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Abstract. The intensification of climate extremes is one of the most immediate effects of global climate change. Heatwaves and

droughts have uneven impacts on ecosystems that can be exacerbated in case of compound events. To comprehensively study

these events, e.g. with local high-resolution remote sensing or in-situ data, a global catalogue of compound dry and hot (CDH)

events is essential. Here, we propose a database of large-scale dry and hot extreme events based on ERA5 climate reanalysis

data. Drought indicators are constructed based on the daily balance between reference evapotranspiration and precipitation5

averaged over the previous 30, 90 and 180 days. Extreme events are detected with absolute local thresholds for the 1950–2023

period. CDH extremes are defined as daily maximum temperature at 2 m exceeding a 99% absolute local threshold based on the

empirical probability distribution, combined with any of the three drought indicators falling short of the 1% threshold. Unique

labels are assigned to CDH events lasting at least three days using a connected component analysis. Their spatiotemporal extent

and summary statistics are extracted for all labelled events. The identified CDH events are validated against extreme events10

reported in the literature. Out of 40 events listed a priori, 38 could be associated with labelled CDH events. All 10 largest and

10 longest labelled CDH events could be linked to droughts and/or heatwaves reported in the scientific or grey literature. The

Dheed database of connected compound dry and hot extreme events is available at https://doi.org/10.5281/zenodo.11044871

(Weynants et al., 2025b).

1 Introduction15

Extreme weather and climate events can induce stress on ecosystems and thereby have negative impacts on society, e.g. via

yield losses with unclear implications (Frank et al., 2015; Sippel et al., 2018; Mahecha et al., 2024). Increased heat and drought

stress on vegetation challenges the role of ecosystems as carbon sinks, e. g. through contributing to altered primary productivity

(Bastos et al., 2020b), increases in forest mortality (International Tree Mortality Network, 2025), risk of intensifying wildfires

(Cunningham et al., 2024; Jain et al., 2022), and long-lasting impacts on above-ground biomass (Yang et al., 2022).20

With the current anthropogenic-driven climate change, the intensity and frequency of heat and hydroclimatic extremes are

increasing (Seneviratne et al., 2023; Rodell and Li, 2023). Specifically, concerns about compound extreme weather and climate

events – when multiple types of climate extremes occur simultaneously – have been raised for over a decade (IPCC, 2012).
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A typology to guide studies on those types of occurrences has recently been proposed (Zscheischler et al., 2020). Compound

climate extremes often have more detrimental effects on vegetation growth than univariate extremes (Yang et al., 2023; Bastos25

et al., 2023). For instance, global increased drought and heat induced tree mortality has been highlighted in 2010 (Allen et al.,

2010) and investigated ever since. Vegetation is indeed more susceptible to damage during heat extremes after exposure to

drought stress, as less water is available to buffer the physiological consequences of the heat extreme (Marchin et al., 2022).

The complex physiological mechanisms of increased tree mortality under a warming and drying atmosphere richer in CO2

are, however, still debated (McDowell et al., 2022). Strong negative impacts of concurrent heat and drought as compared to30

univariate extremes are also evident in agricultural losses, e. g. in soybean yields (Hamed et al., 2021). The cascading processes

triggered by CDH extremes also impact society as a whole (Niggli et al., 2022), and require particular focus given the expected

increasing burden on society by CDH in many parts of the world under anthropogenic climate change (Zhang et al., 2024;

Ridder et al., 2022; Vicedo-Cabrera et al., 2021). For example, 35-61 % of the world’s population is likely to experience a

significant shift in precipitation amounts by the end of the century under continued emission scenarios (Trancoso et al., 2024),35

and CDH extremes are projected to increasingly impact global food security (Biess et al., 2024; Kornhuber et al., 2020). Global,

open data on CDH events thus also forms an important basis in providing information for guiding policy decisions (Raymond

et al., 2020).

To study the impacts of CDH events globally, a unified database of such events is needed. Yet, definitions of heatwaves

and droughts are not standardized in the literature, often depending on the purposes of the study, the considered region and40

the time of the year. On the one hand, the World Meteorological Organisation (WMO) describes heatwaves as "periods where

local excess heat accumulates over a sequence of unusually hot days and nights" (https://wmo.int/topics/heatwave), but it

defines no universal indicator. The scientific literature abounds with heatwave indicators, often sector oriented (Perkins and

Alexander, 2013). Many define a heatwave as a period of at least three consecutive days with maximum temperature exceeding

a certain threshold (e.g., Perkins and Alexander, 2013; Russo et al., 2015; Lavaysse et al., 2018; Russo and Domeisen, 2023),45

either absolute or percentile based. These probabilistic thresholds can be regional or local and relative to reference periods

ranging from calendar day to season or year, over spans of ten to thirty years. Given the non-stationarity of the time series

due to ongoing global warming, Zampieri et al. (2024) preconise the use of dynamic reference periods for risk assessments in

adaptive sectors of society. However, they recommend stationary reference periods for studying the impacts of CDH on natural

systems. Perkins (2015) recognises the difficulty to settle on a universal definition of heatwaves that fits all sectors, but also50

highlights the need to reduce the large number of metrics currently used. On the other hand, the WMO describes a drought

as "a prolonged dry period in the natural climate cycle [. . . ] characterized by the lack of precipitation, resulting in a water

shortage" (https://www.who.int/health-topics/drought). Their typology depends on their duration and intensity, with diverse

impacts on ecosystems. One generally distinguishes between meteorological, hydrological, agricultural and socio-economic

droughts (Mishra and Singh, 2010). Various indicators have been developed to characterize drought conditions. The commonly55

used Standard Precipitation Evaporation Index (SPEI) is a “multi-scalar drought index used to determine the onset, duration

and magnitude of drought conditions" (Vicente-Serrano et al., 2010). It is generally calculated from monthly climate data,

but some authors have used it with daily data to characterize drought dynamics at a finer temporal resolution (Wang et al.,
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2021). Indeed, Li et al. (2021) highlight the need for sub-monthly scale indices to monitor short-term compound dry and hot

conditions. A short drought, e.g. a four-week drought, happening across two months might remain undetected in monthly data.60

A recent study proposes to calculate the daily SPEI using nonparametric Kernel Density Estimation (KDE) and then transform

the KDE based quantiles into standardized normal scores, thereby avoiding fitting a parametric distribution to the data (Pohl

et al., 2023). As sub-monthly dry and hot conditions – or even a few hot days – can cause substantial stress to vegetation and

ecosystems in general, and heatwaves and droughts evolve on different time scales, we find it advantageous to work on data

with daily resolution, and with multi-scalar drought indicators representing water budgets for different temporal windows.65

Studies on the impacts of drought and heat on the biosphere, primary productivity or ecosystems have often focused on single

compound events (e.g., Flach et al., 2018; Ciais et al., 2005; Bastos et al., 2020a). Daily drought indices have been computed

for specific regions or measurement stations (e.g., Li et al., 2021; Pohl et al., 2023). Liu et al. (2024) recently produced the

first global multi-timescale daily SPEI dataset from 1982 to 2021. Mukherjee and Mishra (2021) combined a weekly drought

index with daily heat to quantify the spatio-temporal changes in CDH during the period 1983 to 2016. Yin et al. (2025) recently70

published a Compound Events Toolbox and Dataset, which provides annual statistics of threshold exceedance for dry and hot

days based on total daily precipitation and maximum daily temperature, but lacks an explicit spatio-temporal delineation of

the detected extreme events allowing to browse through individual events. To the best of our knowledge no global gridded

database of CDH events at daily scale has been published so far. In this study we introduce Dheed, a global database of large-

scale dry and hot extreme events, product of an extensive analysis of long-term ERA5 global climate reanalysis data (Hersbach75

et al., 2020, 2023) provided by the European Centre for Medium Range Weather Forecasts (ECMWF). Many studies on drought

and/or heatwaves rely on ERA5 data. A Google Scholar search within citing articles of Hersbach et al. (2020) reveals that out of

19,587 hits, about 5,510 contain the keyword drought and 10,500 contain the keywords heat or heatwave. Searching for drought

AND (heat OR heatwave) reveals about 3,600 citing articles (https://scholar.google.com/scholar?hl=en&as_sdt=2005&sciodt=

0%2C5&cites=18403910731188548420&scipsc=1&q=drought+AND+%28heat+OR+heatwave%29&btnG=, accessed 12-03-80

2025). Reanalysis data have the advantage of being globally available and consistent and allow for the computation of various

climatic indices, up to hourly time resolution. A reliable spatiotemporal identification of past CDH events offers several ad-

vantages. (i) Understanding the historical patterns and frequency of these events can help in assessing the risk and potential

impact on ecosystems, water resources, and human health. (ii) Policymakers can use this information to develop strategies for

mitigation and adaptation, such as water management plans and heat action plans. (iii) Identifying regions most affected by85

these events allows for targeted allocation of resources and emergency services. (iv) Educating the public about the likelihood

and potential impact of these events can enhance community preparedness and resilience. (v) An analysis-ready dataset of past

CDH events is useful for researchers studying climate change and its impacts on extreme weather patterns. For example, it can

guide the sampling of small data cubes of high-resolution satellite imagery – e.g., Copernicus Sentinel-2 data (Ji et al., 2025)

– to train models predicting ecosystem states (Requena-Mesa et al., 2021; Benson et al., 2024) under extreme climate condi-90

tions, with a particular focus on permanent vegetation. Dheed can also be used to assess the capacity of ecological monitoring

networks to detect impacts of CDH events (Mahecha et al., 2017). Further potential applications encompass site selection for

studying the effects of extreme dry and hot conditions on specific species or targeted sampling of high-resolution Earth Obser-

3

https://scholar.google.com/scholar?hl=en&as_sdt=2005&sciodt=0%2C5&cites=18403910731188548420&scipsc=1&q=drought+AND+%28heat+OR+heatwave%29&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=2005&sciodt=0%2C5&cites=18403910731188548420&scipsc=1&q=drought+AND+%28heat+OR+heatwave%29&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=2005&sciodt=0%2C5&cites=18403910731188548420&scipsc=1&q=drought+AND+%28heat+OR+heatwave%29&btnG=


vation data for impact research, e.g., assess and forecast carbon sequestration loss in permanent vegetation during extremes, or

cropland productivity loss. Overall, Dheed can help in building resilience against future climate extremes. Hereafter, we de-95

scribe the data and methods employed to build Dheed, we present a brief global and continental analysis of trends in drought,

heat and CDH and we benchmark detected CDH events against events reported in the literature.

2 Data and methods

Our approach draws on the concept of analysis-ready data cube, particularly useful in Earth system science to access and

analyse multiple data dimensions, such as variable, spatial and temporal (Mahecha et al., 2020; Montero et al., 2024). The first100

step in building Dheed involves the pre-processing of the hourly climate reanalysis data into daily data. In a second step, we

perform a temporal analysis of the daily data to detect extreme values in time series of heat and drought indices, which we

further refer to as Discrete Extreme Occurrences (DEOs). The third step is a spatio-temporal connected component analysis to

group DEOs connected in space and time into uniquely labelled compound dry and hot (CDH) extreme events (Zscheischler

et al., 2013; Lloyd-Hughes, 2012). In a final step, we extract summary statistics for all labelled events and validate them against105

events reported in the literature. The workflow, detailed below and illustrated in Figure 1, runs entirely in Julia, relying largely

on the YAXArrays.jl package (Gans et al., 2023). Figures are created with Makie.jl (Danisch and Krumbiegel, 2021).

Figure 1. Workflow for the detection of dry and hot extreme events. ET0 is the reference evapotranspiration, PEI is a Precipitation–

Evapotranspiration based indicator, Tmax is the daily maximum temperature at 2 m. DEOs are Discrete Extreme Occurrences, i.e., ex-

treme values in the time series of temperature and drought indices. Dheed, the resulting dry and hot extreme events database consists of the

EventCube, the LabelCube and the EventStats table.
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2.1 Climate data pre-processing

The workflow exploits the hourly gridded ERA5 data, from 1950 to 2023 (Hersbach et al., 2023). Specifically, the following

variables are used:110

– temperature at 2 meters (T2m) [K],

– 10 meter wind speed: zonal (u10) and meridional (v10) components [ms−1],

– atmospheric surface pressure (sp) [Pa],

– surface net solar and thermal radiation (ssr and str) [Jm−2],

– saturation water vapour pressure (swvp) [hPa],115

– vapour pressure (vp) [hPa] and

– total precipitation (tp) [m].

Grid cells from the ERA5 land mask with a value greater than 0.5 are considered land. Data are aggregated over time from

hourly to daily time steps, by calculating the daily mean, minimum, and maximum for T2m, and the cumulative values for tp

and the reference evapotranspiration ET0 (see hereafter). When aggregating to daily time steps, a day includes all time steps120

from 0:00 to 23:00 UTC for any grid cell. Hence, aggregation windows do not correspond to local calendar days. The resulting

data are stored in a multi-dimensional analysis-ready data structure, also known as data cube, in Zarr format with chunk sizes

suited for time series analysis (longitude = 60, latitude = 60, time = 5,844). As in the original gridded ERA5 data, the longitude

axis ranges from 0 to 360 degrees and the spatial resolution is 0.25 degree in both latitude and longitude, i.e., the longitude

and latitude dimensions are 1,440 and 721 respectively. After aggregation of the hourly data to daily temporal resolution, each125

time series has 27,028 data points over the period going from 1 January 1950 to 31 December 2023.

The hourly reference evapotranspiration for a well watered grass cover (ET0) [mm hr−1] is calculated with the FAO’s

Penman-Monteith equation (Allen et al., 1998) from the above mentioned ERA5 variables, following appropriate units adjust-

ments and assumptions (Singer et al., 2021):

ET0 =
0.408∆(Rn −G)+ γ 37

θ2m+273u2(swvp− vp)× 10−1

∆+ γ(1+Cdu2)
(1)130

where Rn is the surface net radiation [MJm−2hr−1]), calculated as (ssr+str)×10−6, G is the soil heat flux density at the

soil surface [MJm−2 hr−1] conditioned on the time step, with values differing between daytime and nighttime (G=Rn×0.1 if

Rn < 0.0, G=Rn×0.5 otherwise) and set to 0 where water covers more than 50% of the spatial grid cell, θ2m = T2m−273.15

is the air temperature at 2 m height [◦C], u2 is the wind speed at 2 m height [ms−1], calculated from u10 and v10 using the

log wind profile (Equation 2) following FAO recommendations (Allen et al., 1998), ∆ is the slope of the vapour pressure curve135

[kPa°C−1], γ is the psychrometric constant [kPa°C−1] and Cd is a time step dependent coefficient. According to Walter et al.
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(2001), Cd should vary between daytime (0.24) and nighttime (0.96), but adopting the constant value for daily calculation

(0.34) has a negligible effect on ET0 when values are aggregated by day (< 10−6mm d−1). ∆ and γ are calculated from sp

and θ2m according to FAO recommendations (Allen et al., 1998) with equations 3 and 4.

u2 =
√
u2
10 + v210

4.87

log(67.8× 10− 5.42)
(2)140

∆= 4098.0
0.6108exp 17.27θ2m

θ2m+237.3

(θ2m +237.3)2
(3)

γ = cp
sp

ϵλ
(4)

where λ= 2.45 is the latent heat of vaporization [MJ kg -1] (simplification in the FAO PenMon (latent heat of about 20°C),145

cp= 1.013×10−3 is the specific heat at constant pressure [MJ kg-1 °C-1] and ϵ= 0.622 is the ratio between molecular weight

of water vapour and dry air.

In this study, we assess daily drought conditions to allow for the detection of short term droughts and to bring the drought

indicators to a time resolution comparable to that of heatwaves. Therefore, the daily average water balance PEIN,i for day i in

the time series over the N antecedent days is calculated as an indicator of drought (Li et al., 2021), accounting for different150

hydrological compartments of ecosystems:

PEIN,i =
1

N

i∑
j=i−N−1

(tpj × 10−3 −ET0, j) (5)

with N ∈ (30,90,180) to obtain PEI30, PEI90, and PEI180. Following the convention used in ERA5, downward fluxes have

positive values. Extreme dry values are hence those for which PEIN is small. The daily maximum temperature (Tmax) is used

as heat indicator.155

2.2 Event detection

Discrete Extreme Occurrences (DEO) are detected through a temporal analysis at the grid cell level independently for each

indicator of heat and drought. They are then combined in Compound Dry and Hot (CDH) extreme events through a spatio-

temporal connected component analysis. The detection of DEOs is based on a purely probabilistic threshold applied to the

empirical distribution of the indicators, considering the full time series at each location, without removing the mean seasonal160

cycle, nor any trend. We use a static threshold specific to each spatial grid cell to focus on extreme hot or extreme dry conditions,

and do not consider here winter warm spells nor relative droughts. The database resulting from this study being primarily

intended to explore the impacts of the CDH extreme conditions on permanent vegetation, the rationale behind the choice of

local static threshold is twofold. First, in a fast changing climate, seasons may be shifting in time and analysing extremes

on the anomalies may introduce biases. Second, the physiological impacts of combined extreme temperatures and dryness165
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are more absolute than relative, i.e. when critical conditions are reached. While the physiological impacts of heat stress on

plants depend on the development stage (Jagadish et al., 2021), critical plant tissue temperatures at which the physiological

functions are altered depend on the plant species and therefore vary across biomes (O’sullivan et al., 2017). The level of heat

stress experienced by plants when exposed to the same air temperature differs among species and genotypes, also affected by

soil moisture, plant hydraulic conductance and atmospheric vapour pressure deficit (Jagadish et al., 2021). Leaf temperature170

can be greater than air temperature, especially when vapour pressure deficit is high and plants reduce stomatal conductance

(Reichstein et al., 2013). In regions with a strong hydrological seasonal cycle, adopting a static threshold will lead to the

detection of extreme dryness in the dry season, which does not correspond to the growing season. While annual plants may

not be affected by these dry episodes outside the growing season, they may have important physiological effects on permanent

vegetation. The critical level of heat and dryness provoking a negative physiological impact hence depends on the local plant175

community and local management. Therefore, we perform a spatial normalization that takes into account the natural adaptation

of plant communities and local agricultural or silvicultural practices.

For each spatial grid cell, we first examine the temporal distribution of each of the four indicators independently (Tmax,

PEI30, PEI90, and PEI180). It is a common procedure to fit a parametric distribution to the PEI data to generate a standardised

index (SPEI) with values comparable across space and time. However, in this study, we do not remove the effect of seasonality,180

which leads to distributions poorly described by a log-logistic function, especially where hydrological seasons are strongly

distinct (see Appendix A). In any case, the identification of extreme events is ultimately based on quantiles. Given the length

of the time series used in this study, quantiles can reliably be estimated directly from the data, without assuming a parametric

distribution. Therefore, we decided to omit the parameter estimation and directly estimated thresholds based on empirical

quantiles.185

The values were rank-transformed to obtain their empirical distribution function, as an estimate of the cumulative distribution

function at each spatial grid cell. We applied the same rank-transformation to −Tmax. This means that values of Tmax larger

than the 99% quantile will have corresponding values <0.01 in the rank-transformed data. Heatwaves as well as drought events

are therefore characterized by low values in their corresponding rank-transformed indicators. Different local percentile-based

thresholds were tested for detecting extreme conditions (lowest 10 %, 5 %, 2.5 %, 1 %, 0.5 % of the empirical cumulative190

distributions). Most studies on extreme events use a threshold of 5% (resp. 95%) on monthly anomalies based on a 30 year

reference period, corresponding to a return period for a specific location and month of about 20 years, which sums up to less

than one event per year on average. In this study, we use a longer reference period (74 years) and daily data, which, for a

specific grid cell and a threshold of 1%, leads to an annual average of 3 to 4 days flagged as extremes for a single indicator.

We synthesize the DEOs of the four indicators in a single variable encoded as an 8-bit integer by assigning a specific bit to195

each indicator, keeping the information relative to all four indicators for later analysis. DEOs of Tmax activate the first (smallest)

bit (0000000012), PEI30 the second (0000000102), PEI90 the third (0000001002), and PEI180 the fourth (0000010002). The

fifth bit (000100002) encodes for all values that lie outside the tails of all four distributions, i.e., that have rank-transformed

values between 0.1 and 0.9. The five indicators are combined with a bitwise OR and the resulting values are stored in a data

cube named EventCube (Fig. 1). In the following sections, we will focus on the first four bits.200
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From the EventCube, we extract CDH events as labelled groups of connected dry and hot DEOs (Zscheischler et al., 2013;

Lloyd-Hughes, 2012). We restrict the connected component analysis to spatio-temporal grid cells of the EventCube that are

both hot (0000000012) and dry (0000000102 OR 0000001002 OR 000010002), i.e. have uneven values greater than 1, if ex-

pressed in base 10. Moreover, using ImageFiltering.jl (v0.7.8) on the time dimension, we filter for events that last at least three

consecutive days. The connected component labelling algorithm assigns a unique label to each group of connected DEOs, look-205

ing for six way connections. Each grid cell with coordinates (x±1,y,z), (x,y±1,z) or (x,y,z±1) is connected to the grid cell

at (x,y,z), with x, y and z the longitude, latitude and time, respectively. We modify the ImageMorphology.label_components

function from ImageMorphology.jl (v0.4.5) to group DEOs connecting across the globe along the longitude dimension, al-

lowing for events to connect across the grid longitudinal edge, between 0 and 360 degrees. The connection at high latitudes

across the poles is not specifically guaranteed. We store the resulting labelled dry and hot extreme events in a data cube named210

labelCube. Figure 2 illustrates the entire workflow with the example of the 2003 summer heatwave in Europe (Event 33 in

Table B1).

For each labelled CDH event, we compute the following properties:

– spatio-temporal bounding box (start_time, end_time, longitude_min, longitude_max, latitude_min,

latitude_max),215

– statistics on the the indicators (t2mmax_mean, t2mmax_min, t2mmax_max, pei_30_mean, pei_30_min, pei_30_max,

pei_90_mean, pei_90_min, pei_90_max, pei_180_mean, pei_180_min, pei_180_max),

– percentage of the event for which each indicator is below the extreme threshold(heat, drought30, drought90,

drought180, compound),

– percentage of the event that occurred over land (land_share),220

– a proxy of the total volume of the event as the number of voxels weighted by cos(latitude) (volume),

– the event duration as end_time−start_time+1day (duration),

– a proxy of the event total affected area as the ratio between volume and duration (area).

These statistics are stored in a csv table named EventStats (Fig. 1) and constitute the core of Dheed, along with EventCube

and labelCube. It is worth noting that, given the criteria chosen for the connected component analysis, labelled events are225

always extremely hot (heat = 100 %) and have a minimum duration of three days. Users can retrieve the proportion of a

labelled event incurred to the different drought indicators. For example, a user interested in short droughts while excluding

longer ones would select entries with a large coverage of PEI_30 and a small coverage of PEI_90 and PEI_180. This allows

for a finer use of the database respective on the accumulation period. In the next section, we present a brief analysis of these

labelled CDH events and track the ten largest in volume and the ten longest in duration in the scientific literature. To assess230

the reliability of the event detection method, we also compare a set of historical events reported in the scientific literature or
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Figure 2. Example of dry and hot extreme event detection workflow over the 2003 summer heatwave in Europe. Columns show the time

evolution of the data sampled at every 4th time step from Aug 2 to Aug 14 2003. Rows 1 and 2 show the raw daily maximum 2m air

temperature and PEI30 with isolines linking the ranked values at 1%, 10% and 90%. Row 3 shows the encoding into the EventCube where

single voxels can be marked as only extremely dry, only extremely hot, a combination of both or none of them. Voxels shown in grey are in

a regime of normal conditions. Those shown in white are are in the tails of the distributions, with values smaller than the 10th or greater than

the 90th percentile. Row 4 shows the labelled events obtained from the spatio-temporal connected component analysis on the Event-Cube.

Only voxels that are both dry and hot, and are connected, are registered with a unique label in the Dheed database of dry and hot extreme

events.

the media with the Dheed. All labelled events that intersect with the spatio-temporal window reported in Table B1 are selected

from the labelCube. Their statistics are extracted from the EventStats and evaluated.

3 Results

3.1 Indicators of dry and hot conditions235

Different local percentile-based thresholds were tested for detecting extreme conditions (not shown). Larger thresholds led to

connected compound events that were spanning the whole globe and/or lasting more than a year. Therefore, we adopted the

largest threshold that was creating blobs of reasonable size. We chose the lowest 1% as a compromise between the number of
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Figure 3. Heat and drought indicators during a reported compound dry and hot extreme event in the summer of 2021 in British Colombia.

Panels show (a) the maximum daily temperature, (b) the daily precipitation and reference evapotranspiration, (c) the three drought indicators

(PEI) and (d) the Discrete Extreme Occurrences (DEO). A first heatwave starting 25-06-2021 is not associated with a drought. A second

(30-07-2021) and third (03-08-2021) heatwaves are associated with extremely dry conditions but last only two days each. A fourth heatwave

starting 11-08-2021 and lasting four days is associated with extremely dry conditions (PEI_30 and PEI_90) and is hence part of a labelled

event from the proposed database.
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data points and the size of the spatio-temporally connected events. All detected daily time points of extreme heat or drought

(DEOs) from 1950–2023 are recorded in the EventCube. This data cube can be used to analyse time series of DEOs at specific240

locations. For example, Figure 3 shows the event type along with Tmax from the ERA5 daily data cube and the PEIs for a few

days in the summer of 2021 at Lytton, British Columbia, Canada. Longer time series can also be easily analysed (Figures C1

and C2). Beyond analysing single locations, the dataset allows to draw a general overview of the regional or global trends in

dry and hot extremes. Figure 4 shows DEOs globally aggregated by year and by type of extreme, over land only, from 1970

to 2023. The y-axis represents the percentage of land area and days affected by an event of a certain type in a given year. The245

further back in time, the larger the uncertainties in the reanalysis data, due to a lack of observations to be assimilated with the

numerical model results, especially in the southern hemisphere (Hersbach et al., 2020). No satellite data were used in ERA5

before 1970 (Hersbach, 2023), leading to yet larger uncertainties in the southern hemisphere. Therefore, we do not include the

years 1950–1969 in the trend analysis. Nevertheless, the Dheed database contains the labelled events from those earlier years.

Figure 4. Annual spatiotemporal extent of extremely dry and hot days, by the value of data in EventCube. The count of voxels with a Discrete

Extreme Occurrences (DEO) of a given value (00012 = 110 to 11112 = 1510), weighted by the cosine of the grid cell latitude, is divided by

the weigthed count of all land voxels in a given year, expressed as percentage. The shades of blue and purple show the accumulation period

of the water balance. The darker the shade the longer the accumulation period: a water balance accumulated over 180 days which is below

the 1% threshold is rendered in the darkest shade. The 90-day accumulation period is shown in the medium shade. The 30-day accumulation

period has the lightest shade. The bit strings associated with each colour are shown below the colour bar.

Figure 4 shows the DEO values as they are encoded in EventCube (from 00012 = 110 to 11112 = 1510) aggregated globally250

over land by year. The compound dry and hot DEOs shown in shades of purple represent only a small fraction of the extreme
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dry or hot conditions. The inter-annual variability is large, but there seems to be a positive trend in the global annual number

of extremely dry or hot days. The trends can be further analysed by type of event.

Figure 5. Annual spatiotemporal extent of extremely dry and hot days, by type of extreme. The sum of Discrete Extreme Occurrences

(DEO) combined by type of event and weighted by the cosine of the grid cell latitude is divided by the sum of all land voxels in a given

year, expressed as percentage. The indicator of heat is the daily maximum temperature at 2 meter. The indicators of drought are the daily

difference between precipitation and reference evapotranspiration, averaged over the previous 30, 90 and 180 days.

Figure 5 shows the DEOs aggregated for each individual indicator, which means that the bars may not be cumulated. For

example, if a voxel has DEO = 10012, the same voxel will be counted as a heat extreme (Fig. 5, Row 1), with DEO &255

00012 = 00012 (where & is the bitwise AND operator) and as a drought with a 180-day accumulation period (Fig. 5, Row

4), with DEO & 10002 == 10002. By our definition of the extremes, since we applied a 1% threshold on the time series, the

relative annual number of days and area affected by these extremes expressed in percentage for each individual indicator is

1% on average over the complete time series (1950–2023). Values vary however from year to year. A Theil-Sen approximation

of the trend (Sen, 1968) over time shows that all four indicators have a positive trend, with a similar slope coefficient. This260
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suggests that the extents of extreme heat, short term (d30), midterm (d90) and longer term (d180) droughts are increasing at a

similar pace.

Figure 6. Annual spatiotemporal extent of extreme compound dry and hot days. The sum of Discrete Extreme Occurrences (DEO) that

are both dry and hot weighted by the cosine of the grid cell latitude is divided by the sum of all land voxels in a given year, expressed as

percentage.

Figure 6 counts only DEO that are both hot and dry, i.e. where (DEO & 00012 == 00012) AND ((DEO & 00102 == 00102)

OR (DEO & 01002 == 01002) OR (DEO & 10002 == 10002), in which & denotes the bitwise AND operator and AND and

OR denote the boolean AND and OR operators. DEO values of compound dry and hot extremes are aggregated globally by265

year. The values are an order of magnitude smaller than with the univariate extremes, but there is a highly significant positive

trend in the global annual days and land area affected by extremely dry and hot condition over the period 1970–2023 (Theil-Sen

estimator: 0.0066 % per year). Splitting this 54-year period into two periods of 27 years reveals a drastic change in the trend,

with the Theil-Sen estimator in recent years (1998–2023) an order of magnitude larger than in former years (1998–2023). The

strong ENSO/El Niño years 1983, 1988 and 1998 stand out from the trend, along with years 2010, 2012, 2015 and 2019 to270

2023. Year 2023 clearly shows up as the one with the largest percentage of extremely dry and hot annual days and land area.

Figure 7 and Table 1 show a continental aggregation of the annual percentage of extremely dry and hot days and land area

affected by compound dry and hot DEOs. The trends and average values are not uniform across continents. With an average of

0.05 %, Antarctica is the least affected continent, well below the global average of 0.20 %. The trends in Antarctica and Oceania

are not significant (Mann-Kendall test p-value > 0.01). Europe is the continent most affected by CDH extremes, followed by275
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Figure 7. Annual spatiotemporal extent of extreme dry and hot days, by continent. The sum of both dry and hot Discrete Extreme Occurrences

(DEO) weighted by the cosine of the grid cell latitude is divided by the sum of all land voxels in a given continent and year, expressed as

percentage. The y-axis is limited to 1.0 %, but the bar extents to 2.1 % for the year 2010 in Europe, to 3.1 % for the year 2019 in Australia

and to 2.7 % for the year 2023 in South America.

Africa and South America. Africa is the continent that has experienced the steepest increase in annual cumulative area subject

to CDH days. Figure 8 shows the pixel-wise decadal Theil-Sen trend in the number of extremely dry and hot days. Six decades

are considered, centred on the years 1970 to 2020. The last decade is incomplete, since records in the EventCube only go until

2023. Our analysis reveals that, while most land grid cells have a positive trend, some areas show a negative one.

3.2 Database of compound dry and hot extreme events280

Extreme events in which heat and drought coincided were labelled and further characterized. The labelled extreme events

include only DEOs where dry and hot extreme conditions were observed for at least three consecutive days. Although the

connected components algorithm was run over all grid cells, the statistics for the labelled events were computed over land only.
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Table 1. Average percentage of annual extremely dry and hot days and area by continent and globally, over the total trend analysis period

(1970–2023), over older years (1970–1997) and over recent years (2000–2023).

Continent 1970–2023 1970–1997 1998–2023

Africa 0.24 0.07 0.42

Antarctica 0.05 0.04 0.08

Asia 0.19 0.11 0.29

Australia 0.20 0.09 0.33

Europe 0.25 0.13 0.39

North America 0.21 0.12 0.32

Oceania 0.15 0.07 0.23

South America 0.23 0.06 0.41

Global 0.20 0.09 0.32

Figure 8. Decadal Theil-Sen trend in the number of extremely dry and hot days for each grid cell.

In total, the database contains 26,351 unique labelled CDH events for the years 1970 to 2023. Most events have a duration

of four days and a spatial extent smaller than a grid cell at the equator (area) (Fig. 9, left). In recent years, there were not285
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Figure 9. Two-dimensional histograms of labelled events over land only in the years 1970 to 2023. Left: Duration versus area of events.

Labels indicate the five events with the largest volume (green) and the longest duration (blue); Right: Volume of event versus year of event’s

onset.

only more CDH events (Fig. 9, right), but the distribution of their spatiotemporal volume consistently shifted towards larger

events. Indeed, all ten largest events occurred after the year 2000. They are listed in Table 2 (top) along with the ten longest

events (bottom). The distribution of the duration of CDH events is stable over time, except for the top 5% that tend to last

longer.

Figure 10 shows the ten largest labelled events that occurred in the years 1970 to 2023. The largest event overall – labelled290

83007 – relates to the Russian heatwave of 2010 (e.g. Flach et al., 2018). In the spring and summer of 2012 (labelled event

89565), the United States of America suffered through their hottest year on record, which complicated and exacerbated the

ongoing drought situation (Rippey, 2015).

The Copernicus Global drought observatory (GDO, https://drought.emergency.copernicus.eu/tumbo/gdo/map, accessed 2025-

03-13) identifies a meteorological drought in West Africa from 2016-01-21 to 2016-03-31 (ID 109036), corresponding to295

Dheed’s labelled event 104409. The year 2016 broke records of hot days in southern Africa (labelled event 109346, Engdaw

et al., 2022). In April 2016, mainland southeast Asia saw record high temperatures and reduced rainfall and cloud cover caused

by EL Niño/Southern Oscillation (ENSO) (labelled event 10541, Thirumalai et al., 2017). According to the Australian Bu-

reau of Meteorology footnoteMonthly Weather Review – Australia – January 2019 http://www.bom.gov.au/climate/mwr/aus/
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Table 2. Biggest labelled dry and hot extreme events in the period 1970–2023 over land only : Ten largest in volume and ten longest in

duration. The area is an adimensional proxy of the spatial land area affected by an event obtained by counting the number of land voxels

in an event multiplied by the cosine of their respective latitude (volume) divided by the number of days between the start and the end of the

event (duration). An area of 1 is the size of a 0.1× 0.1 degree grid cell at the equator or about 122 km2.

Date Longitude Latitude

rank label start end min max min max duration area volume

1 83007 2010-07-02 2010-08-21 4.5 64.5 36.0 65.5 51 days 1707.99 87107.7

2 104409 2016-01-20 2016-03-13 0.0 359.75 -0.25 11.0 54 days 713.198 38512.7

3 143161 2023-09-16 2023-10-15 281.75 305.25 -16.0 3.0 30 days 1220.59 36617.6

4 116830 2019-01-10 2019-01-28 117.0 152.25 -37.5 -19.5 19 days 1523.17 28940.2

5 121895 2019-11-13 2019-12-30 111.0 150.5 -29.75 -6.75 48 days 570.845 27400.6

6 109346 2016-10-08 2016-11-07 13.75 33.25 -24.0 -7.0 31 days 800.359 24811.1

7 105411 2016-02-27 2016-05-20 92.75 118.25 3.0 23.5 84 days 273.52 22975.6

8 89565 2012-06-27 2012-08-08 255.75 281.75 34.5 45.5 43 days 479.032 20598.4

9 139883 2023-07-19 2023-10-05 248.5 286.75 19.75 36.25 79 days 249.726 19728.3

10 127204 2020-09-24 2020-10-14 294.5 316.5 -26.5 -10.5 21 days 923.975 19403.5

1 30070 1983-01-04 1983-05-04 282.5 284.0 -14.5 -11.25 121 days 0.867138 104.924

2 50443 1998-01-31 1998-05-16 114.5 118.75 -1.5 6.75 106 days 89.0898 9443.52

3 50825 1998-02-28 1998-05-25 264.25 282.5 7.25 18.5 87 days 34.181 2973.75

4 51134 1998-03-09 1998-06-02 80.0 124.25 3.0 23.25 86 days 161.819 13916.4

5 105411 2016-02-27 2016-05-20 92.75 118.25 3.0 23.5 84 days 273.52 22975.6

6 139883 2023-07-19 2023-10-05 248.5 286.75 19.75 36.25 79 days 249.726 19728.3

7 143103 2023-09-14 2023-11-21 304.25 310.0 0.0 5.0 69 days 50.1923 3463.27

8 50197 1998-01-09 1998-03-18 283.75 284.0 -14.0 -13.25 69 days 1.81583 125.292

9 51283 1998-03-14 1998-05-18 122.25 126.0 5.75 9.25 66 days 36.962 2439.49

10 100731 2015-07-14 2015-09-16 286.0 287.5 18.25 18.5 65 days 4.68504 304.527

mwr-aus-201901.pdf, accessed 2025-03-12,1,2, January 2019 was Australia’s warmest on record with below average precipita-300

tion corresponding to labelled event 116830. November and December of that year also broke records of heat and low rainfall

(labelled event 121895). A severe drought-complex hit over the Pantanal and other regions in South America in October 2020,

increasing fires and impacts on natural and human systems (Marengo et al., 2022), to which labelled event 127204 can be

associated. Record drought and warmth in the Amazon in 2023 (labelled event 143161) can be related to regional and global

climatic features (Espinoza et al., 2024). The year 2023 also saw a prolonged heatwave event over south-eastern USA and305

Central America (Event 139883 Perkins-Kirkpatrick et al., 2024).

1Monthly Weather Review – Australia – November 2019 http://www.bom.gov.au/climate/mwr/aus/mwr-aus-201911.pdf, accessed 2025-03-12
2Monthly Weather Review – Australia – December 2019 http://www.bom.gov.au/climate/mwr/aus/mwr-aus-201912.pdf, accessed 2025-03-12
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Figure 10. Spatial footprint of the ten labelled dry and hot events with the largest land volume (area × duration) detected in this study from

1970 to 2023. The legend indicates the label of the events in the Dheed database and the year in which they started.

ENSO–induced droughts in Malaysia/Indonesia (Borneo-Kalimantan Island) in 1997-1998 and 2014-2016 are captured in

the longest labelled events 50443, 51134 and 51283 on the one hand and 105411 on the other hand (Table 2, bottom), which

contributed to triggering increased forest mortality (Allen et al., 2010). The GDO reports a hydrological dought event (ID310

100430) from 1983-02-11 to 1983-04-20 on the souther coast of Peru, corresponding to Dheed labelled event 30070. The GDO

reports two hydrological drought events (ID 103888 from 1998-02-21 to 1998-03-10, Nicaragua, Costa Rica, Honduras; ID

103924 from 1998-04-11 to 1998-09-20, Guatemala, Mexico) over Central America which intersect with Dheed labelled event

50825. The GDO reports a large hydrological drought event (ID 111455 from 2023-05-01 to 2023-11-30) over Mexico and

the southern USA, with which Dheed labelled event 139833 can be associated. Labelled event 143103 in North East Brazil315

intersects with GDO mega drought event ID 111440 covering large parts of South America from 2023-04-11 to 2024-12-31.

The GDO also reports heatwaves lasting up to more than 14 days in the same area. Dheed labelled event 50197 in Peru in

January-March 1998 is close to GDO hydrological drought event ID 103850 from 1998-01-01 to 1998-04-20. Heatwaves are

reported in southern Dominican Republic in July 2015, which can be associated to labelled event 100731.
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Figure 11. Validation of database. Volume, Duration, Area and number (between brackets) of labelled events intersecting the spatio-

temporal footprint of events reported in Table B1. An empty space is left for reported events with no intersecting labelled events.

3.3 Validation320

The extremely dry days obtained from the temporal analysis of PEI30, PEI90, and PEI180 with a 1% threshold were compared

with days with a daily SPEI less than −2 at ICOS sites (EOBS based, (Pohl et al., 2023); ERA5 based, Liu et al. (2024)) over

the period 2000–2021. The three methods only partially agree, with almost 30% of the days detected as extremely dry in this

study having a SPEI greater than -2. Nevertheless, the disagreement between the other two methods is larger than that between

Dheed and any of both methods. More details are given at Appendix D.325

The results of the trend analysis presented at section 3.1 are consistent with the literature even if no other study relies on the

exact same definition of CDH as the one we use here. Using three different combinations of observed and reanalysis-based data

sets, Mukherjee and Mishra (2021) noted a significant increase in global drought-related heat waves and their corresponding

spatial extent in a recent (warmer) period (2000–2016) compared to a past period (1983–1999). Combining forecasting and

reanalysis data and a ten-year return period, Zampieri et al. (2024) also observe a significant increase in area subject to drought330

(0.5% of land area per decade), heat risk (7.3% in recent decades) and their compound (about 0.6% per decade) over the period

1983–2023 (reference period 1993–2016). They observe similar albeit less pronounced results with stationary thresholds and

time-dependent percentiles or thresholds.

Next to the largest and longest extreme dry and hot events discussed in the previous section, the database was validated

against a list of extreme events gathered independently and a priori (Table B1). The intersection of the reported approximate335

footprint and time range of those events with the database proposed here is summarized in Figure 11. Reported events are gen-

erally associated with a few large labelled events and with many small labelled events. This is consistent with the distribution

of the size of the labelled events (Figure 9). However, two reported events from Table B1 (36, 39) intersect with none in the

Dheed database. Both are reported droughts. The 1993 drought in North East Brazil (event 36) and the Sahel drought (event 39)

of 1983-1984 were not associated with heatwaves, although extreme heat and drought coincided in the previous hydrological340

year in the Sahel (reported event 40).
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4 Discussion and outlook

The global event detection of compound dry and hot extreme events faces the difficulty of dealing with processes that happen at

different time scales. Droughts occur over months and years while heatwaves take place over a few days or weeks. Computing a

global standardized drought index based on daily data proved difficult. Instead, we rely on the empirical probability distribution345

of the drought and heat indicators. The local rank-transformation assumes that the number of extremes is the same in each grid

cell, defined by a global probability. Finding a good threshold for defining extreme events on daily data was also challenging.

Selecting DEOs that are too frequent leads to connectivity issues and very large labelled events spanning over the whole globe.

Part of the problem was that the connected component analysis for the event detection is run on an equi-rectangular grid, which

leads to a bias towards more connections and larger events at high latitudes. We tested different thresholds and spatial filtering of350

extreme event scores respecting the spherical nature of the Earth to find a balance between the detection of documented events

and avoiding too large events. Other authors have reported similar difficulties when tuning a clustering algorithm to build a

database of drought events (Cammalleri et al., 2023). The 1% threshold is a compromise between the volume, duration

and spatial footprint of the largest labelled extreme events and the effective detection of reported extreme events. We prefer

smaller events to very large ones, even if a reported event is then associated with multiple smaller labelled events from our355

database. The framework presented here concentrates on detecting and labelling droughts and heatwaves and their compound

occurrence based on daily meteorological data. Our approach relies on daily data and defines CDH at daily scale, but using 30,

90 and 180 days accumulation periods for assessing dry conditions. Hence, a DEO combines heat on the day with accumulated

water stress, allowing to reconcile the differing time scales of drought and heat. Flash droughts are not a focus of this study.

Only three consecutive DEOs make it to a labelled CDH, alleviating the overestimation of CDH events. The resulting labelled360

CDH events can be used to analyze trends at regional, continental and global scales and to drive further research into the

impacts of such events on ecosystems, specific species or society. For example, it has been firstly used as a basis for sampling

high-resolution satellite imagery (Ji et al., 2025) to investigate how these compound dry and hot extreme events impact the

performance of models predicting the ecosystem state. In addition, the combination of the atmospheric extreme event database

and the satellite imagery describing the ecosystem responses can help to improve our understanding of the conditions under365

which a certain atmospheric extreme event will have impacts on the biosphere.

In the present case, the database includes only dry and hot compound events. However, the event detection pipeline is set

up to be used in a generic way and could produce event databases for different sorts of events. For example, it would be

interesting to investigate other types of meteorological extreme events, e.g. involving heavy precipitation, storms, extreme cold

and their combinations with heatwaves and droughts. These databases could then be used on their own or for determining areas370

of interest where they can be combined with other data streams, e.g. to study time series of high-resolution satellite imagery.

In addition to the potential of investigating other event types, methodological improvements to the event detection pipeline

are envisioned in future research. The connectivity problem at high latitudes can be addressed using other spatial filtering of

extreme event scores respecting the spherical nature of the Earth, or even running the detection pipeline on grid systems with

less distortion (DGGS). Besides, the current workflow is based on univariate distributions of indicators of extreme conditions.375
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The compound nature of multi-hazard extreme events could be better apprehended with multivariate distributions. For example,

standard multivariate normal kernel has been shown to outperform univariate extreme event detection on synthetic data (Flach

et al., 2017) and successfully applied on real Earth system data to detect anomalies (Flach et al., 2021). Moreover, the addition

of new data to the database currently necessitates to run again the complete workflow to update the rank transformed indicators.

It also bears the risk that previously detected extremes don’t appear as extremes if there is a distribution shift, which seems to380

be the case as shown in Figure 6. Besides, the labels would not be consistent across versions. Hence, in future versions, we

will determine the thresholds based on a reference period, which will facilitate the addition of updated data and will ensure

that previously detected extreme events stay valid. In its current state, the database records the extreme events, but not their

intensity. A combined cumulative metric for both dry and hot conditions would need particular attention. In their review, Hao

et al. (2022) mention the Dry-Hot Magnitude Index (DHMI) of compound dry and hot extremes (Wu et al., 2019) valid for385

monthly input data. It could be adapted to deal with the daily data and with the multiple drought indicators used in Dheed.

5 Conclusions

In this data description paper, we propose Dheed, a daily dry and hot extreme events database based on ERA5 consisting of two

data cubes and a table: (i) an EventCube of Discrete Extreme Occurrences (DEOs), i.e. days in which extremely dry and/or

hot conditions were detected; (ii) a LabelCube of uniquely labelled compound dry and hot extreme (CDH) events, i.e. blobs of390

simultaneously dry and hot DEOs connected in space and time lasting at least three days; (iii) StatEvents, a table containing

summary statistics for all labelled CDH events. The analysis of the EventCube confirms that the occurrence of both dry and

hot extremes as well as their co-occurrence has increased significantly in the past few decades. The trend is not homogeneous

across all continents, with Europe and Africa seeing the strongest increase in the annual number of days and areas affected

by CDH conditions. Dheed was compared against a list of extreme events reported in the literature and collected a priori. Out395

of 40 events, 38 could be associated with Dheed CDH events. All 10 largest and 10 longest Dheed events could be linked to

events reported in the scientific or grey literature. The LabelCube and its associated table allow the user to easily retrieve in

time and space extremely dry and hot conditions, which have occurred, according to climate reanalysis data, between 1950 and

2023, to further study their impact on ecosystems and societies.

6 Code and data availability400

Code associated with this study, including the full data processing to create the database of dry and hot extreme events, as well

as the creation of the figures presented in this article, is available from zenodo/10.5281/zenodo.13711288 (Weynants et al.,

2025a). The database of connected compound dry and hot extreme events is available from zenodo/10.5281/zenodo.11044871

(Weynants et al., 2025b). With no guarantee of permanent storage, all data cubes generated with the current workflow can

currently be accessed on a public s3 bucket at https://s3.bgc-jena.mpg.de:9000/deepextremes/v4/. A ReadMe file details the405
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contents of the data store and how to access the data cubes with Julia or python: https://s3.bgc-jena.mpg.de:9000/deepextremes/

v4/ReadMe.md .
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Appendix A: Comparison of PEI and SPEI for non-deseasonalised daily time series700

In our study we use empirical estimators to derive the 1% quantile value of PEIx for every grid cell, the value that splits

extreme dry data points into non-extreme ones. The SPEI dryness index (Vicente-Serrano et al., 2010) is commonly applied

to monthly and deseasonalised data to define a dryness indicator that directly describes the severity of droughts in units of

standard deviations (a value of -2 means a 2σ drought). Such an index would be an alternative indicator to split extreme from

non-extreme time steps.705

So far the SPEI has been demonstrated to work well for monthly and de-seasonlized data, while the DHEED is built on daily

and non-deseasonalized moving-average PEI values. Here we investigate the applicability of SPEI to daily PEI values and its

robustness compared to a direct quantile estimates.

First, we fit the three parameters of a log-logistic distribution to the daily PEIx data in the time range from 1950 to 2023

to derive a daily SPEI. Distribution parameters are estimated according to (accessed 2022-03-15). Figure A1 shows global710

maps of the derived model parameters. We note that the parameters seem to be highly correlated and suspect some equifinality

to exist as the range of possible parameter values varies a lot globally. Based on the estimated parameters we can derive an

extreme value threshold for every grid cell that corresponds to the quantile of 1%. Figure A2 shows the derived threshold

that separates extreme from non-extreme events (a) derived from the parametrized distribution and (b) directly derived using

empirical quantiles. Both maps show similar patterns. Thresholds derived from empirical quantiles do not seem to be affected715

by noise. This seems to indicate that a time span of 83 years is sufficient to estimate stable 1% quantile. Figure A2 (c) shows

the difference of the 1% threshold derived with both methods. Although both methods of threshold estimation result in similar

patterns, the difference between the values can be large (exceeding 0.5 mm/day).

In order to understand the cause of this difference, we investigate the probability density functions (pdf) of the estimated

log-logistic distribution and an empirical pdf for a few example locations. While for some regions like central Europe the720

log-logistic distribution fits the data reasonably well (Figure A1(a), this is not the case for many other regions in the world.

In the example cases c) and d) neither in the centre nor at the edges of the distribution, which are most relevant to our study,

does the estimated distribution fit well to the data. We suspect that non deseasonalized data that include seasonal effects like

dry and wet seasons lead to bi-modal PEI distributions that are not observed in anomalies and therefore make it infeasible to

fit a log-logistic distribution that would work for anomalies. We conclude that using empirical quantiles is a more appropriate725

method to derive an extreme event threshold for our particular study that considers non-deseasonalized daily time series of 83

years length.
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Figure A1. Parameters of the log-logistic distribution fitted on PEI30 timeseries: (a) α, (b) β, (c) γ.
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Figure A2. PEI30 1 % threshold separating extreme from non-extreme events (a) derived from the parametrized distribution and (b) directly

derived using empirical quantiles, and (c) their difference. 33



Figure A3. Probability density functions of PEI30 values at four locations: in blue the empirical distribution, in orange the fitted distribution.

The vertical lines show the 1 % threshold and the shaded area under the curve the probability of extremes.
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Table B1. Extreme events reported in the literature or the media used to validate the event detection method.

Event Region Type Start End West East South North Reference

1 South Africa heatwave 2016-01-01 2016-01-10 18.0 48.0 -35.0 -16.0 Meque et al. (2022)

2 South Africa drought 2016-10-07 2017-01-30 18.0 48.0 -35.0 -16.0 Meque et al. (2022)

3 Pakistan heatwave 2017-05-20 2017-06-02 60.5 77.25 23.5 37.25 source a

4 India-Pakistan drought 2019-02-01 2019-06-30 61.0 89.0 7.0 34.0 source b

5 Europe compound 2018-06-01 2018-08-31 -10.0 35.0 30.0 70.0 Liu et al. (2020)

6 Europe compound 2019-06-01 2019-08-31 -10.0 35.0 30.0 70.0 Bastos et al. (2021)

7 Brazil compound 2020-09-20 2020-11-10 -56.5 -18.5 -56.5 -18.5 Libonati et al. (2022)

8 Canada compound 2021-06-20 2021-07-10 -127.0 -95.0 48.0 60.0 White et al. (2023)

9 Europe drought 2022-03-01 2022-07-22 -10.0 37.0 30.0 54.0 Tripathy and Mishra (2023)

10 Europe heatwave 2022-07-10 2022-7-22 -10.0 37.0 30.0 54.0 Tripathy and Mishra (2023)

11 India-Pakistan compound 2022-03-15 2022-05-30 61.0 89.0 7.0 34.0 Aadhar and Mishra (2023)

12 India heatwave 2016-04-01 2016-05-20 61.0 89.0 7.0 34.0 Singh et al. (2017)

13 India heatwave 2017-04-12 2017-06-15 61.0 89.0 7.0 34.0 Hari and Tyagi (2021)

14 India heatwave 2018-05-12 2018-06-10 61.0 89.0 7.0 34.0 Hari and Tyagi (2021)

15 India heatwave 2019-06-01 2019-06-30 61.0 89.0 7.0 34.0 Hari and Tyagi (2021)

16 India heatwave 2022-03-01 2022-03-31 61.0 89.0 7.0 34.0 Aadhar and Mishra (2023)

17 USA drought 2017-03-01 2017-12-31 -125.0 -70.0 25.0 50.0 source c

18 USA drought 2020-01-01 2020-12-31 -125.0 -70.0 25.0 50.0 source d

19 USA drought 2021-01-01 2021-12-31 -125.0 -70.0 25.0 50.0 source e

20 W. North America heatwave 2021-06-25 2021-07-07 -140.0 -115.0 35.0 65.0 source e

21 Europe-middle heatwave 2018-07-01 2018-07-30 -3.0 23.0 42.0 53.0 Rousi et al. (2023)

22 Europe-west heatwave 2019-06-24 2019-06-30 -9.0 16.0 35.0 60.0 Xu et al. (2020)

23 Europe-midwest heatwave 2020-06-01 2020-08-16 -9.0 5.0 42.0 60.0 source f

24 Europe heatwave 2022-07-10 2022-07-25 -10.0 35.0 30.0 70.0 source g

25 Tunisia heatwave 2022-07-10 2022-07-25 7.5 12.0 30.0 38.0 source g

26 Iran heatwave 2022-07-10 2022-07-25 44.0 63.5 24.5 40.03 source g

27 China heatwave 2022-07-10 2022-07-25 53.5 73.5 8.5 135.0 source g

28 Texas, USA compound 2011-06-01 2011-08-31 -106.65 -93.51 25.84 36.5 Nielsen-Gammon (2012)

29 Russia heatwave 2010-06-01 2010-08-30 28.75 60.25 48.25 66.75 Flach et al. (2018)

30 Amazon drought 2010-01-01 2010-12-31 -73.0 -64.0 -11.0 -4.0 Lewis et al. (2011)

31 USA* drought 2005-11-01 2006-02-28 -100.0 -95.0 32.5 37.5 Dong et al. (2011)

32 Amazon drought 2005-01-01 2005-12-31 -73.0 -64.0 -11.0 -4.0 Lewis et al. (2011)

33 Europe drought 2003-07-01 2003-09-30 -10.0 35.0 35.0 65.0 Ciais et al. (2005)

continued on next page
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continued from previous page

obs_event Region Type Start End West East South North Ref.

34 Europe heatwave 2003-07-01 2003-08-31 -10.0 35.0 35.0 65.0 Ciais et al. (2005)

35 North Argentina drought 1995-07-01 1996-06-30 -75.0 -56.0 -40.0 -24.0 Minetti et al. (2003)

36 North East Brazil drought 1993-02-01 1993-05-31 -47.0 -35.0 -12.0 7.5 Rao et al. (1995)

37 Poland drought 1992-09-01 1992-09-30 14.0 24.0 49.0 55.0 Łabędzki (2007)

38 USA drought 1988-03-01 1988-07-31 -160.0 -50.0 30.0 60.0 Namias (1991)

39 Sahel drought 1983-10-01 1984-09-30 -10.0 33.0 10.0 18.0 Tucker et al. (1986)

* Southern Great Plains

Sources:

a https://en.wikipedia.org/wiki/2017_Pakistan_heat_wave, accessed 2024-09-05

b https://en.wikipedia.org/wiki/2019_heat_wave_in_India_and_Pakistan, accessed 2024-09-05

c NOAA Annual 2017 Drought Report. https://www.ncei.noaa.gov/access/monitoring/monthly-report/drought/201713, accessed 2024-09-05

d NOAA Annual 2020 Drought Report. https://www.ncei.noaa.gov/access/monitoring/monthly-report/drought/202013, accessed 2024-09-05

e NOAA Annual 2021 Drought Report. https://www.ncei.noaa.gov/access/monitoring/monthly-report/drought/202113, accessed 2024-09-05
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Appendix C: Time series from Dheed

Figure C1 shows the last five years of the time series for the four indicators (T2m,max, PEI30, PEI90, and PEI180) used in

the detection of DEOs around the city of Jena, Germany (50.9◦ North, 11.59◦ West). Daily ET0 and P are also shown in

the background. At that particular location, the 1% threshold of maximum daily temperature obtained for the full time series735

(1950–2022) is 303.85 K, or 30.70 ◦ C. Such a threshold classifies as extremes only the summer hot days. The thresholds

for the drought indicators are PEI30 =−1.30, PEI90 =−0.80 and PEI180 =−0.38 mm/day. 2018, 2019, 2020 and 2022 have

been dry, with cumulative water deficit showing for all three PEIs. At a location in a completely different climate zone, the

thresholds will also be different. For example, around Niamey, Niger (13.5116◦ N, 2.1254◦ E, Fig C2), the thresholds are:

T2m,max = 42.51, PEI30 =−5.02, PEI90 =−4.70 and PEI180 =−4.31. In this Sahelian climate, a deficit in water is the norm740

rather than the exception.
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Figure C1. Timeseries (2018–2022) of (a) maximum daily temperature, (b) daily precipitation and reference evapotranspiration, (c) the three

drought indicators (PEI) and (d) the Discrete Extreme Occurrences (DEO) around the city of Jena, Germany. The summers in those years

(except 2021) were relatively dry, with very hot days resulting in compound dry and hot extremes in 2018, 2019 and 2022.
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Figure C2. Timeseries (1981–1985) of (a) maximum daily temperature, (b) daily precipitation and reference evapotranspiration, (c) the three

drought indicators (PEI) and (d) the Discrete Extreme Occurrences (DEO) around the city of Niamey, Niger. The year 1983 was very dry,

but it had only one very hot day resulting in a compound dry and hot event that would not be labelled in Dheed, where events must last at

least three days.
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Appendix D: Validation of PEI against daily SPEI

The extremely dry days obtained from the temporal analysis of PEI30, PEI90, and PEI180 were compared with days with SPEI

less than −2 at ICOS sites from two independent datasets (EOBS based, (Pohl et al., 2023); ERA5 based, Liu et al. (2024))

over the period 2000–2021. In 10 % of the sites, SPEI from (Liu et al., 2024) was not available, corroborating our observation745

that standardizing the daily SPEI by fitting a parametric model does not work everywhere. The three methods only partially

agree, with 29% of the days detected as extremes by Dheed having a SPEI greater than -2 in both datasets, i.e. which are not

classified as extremely dry based on deseasonalized time series. Out of the total number of days detected as extremely dry in

any of the three datasets, almost 14 % were detected by all three methods. The agreement increases with longer accumulation

periods. The disagreement between Dheed and the other two datasets is less than the disagreement between the other two.750

Unsurprisingly, the agreement of Dheed with Liu is greater than with Pohl, which relies on different input data. An example of

the comparison of the three datasets is given at Figure D1.

Table D1. Percentage of agreement between the days detected as extremes by three methods at 101 ICOS sites over the period 2000–2021.

Dheed: this study; Pohl: EOBS-based daily SPEI (Pohl et al., 2023) ; Liu: ERA5-based daily SPEI (Liu et al., 2024).

label % total % Dheed % x30 % x90 % x180

1 Dheed ∩ Pohl ∩ Liu 13.68 27.79 9.21 12.59 18.38

2 Dheed ∩ Pohl 3.85 7.82 2.56 4.41 4.45

3 Dheed ∩ Liu 17.36 35.26 24.59 16.69 11.86

4 Dheed only 14.34 29.13 16.3 17.9 9.59

5 Pohl ∩ Liu 4.22 2.33 4.0 6.0

6 Pohl only 23.2 14.13 24.11 30.03

7 Liu only 23.36 30.88 20.31 19.68
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Figure D1. Time series of daily PEI30, PEI90, and PEI180 (PEI) and daily SPEI from two independent datasets (Pohl: EOBS based, (Pohl

et al., 2023); Liu: ERA5 based, Liu et al. (2024)) at one ICOS site in Belgium for the year 2020. The vertical lines show the days detected as

extremely dry.
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