of 0.26 to estimate 200 

belowground biomass applied globally to non-mangrove forests (Mokany et al. 2006). (mMangroves had separate 201 

ratios from IPCC 2014a.). The updated model uses a global R:S map from Huang et al. 2021 to incorporate spatial 202 

variability in R:S, ranging from less than 0.15 to greater than 0.5. Because the R:S map does not cover all land where 203 

forest is present in our framework (e.g., some near-shore islands), we interpolated missing R:S pixels from nearby 204 

ones; where interpolation was not possible (e.g., remote Pacific islands), we retained the original default ratio of 0.26. 205 

We applied this ratio map to aboveground biomass in the year of tree cover loss to calculate carbon emissions from 206 

loss of belowground biomass. We also used the R:S map to calculate carbon removals by belowground biomass based 207 
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on carbon removals by aboveground biomass. Including this input makes the belowground carbon stocks and removal 208 

factors reflect local forest types better than using a single, global ratio.  209 

2. Planted tree removal factors and their uncertainties: SDPT v2.0 (Richter et al. 2024) has a removal factor and 210 

uncertainty associated with every planted tree (planted forest and tree crop) polygon included in the database. The 211 

removal factors of polygons that were in SDPT v1.0 are largely unchanged in SDPT v2.0, but polygons newly 212 

included in SDPT v2.0 have been assigned removal factors based on information about what kind of planted tree is 213 

present using the most taxonomically resolved information available.  214 

3. Older secondary (>20 year) temperate forest removal factors and their uncertainties: The original version of the 215 

framework applied Tier 1 removal factors published in Table 4.9 of IPCC 2019 for primary and some secondary (>20 216 

years) temperate forests. In 2023, IPCC released corrected default removal factors and their uncertainties for 217 

temperate secondary forests in North and South America, which are also applied in the GFW model to >20 year old 218 

forests in temperate ecozones outside of the United States and Europe where no better sources of data are currently 219 

available. In the model update, we replaced the original IPCC defaults with the corrected ones.  220 

4. Global Warming Potential (GWP) values: The original version of the framework converted non-CO2 emissions from 221 

CH4 and N2O into equivalent units of CO2 using GWP values published in IPCC’s Fifth Assessment Report. The 222 

framework now uses GWP values for CH4 and N2O from IPCC’s Sixth Assessment Report. This affects gross 223 

emissions and net flux outputs only where non-CO2 emissions are estimated (organic soil drainage, fires in organic 224 

soils, or biomass burning).  225 

2.2 Updated uncertainty analysis 226 

With the original version of the framework, we presented an uncertainty analysis that used an error propagation approach for 227 

inputs for which uncertainties (variances) were available and potentially substantial. This approach underlies Approach 1 228 

(simple error propagation) outlined in the IPCC Guidelines and produces similar results but reflects exact calculations of 229 

variances and standard deviations, whereas IPCC Approach 1 to uncertainty analysis is an approximated approach that yields 230 

95% confidence intervals (IPCC 2019). For the model update, we repeated this uncertainty analysis with all the changes and 231 

updates to the framework described in Sect. 2.1, using the same error propagation approach and the same components as used 232 

in the original analysis.  233 

2.3 Anthropogenic fluxes from “managed” forests 234 

GFW’s Earth observation-based modelling framework does not (and cannot) differentiate anthropogenic and non-235 

anthropogenic fluxes from forests. Rather, it includes fluxes from all forest land and therefore the combination of direct 236 

anthropogenic, indirect anthropogenic, and natural fluxes. Thus, results from our model are not directly comparable with those 237 

from NGHGIs or bookkeeping models, each of which define anthropogenic fluxes with different system boundaries for their 238 
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specific purposes (Grassi et al. 2022, Grassi et al. 2023). Under UNFCCC decisions and IPCC methodological guidance, 239 

countries report only anthropogenic fluxes in their NGHGIs, approximated by “managed land” (IPCC 2006, Ogle et al. 2018). 240 

Therefore, if GFW’s forest carbon flux monitoring framework is to serve as an independent, Earth observation-based point of 241 

reference for NGHGIs, its results must be able to be reported in a conceptually similar way covering the same scope. In doing 242 

so, we adopted the proposal of Grassi et al. (2023) in adjusting global data to the NGHGI framework for analyses focused on 243 

country policy or action. , limiting the scope of our comparison to CO2 fluxes only. In translating the GFW model’s fluxes into 244 

the NGHGI reporting framework, we did what IPCC guidelines direct countries to do when compiling and reporting their 245 

inventories rather than what countries necessarily do in practice for their inventories. The goal of this translation exercise was 246 

not to reproduce as closely as possible how countries prepare their NGHGIs as closely as possible using the GFW model, to 247 

achieve maximum quantitative similarity to NGHGIs, or to reconcile the GFW flux model with NGHGIs but rather to present 248 

GHGCO2 fluxes from a globally consistent, geospatial approach in the same conceptual terms that national policymakers use. 249 

We developed a three-step process to translate the GFW model’s gross CO2 emissions and removals into three IPCC reporting 250 

categories: anthropogenic flux from managed forest land, emissions from deforestation (anthropogenic), and non-251 

anthropogenic flux from unmanaged forest (Table 3). It builds upon the simpler comparison between the GFW model and 252 

NGHGIs conducted in the IPCC Sixth Assessment Report (Nabuurs et al. 2022), in which anthropogenic fluxes from the 253 

former GFW model were those outside primary forests in the tropics and intact forest landscapes in the non-tropics. This 254 

translation process does not change the GFW model’s bottom-line net flux estimates; rather, it reclassifies the gross CO2 fluxes 255 

by intersecting the GFW model fluxes with other contextual geospatial data to provide fluxes more conceptually aligned with 256 

those of NGHGIs. The first step (Sect. 2.3.1) assigned each country to one of three cases based on how their NGHGI applies 257 

the managed land proxy (Fig. 2). The second and third steps reclassified the GFW model’s emissions (Sect. 2.3.2) and removals 258 

(Sect. 2.3.3), respectively, into three IPCC reporting categories according to the three cases assigned in step 1 (Fig. 2). 259 

Emissions and removals within each IPCC reporting category were then summed to calculate net anthropogenic and non-260 

anthropogenic forest-related CO2 fluxes for each country. The GFW model calculates annual emissions, corresponding to the 261 

year of tree cover loss, but does not calculate annual removals and instead calculates removals as an annualized average over 262 

the entire model period. Thus, to generate timeseries from the GFW model using the NGHGI reporting categories, we 263 

calculated the average annual removals in each reporting category by dividing gross removals by the number of model years. 264 

The resulting time series for each reporting category is therefore the difference between the annual emissions for that year and 265 

the average annual removals.  266 

For this analysis, we used data from the GFW model for 2001–2022 to align with the temporal coverage of NGHGIs. We 267 

limited our comparison to CO2 fluxes only (i.e. excluding CH4 and N2O emissions from the GFW model) but note that some 268 

developing countries report do not separately report CO2 and non-CO2 emissions. Because the GFW model cannot currently 269 

report emissions from organic soil separately from all other emissions, we combined NGHGIs’ deforestation and organic soil 270 
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emissions (including emissions from forest land, from peat decomposition and peat fires typically associated to deforestation, 271 

and from agriculture soils) to achieve the same scope as the model. We excluded transfers into the harvested wood products 272 

pool from both data sources in this translation analysis because that is not a core element of our geospatial framework.  273 

Table 3. Translating GFW flux model gross CO2 emissions and removals to national greenhouse gas inventory (NGHGI) reporting 274 
categories. To calculate total net CO2 flux for IPCC reporting categories, GFW flux model emissions and removals were reclassified 275 
according to managed land status (managed vs. unmanaged) and driver of tree cover loss. Following IPCC guidelines, for Case 2 countries 276 
we used information about the driver of tree cover loss to reassign initially delineated unmanaged forest to managed forest where direct 277 
human activity is observed to result in tree cover loss (i.e. forestry, commodity-driven deforestation (CDD), urbanization, and shifting 278 
agriculture). Thus, all associated fluxes from unmanaged forests reassigned to managed forests are reported in the corresponding 279 
anthropogenic IPCC reporting category (anthropogenic forest land flux and deforestation).  280 

 281 

 282 

* Includes emissions from not only the initial delineation of managed forests, but also from tree cover loss in unmanaged forests reassigned to managed forests due to direct human 283 
activity.  284 

1 To calculate the maximum emissions in anthropogenic forest land, we count emissions from shifting agriculture (shifting ag) in secondary forest toward the anthropogenic forest 285 
land flux and emissions from shifting agriculture in primary forests toward deforestation.  286 

2 To calculate the maximum emissions from deforestation, we count all emissions from shifting agriculture in both primary and secondary forest toward deforestation. This also 287 
corresponds to a larger sink in anthropogenic forest land. 288 

 289 
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2.3.1 Managed land delineation   290 

In the first step (top of Table 3), we assigned countries to one of three cases based on careful review of NGHGIs (Melo et al., 291 

in preparation) and the availability of in-country information on the distribution of mManaged and uUnmanaged forests. These 292 

cases describe which land is considered managed and unmanaged according to information that countries provide in their 293 

NGHGIs regarding their use of the managed land proxy (Fig. 2). Case 1 included 46 countries (primarily UNFCCC Annex 1 294 

countries, i.e. advanced economies with annual GHG reporting commitments) that explicitly consider all forest land managed 295 

and another three countries (China, India, Indonesia) for which we assumed that all forest land is considered managed, based 296 

on the information provided in their NGHGIs. Case 2 included all other countries, which do not consider all forest to be 297 

managed and thus consider some forest to be unmanaged. For the three Case 2a countries (Brazil, the United States, and 298 

Canada), we used the georeferenced boundaries of managed and unmanaged lands that they use in their NGHGIs. The 299 

remaining 143 countries (UNFCCC non-Annex 1 countries, i.e. countries with historically less stringent GHG reporting 300 

commitments) either report no information or not enough details regarding the use of the managed land proxy and its extent. 301 

For example, Russia’s inventory explicitly includes unmanaged land but reports areas by administrative unit rather than 302 

spatially, which is not adequate for our analysis. For these Case 2b countries, we approximated managed forest in tropical 303 

regions as forests outside humid tropical primary forests from 2001 (Turubanova et al. 2018) and in extratropical regions as 304 

forests outside intact forest landscapes from 2000 (Potapov et al. 2017). For Case 2 countries, the initial managed forest 305 

delineation was modified in steps 2 and 3 to include unmanaged land reassigned to managed land due to direct anthropogenic 306 
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activity. We note that while countries’ definitions of forest land differ, we instead used a single, global definition of forest as 307 

defined in Sect. 2, with a tree cover density >30% (Hansen et al. 2013).  308 

 309 

Figure 2. Country representation of managed land in their national greenhouse gas inventories (NGHGIs). Countries consider fluxes 310 
by forests in several ways in their national greenhouse gas inventories (Melo et al. in preparation). Some countries explicitly or implicitly 311 
consider all forests to be managed and thus include all forest fluxes in their NGHGIs (Case 1). The rest do not consider all forests to be 312 
managed. Only a few countries (Case 2a) use maps of managed lands to delineate anthropogenic fluxes from non-anthropogenic fluxes. The 313 
rest are not clear in their NGHGIs about the spatial extent to which forests are or are not considered managed and thus which forest fluxes 314 
are included in their inventories (Case 2b). 315 

 316 

 317 
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2.3.2 Reclassifying gross carbon dioxide emissions 318 

In the second step (middle of Table 3), we combined the initial delineation of managed forests described in Sect. 2.3.1 with a 319 

map of drivers of tree cover loss (Curtis et al. 2018, updated through 2023) to partition the GFW model’s gross CO2 emissions 320 

into IPCC reporting categories because not all of the GFW model’s gross emissions are from deforestation. For Case 1 321 

countries, which classify all forests as managed, all emissions occurring within country borders were anthropogenic and no 322 

emissions were non-anthropogenic. For Case 2 countries, all emissions within managed forest boundaries (defined in Sect. 323 

2.3.1) were anthropogenic and the remaining emissions within initially delineated unmanaged forest boundaries were either 324 

anthropogenic or non-anthropogenic depending on the driver of the tree cover loss. We expanded our definition of managed 325 

forests to include initial unmanaged forest as defined in Sect. 2.3.1 where there is a direct human activity, such as forest harvest 326 

or deforestation (IPCC 2006). Thus, we considered all emissions from direct human activity to be anthropogenic. The 327 

remaining emissions—from natural or semi-natural drivers of tree cover loss, such as wildfire, occurring within unmanaged 328 

forest boundaries—were the only emissions we considered to be non-anthropogenic.  329 

Using this delineation of anthropogenic vs. non-anthropogenic, we reclassified the GFW model’s gross emissions into three 330 

categories that are conceptually aligned with IPCC reporting categories (Table. 3): anthropogenic emissions on managed forest 331 

land (“forest remaining forest” plus “non-forest land converted to forest”), anthropogenic emissions from deforestation (“forest 332 

converted to non-forest land”), and emissions on unmanaged forest land that are non-anthropogenic by definition (“forest 333 

remaining forest”). 334 

Anthropogenic emissions from managed forest land. For all countries, this category included emissions from wildfire and the 335 

small amount ofnegligible emissions not assigned to a driver (Curtis et al. 2018) occurring within managed forest areas. This 336 

category also included emissions from forestry regardless of where they occurred (inside or outside initial delineated managed 337 

land boundaries as defined in Sect. 2.3.1) because harvest activity is a direct human activity and thus any tree cover loss from 338 

forestry activity results in the reclassification of unmanaged forest to managed forest. 339 

Anthropogenic emissions from deforestation. For all countries, this category was the sum of all emissions from tree cover loss 340 

due to commodity-driven deforestation and urbanization, regardless of where they occurred, as well as emissions from the loss 341 

of intact/primary forests in areas of shifting agriculture because this is considered a permanent change in land use.  342 

Non-anthropogenic emissions from unmanaged forests. For Case 1 countries, we assumed based on their NGHGIs that all 343 

forests are considered managed and thus no emissions are considered non-anthropogenic. The two categories above represent 344 

all CO2 emissions from the GFW model for those countries. For Case 2 countries, which have some unmanaged forest (as 345 

defined in Sect. 2.3.1), non-anthropogenic emissions were the sum of the remaining emissions outside managed forests: 346 

emissions from tree cover loss due to wildfires and the (small) unassigned drivers class (Curtis et al. 2018). Although some 347 
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fires in unmanaged land can be caused by humans, we classified emissions from them as non-anthropogenic to be consistent 348 

with IPCC guidelines; separating emissions from human-caused fires in unmanaged land and reporting them as anthropogenic 349 

forest land emissions could be improved in further iterations of this analysis.  350 

It is often not clear to which land use categories emissions from shifting agriculture cycles are allocated in NGHGIs, because 351 

this distinction is not required by the IPCC Guidelines (IPCC 2019). Following Curtis et al. (2018), shifting agriculture 352 

landscapes are defined as “small- to medium-scale forest and shrubland conversion for agriculture that is later abandoned and 353 

followed by subsequent forest regrowth.” To highlight the sensitivity of how emissions from shifting agriculture landscapes 354 

are estimated, we created two scenarios for our emissions reclassification. In one scenario, we calculated the maximum 355 

emissions from deforestation by including all emissions from the loss of both primary and secondary forests within shifting 356 

agriculture landscapes and therefore no emissions from shifting agriculture are considered to be occurring in forest remaining 357 

forest. In the other scenario, we calculated the maximum emissions from managed forest land by including emissions from the 358 

loss of secondary forests in shifting agriculture landscapes in the anthropogenic forest land flux. This transferred a subset of 359 

emissions considered to be deforestation under the alternative scenario to forest land. The remaining emissions from loss of 360 

intact/primary forests due to shifting agriculture were still considered deforestation emissions, as described above. The two 361 

scenarios do not change the total net anthropogenic forest flux (fluxes from forest land plus deforestation) because the same 362 

emissions are assigned to either category. In both scenarios, emissions from the loss of intact/primary forests due to shifting 363 

agriculture were always classified as deforestation because we considered them to arise from a permanent change from forest 364 

to a non-forest land use.  365 

 366 

2.3.3 Reclassifying gross removals 367 

In the third step (bottom of Table 3), we partitioned carbon removals occurring on forest land as either anthropogenic or non-368 

anthropogenic. No forest carbon removals were included in deforested land; any removals in pixels with tree cover loss were 369 

assigned to either anthropogenic forest land removals or non-anthropogenic forest removals, as described below. Since 370 

NGHGIs do not treat removals uniformly, we used the three managed land proxy cases to align GFW flux model removal 371 

estimates with how countries report removals in their NGHGIs (Fig. 2). 372 

For Case 1 countries, which explicitly or implicitly consider all forest land to be managed, we classified all removals across 373 

the full GFW model extent as anthropogenic forest land. No removals for these countries were considered non-anthropogenic. 374 

For Case 2 countries, we separated removals into anthropogenic and non-anthropogenic categories following the same spatial 375 

proxy used to delineate managed forests (Sect. 2.3.1). In this approach, we classified all removals in managed forest land as 376 

anthropogenic, including unmanaged forest reclassified as managed forest due to tree cover loss from forestry and shifting 377 

agriculture. All removals in unmanaged forest land were classified as non-anthropogenic.  378 



   

 

18 

 

3 Results 379 

3.1 Emissions, removals, and net fluxes from GFW’s updated flux model 380 

In the updated GFW flux model, average annual global gross emissions from stand-replacing forest disturbances were 9.0 Gt 381 

CO2e yr-1 between 2001 and 2023 (with 98% from CO2 and 2.4% from CH4 and N2O), average annual gross removals were 382 

14.5 Gt CO2 yr-1, and the average annual net forest ecosystem sink was -5.5 Gt CO2e yr-1 (Table 4). Globally, the HWP pool 383 

was an additional net carbon sink of -0.20 Gt CO2 yr-1, resulting from the transfer of carbon out of forest ecosystems and into 384 

the HWP pool. Although the original and revised values in Table 4 are not directly comparable due to different temporal 385 

coverage and model updates, it does give a high-level view of the degree to which the collective changes to the model have 386 

affected (or not affected) fluxes. Figure 3 maps the updated gross emissions, gross removals, and net GHG flux for forests, 387 

and are derived from Gibbs et al. 2024a, b and, Gibbs et al. 2024b, and Gibbs et al. 2024c -c, respectively.  388 

Our framework allows flexible, yet consistent, estimates of carbon fluxes in a variety of forest types, spatial scales, and regions. 389 

For example, defining forest as tree cover >10% instead of >30% (Hansen et al. 2013) results in gross emissions of 9.4 Gt 390 

CO2e yr-1, gross removals of -17.5 CO2 yr-1, and a net sink of -8.1 CO2e yr-1. Tropical and subtropical forests continued to be 391 

the largest contributors to global forest carbon fluxes, contributing 74% of gross emissions (6.7 Gt CO2e yr-1) and 60% of gross 392 

removals (-8.8 Gt CO2 yr-1). However, temperate forests are the largest net sink, comprising 40% of the global net sink (-2.2 393 

Gt CO2e yr-1). Together, humid tropical primary forests (Turubanova et al. 2018) and intact forest landscapes (Potapov et al. 394 

2017) outside the tropics were a net carbon sink of -0.26 Gt CO2e yr-1 (average annual emissions of 2.8 Gt CO2e yr-1 and 395 

removals of 3.1 Gt CO2 yr-1). Forests within protected areas (UNEP-WCMC 2024) accounted for 31% (-1.7 Gt CO2e yr-1) of 396 

the global net carbon sink. In 2023, gross emissions from Canada’s wildfires exceeded emissions from all humid tropical 397 

primary forests loss that year (3.0 vs. 2.4 Gt CO2e, respectively; MacCarthy et al. 2024). Updated emissions, removals, and 398 

net flux statistics by country and smaller administrative levels can be found on www.globalforestwatch.org.   399 

 400 

Table 4. Average annual Fforest GHG fluxes by climate domain and globally, with uncertainties expressed as standard deviations, 401 
for the original (20010-2019) and updated revised models (2001-2023). Values in parentheses are the percent of the global flux that 402 
occurred in each climate domain. * denotes fluxes with major changes in the uncertainties in the revised GFW model (see Sect. 3.3). In 403 
addition, average annual gross emissions from the revised model for 2001-2019 is provided. The original and updated values are not directly 404 
comparable due to different temporal coverage and model updates. 405 

  Forest GHG fluxes Gt CO2e yr-1 (+ standard deviation) 

Climate 

domain 

Gross emissions Gross removals a Net GHG flux a 

Original Revised UpdatedRevised Original RUpdatedevised Original UpdatedRevised 

(2001–2019) (2001-2019) (2001–2023) (2001–2019) (2001–2023) (2001–2019) (2001–2023) 

Boreal 0.88 ± 0.42 (11) 1.3 (15) 1.4 ± 0.75 (16) -2.5 ± 0.96 (16) -2.5 ± 0.95 (17) -1.6 ± 1.1 (21) -1.1 ± 1.2 (20) 

http://www.globalforestwatch.org/
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Temperate 0.87 ± 0.60 (11) 1.0 (11) 0.93 ± 0.62 (10) -4.4 ± 48* (28) -3.1 ± 0.55* (22) -3.6 ± 48* (47) -2.2 ± 0.83* (41) 

Subtropical 1.0 ± 0.59 (12) 0.9 (10) 1.0 ± 0.93 (11)  -1.6 ± 0.56 (10) -1.7 ± 0.56 (12) -0.65±0.81 (8.6) -0.70± 0.80 (13) 

Tropical 5.3 ± 2.4 (66) 5.4 (64) 5.7 ± 2.4 (63) -7.0 ± 7.6 (45) -7.1 ± 7.6 (49) -1.7 ± 8.0 (22) -1.4 ± 7.9 (26) 

Global  8.1 ± 2.5 (100) 8.5 (100) 9.0 ± 2.7 (100) -16 ± 49* (100) -14.5 ± 7.7* (100) -7.6 ± 49* (100) -5.5 ± 8.1* (100) 

a The revised model does not have gross removals and net flux values for 2001-2019 because they are an annual average over the entire model period rather 406 

than a timeseries and thus cannot be subset by year.  407 



   

 

20 

 

 408 

Figure 3. Forest-related GHG fluxes (annual average, 2001–2023). a) Gross GHG emissions. b) Gross carbon dioxideCO2 removals. c) 409 
Net GHG flux. Fluxes are aggregated to 0.04 x 0.04° (approximately 4x4 km) cells for display purposes.  410 
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3.2 Effect of GFW model changes on forest carbon flux estimates 411 

Updates to the GFW flux model changed gross emissions, gross removals, and net flux over all spatial scales. Average annual 412 

gross emissions in the updated GFW model are 12% higher than in the original version, primarily due to higher gross annual 413 

emissions since 2019 (8.5 Gt CO2e yr-1 between 2001 and 2019 vs. 11.4 Gt CO2e yr-1 between 2020 and 2023). Updated gross 414 

annual removals are 7.3% lower than in the original model, primarily due to the use of corrected, lower IPCC Tier 1 removal 415 

factors for temperate forests, which are applied to 290 Mha of secondary forests in the framework, primarily throughout Eurasia 416 

and Canada. Annual average net GHG flux decreased accordingly by 28% from the original version because of both higher 417 

gross emissions and lower gross removals.  418 

Although we did not quantify the degree to which each change to the model individually affects emissions and removals 419 

because we implemented multiple changes simultaneously, we describe how the inputs changed and some general impacts on 420 

gross emissions and removals.  421 

Activity data: 422 

1. Temporal coverage of tree cover gain: The area of tree cover gain increased globally from 78 Mha in the original 423 

version (gain through 2012) to 130 Mha in the current version (gain through 2020). Carbon removals associated with 424 

areas of tree cover gain increased from -0.57 to -0.62 Gt CO2 yr-1. As in the original model, carbon removals occurring 425 

in these young (<20 years) forests remain relatively small compared to gross removals occurring in older, established 426 

forests that are much more extensive in total area (96% of gross removals occurred in older forests).   427 

2. Data source for burned area: Use of the new source of fire data with higher spatial resolution (TCLF) combined with 428 

an increase in forest fires across Australia, Spain, the United States and Canada between 2020 and 2023 led to an 429 

increase of global average annual burned area that coincided with tree cover loss from 4.3 Mha yr-1 (2001–2019) to 430 

6.0 Mha yr-1 (2001–2023). Global average emissions increased from 1.0 to 1.7 Gt CO2e yr-1 in areas where tree cover 431 

loss was identified as burnedattributed to fire.  432 

3. Data sources for organic soils extent: Improved data led to an increase in the extent of organic soils from 477 Mha to 433 

760 Mha and the area of tree cover loss on organic soils increased from 0.77 Mha yr-1 to 2.4 Mha yr-1. Emissions from 434 

organic soil drainage in areas with tree cover loss increased from 0.21 to 0.91 Gt CO2e yr-1, occurring primarily in 435 

Indonesia and Malaysia (17% and 3.1% of global total, respectively). Higher emissions from organic soil drainage is 436 

due to a combination of increased organic soil extent, planted tree extent, and tree cover loss compared to the original 437 

model.  438 

4. Data sources for planted tree extent: Planted forest and tree crop extent increased from 140 Mha to 230 Mha and tree 439 

cover loss in planted tree polygons increased from 42 Mha to 64 Mha.  440 

Emission and removal factors: 441 
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1. Data source for R:S ratios: The previous global R:S used across the full model extent was 0.26. Now, the average 442 

ratio of aboveground removals to belowground removals is 0.27 but with considerable geographic variation.     443 

2. Planted tree removal factors and their uncertainties: The average aboveground removal factor in planted trees 444 

originally was 3.2 t C ha-1 yr-1 but using SDPT v2.0 it is 2.3 t C ha-1 yr-1. Global planted forests and trees were 445 

originally estimated to be a net carbon sink of -0.30 Gt CO2e yr-1 but using SDPT v2.0 they are now a net sink of -446 

0.54 Gt CO2e yr-1, with the increased area of planted trees compensating for the lower average removal factor.  447 

3. Older secondary (>20 year) temperate forest removal factors and their uncertainties: Older secondary temperate 448 

forests using IPCC Tier 1 removal factors (i.e., areas affected by this change) originally covered 310 Mha and now 449 

cover 290 Mha. Gross removals in these forests declined from -2.7 to -1.3 Gt CO2 yr-1.  450 

4. Global Warming Potentials: Updated model results of non-CO2 emissions associated with biomass burning and 451 

drainage of organic soils were negligibly impacted by using updated GWPs.  452 

3.3 Updated uncertainty analysis 453 

Nearly all changes to the framework are represented in the error propagation approach and therefore affect the global and 454 

climate domain uncertainty analyses to some degree. However, the largest change to the uncertainty analysis in terms of input 455 

values was the corrected IPCC Tier 1 temperate forest removal factors, which the model applies across large areas of Eurasian 456 

and Canadian forests. Some of the largest changes for removal factors and their uncertainties include temperate mountain 457 

forest >20 years old [(previously 4.4 t aboveground biomass (AGB) ha-1 yr-1 + 100.7 (+ standard deviation); now 2.1 + 0.02 t 458 

AGB ha-1 yr-1)] and temperate oceanic forest >20 years old [(previously 9.1 t AGB ha-1 yr-1 + 20.2; now 4.9 + 0.25 t AGB ha-459 

1 yr-1)]. We did not formally assess the contributions of individual model changes to uncertainty because the change in IPCC 460 

Tier 1 temperate forest removal factor uncertainties was so dominant.  461 

Uncertainty (reported as one standard deviation) in temperate gross removals declined from 48 Gt CO2 yr-1 in the original 462 

GFW model to 0.55 Gt CO2 yr-1, with uncertainty for gross emissions in temperate forests his biome increasing slightly from 463 

0.60 to 0.62 Gt CO2e yr-1 and uncertainty for net flux decreasing from 48 to 0.83 Gt CO2e yr-1 (Table 4). Reduced uncertainty 464 

in temperate forest gross removals propagated to reduced uncertainty in global gross removals and net flux. In the uncertainty 465 

analysis for the current version of the model, tropical gross removals has the highest uncertainty, driven by relatively high 466 

uncertainty in IPCC’s Tier 1 removal factors, which the GFW model applies to tropical primary forests and older secondary 467 

forests. Large uncertainties for climate domain and global net flux estimates should be interpreted with caution; their 468 

uncertainties are proportionately very large in part because net flux they reflect the sum of negative (removals) and positive 469 

(emissions) terms, compounding the addition of their uncertainties. 470 
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3.4 Anthropogenic fluxes from “managed” forests 471 

When gross CO2 emissions and carbon removals from the GFW flux model for 2001–2022 were reclassified into NGHGI 472 

reporting categories, the anthropogenic net flux in managed forest land ranged between -6.89 and -8.56 Gt CO2e yr-1 (with and 473 

without emissions from shifting agriculture in secondary forests, respectively) and emissions from deforestation ranged 474 

between 3.3 and 5.0 Gt CO2e yr-1 (without and with emissions from shifting agriculture in secondary forests, respectively) 475 

(Fig. 4, Table A1). The resulting net anthropogenic forest flux—the combined flux from both anthropogenic forest land and 476 

deforestation—was -3.56 Gt CO2e yr-1. The non-anthropogenic net sink was -2.2 Gt CO2e yr-1, comprised of -2.5 Gt CO2e yr-477 

1 removals and 0.372 Gt CO2e yr-1 emissions from fires and tree cover loss without an assigned driver in unmanaged forests. 478 

The difference in global net flux estimates between the untranslated GFW model (-5.5 Gt CO2e yr-1) and the NGHGI-translated 479 

one is that the latter includes only anthropogenic forest-related CO2 fluxes in managed land, while the former also includes 480 

fluxes from unmanaged land and emissions from CH4 and N2O. The combined NGHGI-translated anthropogenic and non-481 

anthropogenic forest flux sink differs is about by about 0.23 Gt CO2e yr-1 from larger than the untranslated net flux (-5.8 vs. -482 

5.5 Gt CO2e yr-1, respectively) because the former does not include CH4 and N2O emissions, does not include fluxes from 2023 483 

and , and does not include fluxes from 32 countries (mostly small island countries), which did do not have comparable 484 

NGHGIs. 485 

Under the scenario which included emissions from shifting agriculture from secondary forests in deforestation (Fig. 4, hatched 486 

bars), GFW's maximum estimate for global deforestation emissions aligned with the combined NGHGI deforestation and 487 

organic soil emissions (5.0 Gt CO2e yr-1). In that scenario, GFW's corresponding maximum estimate for global net sink in 488 

anthropogenic forest land was larger than estimated by NGHGIs. Under the alternative scenario, which included emissions 489 

from shifting agriculture in secondary forests in the anthropogenic forest land flux (Fig. 4, non-hatched bars), GFW's minimum 490 

estimate for global net sink in anthropogenic forest land was similar to the NGHGI net forest sink (-6.6 Gt CO2 yr-1), but 491 

GFW's corresponding minimum estimate for global deforestation emissions was lower than estimated by NGHGIs. The 492 

combined GFW flux model net anthropogenic forest sink in managed lands is 1.92.0 Gt CO2e yr-1 greater than in NGHGIs (-493 

1.5 Gt CO2 yr-1).  494 

For Non-Annex 1 countries, the GFW model high and low estimates for forest land and deforestation bracketed the 495 

corresponding NGHGI fluxes. However, GFW estimated the net anthropogenic forest flux for Non-Annex 1 countries to be a 496 

small net anthropogenic sink while NGHGIs estimates them to be a small net anthropogenic source. For Annex 1 countries, 497 

deforestation emissions from the GFW model were much lower than from NGHGIs (0.046–0.049 and 0.55 Gt CO2e yr-1
,
 498 

respectively) and the net forest sink was somewhat larger (-3.12 and -2.3 Gt CO2e yr-1
,
 respectively).  499 

 500 
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Figure 4. Comparison of average annual forest carbon fluxes (2001–2022) between national greenhouse gas inventories (NGHGI) 503 
and the updated GFW flux model. For the GFW flux model, net anthropogenic cforest flux is calculated as the sum of the net anthropogenic 504 
forest land flux in managed forests and deforestation (Sect. 2.3). Non-anthropogenic forest flux is calculated as emissions and removals 505 
occurring outside managed forests. Because country reporting on emissions from the loss of secondary forests associated with cycles of 506 
shifting agriculture is ambiguous, these emissions are shown for the GFW model as hatched bars to indicate how they impact totals depending 507 
on the reporting category (forest land or deforestation). Results from the GFW model are for CO2 fluxes only and NGHGI results have also 508 
been limited to CO2 fluxes except for a few developing countries where non-CO2 emissions could not be separated.   509 

Although the magnitude of the global GFW model estimates for deforestation emissions and the anthropogenic sink in 510 

forests align with the aggregated NGHGIs for 2001–2022 under different scenarios, their trends through timefrom 2001 to 511 

2022 do not agree (Fig. 5). Both globally and for Non-Annex 1 countries, the NGHGIs suggest that from 2001 to 2022 forest 512 

land became a slightly larger sink and deforestation emissions lacked a clear trend. However, the GFW flux model results 513 

suggest the opposite: a reduced sink in forest land and increased deforestation emissions. The forest land flux and 514 

deforestation emissions from NGHGIs and the GFW model for Non-Annex 1 countries appear to converge in the last 10 515 
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years (roughly -6 Gt CO2 yr-1 and 5 Gt CO2 yr-1, respectively). For Annex 1 countries, the forest land sink decreased much 516 

more according to the GFW model than NGHGIs, while deforestation emissions stayed fairly constant in both. 517 
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 519 

Figure 5. Comparison of forest carbon fluxes timeseries (2001–2022) between national greenhouse gas inventories (NGHGIs) and 520 
the updated GFW flux model for Non-Annex 1, Annex 1 countries, and globally. NGHGI values shown here exclude any fluxes from 521 
harvested wood products, and deforestation emissions are the combined emissions from both deforestation and organic soils to conceptually 522 
align with the scope of fluxes from the GFW framework. For the world and Non-Annex 1 countries, GFW model results are shown in two 523 
timeseries: one where emissions from shifting agriculture in secondary forests is included in that reporting category and one where those 524 
emissions are not included. For the GFW model in Annex 1 countries, the two scenarios are essentially the same and thus we show only one 525 
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line. The GFW model has been limited to CO2 only; NGHGI data includes only CO2 except for a few developing countries where non-CO2 526 
emissions could not be separated. 527 

4 Discussion 528 

We focus our discussion on the following topics. First, we examine how the updated GFW forest flux model compares with 529 

results from a recent global estimate of forest fluxes by Pan et al. (2024) and the Global Carbon Budget (GCB). Second, we 530 

discuss how fully geospatial, Earth observation-based forest flux estimates can be translated into the reporting categories of 531 

NGHGIs and how transparency in both approaches can result in methodological improvements. Third, we discuss strengths 532 

and limitations of GFW’s Earth observation-based forest carbon flux model. Fourth, we outline future research topics priorities 533 

which provide partial solutions to the model’s current limitations. 534 

4.1 Comparison with other recent global flux estimates 535 

Pan et al. (2024) is a relevant comparison for the GFW model because both include only forests and report gross rather than 536 

net fluxes. Pan et al. (2024) estimated gross removals by forests, gross emissions from tropical deforestation, and the global 537 

forest carbon sink by synthesizing forest plot data (inventories and long-term monitoring sites) from 1990 onwards. The 538 

removals estimates are conceptually similar (e.g., both include established and new forests), but the emissions estimates have 539 

different geographic scope (global for GFW, tropical for Pan et al. 2024) (Table 5). The global net fluxes from Pan et al. 2024 540 

and the updated GFW model are remarkably similar given their entirely different approaches, and thus provide multiple lines 541 

of evidence for a net forest sink of around approximately 6 Gt CO2 yr-1. Differences in gross emissions and removals between 542 

the data sources likely arise from different scopes and system boundaries, but may be balanced out when combined in the 543 

global net flux. Pan et al. estimated higher tropical gross emissions than the GFW model did for the tropics and subtropics for 544 

2001-2019. When the GFW model’s gross emissions (CO2 only) are limited to the tropics and subtropics and one geospatially 545 

implemented definition of deforestation (tree cover loss due shifting agriculture in primary forest, and all commodity- and 546 

urbanization-driven tree cover loss), it estimates 3.2 Gt CO2 yr-1, well below the tropical deforestation estimate of Pan et al. 547 

2024. More broadly including all tree cover loss in the tropics and subtropics, the GFW model estimates gross emissions of 548 

6.3 Gt CO2 yr-1.  549 

 550 

 551 

 552 

 553 
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Table 5. Comparison of GFW flux model results to Pan et al. 2024 and the Global Carbon Budget (GCB). Estimates from the three 554 
data sources are not directly comparable due to differences in scope, data, methodologies and reporting structure. GFW model fluxes are 555 
limited to 2001–2022 for comparability with the GCB. The GFW model and Pan et al. 2024 are for forests only, while the GCB also includes 556 
non-forest land as well. 557 

Flux 
GFW model, 2001-2022  

(Gt CO2 yr-1) 

Pan et al. 2024, 2000-2019 

(Gt CO2 yr-1) 

Global Carbon Budget, 2001-2022 

(Gt CO2 yr-1) 

Emissions 
8.6 (gross, all observed 

disturbances)a 

7.4 (gross, tropical 

deforestation)b 
4.9 (net, anthropogenic)c 

Removals 
-14.7 (gross, all forest ecosystems 

(-14.5) and HWP (-0.20))d 
-13 (gross, global) -11.4 (net, non-anthropogenic)e 

Net -6.1 (net, all forests)ef -5.6 (net, global) -6.4 (net, all land) 

a Gross emissions from all forest disturbances (anthropogenic and non-anthropogenic) observed from Landsat data for the period 2001–2022. Estimate includes 558 

CO2 only for comparability with GCB; non-CO2 emissions are 0.19 Gt CO2e yr-1. This value is lower than that of Table 4 (9.0 Gt CO2e yr-1) because this one 559 

includes emissions for 2001–2022 only and excludes non-CO2 gases. 560 
b Includes emissions from degradation.  561 
c Estimates only net direct anthropogenic effects, including deforestation, afforestation/reforestation, organic soils, and wood harvest. Gross fluxes higher but 562 

not reported. 563 
d Gross removals from all forest processes (direct, indirect and natural). HWP = transfers to harvested wood products. Removals are the annual average from 564 

2001-2023.  565 
e Represents the land sink associated with indirect human-induced effects such as CO2 fertilization, nitrogen deposition, etc. 566 
ef Calculated as the net balance between gross forest ecosystem emissions and removals (8.6 – 14.5 Gt CO2 yr-1) in this table plus an additional net removal 567 

of -0.20 Gt CO2 yr-1 into HWP. This value differs from that of Table 4 (-5.5 Gt CO2e yr-1) because this one uses lower gross emissions (see note a).  568 

 569 

Another point of comparison is the GCB, released by the Global Carbon Project each year. The GCB provides annual estimates 570 

of GHG emissions and carbon sinks, when relevant, for all sectors. The GFW flux model is not designed to represent the land 571 

portion of the global carbon cycle, nor is it directly comparable with the land use fluxes included in the GCB because of 572 

differences in definitions, scope, reporting structure, and methods (Friedlingstein et al. 2023). Three overarching differences 573 

are: 1) The GCB reports net sources and sinks for all land (including croplands, grasslands, semi-arid savannas and shrublands), 574 

while the GFW model reports gross emissions and removals for forests only; 2) the GCB categorizes fluxes by process into 575 

net anthropogenic emissions from land use change and forestry and the “natural” land sink, while the GFW model categorizes 576 

fluxes by activity data; 3) the GCB uses global bookkeeping models to estimate net anthropogenic carbon fluxes from land 577 

use and dynamic global vegetation models (DGVMs) to estimate net carbon fluxes from the natural land sink (Walker et al. 578 

2024), while the GFW flux model uses a single integrated approach to estimate emissions and removals. Nevertheless, 579 

comparison of the GFW model with the GCB is useful because they use entirely different data sources and approaches, and, 580 

as such, convergence between them would represent multiple lines of evidence towards the magnitude of the land sink. 581 
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We estimated a global net CO2 sink by forest ecosystems of -6.1 Gt CO2 yr-1 between 2001 and 2022, which is similar to the 582 

net CO2 land sink of -6.4 Gt CO2 yr-1 in the GCB for all terrestrial fluxes over the same period (Table 5). The GCB’s net 583 

emission estimate (4.9 Gt CO2 yr-1) is lower than GFW’s gross emissions estimate (8.6 Gt CO2 yr-1) partially because the 584 

GCB’s land-use change emissions (sources) reflect the net balance between anthropogenic emissions and anthropogenic 585 

removals associated with forest regrowth. Similarly, the GFW model’s gross removals reflect removals across all forest lands, 586 

including removals implicit (but unreported) in the GCB net land-use change estimate (Friedlingstein et al. 2023). Additional 587 

reclassification of fluxes from the GFW model into net anthropogenic fluxes from land-use change and the natural land sink 588 

may be possible for further comparisons with the GCB, as has been done between the GCB and NGHGIs (Schwingshackl et 589 

al. 2022).  590 

In the comparison of the original GFW model with the GCB, we included a non-spatial estimate of emissions from tropical 591 

forest degradation of 2.1 Gt CO2e yr-1 from Pearson et al. 2017 that potentially included some emissions from small-scale 592 

disturbances which we assumed our original model did not capture. For this and subsequent comparisons between the GFW 593 

flux framework and the GCB, we are discontinuing the inclusion of a non-spatial estimate of degradation emissions from a 594 

source external to our framework to maintain its internal consistency and fully geospatial nature. We acknowledge that the 595 

GFW model itself is likely omitting both emissions (e.g., from degradation not detected by TCL) and removals (e.g., from low 596 

canopy density or regenerating forest), but those are gaps that the model should be able to fill over time (see Sect. 4.4). Adding 597 

external data such as Pearson et al. 2017 risks double-counting emissions in the global total. As more geospatial data on 598 

distinguishing deforestation from degradation (Vancutsem et al., 2021) becomes available globally, and geospatial data on the 599 

emission and removal factors associated with forest degradation (Holcomb et al., 2024) and recovery (Heinrich et al., 2023b) 600 

becomes availableis developed, it may be possible to reintegrate forest degradation and its associated fluxes.  601 

4.2 Translating between Earth observation-based fluxes and NGHGIs  602 

The 6.7 Gt CO2 yr-1 gap in global land use emissions between NGHGIs and the GCB has been largely explained (Grassi et al. 603 

2023) and translation between NGHGIs on the one hand and bookkeeping models and DGVMs on the other is becoming 604 

routine (e.g., Schwingshackl et al. 2022); this work is the start of a similar process for explaining the gap between NGHGIs 605 

and Earth observation-based models, primarily through reallocation of emissions and removals to match NGHGIs’ land use 606 

categories and filtering the results with maps of managed forest as a proxy to delineate anthropogenic from non-anthropogenic 607 

fluxes. This approach follows the recommendations of a recent IPCC expert meeting on reconciling land use emissions (IPCC 608 

2024). Our goal in translating GFW model results into a NGHGI reporting framework was to provide independent estimates 609 

of forest-based GHG fluxes based on globally consistent, Earth observation-based forest flux data in the reporting categories 610 

that national policymakers use. It was not to reproduce how countries classify their managed land, report their forest fluxes in 611 

practice, or compare fluxes for individual countries. For example, we did not rely solely on the use of managed land polygons 612 

for Case 2a1 countries to define managed forest; if our observations detected direct human activity in unmanaged polygons, 613 
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we assigned those fluxes as anthropogenic forest land fluxes or deforestation. Thus, although this translation makes the GFW 614 

model more conceptually similar with NGHGIs in that the outputs are supposed to represent the same fluxes, they are still not 615 

necessarily entirely comparable because we did not exactly reproduce what countries do in practice within their NGHGIs. This 616 

It demonstratess that the GFW model is sufficiently flexible to approximate the system boundaries of anthropogenic fluxes in 617 

the IPCC reporting framework and that Earth observation-based models can be used to independently monitor anthropogenic 618 

GHG fluxes from forests if adequate country data are made publicly available. The 6.7 Gt CO2 yr-1 gap in global land use 619 

emissions between NGHGIs and the GCB has been largely explained (Grassi et al. 2023) and translation between NGHGIs on 620 

the one hand and bookkeeping models and DGVMs on the other is becoming routine (e.g., Schwingshackl et al. 2022); this 621 

work is the start of a similar process for explaining the gap between NGHGIs and Earth observation-based models, primarily 622 

through reallocation of emissions and removals to match NGHGIs’ land use categories and filtering the results with maps of 623 

managed forest as a proxy to delineate anthropogenic from non-anthropogenic fluxes. This approach follows the 624 

recommendations of a recent IPCC expert meeting on reconciling land use emissions (IPCC 2024). 625 

Although the conceptual alignment produces quantitatively similar annual average fluxes for the GFW model and NGHGIs 626 

globally and for Non-Annex 1 countries, the trends from NGHGIs and the GFW model differ (Fig. 5). For Non-Annex 1 627 

countries, where the trends in each data source are most evident, NGHGIs reported the forest land sink strengthening slightly 628 

while deforestation emissions fluctuated but were generally steady. The GFW model, on the other hand, reported a weakening 629 

sink in forest land and deforestation emissions that increased correspondingly. The decreasing forest land sink in the GFW 630 

model is due to the use of average annual gross removals over time (i.e. a constant value), combined with increasing (i.e. 631 

annually variable) tree cover losses not associated with deforestationThe tight association between the decreasing forest land 632 

sink and increasing deforestation emissions in the GFW model is due to the use of average annual gross removals over time 633 

(i.e. a constant value), with only gross emissions varying year to year. In NGHGIs, forest land and deforestation can both 634 

change through time and are therefore not driven by the trajectory of just one flux. The differing trends between the GFW flux 635 

model and aggregated NGHGIs is likely driven by generally increasing annual tree cover loss used in GFW (Hansen et al. 636 

2013), as that has the greatest interannual variability present in either dataset. Quantitative similarity between the GFW model 637 

and NGHGIs may be further improved when the GFW model’s gross removals can vary through time as well (Sect. 4.4). 638 

Moreover, for Non-Annex 1 countries, results from the GFW model and NGHGIs have converged for forest land and 639 

deforestation since around 2010, with the two GFW model scenarios bracketing NGHGI fluxes from both reporting categories 640 

after that year. This indicates that the GFW model, and the tree cover loss data that underlies its gross emissions, were perhaps 641 

under-detecting loss as detected byrelative to NGHGIs in the early part of the time series.  642 

Exploration of the differences between the GFW model and specific countries’ NGHGIs is beyond the scope of this paper; 643 

future work may include more detailed reclassification of the GFW model’s fluxes and comparisons with specific regions or 644 

countries. As an initial resource for country-level data, the European Union Joint Research Centre LULUCF Data Hub presents 645 
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graphs of national land fluxes according to their NGHGIs, the Global Carbon Budget, and the translated fluxes from the GFW 646 

model (https://forest-observatory.ec.europa.eu/carbon/fluxes). Further sub-setting results from our framework to differentiate 647 

anthropogenic and non-anthropogenic fluxes for comparison with NGHGIs for individual regions, countries, and other local-648 

scale analyses is possible and encouraged. Indeed, comparison of the GFW model and countries’ inventories is a way to explore 649 

the complementarity and discrepancies between Earth observation data and inventories, encourage transparency for both, and 650 

improve both approaches (Heinrich et al. 2023a). For example, one advantage of the GFW model, which includes forest fluxes 651 

undifferentiated by human contribution, is that it encompasses both anthropogenic and non-anthropogenic fluxes. When this 652 

translation exercise is conducted, GHG fluxes from managed land forests can be put in the context of all land forest fluxes and 653 

compared with fluxes from unmanaged landforests. Because NGHGIs are not required to estimate fluxes from unmanaged 654 

land (just report the area of unmanaged land), aggregation of NGHGIs does not provide context for managed land fluxes with 655 

unmanaged land fluxes. In other words, the GFW model can indicate the scale of non-anthropogenic fluxes that countries are 656 

not reporting in their NGHGIs (which are nevertheless affect atmospheric CO2 concentrations and global temperature), while 657 

NGHGIs are necessary for the GFW model to approximate the anthropogenic fluxes that are being monitored by countries and 658 

the focus of the Paris Agreement. An alternative approach for reconciling global models and NGHGIs would be for NGHGIs 659 

to report all land fluxes in the country, in both managed and unmanaged land (Nabuurs et al. 2023), but adoption of this seems 660 

unlikely. 661 

Future improvements to our flux reclassifications, which may improve regional or country-level comparisons, could include 662 

customizing tree cover density thresholds that align more closely with countries’ forest definitions to filter forest extent and 663 

thus the associated fluxes on a country-by-country basis. Additionally, we used maps of primary forests and intact forest 664 

landscapes from 2001 and 2000, respectively, to approximate the extent of unmanaged forests at the initial year of our model 665 

framework. Further refinement to the GFW model’s estimates of fluxes from managed lands could include recategorizing 666 

forests as “managed” or “unmanaged” using updated primary/intact forest boundaries in different years to reflect changes to 667 

countries’ managed land area over time whenever known. Furthermore, for simplicity, we considered all forest removals as 668 

forest land and did not differentiate the relatively small amount of removals from forest gain as “other land converted to forest”, 669 

which is a category that countries report in their NGHGIs. Another improvement would be to separate the emissions from 670 

drainage of organic soils and the emissions from deforestation in the GFW model; in the current translation, deforestation 671 

emissions and organic soil emissions are combined in both data sources. Separating them would further narrow the conceptual 672 

similarity, which would matter most in countries with high emissions from organic soils. Finally, emissions from fires 673 

occurring in unmanaged land could theoretically be differentiated into anthropogenic vs. non-anthropogenic using additional 674 

geospatial data, rather than our simplified assumption that all fires in unmanaged forests are non-anthropogenic in origin.   675 

While our geospatial, Earth observation-based framework permits estimation of fluxes for any geospatially defined forest and 676 

the inclusion (or exclusion) of any area of interest, it cannot distinguish between managed versus unmanaged land without 677 
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relevant spatial data. Thus, the ability of the GFW model, and Earth observation models in general, to be translated into IPCC 678 

categories largely depends on the transparency with which countries report on their managed lands. Only tThree countries 679 

have publicly available maps of managed and unmanaged forest (Canada, Brazil, and the United States) (Ogle et al. 2018)that 680 

currently apply the managed land proxy (Canada, Brazil, and the United States) have publicly available managed land maps 681 

(Ogle et al. 2018). For all remaining countries, the use and application of the managed land proxy was assumed based on the 682 

available information from country reports. In the absence of this information, primary or intact forest have been used as proxy 683 

for unmanaged forest. With sufficient transparency and flexibility in both the Earth observation-based products and NGHGIs, 684 

the differences between them can be explored. 685 

A crucial key driver of forest disturbance, and thus emissions, in the GFW model is shifting agriculture. However, the 686 

comparison between GFW and NGHGI is complicated by the fact that countries typically do not provide specific information 687 

on shifting agriculture in their land representation; according to the IPCC guidelines it can be implicitly included either in 688 

forest or in other land uses (e.g., cropland) (Grassi et al. 2023). Thus, we developed two scenarios for the treatment of fluxes 689 

from shifting agriculture (Fig. 4). Hopefully, as countries begin to submit their Biennial Transparency Reports under the Paris 690 

Agreement, their use of the managed land proxy, the treatment of shifting agriculture, and other exclusions from inventories 691 

will be progressively clarified and translation between approaches will become more accurate. Although they are time-692 

consuming to implement, the goal should be for the kinds of Earth-observation based adjustments described by Heinrich et al. 693 

2023a for Brazil to be achievable for all countries. This will ultimately facilitate comparisons between global models such as 694 

the GFW model and NGHGIs, provide national policymakers with timely geospatial data in their own reporting terms, and 695 

build confidence in the magnitude and trends of land-based anthropogenic emissions and sinks (Grassi et al. 2023).  696 

Future improvements to our flux reclassifications, which may improve regional or country-level comparisons, could include 697 

customizing tree cover density thresholds that align more closely with countries’ forest definitions to filter forest extent and 698 

thus the associated fluxes on a country-by-country basis. Additionally, we used maps of primary forests and intact forest 699 

landscapes from 2001 and 2000, respectively, to approximate the extent of unmanaged forests at the initial year of our model 700 

framework. Further refinement to the GFW model’s estimates of fluxes from managed lands could include recategorizing 701 

forests as “managed” or “unmanaged” using updated primary/intact forest boundaries in different years to reflect changes to 702 

countries’ managed land area over time whenever known. Furthermore, for simplicity, we considered all forest removals as 703 

forest land and did not differentiate the relatively small amount of removals from forest gain as “other land converted to forest”, 704 

which is a category that countries report in their NGHGIs. Another improvement would be to separate the emissions from 705 

drainage of organic soils and the emissions from deforestation in the GFW model; in the current translation, deforestation 706 

emissions and organic soil emissions are combined in both data sources. Separating them would further narrowrefine the 707 

conceptual similarity. This , which would matter most in countries with high emissions from organic soils. Finally, emissions 708 

from fires occurring in unmanaged land could theoretically be differentiated into anthropogenic vs. non-anthropogenic using 709 
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additional geospatial data, rather than our simplified assumption that all fires in unmanaged forests are non-anthropogenic in 710 

origin.   711 

 712 

4.3 Strengths and limitations of the GFW flux monitoring framework  713 

The strengths of the current GFW flux model are broadly similar to those described in Harris et al. 2021. Strengths include its 714 

transparency, operational nature, flexibility, and updatability as new information becomes available. Here we focus on the 715 

complementarity of the GFW model with other land flux monitoring approaches. A strength of flux monitoring based on Earth 716 

observation, and therefore geospatial, data is its geographic specificity, while maintaining spatial consistency. Knowing where 717 

changes in land use and land cover—and the emissions and removals they have caused—occurred may help identify what 718 

factors are responsible for these changes and how to attribute them to specific human activities. While detailed information 719 

from ground surveys and activity data generated using local training data may provide more detail and accuracy at local scales, 720 

understanding the magnitude and distribution of global change requires a combination of both ground- and space-based 721 

observations (Houghton and Castanho 2023). In this sense, it fills in the gaps among other flux monitoring approaches. In 722 

terms of global consistency, the GFW model’s key data are global in breadth and independent of data from the United Nations 723 

Food and Agriculture Organization, giving it a separate source for forest change data from bookkeeping models (Hansis et al. 724 

2015, Gasser et al. 2020, Houghton and Castanho 2023). Moreover, by having an open-source model based on publicly 725 

available data, others can evaluate the model, make improvements, and/or adapt it to use national or local rather than global 726 

data. Users can keep some defaults while replacing others with better or more specific information, and understand how results 727 

are impacted by the various changes made for regions or at scales that interest them most.  728 

Limitations are also broadly similar to those described in Harris et al. 2021. First, combining multiple spatially explicit data 729 

sources compounds the errors present in each individual source used in the framework. The GFW model partially manages 730 

this over larger areas through uncertainty propagation analysis to identify the relative contributions of different model 731 

components to uncertainty in each climate domain but cannot provide a pixel-level accuracy or uncertainty map. Extending 732 

the uncertainty framework to smaller regions (e.g., biomes or countries) would require uncertainty information for each of the 733 

individual data sources to be available at the desired scale of uncertainty propagation analysis. Second, the gain-loss approach 734 

of starting with baseline carbon densities and adding gains and subtracting losses over time has the potential to generate 735 

unrealistic estimates over longer periods due to drift from the original benchmark map. The GFW model could potentially 736 

address this through recalibration of carbon densities and forest extent at one or more intermediate years (e.g., 2010, 2015). 737 

Finally, the GFW model continues to have temporal limitations for both activity data and removal factors. The shorter gain 738 

period compared to tree cover loss in the original publication (12 vs. 19 years, respectively) has largely been addressed with 739 

the extension of tree cover gain through 2020. More limiting than the mismatch of tree cover loss and gain durations is the 740 



   

 

36 

 

one-time nature of tree cover gain. Because the year of tree cover gain is not known, the model does not necessarily include 741 

post-disturbance gross regrowth and removals, which may underestimate removals and decrease the net sink. This effect would 742 

be particularly pronounced in forest where disturbance occurs earlier in the model and regrowth is substantial. The , but the 743 

ttree cover loss timeseries also has its own inconsistencies (Weisse and Potapov 2021). The improvement in Earth observation 744 

data and changes to processing confounds apparent trends in gross emissions based on tree cover loss; it is difficult to determine 745 

how much the trends in emissions are due to real increases vs. better detection of disturbances through time. For removal 746 

factors, the concern is not so much temporal inconsistency as temporal constancy; the model makes the simplifying assumption 747 

of static removal factors, i.e. removal factors do not change as forests grow or climate changes over the 23-year model period. 748 

Thus, the GFW model does not incorporate growth-response curves or climate feedbacks, unlike in Earth System Models.  749 

4.4 Research priorities and Aanticipated model developments 750 

Beyond annual updates to the GFW model, we anticipate continued, substantial changes to and research around both activity 751 

data and emission and removal factors. These do not change the underlying conceptual framework but rather its implementation 752 

as the model.  753 

For activity data, anticipated model developments include: 754 

1. Global forest change data: The model will use annual forest extent, loss, and gain maps for greater temporal detail 755 

(similar to Potapov et al. 2019 or Turubanova et al. 2023) and improved representation of carbon dynamics. For 756 

example, the year of tree cover gain will be known (at least approximately) and repeated forest disturbances in the 757 

same location will be captured (unlike in Hansen et al. 2013), allowing the generation of annual time series of gross 758 

emissions, gross removals, and net flux. This should further enhance comparability of flux temporal trends in GFW’s 759 

fluxes with the GCB and NGHGIs.  760 

2. Drivers of forest loss: The model currently uses a global map of drivers of forest loss at 10-km resolution (Curtis et 761 

al. 2018, updated to 2023) but research on mapping drivers of forest loss is advancing. An anticipated 1-km resolution 762 

global map of drivers of forest loss (Sims et al., in review) will detect drivers that are not dominant at 10-km (and are 763 

therefore not mapped) but are important at smaller scales, such as loss due to small-scale infrastructure and built-up 764 

areas amid loss due to agricultural commodity expansion. Moreover, a separate driver class of forest loss due to 765 

natural disturbances would will further help with parsing natural and anthropogenic fluxes for translation into NGHGI 766 

reporting categories.  767 

3. Delineation of organic soils and their drainage status: The GFW model currently compiles several different data 768 

sources (Table 2), which have different definitions and resolutions, to map organic soil extent. The GFW model would 769 

benefit from a globally consistent organic soil map based on comprehensive aggregation of soil samples and 770 

standardized mapping methods (Hengl et al. in prep). However, it is not just the extent of organic soils but their 771 
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drainage that affects emissions in the GFW model. Thus, we are exploring improved mapping of organic soil drainage 772 

using recent improvements in delineating road networks (OSM 2010; Meijer et al. 2018; Engert et al. 2024), drainage 773 

canal networks (Dadap et al. 2021), and land cover (Potapov et al. 2022). More comprehensive maps of organic soil 774 

extent and drainage will improve where the GFW model reports these emissions, particularly affecting non-CO2 GHG 775 

emissions.  776 

4. Improved initial forest age map: The GFW model currently classified forested pixels into primary forest, secondary 777 

forest > 20 years, and secondary forest < 20 years old in 2000 using a few simple rules (described in Harris et al. 778 

2021). However, a forest age map such as Besnard et al. 2021 could be used to refine the assignment of starting age 779 

categories—particularly for secondary forests—or to determine where forest is along age-growth curves.  780 

5. Extent of planted forests and trees: The model currently uses SDPT v2.0 (Richter et al. 2024) but plans are underway 781 

for SDPT 3.0, which will improve differentiation between natural and artificial stands in the United States and 782 

Canada, along with other improvements for delineating planted tree extent in other countries. 783 

For emission and removal factors, anticipated model developments include:  784 

1. Improved spatial and temporal resolution of forest carbon removals: The dominant role of removal factor uncertainties 785 

in the uncertainty analysis highlights the need to further improve understanding of spatial and temporal variation in 786 

forest carbon removals. Combining plot-level biomass estimates with spaceborne observations to produce static 787 

biomass maps is well established (e.g., Saatchi et al. 2011, Santoro et al. 2021) and mapping biomass change is being 788 

explored (Xu et al. 2021) but these do not provide spatiotemporally variable removal factors. An ecology-based, yet 789 

still spatial, way to map removal factors could combine tree-level information collected in field plots with machine 790 

learning methods to map forest population structure through time, including variables that influence biomass change 791 

like upgrowth, mortality and recruitment for different forest types (Ma et al. 2020, Liang et al. in review). Such an 792 

approach can generate spatial and temporal predictions of how biomass changes across space and time that can be 793 

validated with forest plot data. In conjunction with a time series of tree cover gain (in activity data list above), this 794 

would result in fully temporal gross removals. Alternatively, growth curves for natural regeneration of forests could 795 

be revised and expanded to include a greater range of forest ages, using similar methods to Cook-Patton et al. 2020 796 

(Robinson et al. under review)Alternatively, growth curves for natural regeneration of forests could be developed, 797 

using methods similar to Cook-Patton et al. 2020.  798 

2. Improved maps of soil carbon dynamics in mineral soils: The GFW model currently uses a benchmark map of soil 799 

organic carbon density in mineral soil in 2000 and assumes loss of specific fractions of carbon under certain types of 800 

tree cover loss, following a Tier 1 approach from IPCC 2019. However, a timeseries of soil organic carbon density 801 

in mineral soil would support more realistic mapping of SOC dynamicslosses and gains. 802 
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2.3. Improved maps of emissions from organic soil drainage: The GFW model currently assumes that organic soils are 803 

drained only wherever tree cover loss, organic soils, and planted trees (Richter et al. 2024) coincide. Future 804 

improvements could include expanding the proxies used to map for organic soil drainage, as well as including 805 

emissions from extraction of organic soils.  806 

Additionally, opportunities remain to compare GFW model emissions and removals with NGHGIs, bookkeeping models, and 807 

regional or local data (e.g., Araza et al. 2023, Heinrich et al. 2023b). Such work would further our understanding of the 808 

complementary roles of Earth observation-based forest carbon models and other approaches to forest flux monitoring.  809 

5 Data and code availability 810 

Gross emissions, gross removals, and net flux are available for download as 10x10 degree geotifs in 0.00025x0.00025-degree 811 

resolution. Data that correspond to the model version presented in this publication are as follows: gGross emissions files (Gibbs 812 

et al. 2024a)-- are at https://doi.org/10.7910/DVN/LNPSGP;https://doi.org/10.7910/DVN/LNPSGP/ Ggross removals files 813 

(Gibbs et al. 2024b)-- are at https://doi.org/10.7910/DVN/V2ISRH;. N net flux files (Gibbs et al. 2024c)-- are at 814 

https://doi.org/10.7910/DVN/TVZVBI. Data are also available as assets on Google Earth Engine at 815 

https://code.earthengine.google.com/ae55707e335894d7be515386195390d2. Note that more recent versions of these datasets 816 

may be available from www.globalforestwatch.org. Data are also available as assets on Google Earth Engine at 817 

https://code.earthengine.google.com/ae55707e335894d7be515386195390d2. Code is available at 818 

https://github.com/wri/carbon-budget.  819 

6 Conclusion 820 

The updated Earth observation-based GFW forest carbon flux framework continues to show a substantial net sink for CO2 in 821 

forests globally, while also reporting sizeable gross emissions over half as large as gross removals since 20010. This highlights 822 

ongoing opportunities to protect the forest carbon sink across a broad area and also reduce emissions from forest loss, especially 823 

in hotspots of emissions that are discernable with our geospatial framework. The revised uncertainty analysis—with its 824 

dramatic reduction in uncertainty in gross removals—demonstrates the importance of refining forest carbon sequestration rate 825 

estimates. The flexibility of the model supports analyses at a range of spatial scales, while its operational nature means it can 826 

incorporate new and existing Earth observation products and provide timely maps and data. Our translation of the GFW 827 

model’s fluxes into the reporting framework that NGHGIs use— - following the recommendations of a recent IPCC expert 828 

meeting on reconciling land use emissions (IPCC 2024)— - provides another lens through which to look at country-level, land-829 

based climate mitigation and is a resource for national policymakers interested in timely, spatial data on land fluxes. It also 830 

demonstrates the two approaches’ ability to improve, assess, and potentially confirm each other. Ultimately, confidence and 831 

https://doi.org/10.7910/DVN/LNPSGP
https://doi.org/10.7910/DVN/V2ISRH
https://doi.org/10.7910/DVN/TVZVBI
https://code.earthengine.google.com/ae55707e335894d7be515386195390d2
http://www.globalforestwatch.org/
https://github.com/wri/carbon-budget
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transparency are needed in assessments of progress towards the Paris Agreement, and Earth observation-based forest carbon 832 

models are another tool to build consensus.  833 
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Appendix A 1119 

Table A1. Comparison of forest carbon fluxes in Annex 1 countries, Non-Annex 1 countries, and globally between the GFW flux 1120 
model and national greenhouse gas inventories (NGHGIs).  Ranges in reported GFW values here come from two different scenarios: one 1121 
scenario where emissions from shifting agriculture in secondary forests is included in forest land, while the other scenario includes all 1122 
emissions from shifting agriculture in deforestation. Results from the GFW model are for CO2 fluxes only and NGHGI results have also 1123 
been limited to CO2 fluxes except for a few developing countries where non-CO2 emissions could not be separated. 1124 

 

Net flux in forest land 

(Gt CO2 yr-1)  

Deforestation emissions  

(Gt CO2e yr-1)  

Net anthropogenic forest flux  

(Gt CO2e yr-1)  

Non-anthropogenic forest flux  

(Gt CO2e yr-1)  

    GFW  NGHGI  GFW  NGHGI  GFW  NGHGI  GFW  NGHGI  

Annex 1 

countries  

   -3.1 – 

-3.1 
-2.3 

   0.046 – 

0.049 
0.55  -3.0  -1.8  -0.34  N/A  

Non-Annex 

1 countries  

   -3.7 – 

-5.5 
-4.2 

   3.3 – 

5.0 
4.5  -0.46  0.2  -1.8  N/A  

Global  
   -6.8 – 

-8.5 
-6.6 

   3.3 – 

5.0 
5.0  -3.5  -1.6  -2.2  N/A 

 

Net flux in forest land 

(Gt CO2 yr-1)  

Deforestation emissions  

(Gt CO2 yr-1)  

Net anthropogenic forest flux  

(Gt CO2 yr-1)  

Non-anthropogenic forest flux  

(Gt CO2 yr-1)  

    GFW  NGHGI  GFW  NGHGI  GFW  NGHGI  GFW  NGHGI  

Annex 1 

countries  

   -3.2 – 

-3.2 
-2.3 

   0.046 – 

0.049 
0.55  -3.0  -1.8  -0.34  N/A  

Non-Annex 

1 countries  

   -3.7 – 

-5.5 
-4.2 

   3.3 – 

5.0 
4.5  -0.46  0.2  -1.8  N/A  
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Global  
   -6.9 – 

-8.6 
-6.6 

   3.3 – 

5.0 
5.0  -3.6  -1.5  -2.2  N/A 

 1125 


