
Reply to the reviewer #1.  

This paper employs a Lightweight Auto machine learning framework to 

produce a global terrestrial precipitable water vapor (PWV) dataset based 

on the MicroWave Radiation Imager (MWRI) aboard the FY-3 satellite 

series (FY-3B, FY-3C and FY-3D) spanning 2012 to 2020. The training 

dataset for the machine learning model is the enhanced GPS PWV dataset. 

SuomiNet GPS PWV, IGRA2 radiosonde, and the enhanced GPS PWV are 

used as reference datasets for validation. The authors examined the product 

quality from three perspectives: statistical fitting, spatial distribution, and 

temporal variation, while also assessing performance over different land 

surface types. It is recommended to be accepted after major revisions: 

R: We sincerely appreciate your time and effort in reviewing our 

manuscript. Your valuable opinions and comments have been instrumental 

in improving the quality of our work. A point-by-point response is 

provided below, with the issues raised presented in black and our responses 

highlighted in blue. 

 

1. The authors have not explained why the enhanced GPS PWV dataset 

was chosen as the training data for the machine learning model. This raises 

questions about the rationale of the research method. 

 



R: Thank you for your thorough review. We choose the enhanced GPS 

PWV dataset as the training data for the following reasons: 1) The 

enhanced GPS PWV dataset provided an unprecedented number of GPS 

training samples (over 50 million) spanning diverse surface types from 

over 12,000 stations worldwide. 2) Compared to the operational GPS PWV 

product, the enhanced GPS PWV dataset demonstrates significant 

improvements in accuracy. Specifically, the mean absolute error (MAE) 

and standard deviation (SD) of the enhanced GPS PWV dataset, when 

compared against radiosonde-derived PWV, are reduced by an average of 

19.5% and 6.2%, respectively. Furthermore, the number of unrealistic 

negative GPS PWV estimates is also significantly reduced by 92.4%, 

thanks to the accurate zenith hydrostatic delay (ZHD) derived from ERA5 

(Yuan et al., 2023).  

In summary, the enhanced GPS PWV dataset provides a more 

comprehensive, more representative and more accurate PWV product, 

which is essential for training machine learning models. Given the fact that 

the data volume and accuracy are critical requirements for machine 

learning, we decide to use this newly released GPS product as the learning 

label. As a matter of fact, this decision forms the foundation for developing 

an accurate and robust machine learning model, capable of reliably 

retrieving PWV under varying surface conditions. 

 



2. Around line 245, the explanation for the bias between MWRI PWV and 

IGRA2 PWV is based on the argument that "the enhanced GPS PWV 

shares the same bias with IGRA2 PWV." This explanation lacks persuasive 

power and is not supported by relevant studies. 

R: Thank you for your careful review. To clarify, our intention was to 

highlight that IGRA2 exhibited an underestimation of PWV at high PWV 

values when compared to MWRI PWV, and a similar trend was observed 

when comparing IGRA2 and enGPS PWV. The underlying reason for this 

phenomenon remains unclear and warrants further investigation. We 

apologize for this misunderstanding caused by our previous wording and 

have revised the manuscript accordingly to address this issue.  

 

3. It is recommended to include an analysis of the machine learning model's 

uncertainty or error, particularly focusing on how the model performs 

under different weather conditions. 

R: Thank you for your invaluable advice. We expanded our analysis by 

incorporating hourly ERA-5 total cloud cover and precipitation amount as 

the indicators of weather conditions. The matched ground-based PWV 

measurements (enGPS, SuomiNet, and IGRA-2) and MWRI PWV 

products are classified into six categories: those with precipitation and 

those without. The group without precipitation was further classified into 

four sub-classes based on CF (C1: CF (< 0.1); C2: CF (0.1–0.3); C3: CF 



(0.3–0.7); C4: CF (>0.7)) and the group with precipitation were classified 

into two sub-classes base on the amount of precipitation (C5: precipitation 

(0–5 mm) and C6: precipitation (>5 mm)). The RMSEs of MWRI PWV 

in the absence of precipitation range from 1.97 to 2.35 mm for different CF 

scenarios. While RMSE increases with higher CF, the overall uncertainty 

is still controlled within 2.35 mm. In cases of rainfall, the RMSE is 2.93 

mm and 3.29 mm for the C5 and C6 scene, respectively. This result 

indicates that the MWRI PWV has a reliable performance under different 

weather conditions, although clouds and precipitation indeed reduce the 

accuracy of the MWRI PWV, but their overall effects are still tolerable.

 
Figure 6. Evaluation of MWRI PWV under different weather conditions against ground-based PWV ((a) C1: 

CF < 0.1, (b) C2: 0.1 < CF < 0.3, (c) C3: 0.3 < CF < 0.7, (d) C4: CF > 0.7, (e) C5: precipitation < 5mm and (f) 

C6: precipitation > 5mm). 

 



4. The dataset performs poorly under extreme weather conditions. It is 

recommended to consider increasing the variety of training data for 

machine learning in such regions. By categorizing rainfall events, the 

authors could select the dataset that performs best under specific rainfall 

conditions as the training data for the machine learning model.  

R: Thank you for your advice. As you suggested before, we evaluated the 

performance of our ML model under different weather conditions, the 

performance under extreme weather conditions, for example, heavy 

rainfall, deteriorates when compared to that under clear skies. This is 

understandable because it is very hard to fully account for the effect of rain 

droplets on microwave radiation (via scattering and absorption) under this 

situation. In other words, MWRI brightness temperature is not only 

influenced by PWV but also by highly variable rain droplets under this 

condition. Our goal is to develop a ML model capable of retrieving PWV 

from MWRI under all conditions, using only MWRI brightness 

temperature as input. Developing an independent ML model specifically 

for extreme weather conditions is a valuable suggestion and is worth 

considering in the future when we have more training data points. 

 

5. The MWRI has a limited number of channels and lacks high-frequency 

channels, which makes it less sensitive to precipitation compared to 

sensors with high-frequency channels. Could this limitation be mitigated 



by incorporating data from other FY-3 sensors? 

R: Thank you for your advice. We are aware that MWRI only includes the 

10.65~89 GHz channels. Channels in the 118 GHz and 183 GHz are more 

sensitive to precipitation and PWV. Micro-Wave HumiditySonder-2 

(MWHS-2) onboard FY3C, FY3D, FY-3E and FY-3F satellites provide 

measurements at 118 GHz and 183 GHz. MWRI is a conical scanning 

imager, while MWHS-2 is an across-track scanning radiometer, both 

scanning techniques offer unique advantages. Combing these two 

techniques could potentially benefit from higher spatial resolution, 

improved retrieval accuracy and better coverage. However, effective data 

fusion and model development would be necessary to combine these two 

types of measurements in a meaningful way. It is also important to note 

that the goal of this study is to establish the longest PWV dataset using 

only MWRI and we also consider that MWHS-1 onboard FY3B does not 

provide 183 GHz data, so combing MWHS and MWRI is not feasible 

within this study. Nevertheless, this suggestion is valuable and we will 

consider incorporating additional channels in future to enhance the 

performance of the algorithm.  

 

6. In Figure 7, the number of validation stations seems not enough, and the 

spatial distribution is uneven, with most stations concentrated in Europe. 

Is the validation in other regions reliable enough? 

R: Thank you for your careful review. Indeed, most SuomiNet and IGRA-



2 stations are located in Europe and North America, and due to strict data 

collocation criteria (distance difference no more than 10 km, time 

difference no more than 15 min) between MWRI and ground-based data, 

many SuomiNet and IGRA-2 stations were excluded. To explore the 

uncertainty of MWRI PWV in other regions, we also validate MWRI PWV 

retrievals for six continents: Asia, Africa, North America, South America, 

Europe and Oceania. Figure 11 shows the comparison of MWRI PWV 

against PWV measurements from SuomiNet and IGRA-2 sites. MWRI 

PWV retrievals are reliable across all continents, although performance 

indeed varies between regions. The best results were observed in Africa 

and South America, despite the limited number of training data pints from 

these areas, as a large proportion of the training points comes from stations 

in Europe and North America. This variation in performance is likely due 

to differences in weather and surface conditions across continents. 



 
Figure 11. Taylor diagram of MWRI PWV against PWV driven by SuomiNet and IGRA-2 sites over 6 

continents (Asia, Africa, North America, South America, Europe and Oceania). 

 

7. It is recommended to include a quality comparison between the FY-3 

MWRI Level 1C Tb dataset and other Tb datasets to highlight the 

innovation of the study. 

R: Thank you for your advice. Regarding the comparison of the FY-3 

MWRI Level 1C Tb with other similar instruments in our previous work, 

we have conducted a comprehensive evaluation of the FY-3 MWRI 

channels over land and ocean, over ascending and descending orbits, using 



the GPM GMI as a reference, and the results show that the bias of the 

MWRI in ascending and descending orbits after recalibration is well- 

controlled, with the overall MBE being less than 0.5 K and the RMSE 

being less than 1.5 K, respectively (Xia et al., 2023). We also highlighted 

this in Line 122 with: “Consequently, the precision of MWRI Tb datasets, 

particularly in the water vapor absorption channel, has been markedly 

enhanced. Cross-comparisons with datasets from other satellites, such as 

AMSR2 and GMI, have validated the effectiveness of the recalibrated 

MWRI Tb datasets (He et al., 2023; Xia et al., 2023b)” and Line 141 with: 

“Following the extensive reprocessing of FY-3 historical data, a new 

version of the long-term recalibrated FY-3 MWRI L1C Tb dataset has been 

released by NSMC (Wu et al., 2023). MWRI Tbs from 3 FY-3 satellites 

(FY-3B, FY-3C and FY-3D) were evaluated by using GMI as a reference, 

demonstrating that the newly recalibrated dataset exhibited a notable 

enhancement in accuracy, with the RMSE for each channel remaining 

below 2 K (Xia et al., 2023b)”. 

Xia, X., He, W., Wu, S., Fu, D., Shao, W., Zhang, P., and Xia, Xiangao: A 

Thorough Evaluation of the Passive Microwave Radiometer 

Measurements onboard Three Fengyun-3 Satellites, J. Meteorol. Res. 37, 

573–588, https://doi.org/10.1007/s13351-023-2198-3, 2023. 

 

8. Many of the references cited are outdated. It is recommended to 



incorporate more recent studies in the literature review. 

R: Thank you for your advice. We have added references to the more recent 

research advances in this direction that are currently available, as follows: 

Zhao, Q., Ma, Z., Yin, J., Yao, Y., Yao, W., Du, Z., Wang, W.: General 

method of precipitable water vapor retrieval from remote sensing satellite 

near-infrared data. Remote Sensing of Environment 308, 114180. 

https://doi.org/10.1016/j.rse.2024.114180, 2024. 

Zhou, S., Cheng, J.: A physics-based atmospheric precipitable water vapor 

retrieval algorithm by synchronizing MODIS near-infrared and thermal 

infrared measurements. Remote Sens. Environ. 317, 114523. 

https://doi.org/10.1016/j.rse.2024.114523, 2025. 

Ma, X., Yao, Y., Zhang, B., He, C.: Retrieval of high spatial resolution 

precipitable water vapor maps using heterogeneous earth observation data. 

Remote Sensing of Environment 278, 113100. 

https://doi.org/10.1016/j.rse.2022.113100, 2022. 

Jiang, N., Xu, Y., Xu, T., Li, S., Gao, Z.: Land Water Vapor Retrieval for 

AMSR2 Using a Deep Learning Method. IEEE Trans. Geosci. Remote 

Sensing 60, 1–11. https://doi.org/10.1109/TGRS.2022.3162222, 2022. 

Jiang, N., Wu, Y., Li, S., Xu, Y., Wang, Y., Xu, T.: First PWV Retrieval 

Using MERSI‐LL Onboard FY‐3E and Cross Validation With Co‐

Platform Occultation and Ground GNSS. Geophysical Research Letters 51, 

e2024GL108681. https://doi.org/10.1029/2024GL108681, 2024. 
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He, W., Chen, H., Xia, X., Wu, S., Zhang, P.: Evaluation of the Long-term 

Performance of Microwave Radiation Imager Onboard Chinese Fengyun 

Satellites. Adv. Atmos. Sci. 40, 1257–1268. 

https://doi.org/10.1007/s00376-023-2199-2, 2023. 

Li, R., Hu, J., Wu, S., Zhang, P., Letu, H., Wang, Y., Wang, X., Fu, Y., 
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