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Abstract. The eddy covariance (EC) technique is currently the most widely used method for measuring carbon exchange 

between terrestrial ecosystems and the atmosphere at the ecosystem scale. Using this technique, a regional carbon flux network 

comprising a total of 34 sites has been established in the Heihe River Basin (HRB) in Northwest China. This network has been 

measuring the net ecosystem exchange (NEE) of CO2 for a variety of vegetation types. In this study, we compiled and post-20 

processed half-hourly flux data from these 34 EC flux sites in the HRB to create a continuous, homogenized time series dataset. 

We employed standardized processing procedures to fill data gaps in meteorological and NEE measurements at half-hourly 

intervals. NEE measurements were also partitioned into gross primary production (GPP) and ecosystem respiration (Reco). 

Furthermore, half-hourly meteorological and NEE data were aggregated to daily, weekly, monthly, and yearly timescales. As 

a result, we produced a continuous carbon flux and auxiliary meteorological dataset, which includes 18 sites with continuous 25 

multi-year observations and 16 sites observed only during the 2012 growing season, amounting to a total of 1,513 site-months. 

Using the post-processed dataset, we explored the temporal and spatial characteristics of carbon exchange in the HRB. In the 

diurnal variation curve, GPP, NEE, and Reco peak later for ecosystems in the artificial oasis (cropland and wetland) compared 

to those outside the artificial oasis (grassland, forest, woodland, and Gobi/desert). Seasonal NEE, GPP, and Reco peak in early 

July for grassland, forest, woodland, and cropland but remain close to zero throughout the year for gobi/desert. In the last 30 

decade, NEE of wetlands significantly increased, while NEE for other ecosystems did not exhibit significant trends. Annual 

NEE, GPP, and Reco are significantly higher for sites inside the artificial/natural oasis compared to those outside the oasis. 

This post-processed carbon flux dataset has numerous applications, including exploring the carbon exchange characteristics 

of alpine and arid ecosystems, analyzing ecosystem responses to climate extremes, conducting cross-site synthesis from 

regional to global scales, supporting regional and global upscaling studies, interpreting and calibrating remote sensing products, 35 

and evaluating and calibrating carbon cycle models. 
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1 Introduction 40 

Terrestrial ecosystems absorb around 30% of anthropogenic carbon emissions (Friedlingstein et al., 2023) and thereby 

play a crucial role in the global carbon cycle. However, due to the complexity of the terrestrial ecosystems, efforts to quantify 

their carbon uptake capacity still face significant challenges. The eddy covariance (EC) technique is currently the most widely 

used method to measure the carbon exchange between terrestrial ecosystems and the atmosphere at the ecosystem scale 

(Baldocchi et al., 2001), providing insights into terrestrial carbon uptake capacity. Numerous regional and global carbon flux 45 

networks, such as FLUXNET, AmeriFlux, ICOS, AsiaFlux, TERN-OzFlux and ChinaFLUX, have been established to 

coordinate EC flux measurements across diverse terrestrial ecosystems. Despite the presence of over a thousand EC sites 

worldwide, these sites are predominantly located in North America, Europe, and East Asia (Pastorello et al., 2020). Many 

regions, like Northwest China and Central Asia, remain underrepresented, which hinders accurate quantification of carbon 

sinks in these areas and global-scale synthesis and upscaling studies. 50 

The Heihe River Basin (HRB) is the second largest inland river basin in China and serves as an ideal experimental region 

for studying the carbon cycle in Northwest China (Cheng et al., 2014). Due to the significant gradients in elevation (ranging 

from 1,500 m a.s.l. downstream to 5,000 m a.s.l. upstream) and precipitation (from 50 mm downstream to 600 mm upstream), 

the HRB encompasses diverse landscapes, including snow/glacier, permafrost, alpine grassland, subalpine forest, irrigated 

cropland, riparian ecosystems, wetlands, and gobi/desert from the upstream to the downstream (Li et al., 2013). A carbon flux 55 

observation network in the HRB was established through two comprehensive field experiments: the Watershed Allied 

Telemetry Experimental Research (WATER) conducted from 2007 to 2010 (Li et al., 2009) and the Heihe Watershed Allied 

Telemetry Experimental Research (HiWATER) conducted from 2012 to 2017 (Li et al., 2013). 

There are a total of 34 sites in the Heihe carbon flux network (Liu et al., 2018), among which 10 are long-term observation 

sites, while the rest are temporary sites that have been dismantled. The network started observing carbon flux data since 2008, 60 

and the quality controlled 30 min data is released annually on the National Tibetan Plateau Data Center. However, the released 

data contains numerous gaps due to instrument malfunctions and routine maintenance. Additionally, the net ecosystem 

exchange (NEE) has not been partitioned into gross primary productivity (GPP) and ecosystem respiration (Reco), two widely 

used carbon flux components in carbon cycle studies. These issues hinder the effective use of the dataset. To provide uniform 

and continuous carbon flux and auxiliary data, it is necessary to compile and post-process all the flux data in the HRB. 65 

Therefore, the objectives of this work are: 1) to effectively fill the gaps in carbon flux data and auxiliary meteorological data 

of the Heihe carbon flux network, and produce a high-quality, uniform, and continuous carbon flux dataset in the HRB; 2) to 

partition the half-hourly NEE measurements into GPP and Reco; and 3) to explore the diurnal, seasonal and inter-annual 

variability of carbon flux across diverse ecosystems in the HRB based on the gap-filled, partitioned dataset. 

2 Carbon flux network in the HRB 70 

The Heihe carbon flux network encompasses the main ecosystem types in the HRB, including alpine grassland, subalpine 

forest, wetland, irrigated cropland, riparian woody land, and gobi/desert (Fig. 1). Detailed information on these sites is provided 

in Table 1 and Table 2. The development of the Heihe carbon flux network has experienced three stages. The first stage spans 

from 2007 to 2011, during which the WATER experiment was conducted. During this period, the network comprised three 

sites: Arou, Guantan, and Yingke (Table 1) (Li et al., 2009). These three sites were dismantled in 2012. 75 

The second stage spans from 2012 to 2015 when the HiWATER experiment was conducted (Li et al., 2013; Liu et al., 

2018). During this period, the Heihe carbon flux network underwent comprehensive updates. In 2012, five new flux sites were 

established in and around the artificial oasis in the middle reaches of the HRB: Daman super site, Zhangye wetland site, 

Huazhaizi site, Bajitan site, and Shenshawo site (Table 1). Additionally, from May to September 2012, a flux matrix consisting 

of 17 sites was set up in the middle-stream artificial oasis (Table 2). In the summer of 2013, three flux sites were established 80 

in the upstream areas of the HRB: Arou super site, Dadongshu site, and Dashalong site (Table 1). Simultaneously, five sites 
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were set up in the downstream areas of the HRB: Sidaoqiao super site, Hunhelin site, Huyang site, Nongtian site, and Luodi 

site (Table 1). 

The third stage spans from 2016 to the present, and the network was optimized to enhance its representativeness at the 

basin scale and to make maintenance more manageable (Liu et al., 2018). In 2016, four sites (Bajitan site, Shenshawo site, 85 

Luodi site, and Nongtian site) were dismantled, and two new flux sites were established: Huangmo site and Jingyangling site. 

Currently, ten sites are operational as long-term observing sites, with four in the upper reaches (Arou super site, Dashalong 

site, Dadongshu site, and Jingyangling site), three in the middle reaches (Daman super site, Zhangye wetland site, and 

Huazhaizi site), and three in the lower reaches (Sidaoqiao super site, Hunhelin site, and Huangmo site). 

At each site of the carbon flux network in the HRB, flux and auxiliary meteorological factors, including CO2 flux (Fc), 90 

latent heat flux (LE), sensible heat flux (H), downward solar radiation (Rg), air temperature (Ta), soil temperature (Ts), relative 

humidity (RH), soil water content (SWC), precipitation (P), and atmospheric pressure (PA), are recorded half-hourly or 

processed to half-hourly data. The 30 min data has been performed quality control (Xu et al., 2020; Liu et al., 2018; Che et al., 

2019; Liu et al., 2023) and released at the TPDC (https://data.tpdc.ac.cn/zh-hans/topic/heihe). This released half-hourly carbon 

flux and auxiliary data include a lot of gaps, and the NEE data are not partitioned into GPP and Reco. 95 

 

Fig. 1 Distribution of eddy covariance (EC) observation sites in the Heihe River Basin (HRB). (a) is EC sites 

distribution map in the Heihe River Basin with landcover as the background. (b) and (c) show the distribution of the EC sites 

in the matrix experiment area in middle reaches and core experiment area in the lower reaches. The photos from 1 to 34 

illustrate the underlying landscapes of the EC sites.  100 
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Table 1 Information of long-term and short-term observing sites in HRB. 

Table 2 Information of sites in the eddy covariance matrix experiment in the middle reaches of the HRB in 2012. 105 

ID Name Site_ID 
Longitude 

(◦E) 

Latitude 

(◦N) 

Landcove

r 

Dominant 

plant 

Elevation 

(m) 
Period Stream 

1 
Jingyangli

ng site 
JYL 101.116 37.8384 

Alpine 

grassland 

Kobresia 

pygmaea 
3750m 2018- Now Upper 

2 
Arou 

super site 
ARS 100.4643 38.0473 

Alpine 

grassland 

Kobresia 

pygmaea 
3033m 2013- Now Upper 

3 
Dadongsh

u site 
DDS 100.2421 38.0142 

Alpine 

grassland 

Kobresia 

pygmaea 
4148m 2015- Now Upper 

4 
Dashalon

g site 
DSL 98.9406 38.8399 

Alpine 

marshland 

Kobresia 

pygmaea 
3739m 2013- Now Upper 

5 
Daman 

super site 
DMS 100.3722 38.8555 Cropland Seed corn 1556m 2012- Now Middle 

6 

Zhangye 

wetland 

site 

ZYW 100.4464 38.9751 Wetland Reed 1460m 2012- Now Middle 

7 
Huazhaizi 

site 
HZZ 100.3186 38.7652 Desert 

Salsola 

passerina 
1731m 2012- Now Middle 

8 
Sidaoqiao 

super site 
SDQ 101.1374 42.0012 Woodland Tamarisk 873m 2013- Now Lower 

9 
Hunhelin 

site 
HHL 101.1335 41.9903 Woodland 

Populus 

euphratica 

and Tamarix 

874m 2013- Now Lower 

10 
Huangmo 

site 
HMo 100.9872 42.1135 Desert Reaumuria 1054m 2015- Now Lower 

11 Arou site ARo 100.4646 38.0443 
Alpine 

grassland 

Kobresia 

pygmaea 
3033m 2008-2011 Upper 

12 
Guantan 

site 
GTa 100.2500 38.5333 

Subalpine 

forest 

Picea 

crassifolia 
2835m 2010-2011 Upper 

13 
Yingke 

site 
YKe 100.4103 38.8571 Cropland Seed corn 1519m 2007-2011 Middle 

14 
Bajitan 

site 
BJT 100.3042 38.9150 Gobi / 1562m 2012-2014 Middle 

15 
Shenshaw

o site 
SSW 100.4933 38.7892 Desert / 1594m 2012-2015 Middle 

16 Luodi site LDi 101.1326 41.9993 Bare land / 878m 2013-2015 Lower 

17 
Nongtian 

site 
NTi 101.1338 42.0048 Cropland Cucumis melo 875m 2013-2015 Lower 

18 
Huyanglin 

site 
HYL 101.1239 41.9932 Woodland 

Populus 

euphratica 

forest 

876m 2013-2015 Lower 

ID Name Site_ID 
Longitude 

(◦E) 

Latitude 

(◦N) 
Landcover 

Dominant 

plant 
Elevation(m) Period 

19 EC Matrix 1 M01 100.35813 38.89322 Cropland Vegetable 1552.75m 2012/6/4-9/17 

20 EC Matrix 2 M02 100.35406 38.88695 Cropland Seed corn 1559.09m 2012/6/3-9/21 

21 EC Matrix 3 M03 100.37634 38.89053 Cropland Seed corn 1543.05m 2012/6/3-9/18 

22 EC Matrix 4 M04 100.35753 38.87752 Built-up / 1561.87m 2012/5/31-9/17 

23 EC Matrix 5 M05 100.35068 38.87574 Cropland Seed corn 1567.65m 2012/6/3-9/18 

24 EC Matrix 6 M06 100.35970 38.87116 Cropland Seed corn 1562.97m 2012/5/28-9/21 

25 EC Matrix 7 M07 100.36521 38.87676 Cropland Seed corn 1556.39m 2012/5/29-9/18 

26 EC Matrix 8 M08 100.37649 38.87254 Cropland Seed corn 1550.06m 2012/5/28-9/21 

27 EC Matrix 9 M09 100.38546 38.87239 Cropland Seed corn 1543.34m 2012/6/4-9/17 

28 EC Matrix 10 M10 100.39572 38.87567 Cropland Seed corn 1534.73m 2012/6/4-9/17 

29 EC Matrix 11 M11 100.34197 38.86991 Cropland Seed corn 1575.65m 2012/5/29-9/18 

30 EC Matrix 12 M12 100.36631 38.86515 Cropland Seed corn 1559.25m 2012/5/28-9/21 

31 EC Matrix 13 M13 100.37852 38.8607 Cropland Seed corn 1550.73m 2012/5/27-9/20 

32 EC Matrix 14 M14 100.35310 38.85867 Cropland Seed corn 1570.23m 2012/5/30-9/21 
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3 Data post-processing 

In this work, the data post-process included three steps: 1) to perform quality control on the auxiliary meteorological 

data and fill the gaps in the meteorological data by combining meteorological reanalysis data; 2) to conduct quality control of 

the NEE measurements and to fill the flux data gaps; 3) to partition the half-hourly NEE measurements to GPP and Reco. The 

flow diagram for the data post-processing is shown in Fig. 2. 110 

 

Fig. 2 Diagram for the meteorological and carbon flux data post-processing in the HRB. 

3.1 Meteorological data post-processing 

The half-hourly meteorological data underwent quality control to remove outliers, and only high-quality records were 

retained (Xu et al., 2020; Liu et al., 2018). In this work, we selected eight meteorological factors (Rg, Ta, Ts, RH, VPD, SWC, 115 

P, PA) measured at the flux sites in the HRB for post-processing, as these factors are highly related to carbon fluxes and are 

also available in the ERA5-Land (ECMWF Reanalysis v5) dataset. The ERA5-Land dataset is a global reanalysis dataset with 

spatial resolution of 0.1 degree and temporal resolution of 1 hour (Muñoz-Sabater et al., 2021). The corresponding factors 

were extracted from the ERA5-Land dataset according to the geographical coordinates of each site. To match the temporal 

resolution of the in-situ observed data, the extracted hourly ERA5-Land data was linearly interpolated to half-hourly data for 120 

Rg, Ta, Ts, RH, VPD, SWC, and PA. For precipitation (P), linear interpolation could result in overestimation of the yearly 

precipitation amount, and therefore the hourly precipitation was equally divided to two half-hours. After temporal matching 

between in-situ observations and extracted ERA5-Land data, a random forest (RF) model was trained for each factor. To test 

the accuracy of the RF model in meteorological gap-filling, 5-days of continuous artificial gaps were created in the 

meteorological factors, and these were then used to assess the performance of the gap-filling method. The RF model was able 125 

to accurately predict the missing meteorological observations for all variables except P using ERA5-land variables as input 

(Fig. 3). 

33 EC Matrix 16 M16 100.36411 38.84931 Cropland Seed corn 1564.31m 2012/6/6-9/17 

34 EC Matrix 17 M17 100.36972 38.84510 Cropland  Orchard 1559.63m 2012/5/31-9/17 
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Fig. 3 The performance of RF models in the gap-filling of the meteorological data. Rg: downward shortwave radiation; 

RH: relative humidity; SWC: soil water content; P: precipitation; PA: atmospheric pressure; VPD: vapor pressure deficit; Ta: 130 

air temperature; Ts: soil temperature. The suffix "_Obs" indicates the observed values. The suffix "_RF" indicates the 

random forest predicted values. 
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3.2 Carbon flux data post-processing 

The original 10 Hz EC data were processed into 30-minute flux data by Xu and Liu (Xu et al., 2020; Liu et al., 2018). 

Here, we further processed the 30-minute data to obtain continuous GPP, NEP, and Reco. First, outliers in the 30-minute NEE 135 

data were excluded based on a three-times standard deviation criterion (Rousseeuw and Croux, 1993), which is a widely used 

method in meteorological aberrant values detection. 

Second, to further exclude poor-quality NEE data, u* filtering was applied using the REddyProc package (Wutzler et al., 

2018), a post-processing tool for half-hourly EC measurements. During the night, stable stratification often occurs, leading to 

underestimation of nighttime NEE. This issue was identified by examining the relationship between NEE and u*. Nighttime 140 

NEE values with u* lower than a threshold u* were filtered as invalid. A revised breakpoint detection method (Barr et al., 

2013) in the REddyProc package was used to determine the threshold u*. After u* filtering, the gaps in the half-hourly data 

increased.  

Third, it was necessary to fill these gaps to obtain continuous NEE data. In this study, both marginal distribution sampling 

(MDS) (Reichstein et al., 2005) and RF were implemented to fill the gaps by combining gap-filled Rg, Ta, and VPD data with 145 

valid NEE data. The MDS method fills half-hourly NEE gaps using different schemes depending on the availability of 

meteorological data and is included in REddyProc package. For the RF method, a RF model is built using high-quality observed 

NEE and auxiliary meteorological factors (Rg, Ta, and VPD). This model is then used to fill the NEE gaps by inputting the 

gap-filled Rg, Ta, and VPD data. Both MDS and RF are effective in filling the gaps in NEE, with R² values of 0.77 for MDS 

and 0.84 for RF between the filled and observed values (Fig. 4). While RF can fill all the gaps in NEE, MDS still leaves some 150 

long gaps unfilled (Fig. 5).  

Fourth, the gap-filled NEE data were partitioned into GPP and Reco, two critical variables in carbon cycle studies. The 

NEE partitioning was also performed using the REddyProc package. During nighttime (Rg < 10 W/m2), NEE equals Reco 

because there is no photosynthesis. The Lloyd-Taylor respiration function (Lloyd and Taylor, 1994) was fitted using nighttime 

NEE and Ta. This fitted Lloyd-Taylor respiration function was then applied to estimate daytime Reco, with GPP calculated as 155 

the difference between Reco and NEE during the daytime (Wang et al., 2012).  

To improve user convenience, the dataset variables were aggregated at multiple time intervals, including daily (_DD), 

weekly (_WW), monthly (_MM), and yearly (_YY). Variables such as GPP, Reco, NEE, and Precipitation were aggregated 

over longer intervals using the sum. In contrast, variables like Rg, Ta, Ts, SWC, RH, VPD, PA, LE, and H were aggregated 

using the average.  160 

Considering the close performance of the MDS and RF methods, and the fact that the RF method can fill all gaps in the 

data, the subsequent analysis of carbon flux in the HRB is based on the RF results. 
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Fig. 4 The performance of RF models in carbon flux gap-filling. The suffix "_Obs" indicates the observed values. 

The suffix "_RF" indicates the gap-filled values by random forest method. The suffix "_MDS" indicates the gap-filled values 165 

by MDS method. 

 

Fig. 5 Data gaps in NEE before and after gap-filling. The suffix "_Obs" indicates the observed values. The suffix "_RF" 
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indicates the gap-filled with random forest method. The suffix "_MDS" indicates the gap-filled with MDS method. 

4 Dataset description 170 

The post-processed dataset includes 34 sites with time spans ranging from a few months to ten years. For each site, the 

data comprises both original and gap-filled auxiliary meteorological factors (downward solar radiation: Rg, air temperature: 

Ta, soil temperature: Ts, relative humidity: RH, soil water content: SWC, precipitation: P, and atmospheric pressure: PA) and 

flux data (net ecosystem exchange: NEE, gross primary productivity: GPP, ecosystem respiration: Reco, latent heat flux: LE, 

and sensible heat flux: H). The data is provided at multiple temporal scales: half-hourly (_HH), daily (_DD), weekly (_WW), 175 

monthly (_MM), and yearly (_YY). The folder for each specific site is named according to the following convention: Site_ID 

+ start year + end year + temporal scale suffix. The data is saved in the CSV format. Fields with the suffix "_ERA" indicate 

data extracted from ERA5-Land. Fields with the suffix "_F" represent gap-filled data. The explanation of the fields in the post-

processed data is shown in Table 3. 

Table 3 Data fields in half-hourly dataset. 180 

Variables Description Unit  

TIMESTAMP_START The initial time of observation - 

In-situ 

observed 

data 

Year Year - 

DoY The day of the year - 

Hour Hour of the day - 

NEE Net ecosystem exchange g C/m2/30min 

LE Latent heat flux W m-2 

H Sensible heat flux W m-2 

Rg Downward shortwave radiation W m-2 

Ta Air temperature degC 

Ts_1 Surface soil temperature degC 

RH Relative humidity % 

VPD Saturated vapor pressure difference hPa 

SWC_1 Surface soil water content % 

P Precipitation mm 

PA Atmospheric pressure hPa 

uStar Friction wind speed ms-1 

LE_ERA Latent heat flux W m-2 

Extracted 

ERA data 

H_ERA Sensible heat flux W m-2 

Rg_ERA Downward shortwave radiation W m-2 

Ta_ERA Air temperature degC 

Ts_1_ERA Surface soil temperature degC 

RH_ERA Relative humidity % 

VPD_ERA Saturated vapor pressure difference hPa 

SWC_1_ERA Surface soil water content % 

P_ERA Precipitation mm 

PA_ERA Atmospheric pressure hPa 

NEE_F_MDS Gap-filled NEE with MDS method g C/m2/30min 

Gap-filled 

data 

NEE_F_RF Gap-filled NEE with RF method g C/m2/30min 

NEE_F_fqc Quality flag for Gap-filled NEE - 

H_F_MDS 
Gap-filled sensible heat flux with MDS 

method 
W m-2 

H_F_RF 
Gap-filled sensible heat flux with RF 

method 
W m-2 

H_F_fqc Quality flag for H - 

LE_F_MDS 
Gap-filled latent heat flux with MDS 

method 
W m-2 

LE_F_RF 
Gap-filled latent heat flux with RF 

method 
W m-2 

LE_F_fqc Quality flag for LE - 

Rg_F_RF Downward shortwave radiation W m-2 

Rg_F_fqc Air temperature - 
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Ta_F_RF Air temperature degC 

Ta_F_fqc Quality flag for Ta - 

Ts_1_F_RF Surface soil temperature degC 

Ts_1_F_fqc Quality flag for Ts - 

RH_F_RF Relative humidity % 

RH_F_fqc Quality flag for RH - 

VPD_F_RF Saturated vapor pressure difference hPa 

VPD_F_fqc Quality flag for VPD - 

SWC_1_F_RF Surface soil water content % 

SWC_1_F_fqc Quality flag for SWC - 

P_F_RF Precipitation mm 

P_F_fqc Quality flag for P - 

PA_F_RF Atmospheric pressure hPa 

PA_F_fqc Quality flag for PA -  

GPP_F_RF 
Gross primary production partitioned 

from NEE_F_RF 
g C/m2/30min 

Partitioned 

Carbon flux  

Reco_F_RF 
Ecosystem respiration partitioned from 

NEE_F_RF 
g C/m2/30min 

GPP_F_MDS 
Gross primary production partitioned 

from NEE_F_MDS 
g C/m2/30min 

Reco_F_MDS 
Ecosystem respiration partitioned from 

NEE_F_MDS 
g C/m2/30min 

*fqc in HH data: 1 = measured; 0 = gap-filled; fqc in DD, WW, MM and YY data: indicating percentage of missed data (0-1). 

 

5 Results 

5.1 Diurnal variations of carbon fluxes for various ecosystem types in the HRB 

To explore the temporal dynamics of the carbon fluxes for diverse ecosystem types in the HRB, the carbon fluxes were 185 

averaged for different ecosystems, including subalpine forest, alpine grassland, cropland, wetland, riparian woodland and 

gobi/desert. The averaged diurnal cycle curves and statistic metrics of these ecosystems in growing season (May to September) 

are shown in Fig. 6 and Table 4. Note that negative NEE values indicate net carbon uptake, while positive NEE indicate net 

carbon release. Over the course of the diurnal cycle, NEE, GPP and Reco varied greatly for subalpine forest, alpine grassland, 

cropland and wetland but slightly for gobi/desert. The half-hourly NEE reached minimum (i.e., the largest net carbon uptake) 190 

at 11:30pm for subalpine forest, alpine grassland and riparian woodland, 12:30pm for cropland, 13:00pm for wetland and 

11:30pm for gobi/desert. The GPP varied greatly in subalpine forest, alpine grassland, cropland, wetland and riparian woodland, 

and kept constant close to zero in gobi/desert. The half-hourly GPP reached maximum at 11:30pm for subalpine forest and 

alpine grassland, at 12:30 for riparian woodland, cropland and gobi/desert, at 13:00pm for wetland. The half-hourly Reco 

reached maximum at 16:30pm for subalpine forest and gobi/desert, at 17:00 for riparian woodland, at 15:30pm for alpine 195 

grassland, at 16:00pm for cropland and wetland (Table 4 and Fig. 6). 
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Fig. 6 Diurnal variation in the growing season of carbon fluxes of different ecosystems in the HRB. 

Table 4 Statistical metrics of carbon flux diurnal curves for ecosystems in the HRB. (NEEMin is minimum NEE in 

diurnal course and NEEMin Time is corresponding time. GPPMax is maximum GPP in diurnal course and GPPMax Time is the 200 

corresponding time. RecoMax. is maximum Reco in diurnal course and RecoMax Time is the corresponding time. Unit for 

NEEMin, GPPMax and RecoMax is gC m-2 30min-1) 

 
Subalpine 

forest 

Riparian 

woodland 

Alpine 

grassland 
Cropland Wetland Gobi/Desert 

NEEMin -0.29 -0.081 -0.17 -0.40 -0.30 -0.017 

NEEMin Time 11:30 11:30 11:30 12:30 13:00 11:30 

GPPMax 0.34 0.113 0.22 0.49 0.35 0.0187 

GPPMax Time 11:30 12:30 11:30 12:30 13:00 12:30 

RecoMax 0.06 0.034 0.045 0.089 0.055 0.002 

RecoMax Time 16:30 17:00 15:30 16:00 16:00 16:30 

5.2 Seasonal variation of carbon fluxes for ecosystems in the HRB 

The eighteen sites (Table 1) with more than one year of data were selected to explore the seasonal dynamics of carbon 

fluxes for different ecosystems in the HRB. These sites were grouped into six ecosystem types. The seasonal dynamics of 205 

carbon fluxes for these ecosystems are shown in Fig. 7. 

Seasonal NEE varied significantly throughout the year for subalpine forest, alpine grassland, wetland, cropland, and 

riparian woodland but remained close to 0 gC m⁻² day⁻¹ year-round for gobi/desert. During the non-growing season, NEE was 

close to zero for all ecosystems except forest. In the transition period from non-growing to growing season, NEE slightly 

increased and became positive. During the growing season, NEE was notably less than zero for all ecosystems except 210 

gobi/desert, indicating that these ecosystems except gobi/desert exhibited net carbon uptake. The minimum NEE for all 

ecosystems occurred in July, with values of -5.62 gC m-2 day-1 for subalpine forest, -1.48 gC m-2 day-1 for riparian woodland, 

-4.08 gC m-2 day-1 for alpine grassland, -12.40 gC m-2 day-1 for cropland, -8.24 gC m-2 day-1 for wetland, and -0.49 gC m-2 day-
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1 for gobi/desert (Table 5).  

Seasonal GPP also varied significantly throughout the year. During the non-growing season, GPP was very close to zero 215 

for all ecosystems except for subalpine forest. During the growing season, GPP was obviously higher than zero for all 

ecosystems except gobi/desert. Seasonal GPP reached its maximum value in July, with values of 8.11 gC m-2 day-1 for subalpine 

forest, 3.08 gC m-2 day-1 for riparian woodland, 6.62 gC m-2 day-1 for alpine grassland, 16.84 gC m-2 day-1 for cropland, 10.98 

gC m-2 day-1 for wetland, and 0.75 gC m-2 day-1 for gobi/desert (Table 5).  

Seasonal Reco followed a temporal pattern similar with seasonal GPP. Reco also reached its maximum in July, with 220 

values of 3.93 gC m-2 day-1 for subalpine forest, 1.98 gC m-2 day-1 for riparian woodland, 2.96 gC m-2 day-1 for alpine grassland, 

5.64 gC m-2 day-1 for cropland, 3.41 gC m-2 day-1 for wetland, and 0.17 gC m-2 day-1 for gobi/desert (Table 5). 

Table 5 Statistical metrics of carbon flux seasonal curves for ecosystems in the HRB. (NEEMean and NEEMin are daily 

average and minimum NEE in over the year. GPPMean and GPPMax are daily average and minimum GPP in over the year. 

RecoMean and RecoMax are daily average and minimum GPP in over the year. Unit for NEEMean, NEEMin, GPPMean, GPPMax, 225 

RecoMean and RecoMax is gC m-2 day-1.) 

 
Subalpine 

forest 

Riparian 

woodland 

Alpine 

grassland 
Cropland Wetland Gobi/Desert 

NEEMean -2.10 -0.34  -0.84  -1.75  -1.83  -0.25  

NEEMin -5.62 -1.48  -4.08  -12.40  -8.24  -0.49  

GPPMean 3.52 1.18  1.67  3.50  3.08  0.30  

GPPMax 8.11 3.08  6.62  16.84  10.98  0.63  

RecoMean 1.42 0.84  0.83  1.75  1.25  0.05  

RecoMax 3.93 1.98  2.96  5.64  3.41  0.17  

 

 

Fig. 7 Seasonal dynamics of carbon fluxes for different ecosystem types in the HRB. 
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5.3 Inter-annual variations of carbon fluxes for various ecosystem types in the HRB 230 

To explore the inter-annual variations of carbon fluxes in different ecosystem types of the HRB, nine sites with more 

than seven years of data were selected. These sites were grouped into five ecosystem types. The yearly dynamics of GPP, Reco, 

and NEE is shown in Fig. 8, and the statistical metrics of GPP, Reco, and NEE are provided in Table 6. 

The multi-year average NEE was -123.43 gC m⁻² year⁻¹ in riparian woodland, -307.84 gC m⁻² year⁻¹ in alpine grassland, 

-638.77 gC m⁻² year⁻¹ in cropland, -679.62 gC m⁻² year⁻¹ in wetland and -92.04 gC m⁻² year⁻¹ in gobi/desert. Yearly NEE was 235 

the highest in cropland and the lowest in gobi/desert. Annual NEE of wetlands significantly increased during the last decade, 

while other ecosystems exhibited relatively stable NEE with slight inter-annual variations (Fig. 8a). The multi-year average 

GPP was 431.47 gC m⁻² year⁻¹ for riparian woodland, 609.22 gC m⁻² year⁻¹ for alpine grassland, 1269.19 gC m⁻² year⁻¹ for 

cropland, 1127.88 gC m⁻² year⁻¹ for wetlands, and 108.22 gC m⁻² year⁻¹ for gobi/desert. Over the last decade, the annual GPP 

of wetland and riparian woodland slightly increased, while the GPP of other ecosystems remained relatively stable (Fig. 8b). 240 

The multi-year average Reco was 308.03 gC m⁻² year⁻¹ for riparian woodland, 301.38 gC m⁻² year⁻¹ for alpine grassland, 

630.42 gC m⁻² year⁻¹ for cropland, 448.26 gC m⁻² year⁻¹ for wetlands, and 16.18 gC m⁻² year⁻¹ for gobi/desert. The Reco in 

the HRB slightly increased for cropland and wetlands but remained relatively stable for other ecosystem types over the last 

decade (Fig. 8c). 

 245 

 
Fig. 8 Yearly NEE, Reco and GPP for the main ecosystems in the HRB. 

5.4 Spatial variations of carbon fluxes in the HRB 
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To examine the spatial patterns of carbon fluxes, the annual NEE, GPP and Reco of the eighteen sites with at least 1 year 

of data were compared. Annual NEE, GPP and Reco of the eighteen sites in the HRB are shown in Fig. 9. In the upper reaches 250 

of the river basin, annual NEE and GPP was the highest at the GTa site and the lowest at the DDS site. In the middle reaches, 

NEE and GPP was the highest at the ZYW, DMS and YKe sites, which are in the artificial oasis. In the lower reaches, NEE 

and GPP were higher at HHL, HYL, SDQ and NTi than at HMo and LDi. In the upper reaches, the NEE, GPP and Reco 

generally increased with elevation. In the middle and lower reaches, NEE, GPP and Reco of the sites inside the artificial/natural 

oasis were obviously higher than those of the sites outside the artificial/natural oasis.  255 

 

Fig. 9 Yearly carbon fluxes of the 18 sites with more than 1 year of data for the upper, middle, and lower reaches of the 

HRB. The number under each site ID indicates the elevation of the site. 

To explore the carbon flux change along the environmental gradients, we sorted the carbon flux sites based on air 

temperature, precipitation, soil water content, and downward shortwave radiation. We then explored the carbon flux variation 260 

in relation to these four factors. The yearly average air temperature increases from the upper reaches to the middle and lower 

reaches of the HRB. However, the GPP, Reco, and NEE did not show a similar gradient pattern with air temperature. The GPP, 

Reco, and NEE are significantly higher at DMS, YKe, GTa, and ZYW than at other sites, and the temperature at these sites is 

at an intermediate level among all the sites (Fig. 10a). In the upper reaches of the HRB, the NEE, GPP and Reco of the sites 

decreased as annual average temperature decreased, while in the middle and lower reaches of the HRB, NEE, GPP and Reco 265 

did not change with the temperature gradient. NEE, GPP and Reco generally follow the same spatial pattern, with higher 

carbon fluxes at sites with higher soil water content. The cropland and wetland with irrigation in the middle reaches have the 

highest GPP, Reco and NEE (Fig. 10b). Precipitation decreases from about 500 mm in the upper reaches to about 50 mm in 

the lower reaches of the HRB. The GPP, Reco, and NEE of these sites did not strictly increase or decrease with the spatial 

precipitation gradient (Fig. 10c). GPP, Reco, and NEE did not change with the gradient of Rg among the sites in the HRB (Fig. 270 

10d). 
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Fig. 10 Carbon flux spatial variation with the gradients of meteorological factors. Letters in the bracket stand for 

subregions in the HRB, U for upper reaches, M for middle reaches and L for lower reaches of the HRB. 

6 Discussion 275 

6.1 Carbon flux pattern and its drivers in the HRB 

EC-based carbon flux data is perhaps the most effective data source to quantify the carbon sequestration capacity of 

ecosystems at the ecosystem scale. As the HRB is a typical inland river basin, the temporal and spatial patterns of carbon 

fluxes in this region provide insight into the carbon dynamics of inland river basins in the Northwest China and Central Asia 

more broadly. 280 

The diurnal pattern of carbon flux shows that GPP and NEE peak around midday when downward shortwave radiation 

is at its highest, while Reco reaches its peak later in the afternoon when temperatures are at their maximum. This indicates that 

during the growing season, the diurnal NEE curve is primarily driven by GPP variations. The GPP diurnal pattern is largely 

influenced by downward shortwave radiation, whereas the Reco pattern is controlled by temperature (Kato et al., 2004). The 

half-hourly GPP and NEE of subalpine forest, riparian woodland, alpine grassland, and gobi/desert peak slightly earlier than 285 

those of cropland and wetlands. This difference is likely due to the fact that cropland and wetlands are not limited by water or 
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heat, whereas the other ecosystems experience stress from either heat or water (Lin et al., 2019).  

The seasonal patterns of NEE, GPP, and Reco vary significantly among different ecosystems. In gobi/desert, NEE, GPP, 

and Reco remain close to zero throughout the year due to sparse vegetation coverage and low soil organic matter content. For 

alpine grassland, NEE, GPP, and Reco begin to increase later in spring and decrease earlier in autumn compared to subalpine 290 

forest, wetland, and riparian woodland. This can be attributed to the lower temperatures and higher elevations of alpine 

grassland (Wang et al., 2022). In cropland, NEE, GPP, and Reco also show a late start in spring and an early decline in autumn, 

mainly driven by agricultural management practices (Guo et al., 2021). 

The upper reaches of the HRB are humid and cold, and the alpine grassland are weak carbon sinks with annual NEE 

range from -108 gC m-2 year-1 to -341.56 gC m-2 year-1. This is consistent with the previous studies on alpine grassland at the 295 

Haibei site (Zhao et al., 2005) and the Dangxiong site (Shi et al., 2006). The subalpine forest (picea crassifolia) in the upper 

reaches is strong carbon sink, with NEE of -767.01 gC m-2 year-1, which has been rarely reported. The carbon flux in the 

upstream region of the HRB is mainly stressed by low temperature (Sun et al., 2019). 

The middle reaches of the HRB are dry and hot, with significant differences in carbon fluxes between sites inside and 

outside the artificial oasis. Sites within the artificial oasis have strong carbon uptake capacity, with NEE exceeding -600 gC 300 

m-2 year-1 due to irrigation. In contrast, sites outside the artificial oasis have very weak carbon uptake capacity, with NEE less 

than -100 gC m-2 year-1. Inside the artificial oasis, high temperatures and high soil water content promote vegetation growth, 

while outside the artificial oasis, high temperatures and low soil water content inhibit vegetation growth. Due to intensive 

irrigation, the carbon fluxes of sites inside the artificial oasis are decoupled from precipitation in this region (Wang et al., 

2019). 305 

The lower reaches are even drier and hotter than the middle reaches in the HRB. The NEE of the sites in this region 

ranges from -49.72 gC m-2 year-1 to -123.85 gC m-2 year-1. The natural oasis in the lower reaches consist of riparian ecosystems 

distributed along the main river channels. Vegetation in the natural oasis survives by relying on lateral water supply from the 

river channel and shallow groundwater. Vegetation in the natural oasis faces slightly water stress compared to vegetation in 

the artificial oasis in the middle reaches. The vegetation outside the natural oasis in the lower reaches faces more severe water 310 

stress than vegetation outside the artificial oasis in the middle reaches due to lower precipitation and soil water availability in 

the downstream region. 

6.2 Possible sources of uncertainty in the carbon data in the HRB 

Data post-processing can introduce uncertainties into carbon flux measurements. Due to instrument malfunctions and 

maintenance, data gaps are inevitable, yet continuous carbon flux data is essential for assessing an ecosystem's carbon uptake 315 

capacity. In post-processing, three key steps—u* correction, gap-filling, and carbon flux partitioning—can result in 

uncertainties. The u* correction can filter a large proportion of nighttime carbon flux data, with different methods yielding 

different u* thresholds and varying proportions of filtered data. This correction can impact data availability for building lookup 

tables or training models in the gap-filling process. 

The gap-filling process uses mathematical methods aided by meteorological data to fill in missing data, which can 320 

introduce significant uncertainties. The MDS and random forest methods are the two primary techniques currently used for 

data gap-filling (Zhu et al., 2022), and both are evaluated in this work for the HRB. The performance of MDS and random 

forest methods is very close, and both can effectively fill gaps in half-hourly NEE data. While previous studies have reported 

that MDS may systematically overestimate carbon emissions and underestimate CO2 sequestration (Vekuri et al., 2023), we 

did not observe this phenomenon in the HRB. However, MDS cannot effectively fill gaps longer than two weeks, whereas the 325 

RF method can fill all gaps if the corresponding auxiliary meteorological data are available. 

The NEE partitioning method can also introduce uncertainties into GPP and Reco data (Tramontana et al., 2020). 

Although the night-time-based method is recommended as a standard by FLUXNET, it has some limitations. It only considers 
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temperature in the respiration estimation, neglecting other environmental factors that could influence respiration. Additionally, 

it does not account for variations in respiration between nighttime and daytime under different light conditions (Oikawa et al., 330 

2017; Raj et al., 2016; Chen et al., 2024). Since direct measurement of GPP and Reco are not available, assessing uncertainties 

in the NEE partitioning step remains challenging. 

In addition to uncertainties introduced by data processing, harsh weather, complex terrain, and instrument maintenance 

can contribute to uncertainties in carbon flux observations in the HRB. In the upstream regions, extremely cold temperatures 

during the non-growing season can occasionally lead to frost formation on the gas analyzer, affecting the CO2 concentration 335 

signals. In the midstream and downstream areas, sandstorms can disrupt the optical path of the gas analyzer. Furthermore, 

finding large, flat, ideal locations for EC instrumentation can be challenging for certain ecosystems. For example, subalpine 

forest in the upstream area are primarily located on shaded hill slopes, suggesting that carbon fluxes at the GTa site may require 

additional processing to account for terrain effects. Additionally, instrument degradation and updates can introduce 

uncertainties or inconsistencies into the original observation data. 340 

7 Data use guidelines 

Data are fully public but should be appropriately referenced by citing this paper and the database (see Sect. 8). We 

suggest that researchers planning to use this dataset as a core dataset for their analysis contact and collaborate with the first or 

corresponding authors of this paper. 

8 Data availability 345 

The post-processed carbon flux and auxiliary data in the HRB is available at: https://doi.org/10.11888/Terre.tpdc.301321 

(Wang et al., 2024). 

9 Conclusions 

Over the past decade, a comprehensive carbon flux network has been established in the Heihe River Basin (HRB) in 

Northwest China. In this study, carbon flux and auxiliary meteorological data from the network were post-processed to create 350 

an analysis-ready dataset. This dataset encompasses 34 sites across six dominant ecosystems in the HRB: alpine grassland, 

subalpine forest, cropland, wetland, riparian woodland, and gobi/desert. Eighteen of these sites have continuous multi-year 

observations, while 16 sites were observed only during the 2012 growing season, totaling 1,513 site-months. Based on this 

dataset, the following temporal and spatial characteristics of carbon exchange in the HRB were identified: 1) In the diurnal 

variation curve, GPP, NEE, and Reco peak later for ecosystems in the artificial oasis (cropland and wetland) compared to those 355 

outside the artificial oasis (grassland, forest, woodland, and gobi/desert). 2) Seasonal NEE, GPP, and Reco peak in early July 

for grassland, forest, woodland, and cropland, while remain close to zero throughout the year for gobi/desert. 3) In the last 

decade, NEE of wetlands significantly increased, while NEE for other ecosystems slightly fluctuated inter-annually. 4) NEE, 

GPP, and Reco are significantly higher for sites inside the artificial/natural oasis compared to those outside. This post-

processed carbon flux dataset has many applications, e.g., exploring carbon exchange characteristic of alpine and arid 360 

ecosystem, ecosystem responses to climate extremes, cross-site synthesis at regional to global scales, regional and global 

upscaling studies, interpreting and calibrating remote sensing products, evaluating and calibrating carbon cycle models. 
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