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Abstract. Carbon dioxide (CO2), as a major greenhouse gas, is one of the important causes of global warming. In recent 

years, the atmospheric CO2 concentration in China has been increasing year by year. Satellite observation is the main means 

of obtaining atmospheric CO2 concentration. However, the current onboard sensors used for measuring atmospheric CO2 10 

have a narrow observation range and cannot obtain spatiotemporal continuous atmospheric CO2 concentrations. Therefore, 

this paper proposes a daily full-coverage XCO2 dataset generation method based on the DSC-DF-LGB (Deep Separable 

Convolutional Neural Network and Deep Forest concatenated with LightGBM) model to obtain the spatiotemporal 

distribution of atmospheric CO2 in China. The DSC-DF-LGB model was established to train the mapping relationship 

between OCO-2 XCO2 retrieval and related variables (reanalysis XCO2, vegetation parameters, human factors, elevation, 15 

and meteorological parameters). The model was used to generate a daily 0.1° full-coverage XCO2 dataset for China from 

2015 to 2020. The cross validation (CV) result indicates that the model has strong performance in estimating XCO2, with R2 

and RMSE of 0.9633 and 0.9761 ppm. The TCCON independent site validation result indicates that the estimated XCO2 has 

high consistency with in-situ measurements, with R2 and RMSE of 0.8786 and 1.5452 ppm. The full-coverage and high-

resolution XCO2 dataset can provide data support for research on carbon sources and sinks. The dataset is available at 20 

https://zenodo.org/doi/10.5281/zenodo.12696674 (Huang, 2024). 

1 Introduction 

The increase in the amount of CO2 is generally considered the main cause of climate change (Kump, 2000). Since the 

Industrial Revolution, global carbon dioxide concentration has been continuously increasing. At present, the global CO2 

concentration has increased from 280 ppm in the pre-industrial to 419.31 ppm in 2023 (Lan et al., 2024; Petit and Raynaud, 25 

2020). Under this background, nearly 200 countries and regions signed the Paris Climate Agreement in 2016, making the 

goal of controlling temperatures by 1.5℃ possible (IPCC, 2018; Voigt, 2016). Subsequently, at the 75th United Nations 

General Assembly, the Chinese government announced that it will strive to peak carbon dioxide emissions before 2030 and 

achieve carbon neutrality target before 2060. In order to achieve the "dual carbon" target, it is urgent to carry out 
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spatiotemporal continuous CO2 concentration mapping to understand the spatiotemporal variation pattern of CO2 30 

concentration in China. 

So far, the atmospheric CO2 concentration mainly measured by in situ stations, aircraft flights and satellite instruments 

(Yang et al., 2020). However, the spatial distributions of in situ measurements and aerial measurements are sparse, making it 

impossible to obtain the distribution of CO2 concentration over a large-scale region (He et al., 2023). Satellite-based 

observations have made up for this deficiency. Even though satellite-based observations have low temporal resolution, their 35 

coverage is wide which makes them the most effective way to measure regional and global atmospheric CO2 (Mustafa et al., 

2021; Wang et al., 2021).Satellite-based observations use near-infrared (NIR) and shortwave infrared (SWIR) spectra to 

monitor atmospheric CO2 from space, which can provide high-precision global distribution of CO2 and help improve our 

understanding of CO2 flux (Liu et al., 2018; Yue et al., 2016). The current carbon satellites in orbit mainly include Japanese 

Greenhouse gases Observing Satellites (GOSAT) (Yoshida et al., 2011), the United States' the Orbiting Carbon Observatory-40 

2 (OCO-2)/Orbiting Carbon Observatory-3 (OCO-3) (Miller et al., 2014), and Chinese Carbon Dioxide Observation Satellite 

(TanSat) (Ran and Li, 2019). The GOSAT satellite was launched into space by Japan in 2009, which is the first satellite in 

the word specifically designed to measure the distribution of greenhouse gas concentrations. OCO-2 satellite was launched 

by NASA in 2014, which is dedicated to monitor carbon dioxide emissions. And Tansat is the first global atmospheric CO2 

observation satellite developed by China, which was successfully launched in 2016. The XCO2 products retrieved by 45 

GOSAT and OCO-2 have been widely used in various studies. These satellites can all provide XCO2 products. However, due 

to the presence of clouds and aerosols, and the narrow satellite orbiting tracks, the retrieved atmospheric CO2 concentration 

data is not spatially continuous. Besides, the satellites have long revisiting intervals, which results in satellite data not being 

temporally continuous. The spatiotemporal discontinuity limits our research on regional carbon sources and sinks. Therefore, 

it is of great significance to map spatiotemporally continuous XCO2 concentration in China. 50 

At present, three kinds of methods for obtaining spatiotemporal continuous XCO2 concentration dataset have been developed 

(He et al., 2022a), which include spatial interpolation (He et al., 2020), chemical transport model simulation (Fu et al., 2019) 

and multi-source data fusion (Liang et al., 2023; Wang et al., 2023). Spatial interpolation is a geostatistical method. The 

method cannot consider factors affecting XCO2 concentration and capture the spatial gradients (Zhang and Liu, 2023). And 

the generated XCO2 data through chemical transport model simulation has a low spatial resolution, making it difficult to 55 

gather some detailed information (Zhang et al., 2017). In recent years, with the increasing popularity of machine learning, 

various machine learning models have gradually been applied to multi-source data fusion. Although machine learning lacks 

interpretability, it can establish relationship models between multiple input variables and output variables. It allows us to 

train models and estimate atmospheric CO2 concentrations by combining multiple relevant factors. More and more 

researches have proven its effectiveness in collaborative fusion of multi-source data. A 500 m spatially continuous 60 

normalized microwave reflection index (NMRI) product was obtained by integrating site data with other VWC-related 

products using Random Forest (RF) (Yuan et al., 2019). Various machine learning methods such as Extremely Randomized 

Trees (ERT) (Wei et al., 2020), RF (Tang et al., 2023; Yang et al., 2022; Zhao et al., 2019), and Deep Belief Network (DBN) 
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(Li et al., 2017) have been used to fuse AOD satellite data, meteorological data, and model data, obtaining spatiotemporal 

continuous PM2.5 datasets. Besides, the DBN was utilized to downscale the 9 km SMAP SSM and 0.1º ERA5-Land SSM to 65 

1 km (Huang et al., 2022). RF have also been used to plot the global distribution of XCH4 concentrations, which has a higher 

accuracy and computing efficiency than the operational full-physics retrieval algorithms (Li et al., 2024). Zhang et al. (2024) 

generated a 1km high spatial resolution dataset of monthly moisture index collection in China by the light gradient boosting 

model (LightGBM).  

As for CO2, various neural networks and ensemble models based on decision tree have been widely used to generate global 70 

or regional atmospheric CO2 concentration datasets. A common means is to use model to establish the relationship between 

ancillary factors and XCO2 retrievals, and subsequently estimate full-coverage XCO2 data (Li et al., 2023). To evaluate the 

spatial distribution of CO2 concentration during the growing season in Iran in 2015, the XCO2 data belonging to OCO-2 and 

eight environmental variables data were modeled by multi-layer perceptron (MLP) (Siabi et al., 2019). Wang et al. (2022) 

used RF to generate daily XCO2 concentrations in the Beijing Tianjin Hebei region from 2015 to 2019. Li et al. (2022) 75 

proposed a reconstruction method using ERT to generate a spatiotemporally continuous CO2 concentration dataset with high-

spatiotemporal resolution based on satellite CO2 retrievals and environmental factors. In addition, the improved ANN and 

GRWN also achieved good results in generating CO2 concentration datasets in China (Zhang et al., 2022; Zhang and Liu, 

2023).  

Based on previous research, the decision tree based ensemble model has been proven to perform well in estimating 80 

atmospheric CO2 concentration (He et al., 2023). Deep Forest (DF) is an advanced ensemble model that has demonstrated 

efficient performance in multi-source data fusion research in fields such as PM2.5 (Song et al., 2022a; Song et al., 2022b), CO 

(Wang et al., 2022), O3(Chen et al., 2023), surface soil moisture (Li et al., 2024). Therefore, the DF-LGB model was 

developed to generate high-precision and spatiotemporal continuous daily XCO2 datasets with a resolution of 0.1° in China 

from 2015 to 2020. The concentration of XCO2 is not only influenced by the local geographical environment, but also 85 

closely related to the surrounding carbon sources and sinks (Cui et al., 2024; He et al., 2022b). However, unlike 

Convolutional Neural Networks (CNN), general machine learning models cannot provide local receptive fields and simulate 

the impact of the surrounding environment on local CO2 concentration. To address this problem, DSC is introduced to 

capture local features of vegetation parameters and anthropogenic factors. In addition, the inverse distance weighting (IDW) 

was used to preprocess OCO-2 XCO2 retrievals to optimize the output dataset. After establishing the DSC-DF-LGB model, 90 

we conducted 10-fold cross validation (CV) and in situ site validation, and evaluated the ability of this model to generate 

earlier and latest datasets. Finally, the 0.1°×0.1° daily XCO2 dataset from 2015 to 2020 was generated, and the 

spatiotemporal distribution pattern of XCO2 in China was analyzed using the generated dataset. 
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2 Materials and methods 

2.1 Datasets and preprocessing 95 

The data used in this study includes satellite XCO2 data, reanalyzed XCO2 data, Leaf Area Index (LAI), Fractional 

Vegetation Coverage (FVC), CO2 emissions (Emi), population (Pop), Digital Elevation Model (DEM), temperature (T), 

relative humidity (Rh), surface pressure (Sp), total precipitation (Tp), boundary layer height (Blh), and in situ XCO2 data 

from 2015 to 2020. Table 1 summarizes the basic information of these data. 

Table 1 Summary of research data 100 

Source Variable Spatial resolution Temporal resolution 

OCO-2 XCO2 2.25km×1.29km 16-daily 

CAMS XCO2 0.75°×0.75° 3-hourly 

GLASS LAI 0.05°×0.05° 8-daily 

FVC 

ODIAC CO2 emissions 1km×1km Monthly 

LandScan Population 1km×1km Yearly 

SRTM15 DEM 500m×500m \ 

Era5 Temperature  0.25°×0.25° Hourly 

Relative humidity  

Surface pressure  

Total precipitation 

Boundary layer height 

TCCON XCO2 \ 2min 

2.1.1 Satellite XCO2 retrievals 

Satellite XCO2 retrievals were sourced from OCO-2. The OCO mission made the global, space-based measurements of 

atmospheric CO2 with the precision, resolution, and coverage needed to characterize CO2 sources and sinks on regional 

scales (Crisp et al., 2004). The OCO-2 satellite was launched in July 2014 to measure reflected solar radiation in specific 

narrow spectral bands in the NIR and SWIR regions with high spectral resolution. Subsequently, the measured spectra are 105 

converted into estimated XCO2 values through various physics-based algorithms and sources of prior information (Taylor et 

al., 2023). This study selected OCO-2 L2 XCO2 retrieval from 2015 to 2020 as the data source for the target dataset of the 

model, which can be accessed at https://disc.gsfc.nasa.gov. The data has a spatial resolution of 2.25km × 1.29 km and a 

revisiting interval of 16 days. Fig. 1 shows the coverage of OCO-2 retrieval in one revisiting interval. 
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 110 

Fig. 1. Spatial distribution of OCO-2 XCO2 retrievals from January 1 to January 16, 2015 (a revisiting interval) in China. 

2.1.2 Reanalyzed XCO2 data 

Reanalyzed XCO2 data was sourced from Copernicus Atmospheric Monitoring Service (CAMS) global greenhouse gas 

reanalysis (EGG4). European Centre for Medium-Range Weather Forecasts (ECMWF) combines model data with various 

observations (Such as GOSAT XCO2 products) using 4D-Var data assimilation method to generate a global CAMS XCO2 115 

reanalysis dataset (Engelen et al., 2009; Massart et al., 2016). Reanalysis does not require timely release of data, so there is 

more time to improve data quality. In this study, the CAMS reanalyzed XCO2 data were collected as the main input data for 

model with a spatial resolution of 0.75º×0.75º and a temporal resolution of 3 hours. The data can be accessed at 

https://ads.atmosphere.copernicus.eu/. 

2.1.3 Vegetation parameters 120 

Terrestrial vegetation growth is the dominant driver of the seasonality of the concentration of atmospheric CO2 (Tiwari et al., 

2013; Yuan et al., 2018). There is a certain correlation between vegetation growth and seasonal cycle of CO2 concentration. 

This study selected LAI and FVC as vegetation parameters to be involved in modeling. 

LAI and FVC was obtained from The Global Land Surface Satellite (GLASS) products. GLASS LAI product use 
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generalized regression neural networks (GRNNs) to generate real LAI. This generalized regression neural network combines 125 

satellite LAI data and MODIS surface reflectance data (Liang et al., 2021). Considering the low computational efficiency of 

GRNNs, the multivariate adaptive regression splines (MARS) model was proposed for generating GLASS FVC products 

from MODIS data (Yang et al., 2016). In this study, the LAI and FVC products has a spatial resolution of 0.05º×0.05º and a 

temporal resolution of 8 days. The products can be accessed at http://www.glass.umd.edu/. 

2.1.4 Anthropogenic factors 130 

There is a close relationship between atmospheric CO2 concentration and human activities (Fang et al., 2011). To 

characterize the impact of human activities on atmospheric CO2 concentration, carbon emissions and population density 

were added as anthropogenic factors to the input variables of the model. 

The Open-source Data Inventory for Anthropogenic CO2 (ODIAC) is a global high spatial resolution gridded emissions data 

product that distributes CO2 emissions from fossil fuel combustion (Oda et al., 2018). ODIAC carbon emissions data product 135 

is generated from national emission estimates through spatiotemporal disaggregation. Carbon emission data product was 

obtained with a spatial resolution of 1km×1km and a temporal resolution of one month from the ODIAC fossil fuel emission 

dataset (https://db.cger.nies.go.jp/dataset/ODIAC/DL_odiac2022.html). 

Landscan data is a global population distribution dataset developed by Oak Ridge National Laboratory (ORNL). It is the 

only global and annually updated population dataset since 2000 which has been widely used in various studies (Calka and 140 

Bielecka, 2019). In this study, the population dataset from Landscan had a spatial resolution of 1km×1km and a temporal 

resolution of one year, which can be accessed at https://landscan.ornl.gov/. 

2.1.5 DEM and meteorological parameters 

Due to the higher density of CO2 compared to air, the concentration of CO2 is influenced by elevation. And population 

distribution is closely related to terrain as well. Therefore, in this study, DEM with a spatial resolution of 500m×500m 145 

obtained from SRTM15 was introduced in the model input as a geographic covariate (Tozer et al., 2019). 

Besides, it has been proven that meteorological parameters such as precipitation and temperature have a correlation with 

atmospheric CO2 concentration (Golkar et al., 2020; Perez et al., 2018; Royer, 2006). The meteorological parameters used in 

this study were derived from the ERA5 reanalysis dataset, which used the same assimilation scheme as CAMS (Hersbach et 

al., 2020). These meteorological parameter data include relative humidity, temperature, boundary layer height, surface 150 

pressure, and total precipitation, all of which had a spatial resolution of 0.25º×0.25º and a temporal resolution of one hour. 

Considering that OCO-2 satellite measures XCO2 at a local overpass time of approximately 13:30, only CAMS and ERA5 

reanalysis data with time of 6:00 UTC was used in this study. The meteorological parameters data can be accessed at 

https://cds.climate.copernicus.eu/. 
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2.1.6 In situ measurement 155 

TCCON is a global network of ground-based Fourier transform spectrometers with 34 globally dispersed sites, including 27 

operational sites, 3 future sites and 4 previous sites. Column abundances of CO2, CO, CH4, N2O and other molecules that 

absorb in the near-infrared are remotely measured by the network, which can be directly comparable with the near-infrared 

total column measurements from space-based instruments (Wunch et al., 2011). In this study, the measurements from Hefei 

site and Xianghe site was used for model accuracy verification. Table B1 shows the basic information of the sites. And the 160 

measurements can be accessed at https://tccondata.org/. 

2.1.7 Data preprocessing 

To ensure the reliability of the data, high-quality XCO2 retrievals were acquired through quality control 

(xco2_quality_flag=0). With the grid center as the interpolated point, IDW was used for XCO2 retrievals in each grid 

(0.1º×0.1º) to obtain the CO2 concentration representing the grid. As for the input data of the model, XCO2 reanalysis, LAI, 165 

FVC, DEM and five meteorological parameter data from the ERA5 dataset were resampled using bilinear interpolation to a 

spatial resolution of 0.1°×0.1°. Population data and CO2 emission data are also aggregated into a spatial resolution of 

0.1°×0.1°. We assume that LAI and FVC remain unchanged for 8 days, population remains unchanged for a year, while the 

monthly CO2 emission data is evenly distributed to each day in month. In addition, due to OCO-2 satellite measuring XCO2 

at a local overpass time of approximately 13:30, XCO2 measurements between 12:00 and 15:00 daily were screened from 170 

TCCON in situ measurement for model validation. 

2.2 Method 

2.2.1 The framework for generating XCO2 dataset 

Fig. 2 presents the workflow for generation of atmospheric CO2 concentration dataset in this study. In order to generate full-

coverage and high-resolution daily XCO2 in China, CAMS XCO2 reanalysis, vegetation parameter data, anthropogenic 175 

factors data, DEM data, meteorological parameters, and OCO-2 XCO2 data were collected for DSC-DF-LGB model training, 

while TCCON data was collected for validation. Then, the input data (i.e. data other than OCO-2 XCO2 and TCCON) was 

reprojected and the spatial resolution was adjusted to 0.1°×0.1° using bilinear resampling or aggregation. After that, the 

OCO-2 XCO2 data from 2015 to 2020 was extracted and quality control was performed through xco2_quality_flag=0. For 

OCO-2 XCO2 located in the same grid (0.1°×0.1°), calculated the XCO2 value of that grid using IDW. Subsequently, the 180 

processed OCO-2 XCO2 data (target XCO2) was spatiotemporally matched with the processed input data to construct a 

dataset for model training. In addition, XCO2 measurements from 12:00 to 15:00 at the Hefei and Xianghe TCCON sites 

were extracted for model accuracy validation. When training the DSC-DF-LGB model, the coefficient of determination (R2), 

mean absolute error (MAE), root mean square error (RMSE), and mean absolute percentage error (MAPE) were used as 

evaluation indicators for the model. Firstly, the model estimation performance was assessed based on 10-fold cross 185 
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validation and then used the TCCON sites to further verify the accuracy of model estimation. Finally, the trained DSC-DF-

LGB model was used to generate full-coverage and high-resolution daily XCO2 concentration in China from 2015 to 2020. 

 

Fig. 2. The workflow for generation of atmospheric CO2 concentration dataset 

2.2.2 Model description 190 

In this study, DSC-DF-LGB was used to generate atmospheric CO2 datasets. The model structure is shown in Fig. 3. This 

model consisted of a Deep Separable Convolutional Neural Network and a deep forest concatenated with LightGBM. Given 

that each variable is independent, DSC (Fig. A1) is used to capture the local features of each variable instead of CNN. Deep 

Forest (Zhou and Feng, 2019) had 2 cascaded layers, each with 2 estimators (each estimator includes 1 RF and 1 ERT). The 

cascaded layers were mainly used to generate augmented features. These augmented features and input variables were fed 195 
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together into LightGBM for calculating and outputting estimated XCO2. The general form of the estimation model is shown 

in Eq. (1). 

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑋𝐶𝑂2𝑗 = 𝑓𝑗 (𝑋𝐶𝑂2𝑗 , 𝐷𝐸𝑀𝑗 , 𝑇𝑗 , 𝑅𝐻𝑗 , 𝑆𝑝𝑗 , 𝑇𝑝𝑗 , 𝐵𝑙ℎ𝑗 , 𝐿𝑎𝑡𝑗 , 𝐿𝑜𝑛𝑗 , 𝑌𝑒𝑎𝑟𝑗 , 𝐷𝑜𝑦𝑗 , 𝐹1𝑗 , 𝐹2𝑗 , 𝐹3𝑗 , 𝐹4𝑗) (1) 

Where j is a specific grid, estimated XCO2 represents the value calculated through DSC-DF-LGB model, fj is the function of 

the DF-LGB model at the grid position, and XCO2j, DEMj, etc. are the various input features described in the second section. 200 

Besides, longitude (Lon), latitude (Lat), year, and day of year (Doy) are added to the input data to represent spatiotemporal 

information. F1, F2, F3 and F4 represent the feature values extracted by DSC. 

 

Fig. 3. The structure of the DSC-DF-LGB model. 

3 Results and Discussions 205 

3.1 Model performance evaluation 

Firstly, the overall performance of the DSC-DF-LGB model was evaluated based on 10-fold CV. Fig. 4 reveals the 

estimation performance of the model through comparison between XCO2 estimated by model and true XCO2. The CV result 

showed that R2 reached 0.9633, while MAE, RMSE, and MAPE were as low as 0.6377, 0.9761, and 0.1569%, indicating 

that DSC-DF-LGB has excellent estimation performance. However, when estimating XCO2, there is a tendency to 210 

overestimate low values and underestimate high values. This is due to the robustness of the model itself, which can identify 

and suppress numerical anomalies. Next, TCCON measurements were used for independent data validation of the model. 

Fig. 5 illustrates the validation result of XCO2 estimated by DSC-DF-LGB, and compares the result with CAMS XCO2 and 

OCO-2 XCO2. The estimated XCO2 have high consistency with TCCON, and the R2, MAE, RMSE, and MAPE are 0.8786, 

1.1956 ppm, 1.5452 ppm, and 0.2910%, respectively. Compared with the validation results of CAMS XCO2 with R2 and 215 

RMSE of 0.7005, 2.4267 ppm, the estimated XCO2 accuracy has been significantly improved. Surprisingly, the estimated 

XCO2 accuracy is also higher than OCO-2 XCO2. due to the small amount of OCO-2 XCO2 used for validation and most of 

the data being located in Xianghe. Table 2 presents the validation results for estimating XCO2, CAMS XCO2, and OCO-2 

XCO2 at each site. At both sites, the validation results for estimating XCO2 were superior to CAMS XCO2. At the Xianghe 

site, the validation results of CAMS XCO2 and OCO-2 XCO2 were not satisfactory, with R2 less than 0.5. On the contrary, 220 
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the estimated XCO2 at Xianghe site showed quite good validation results, with R2 close to 0.8. This excellent validation 

result demonstrates the strong spatial generalization ability of the model and further proved the feasibility of generating full-

coverage and high spatiotemporal resolution XCO2 data through the DSC-DF-LGB model. 

 

Fig. 4. Comparison between XCO2 estimated by DSC-DF-LGB model and true XCO2 225 

 

Fig. 5. Comparison of TCCON sites verification results. (a)-(c) represent the validation results of the estimated XCO2, CAMS XCO2, and 

OCO-2 XCO2 

 

 230 
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Table 2 Verification accuracy for each TCCON site 

Data source 

Hefei Xianghe 

R2 
MAE 

(ppm) 

RMSE 

(ppm) 

MAPE 

(%) 
R2 

MAE 

(ppm) 

RMSE 

(ppm) 

MAPE 

(%) 

Estimated XCO2 0.9092 0.9881 1.2137 0.2429 0.7949 1.2941 1.6799 0.3138 

CAMS XCO2 0.8793 1.0833 1.3993 0.2659 0.4364 2.3674 2.7849 0.5752 

OCO-2 XCO2 \ 0.9257 0.9257 0. 2294 0.4573 1.5131 1.8315 0.3647 

3.2 The ability of the model to generate earlier and later datasets 

Due to the limitation of OCO-2 XCO2 retrievals, DSC-DF-LGB model can only train data after 2015. In order to understand 

the model's ability to estimate past XCO2, only data from 2016 to 2020 was used for model training, and 10-fold CV was 235 

used to evaluate model performance. Then the generalization of the model was tested using dataset in 2015 as an 

independent test set. As shown in Table 3, the CV result was good, with R2, MAE, RMSE, and MAPE of 0.9478, 0.6395 

ppm, 0.9798 ppm, and 0.1568%, respectively. However, during independent dataset testing, there is no linear relationship 

between input and output data, with an R2 of -0.1767. It indicates that the model has weak temporal generalization ability 

and cannot estimate past XCO2. This is mainly due to the inherent shortcomings of decision tree based models and their 240 

inability to capture the trend of XCO2 in 2015 without training.  

Table 3 Model validation results for estimating past XCO2 

Verification method R2 MAE (ppm) RMSE (ppm) MAPE (%) 

CV 0.9478 0.6395 0.9798 0.1568 

Independent dataset testing -0.1767 2.5324 2.8644 0.6352 

Actually, most variables have data from 2020 onwards, but the time range of the generated XCO2 dataset is limited by 

CAMS to 2020. Therefore, we attempted to remove CAMS variables and use the remained ones to train the DSC-DF-LGB 

model. Similar to section 3.1, CV and independent site validation are used to evaluate model performance. As shown in Fig. 245 

6, the model performed well in cross validation, with R2, MAE, RMSE, and MAPE values of 0.9621, 0.6542 ppm, 0.9925 

ppm, and 0.1602%, respectively. However, the model demonstrated poor performance in independent site validation, with 

R2, MAE, RMSE, and MAPE of 0.8101, 1.4736 ppm, 1.9322 ppm, and 0.3585%, respectively. Compared with the model 

trained on datasets with CAMS, there is only a slight loss of accuracy in CV, while estimation accuracy decreased in 

independent site validation, with RMSE increasing from 1.55 ppm to 1.93 ppm. In addition, if data from 2020 onwards is 250 

added for training model, it may improve estimation accuracy to an extent. Therefore, it is feasible to generate later XCO2 

datasets by DSC-DF-LGB model trained on datasets without CAMS, but the estimation accuracy will inevitably decrease. 
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Fig. 6. Performance evaluation of DSC-DF-LGB models trained on datasets without CAMS. (a) shows the CV validation result of the 

model, (b) represents the TCCON independent site validation result, and (c) demonstrates the comparison results with the model trained on 255 

datasets with CAMS. 

3.3 The spatiotemporal distribution of XCO2 in China 

Fig.7 shows the spatial distribution of monthly average XCO2 in 2018. The seasonal variation of atmospheric CO2 
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concentration in China is significant. The atmospheric CO2 concentration is higher in spring (from March to May), with the 

highest CO2 concentration occurring in April. Subsequently, the atmospheric CO2 concentration began to decrease and 260 

reached its lowest point in August. And from August to April of the following year, the atmospheric CO2 concentration 

continued to rise again. The seasonal variation of atmospheric CO2 is mainly caused by the growth and death of vegetation. 

Vegetation undergoes vigorous photosynthesis in summer, absorbing a large amount of CO2 from the atmosphere. In the 

autumn and winter seasons, when vegetation dies and decomposes, CO2 is released into the air (Tiwari et al., 2013). In 

addition, the atmospheric CO2 concentration in Northeast China was lower in July and August, which is related to the strong 265 

carbon sequestration ability of black soil (Liu et al., 2019). 

 

Fig. 7. Monthly average XCO2 in China in 2018. (a)-(l) show the spatial distribution of XCO2 from January to December. 

Fig. 8 shows the spatial distribution of annual average XCO2 in 2018, which is compared to carbon emissions. The 

atmospheric CO2 concentration exhibits significant spatial heterogeneity. The CO2 concentration in the eastern coastal areas 270 

is significantly higher than that in the western regions. This distribution pattern is basically consistent with that of carbon 
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emissions, indicating an inseparable relationship between excessive carbon emissions and the increase in atmospheric CO2 

concentration. Excessive carbon emissions have led to higher atmospheric CO2 concentrations, especially in the Beijing 

Tianjin Hebei (BTH), Yangtze River Delta (YRD), and Pearl River Delta (PRD) regions where industry is developed. 

Besides, the significant carbon emissions from the Chengdu Chongqing Economic Circle (CCEC) have also led to higher 275 

atmospheric CO2 concentrations in the region compared to surrounding cities. This indicates that the concentration of 

atmospheric CO2 is significantly influenced by human activities. 

 

Fig. 8. Comparison of Annual Average XCO2 and Total Carbon Emissions in 2018. (a) represents the spatial distribution of average XCO2 

in 2018, (b) represents the spatial distribution of carbon emissions in 2018. 280 

Subsequently, the annual average XCO2 in China from 2015 to 2020 was calculated. As shown in Fig. 9, the annual 

average XCO2 in China has increased from 400.11 ppm in 2015 to 413.04 ppm in 2020. The annual average growth is 2.59 

ppm/yr, manifesting an overall downward trend. Except for the annual average XCO2 growth of 3.25 ppm in 2016, the 

growth in all other years is below 3 ppm. This indicates the tremendous efforts made by the Chinese government to limit 

global climate change after signing the Paris Agreement. 285 
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Fig. 9. Annual average XCO2 and annual growth in China from 2015 to 2020. 

4 Code and Data availability 

The full-coverage 0.1° daily XCO2 dataset and the code are available at https://zenodo.org/doi/10.5281/zenodo.12696674 

(Huang, 2024). 290 

5 Conclusion 

This study generated a daily full-coverage XCO2 dataset based on DSC-DF-LGB. By calculating, monthly and annual 

average XCO2 datasets can be also generated. Compared to CAMS reanalysis, the generated XCO2 dataset has higher spatial 

resolution and data accuracy. However, although the model has strong spatial generalization, its temporal generalization is 

poor, making it unable to generate earlier or later XCO2 datasets. Subsequently, an in-depth analysis was conducted on the 295 

spatiotemporal distribution of XCO2 in China. The results show that the XCO2 concentration is highest in April and lowest in 

August, demonstrating a clear seasonal cycle, mainly due to the growth and death of vegetation; The spatial distribution of 

XCO2 is consistent with that of carbon emissions, with higher CO2 concentrations in the BTH, YRD, PRD and CCEC in 

China, which indicates that the spatial distribution of XCO2 is significantly influenced by human activities; The XCO2 is 
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increasing year by year, but its growth is gradually slowing down. This dataset generated in this study can be further used for 300 

related research on carbon sources and sinks. 

Appendix A 

 
Fig. A1. The structure of DSC. The window size is 19x19. And features are extracted through two convolutional layers and average 

pooling layer. 305 

Appendix B 

Table B1 TCCON site information 

ID Name Longitude Latitude Data range 

1 Hefei 117.17 31.90 2015.11~2022.12 

2 Xianghe 116.96 39.80 2018.06~2023.02 
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