- 19th–20th century semi-quantitative surface ozone along 1 subtropical Europe to tropical Africa Atlantic coasts 2 3
- 4

7

5 Juan A. Añel^{1,2}, Juan-Carlos Antuña-Marrero^{1,3}, Antonio Cid Samamed⁴, Celia Pérez-Souto¹, Laura de la Torre¹, Maria Antonia Valente⁵, Yuri Brugnara⁶, Alfonso Saiz-Lopez², Luis Gimeno¹ 6

8 ¹EPhysLab, CIM-UVigo, Universidade de Vigo, Ourense, 32004, Spain

9 ²Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Blas Cabrera, 10 CSIC, Madrid, 28006, Spain

11 ³Grupo de Óptica Atmosférica, Facultad de Ciencias, Universidad de Valladolid, Valladolid, 47011, 12 Spain

13 ⁴Physical Chemistry Department, Faculty of Sciences, Universidade de Vigo, Campus de As Lagoas

14 S/N, 32004 Ourense, Spain

⁵Instituto Dom Luiz, Faculty of Sciences, Universidade de Lisboa, Lisboa, 1749-016, Portugal 15

16 ⁶Empa, Laboratory for Air Pollution/Environmental Technology, Dübendorf, Switzerland

17

18

19 Correspondence to: Juan A. Añel (j.anhel@uvigo.gal) 20

21 Abstract. Tropospheric ozone (O_3) plays a key role in the climate system. Studying pre-industrial 22 tropospheric O_3 implies two important challenges: *i*) the lack of observational records prior to the late 19th century, which hampers understanding long-term climate trends, given O₃ crucial role, *ii*) and the 23 24 uncertainties on their quantitative values in a non-polluted atmosphere across the planet. The 25 ozonoscope was the first instrument used to measure ozone. It offers semi-quantitative estimates of 26 surface O₃ when no other measurements were available. Despite their potential value, the digitisation, 27 curation and publication of ozonoscope data remains largely unexplored. In this work, we initiate an 28 effort to rescue surface O_3 ozonoscope records with a new data collection. We include data from 23 29 observatories covering Portugal and the African Atlantic regions, providing a latitudinal span from the 30 extratropics in the northern hemisphere to the tropics in the southern hemisphere. This record represents the most extended ozonoscope data series to date, spanning 50 years of daily data and 58 years of 31 32 monthly data, from 1855 to 1913.

33

34 1. Background & Summary

35 Tropospheric ozone (O_3) records for our planet before the end of the 19^{th} century are rare and sparse. It 36 is not surprising given that O_3 was discovered by Schönbein in 1839 (Schönbein, 1840a, b) and it got 37 little attention during the decades following its discovery. After 1860s, measuring it became common at meteorological stations. However, O_3 is a transcendental chemical for the understanding and study of 38 39 the atmosphere. Tropospheric O_3 is a greenhouse gas and, at elevated concentrations, a pollutant 40 harmful to human health, also affecting crops and ecosystems productivity (U.S. EPA, 2020). However, 41 the study of tropospheric O_3 faces two important challenges: *i*) the lack of observational records prior 42 to the late 19th century, which hampers understanding long-term climate trends, *ii*) and the uncertainties 43 on the quantitative values in a non-polluted atmosphere.

The first phase of the Tropospheric Ozone Assessment Report (TOAR) project (Schultz et al., 2017; 44 45 Tarasick et al., 2019) developed a web-accessible database of surface O_3 observations, consisting in two 46 main periods. The modern period, beginning around 1975 and spanning to the present, defined by widespread availability of sensitive UV photometers for surface O₃ measurements, and the historical 47 48 period, covering 1877–1975, defined by the use of other techniques and the lack of UV photometers. 49 The records available for the period previous to 1975 were evaluated using a set of four criteria to 50 minimize uncertainties and biases between the measurement techniques available at that times, and the 51 contemporary UV absorption standard. Those criteria are: the relationship of the measurement technique to the modern UV absorption standard, the absence of interfering pollutants, the 52 representativeness of the well-mixed boundary layer, and expert judgement of their trustworthiness. 53 The earliest surface O₃ measurements, corresponding to the 19th century, extending until the early 20th 54 century using the test-paper method, also called "ozonoscope", were among the ones disregarded 55 56 (Tarasick et al., 2019).

57 Considering the scientific questions motivating the TOAR, associated with the global distribution and trends of surface O_3 pollution (Gaudel et al., 2018), the decision not to include the 19th century semi-58 59 quantitative O_3 measurements in the TOAR database is grounded. Yet, there are other scientific 60 questions related to global distribution and surface O₃ pollution during the pre-industrial era, such as the 61 atmospheric concentration in non-polluted areas and evaluation of the assumed O₃ concentrations, 62 study of local sources of O₃, and better understanding of the role of such levels on the radiative balance. 63 Answering such questions could benefit of using together the quantitative surface O_3 observations with 64 semi-quantitative O₃ observations from ozonoscopes. Although the measurements with the ozonoscope 65 were vulnerable to the influence of the humidity and oxidants in the air, those semi-quantitative O₃ observations will enable us to study semi-quantitatively climate variables under very low (or no 66 67 exposure at all) anthropogenic activity when no other measurement was available (Bojkov, 1986), a gap in our knowledge of surface O_3 in the $19^{\mbox{\tiny th}}$ century. 68 Efforts to recover some of those O_3 measurements have been performed in the past (Bojkov, 1986; 69 70 Linvill et al., 1980; Anfossi et al., 1991; Sandroni et al., 1992; Sandroni and Anfossi, 1994; Marenco et

al., 1994; Cartalis and Varotsos, 1994; Nolle et al., 2005); however, only a single sample of those surface O_3 datasets that we know of was digitized, published in a public data repository, and it was

done during data recovery efforts focused on something other than ozone or atmospheric composition(Vaquero et al., 2022).

75 Here we introduce the rescued surface O_3 ozonoscope records covering Portugal and the African 76 Atlantic oceanic sector from 23 observatories in four countries, as shown in Figure 1. The O₃ semi-77 quantitative observations provide a latitudinal coverage from extratropics in the northern hemisphere to 78 tropics in the southern hemisphere. The observations were conducted following a standardized 79 procedure with the same type of test-paper (Schönbein, 1850; Bérigny, 1858). The series of daily and 80 monthly means of surface O₃ and humidity, and their corresponding metadata, have been digitized from 81 the original documentary sources. They are representative of very different regions of the planet, such 82 as tropics, oceans and coastal areas. One of them, from the Infante D. Luiz observatory, located in 83 Lisbon, Portugal, provides almost fifty years of continuous daily data in the period 1863 to 1913 and 84 nearly fifty-eight years of monthly means from 1855 to 1913, becoming the most extended and earlier 85 surface O₃ ozonoscope data series known to date. Before this work, the longest and earliest reported 86 series was the thirty-one years Montsouris observatory O₃ ozonoscope data series, which began in 1876 87 (Bojkov, 1986). Additionally, another ten of the daily records here recovered cover between twelve and 88 seventeen years of data, while four monthly mean records extend between thirty-three and forty-two 89 years. The difficulty to find records of meteorological variables covering oceanic regions for the 90 preindustrial era, and in particular surface O₃ datasets, makes this contribution one of the most relevant 91 features of the datasets recovered here, as it contains six datasets from islands in the East Atlantic (two at the Azores Island, one in the Madeira Island, two in Cape Verde and another in Saint Thomas & 92 93 Prince). The data series have been tested for breakpoints and inhomogeneities, finding few of them; 94 unfortunately, we have discovered scarce metadata that let us to provide context for the existing 95 breakpoints; however, in several cases a change in the location of the observatory or instruments seems 96 a plausible explanation.

97 In the next section, the Schönbein test paper method and its further improvement by Bérigny are briefly
98 described, followed by the description of the data sources. Then, in Data Records, we describe the main
99 features of the recovered datasets, both for the daily and monthly means of the Infante D. Luiz
100 observatory and the other twenty-two observatories. The Technical Validation explains the
101 homogeneity tests applied.

102

103 2. Methods

104 **2.1. The test-paper method**

105 The test-paper measurement method was based on the color change of an indicator test paper. The strip 106 of blotting paper was coated with starched potassium iodide and then exposed to air between eight and 107 twenty-four hours, protected from solar radiation and rain. After the exposure, the strip was moistened, 108 developing a bluish color associated with the formation of a complex between starch and iodide, 109 produced by the reaction between O_3 and iodide. The coloration depends on the O_3 concentration. 110 Finally, the observed color was compared with a standard chromatic scale, graduated by Schönbein 111 from 0 to 10, proportional to the O₃ content in the air (Schönbein, 1850; Ramirez-Gonzalez et al., 112 2020).

113The method was criticized after it began to be used because the paper strip changes its color depending114on the extent of the iodide reaction with ozone, but also with humidity and other atmospheric oxidants115(Houzeau, 1857; Fox, 1873). When air reaches its water vapor saturation it causes the pre-dried paper116to humidify increasing the rate of O_3 absorption (Kley et al., 1988; Volz and Kley, 1988). Those are the117reasons for a non-linear correlation between the color changes and the ozone concentration.

118 Bérigny introduced the Schönbein's method in France in 1856 (Bérigny, 1856a, b, 1857). He also 119 improved the method, defining the operating procedure, presenting a more precise chromatic scale graduated from 0 to 21 (Bérigny, 1858), and selecting the best quality of impregnated paper, the
Berzelius paper manufactured by Jame, a chemist at Sedan (France) (Marenco et al., 1994). This scale
was often referred to in logbooks containing measurements as "Jame de Sedan".

123 More than one and half century after the test-paper method was introduced, numerous research has been 124 conducted to understand the physical-chemical processes involved in the method and to deal with the 125 associated interference problems (Marenco et al., 1994). Those studies for example estimated that the 126 O_3 levels for 1880 to 1900 were approximately 10 ppb in the Great Lakes area of North America, with 127 an annual cycle maximum in April-June, and the minimum in October-November (Bojkov, 1986). 128 Another study using observations from Montevideo, Uruguay (1883-1885) and Cordoba, Argentina 129 (1886-1892) also showed O_3 levels of the order of 5 - 10 ppb (Sandroni et al., 1992). It is beyond the 130 scope of this article to discuss all the reported studies; we refer the readers to the review conducted by 131 Marenco et al. (1994). Among the cited interferences present in the Schönbein method the one 132 originated by the humidity has been the focus of multiple studies (Fox, 1873; Houzeau, 1857; Linvill et 133 al., 1980; Bojkov, 1986; Marenco et al., 1994; Ramirez-Gonzalez et al., 2020). For this reason, the 134 dependence of the ozonosonde values on humidity, here we also compile daily humidity values for the 135 same days the O₃ observations were conducted at each site.

136 All the twenty-three sites, whose O_3 observations are reported here, followed a standardized procedure 137 and used the same test-paper. The O_3 observations were conducted following the Schönbein method 138 with the improvements introduced by Bérigny and using the Jame (de Sedan) paper. However, the 139 observations in the Bérigny scale were converted to the decimal Schönbein scale, the one used for its 140 processing and reporting (Fradesso da Silveira, 1865). For most of the observatories two strips of paper 141 were exposed in the period of twenty four hours, reporting measurements each twelve hours. However, 142 at some of the observatories only one strip of paper was exposed with the measurement lasting for 143 twenty four hours, resulting in one daily observation. Further details on the exposure at each 144 observatory are described below.

145

146 2.2. Data source: Annaes do Observatorio do Infante D. Luiz

147 The available information about the meteorological and magnetic observations conducted at the 148 observatory Infante D. Luiz and its twenty-two associated observatories consist of the climatological 149 tables reporting daily, monthly and seasonal means of the observed variables, usually consisting of 150 reports of atmospheric pressure, rain, evaporation, temperature, vapor pressure, humidity, cloud 151 coverage, wind direction and speed. Also, they included O₃, published for the first time in 1863, 152 beginning the series of "Annaes do Observatorio do Infante D. Luiz" (hereinafter AOIDL) reports (see 153 Figure 2 for an example) (Brito Capello, 1863). Only O_3 and humidity data were digitized in the context 154 of the work presented here. O_3 observations were reported in that 1^{st} volume only for the Infante D. 155 Luiz observatory, consisting of the monthly and seasonal means of the diurnal, nightly and daily mean, from December 1855 to November 1863. The 2nd volume, the following year, began to include the daily 156 157 diurnal and nightly O₃ observations at Infante D. Luiz from December 1863 to November 1864 158 (Fradesso da Silveira, 1864). The subsequent volumes of the AOIDL, continued including the daily 159 diurnal and nightly O₃ observations at Infante D. Luiz until November 1913 (De Almeida Lima, 1913). 160 The reports from 1914 for the Infante D. Luiz observatory still contained the diurnal and nightly daily 161 observations for all the variables and the columns for O_3 were filled with 0,0 or " – " (De Almeida 162 Lima, 1914). No information has been found for the end of the O_3 observations in 1913 at this 163 observatory.

164 In addition to the Infante D. Luiz O_3 diurnal observations, the 2nd volume published in 1864 included 165 decadal, monthly, and annual O_3 means from other observatories. The following volumes of the AOIDL 166 continued reporting the monthly and seasonal means of the diurnal, nightly and daily mean for the 167 Infante D. Luiz observatory (De Almeida Lima, 1913). Again, no information has been found for the 168 interruption of the O_3 observations.

169 The reports of the decadal and monthly O₃ means at the associated twenty-two observatories continued 170 after 1864, until 1905 (De Lina Vidal, 1905). Daily O_3 observations from some of those observatories 171 conducted in December 1872 began to be reported intermittently, at least in the records we have already 172 found, in the volume 11, corresponding to 1873 (Fradesso da Silveira, 1873). In the available AOIDL 173 reports we found daily observations for some of the observatories ending in 1887, although the decadal 174 and monthly means continued being reported. No reason has been found for the interruption of the 175 reports; we speculate that the cost of publishing them could be a cause for it, a common reason in many 176 cases. The rescued metadata comes mainly from the several sections (Introduction, Advertency, etc.) 177 included randomly in the AOIDL (Brito Capello, 1863).

178 An advantage of this work is that all the ozonoscopes of the different observatories were calibrated in 179 the Infante D. Luiz observatory. Figure 1 shows the geographical distribution of the observatories, and Table 1 lists them, together with their geographical coordinates and their altitude, in decreasing latitude order to facilitate their identification on Figure 1. Figure 2 provides an example of the tables in the

order to facilitate their identification on
AOIDL containing the recovered O₃ data.

183

184 3. Data Records

185 **3.1. Daily and monthly mean O**₃ series from Infante D. Luiz observatory

186 The O_3 observations at the Infante D. Luiz observatory began in January 1855, together with a set of meteorological observations (Silvestre, 1881), and continued uninterrupted until October 13th, 1913 (De 187 Almeida Lima, 1914). Between 1853 and September 1863 the station was in a building, with the 188 coordinates 38° 43' 13" N, 9° 8' 20" W. The station was moved to a different building in October 1863, 189 190 where it has remained until January 1st 1941, located at 38° 42' 59" N, 9° 8' 56" W (De Almeida Lima, 191 1918; Mendes Víctor, 2001) (at this date, the meteorological instruments were moved from the top of 192 the main building to a new meteorological park next to this building, officially maintaining the same 193 geographical coordinates). However, the measurement of its new location was conducted in 1879 and 194 reported by first time in 1881 (Capello, 1881). No further changes were reported, at least until the end 195 of the data series considered here. Therefore, we have assumed the last reported coordinates for the 196 measurements conducted after October 1863.

197

Table 2 shows the yearly coverage of the rescued daily series, consisting of almost fifty years of data from 1863 to 1913. The daily observations from 1855 to 1862 were not included in the 1st AOIDL volume (Brito Capello, 1863). However, the monthly means of observations were included, as shown in Table 3. That is the reason for the difference between the number of years of data rescued for the daily and monthly means for the Infante D. Luiz observatory. Both series are by far the longest reported in the literature. They are also among the earliest.

205 **3.2. Daily and monthly mean O₃ series from the other 22 observatories**

For four of the stations reported in the AOIDL reports, Alcanhoes, Beja, Faro and Sao Fiel, from 1863 to 1914, we found only monthly mean values. This is why nineteen stations are listed in Table 2 (daily data) and twenty-three in Table 3 (monthly data). Also, Table 2 shows that although two daily O_3 observations were conducted at least at nine observatories, only the two daily observations at the Infante D. Luiz observatory were included in the cited AOIDL reports.

211 In the existing literature, daily and monthly mean O_3 observations at Campo Maior had already been 212 recovered (Vaquero et al., 2022), and stored in the PANGAEA open access dataset repository (Vaquero 213 et al., 2021). The monthly means series here reported match the one they reported. However, the daily 214 O_3 observations (Brito Capello, 1877) did not contain the observations for the period 1863 to 1872, 215 which we include in the recovered observations reported here. Also daily mean O₃ observations at the 216 Porto observatory from 1861 to 1897 were reported (without making the dataset available) (Alvim-217 Ferraz et al., 2006). Table 2 shows we were only able to find and recover daily mean O_3 observations from Porto between 1872 and 1887; we were more successful regarding the monthly mean O_3 218 219 observations, shown in Table 2, recovering the period from 1862 to 1877 and the years 1897, 1900 and 220 1901. Daily mean O_3 observations from the Luanda observatory between 1890 and 1895 were used 221 (again without making the dataset available) (Pavelin et al., 1999). On top of them, here we have been 222 able to recover eight additional years of daily and monthly mean O₃ observations from the Luanda 223 observatory, from 1880 to 1887. Neither the Porto's nor the Luanda's O_3 datasets described here had 224 been reported or published in data repositories.

225

226 4. Technical Validation

227 **4.1. Recovered datasets quality control**

Each variable from the datasets was checked, assuring that they were in the range of its respective physically plausible magnitudes, the so-called limit test (Vaquero et al., 2022), and therefore the consistency of its recorded values.

The homogeneity of the recovered data was tested using the software Climatol 4.0.0 (Guijarro, 2023), which is based on the Standard Normal Homogeneity Test (SNHT) (Alexandersson, 1986). Climatol reconstructs each time series using the data from the neighboring stations and uses the reconstructed series as a reference to check homogeneity. Among the parameters that are set by the user, two are particularly relevant: the distance at which the weight of the reference stations is halved, and the threshold of the SNHT statistic above which an inhomogeneity is considered significant. The former parameter was set at 1000 km, the latter at 25 (the default value) for O_3 and 15 for RH. The measurements taken in Lisbon before 1863 and after 1905 were not checked because of the absence of reference stations. The full results of the homogeneity test are provided as Supplementary Information to this paper.

242 4.2. Breakpoints

241

Forty-seven breakpoints were identified in the O_3 series and forty-six in the RH series (in 17 stations). Six breakpoints of the O_3 series coincide with those of the RH series. Additionally, in four of these stations the O_3 breakpoints happen later in the series than those of RH, within an interval of six months with respect to the RH observations (see Tables 4 and 5).

247 It is noteworthy that for Angra de Heroismo (on 1891-10-01) and Ponta Delgada (on 1867-12-01), the 248 O_3 and RH breakpoints coincide in the same month.

The Montecorvo series has two simultaneous breakpoints for O_3 and RH, with a difference of 8 years. But in the first, the RH breakpoint (on 1879-10-01) precedes that of O_3 . The other O_3 breakpoint (on 1887-09-01) happens after the RH breakpoint (on 1887-06-01).

In three of these cases, the coincidence of the interval between O_3 and RH is reduced to one or two months: Angra de Heroismo, Ponta Delgada and Villa Fernando, which could point out to a similar condition (e.g. moving the observatory or instruments) between both changes.

255 Despite the lack of metadata supporting it, simultaneous breakpoints in both O_3 and RH series could 256 point out a change in the location of the station, as two independent instruments and data series 257 simultaneously suffer alterations. We searched in the AOIDL for information to identify the possible 258 causes of the breakpoints, but we only found information about the Loanda observatory, which is 259 speculated was moved in 1881 (Raposo, 2017), when its RH data shows two breakpoints. For the 260 remainder we did not found anything. There was a slight change in the geographical coordinates of the 261 Infante D. Luiz observatory in 1879, as already described above, but it is unlikely it was a change in the 262 site location. The only changes in the observations were found at São Tome: the initial twenty-four 263 hour strip exposure between 3 PM of consecutive days were reported from March 1873 to January 1882 264 and in the February report the same year observations change to twelve hour strip exposures from 9 265 AM to 9 PM and 9 PM until 9 AM of the following day, depicted on Table 2. At this site two 266 breakpoints in the O₃ series were detected in October 1874 and January 1886. No RH breakpoints were 267 reported.

268

269 5. Data Availability

270The surface O3 semi-quantitative monthly (Añel et al., 2024b) and daily (Añel et al., 2024a) datasets271recovered and reported here have been deposited at PANGAEA, and they are available at272https://doi.org/10.1594/PANGAEA.969259273respectively.

274 6. Code Availability

275 The Climatol 4.0.0 (Guijarro, 2023) software (DOI: 10.5281/zenodo.12786007) was used for the 276 homogeneity test. For computational reproducibility (Añel, 2011, 2017) it is distributed as free software 277 under the GPLv3 license and stored in а permanent Zenodo.org repository 278 (https://zenodo.org/records/12786077).

279280 **7. Conclusions**

We have recovered semi-quantitative surface O₃ ozonoscope records from the 19th century and the 281 282 beginning of the 20th century in a new data collection. We include data from 23 observatories covering 283 Portugal and the African Atlantic regions, providing a latitudinal span from the extratropics in the 284 northern hemisphere to the tropics in the southern hemisphere. This record represents the most 285 extended ozonoscope data series recovered to date, spanning 50 years of daily data and 58 years of 286 monthly data, from 1855 to 1913. Moreover, with an small exception for part of a series of an 287 observatory, the existence of the observations here recovered had not been noticed in the previous 288 literature. This dataset presents only a small amount of inhomogeneities, and has the potential to 289 eventually bring unvaluable information on pre-industrial O₃. For example, the fact that it includes daily 290 nightly and diurnal observations may present an opportunity to apply to earlier times our understanding 291 of ozone chemistry and surface ozone variability, which is still developing (Monks et al., 2021). It exist 292 plenty of data from other observatories in logbooks that could be recovered (Bojkov, 1986; Möller,

203 2022), and such data and the work here published can contribute to a better understanding of pre-204 industrial O_3 and serve for future research on it.

295

296 Author contribution

J.A.A. devised the research, with the help of L.G. and A.S-L.; J.A.A. researched the books containing
the datasets with the help of J.C.A.M., L.G., and M.A.V.; The datasets were digitised by J.A.A.,
J.C.A.M., and C.P.S.; Quality control on the data, including homogenization was performed by J.A.A.,
J.C.A.M, A.C.S., L.dlT. and Y.B. J.A.A., L.dlT. and L.G. secured the funding. J.A.A. and J.C.A.M.
wrote the original draft. All authors have read and agreed to the published version of the manuscript.

302

303 **Competing interests**

304 The authors declare no competing interests regarding this paper.

305

306 Acknowledgements

307 We thank Stefan Brönnimann, Renate Varga (Auchmann) from the University of Bern, and Ricardo 308 García-Herrera from the Universidad Complutense de Madrid for comments on early versions of this 309 work and manuscript, especially to Ricardo García-Herrera for making us aware of the first 310 meteorological records that kicked-off this research. Also, we would like to thank Amelie Driemel from 311 PANGAEA for all the work related to the curation and publication of the datasets, and PANGAEA for storing and publishing them. This work was supported by the Government of Galicia under the project 312 313 DOPPLER (Grant number: ED431F 2016/15). J.A.A. was supported by a grant of the "Programa de 314 Recualificación del Profesorado Universitario" of the Spanish Ministry of Universities. C.P.S. is 315 supported by the Government of Galicia under the grant ED481A-2024-246. A.C.S. thanks the action 316 financed by the Ministry of Universities under application 33.50.460A.752 and by the European Union Next Generation EU/PRTR through a "María Zambrano" contract from the Universidade de Vigo, 317 318 belonging to the launch of a European Recovery Instrument ("Next Generation EU"), aimed at 319 requalifying the Spanish university system, specifically for teachers and attracting international talent. 320 The EPhysLab is supported by the Government of Galicia (Grant number: ED431C 2021/44).

321

322

323 **References**

324

Alexandersson, H.: A homogeneity test applied to precipitation data, J. Climatol., 6, 661–675, https://doi.org/10.1002/joc.3370060607, 1986.

Alvim-Ferraz, M. C. M., Sousa, S. I. V., Pereira, M. C., and Martins, F. G.: Contribution of anthropogenic pollutants to the increase of tropospheric ozone levels in the Oporto Metropolitan Area, Portugal since the 19th century, Enviro Pollut, 140, 516–524, 2006.

Añel, J. A.: The importance of reviewing the code, Commun. ACM, 54, 40–41, https://doi.org/10.1145/1941487.1941502, 2011.

Añel, J. A.: Comment on "Most computational hydrology is not reproducible, so is it really science?" by Hutton et al., Water Resour Res, 53, 2572–2574, https://doi.org/10.1002/2016WR020190, 2017.

Añel, J. A., Gimeno, L., Samamed, A. C., Pérez-Souto, C., Torre, L. de la, Valente, M. A., Saiz-Lopez, A., Brugnara, Y., and Antuña-Marrero, J. C.: Pre-industrial semiquantitative daily mean surface ozone data, https://doi.org/10.1594/PANGAEA.969259, 2024a.

Añel, J. A., Gimeno, L., Samamed, A. C., Pérez-Souto, C., Torre, L. de la, Valente, M. A., Saiz-Lopez, A., Brugnara, Y., and Antuña-Marrero, J. C.: Pre-industrial semiquantitative monthly mean surface ozone data, https://doi.org/10.1594/PANGAEA.969241, 2024b.

Anfossi, D., Sandroni, S., and Viarengo, S.: Tropospheric ozone in the nineteenth century: The Moncalieri series, J Geophys Res, 96, 17349–17352, 1991.

Bérigny, A.: Observations faites à Versailles avec le papier dit ozonométrique (séance du 8 Avril 1856), Ann Soc Meteorol Paris, 4, 79–81, 1856a.

Bérigny, A.: Observations ozonométriques faites avec le papier Schöenbein à la caseme Saint-Cloud (séance du 13 Mai 1856), Ann Soc Meteorol Paris, 4, 84–97, 1856b.

Bérigny, A.: Recherches et observations pratiques sur le papier ozonométrique (séance du 9 Juin 1857), Annu. Société Météorologique Fr., 5, 149–156, 1857.

Bérigny, A.: Gamme chromatique pour l'ozonomètre (séance du 9 Mars 1858), Ann Soc Meteorol Paris, 6, 25–29, 1858.

Bojkov, R. D.: Surface Ozone During the Second Half of the Nineteenth Century, J Clim Appl Meteorol, 25, 343–352, 1986.

Brito Capello, J. C.: Annaes do Observatorio do Infante D. Luiz, 1856-1863, 129 pp., 1863.

Brito Capello, J. C.: Postos Meteorologicos 1876, Primeiro Semestre, Anexo ao Volume XIV dos Annaes do Observatorio do Infante D. Luiz, 34 pp., 1877.

Brito Capello, J. C.: Annaes do Observatorio do Infante D. Luiz, 1878, 149 pp., 1879.

Brito Capello, J. C.: Annaes do Observatorio do Infante D. Luiz, 1879, 149 pp., 1881.

Cartalis, C. and Varotsos, C.: Surface ozone in Athens, Greece, at the beginning and at the end of the twentieth century, Atmos Env., 28, 3–8, 1994.

De Almeida Lima, J. A.: Annaes do Observatorio do Infante D. Luiz, 1913, 261 pp., 1913.

De Almeida Lima, J. A.: Annaes do Observatorio do Infante D. Luiz, 1914, 260 pp., 1914.

De Almeida Lima, J. A.: Annaes do Observatorio do Infante D. Luiz, 1915, 269 pp., 1918.

De Lina Vidal, A. A.: Annaes do Observatorio do Infante D. Luiz, 1905, 126 pp., 1905.

Fox, C. B.: Ozone and Antozone, Their History and Nature When, Where, Why, how is Ozone Observed in the Atmosphere?., Churchill, 1873.

Fradesso da Silveira, J. H.: Annaes do Observatorio do Infante D. Luiz, 1864, 223 pp., 1864.

Fradesso da Silveira, J. H.: Annaes do Observatorio do Infante D. Luiz, 1865, 237 pp., 1865.

Fradesso da Silveira, J. H.: Annaes do Observatorio do Infante D. Luiz, 1873, 26 pp., 1873.

Gaudel, A., Cooper, O. R., Ancellet, G., Barret, B., Boynard, A., Burrows, J. P., Clerbaux, C., Coheur, P.-F., Cuesta, J., Cuevas, E., and others: Tropospheric Ozone Assessment Report: Present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation, Elem Sci Anth, 6, 39, 2018.

Guijarro, J. A.: User's guide of the climatol R Package (version 4.1. 1), 2023.

Houzeau, A.: Observations sur la valeur du papier dit ozonométrique et exposition d'une nouvelle méthode analytique pour reconnaitre et doser l'ozone (seance du 10 Mars 1857), Ann Soc Meteorol Paris, 43–53, 1857.

Kley, D., Volz, A., and Mülheims, F.: Ozone Measurements in Historic Perspective, in: Tropospheric Ozone: Regional and Global Scale Interactions, edited by: Isaksen, I. S. A., Springer Netherlands, Dordrecht, 63–72, https://doi.org/10.1007/978-94-009-2913-5_4, 1988.

Linvill, D. E., Hooker, W. J., and Olson, B.: Ozone in Michigan's Environment 1876-1880, Mon Wea Rev, 108, 1883–1891, 1980.

Marenco, A., Gouget, H., Nédélec, P., Pagés, J.-P., and Karcher, F.: Evidence of a long-term increase in tropospheric ozone from Pic du Midi data series: Consequences: Positive radiative forcing, J Geophys Res, 99, 16617–16632, 1994.

Mendes Víctor, L. A.: Anais do Instituto Geofísico do Infante D. Luís 1999, 65 pp., 2001.

Möller, D.: Atmospheric Chemistry: A Critical Voyage Through the History, De Gruyter, 2022.

Monks, P. S., Ravishankara, A. R., von Schneidemesser, E., and Sommariva, R.: Opinion: Papers that shaped tropospheric chemistry, Atmos. Chem. Phys., 21, 12909–12948, 2021.

Nolle, M., Ellul, R., Ventura, F., and Güsten, H.: A study of historical surface ozone measurements (1884–1900) on the island of Gozo in the central Mediterranean, Atmos. Environ., 39, 5608–5618, 2005.

Pavelin, E. G., Johnson, C. E., Rughooputh, S., and Toumi, R.: Evaluation of pre-industrial surface ozone measurements made using Schönbein's method, Atmos Env., 33, 919–929, 1999.

Ramirez-Gonzalez, I. A., Añel, J. A., and Cid Samamed, A.: Ozone measurement practice in the laboratory using Schönbein's method, Geosci. Commun., 3, 99–108, https://doi.org/10.5194/gc-3-99-2020, 2020.

Raposo, P. M. P.: Meteorology, Timekeeping and "Scientific Occupation": Colonial Observatories in the Third Portuguese Empire, Cah. Fr. Viète, III, 139–168, 2017.

Sandroni, S. and Anfossi, D.: Historical data of surface ozone at tropical latitudes, Sci Total Env., 148, 23–29, 1994.

Sandroni, S., Anfossi, D., and Viarengo, S.: Surface ozone levels at the end of the nineteenth century in South America, J Geophys Res, 97, 2535–2539, 1992.

Schönbein, C.: Recherche sur la nature de l'odeur qui se manifeste dans certaines actions chimiquies, Comptes Redus Seances París, 10, 706–710, 1840a.

Schönbein, C. F.: Beobachtungen über den bei der Elektrolyse des Wassers und dem Ausströmen der gewöhnlichen Elektricität aus Spitzen sich entwickelnden Geruch, Ann Phys Chim Poggendorfs Ann., 50, 258–278, 1840b.

Schönbein, C. F.: Über das Ozon, J Prakt. Chim., 51, 1850.

Schultz, M. G., Schröder, S., Lyapina, O., Cooper, O. R., Galbally, I., Petropavlovskikh, I., Von Schneidemesser, E., Tanimoto, H., Elshorbany, Y., Naja, M., and others: Tropospheric Ozone Assessment Report: Database and metrics data of global surface ozone observations, Elem Sci Anth, 5, 58, 2017.

Silvestre, J.: Historia dos estabelecimentos scientíficos litterarios e artísticos de Portugal nos successsivos reinados da monarchia, 493 pp., 1881.

Tarasick, D., Galbally, I. E., Cooper, O. R., Schultz, M. G., Ancellet, G., Leblanc, T., Wallington, T. J., Ziemke, J., Liu, X., Steinbacher, M., Staehelin, J., Vigouroux, C., Hannigan, J. W., García, O., Foret, G., Zanis, P., Weatherhead, E., Petropavlovskikh, I., Worden, H., Osman, M., Liu, J., Chang, K.-L., Gaudel, A., Lin, M., Granados-Muñoz, M., Thompson, A. M., Oltmans, S. J., Cuesta, J., Dufour, G., Thouret, V., Hassler, B., Trickl, T., and Neu, J. L.: Tropospheric Ozone Assessment Report: Tropospheric ozone from 1877 to 2016, observed levels, trends and uncertainties, Elem. Sci. Anthr., 7, 39, https://doi.org/10.1525/elementa.376, 2019.

U.S. EPA: Integrated science assessment for ozone and related photochemical oxidants, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA, 2020.

Vaquero, J. M., Bravo-Paredes, N., Obregón, M. A., Sánchez-Carrasco, V. M., Valente, M. A., Trigo, R. M., Domínguez-Castro, F., Montero-Martín, J., Vaquero-Martínez, J., Antón, M., García, J. A., and Gallego, M. C.: Early meteorological records from Extremadura region, SW Iberia (CliPastExtrem), https://doi.org/10.1594/PANGAEA.928037, 2021.

Vaquero, J. M., Bravo-Paredes, N., Obregón, M. A., Carrasco, V. M. S., Valente, M. A., Trigo, R. M., Domínguez-Castro, F., Montero-Martín, J., Vaquero-Martínez, J., Antón, M., García, J. A., and Gallego, M. C.: Recovery of early meteorological records from Extremadura region (SW Iberia): The 'CliPastExtrem' (v1.0) database, Geosci. Data J., 9, 207–220, https://doi.org/10.1002/gdj3.131, 2022.

Volz, A. and Kley, D.: Evaluation of the Montsouris series of ozone measurements made in the nineteenth century, Nature, 332, 240–242, https://doi.org/10.1038/332240a0, 1988.

325 Figures

Figure 2: Example of the original tables from the AOIDL containing the recovered O_3 values on the right hand column. Source: Brito Capello (1877).

								A	LTITUC	P		T C) 35 ME1	ROS								
- 1870	Presző atmospher. te em milametres Presző atmospher. te em milametres Presző atmospher. te em milametres em milametres															OZGNE						
Janesro	9 A. M.	Maxl- ma (1)	MinIma (1)	Media (2)	Chura em	Evaporação el	9 A. M.	Maxi - ma	Minima	Media 3	9 A. M.	Media	9 A. M.	Media	9 A. M.	Media (1)	9 A. M.	Predo- minante ou media (1	9 A. M. (1	Media diurna	Maxi- ma (1)	Media
1 2 3 4 5	761,7 63,2 61.3 56,9 51.9	761,7 63.2 61.3 56.9 54.9	761.1 62,5 59,1 55,0 54,3	761.4 62.9 60.2 56.0 54.6	0,0 0,0 0,0 0,0 0,0	1	3,2 2,4 3,0 5,2 7,1	13,0 12.4 11.2 11.3 11,0	2,3 2,2 2,3 0,1 2,4	7,6 7,3 6,8 5.7 6.1	4,9 5,1 4,7 4,5 5,4	6,0 5,8 5,7 5,2 6,1	86 93 83 69 71		2 2 10 10	1 7 3.7 5.0 10,0 10,0	L. · ESE, E. E. E.	ESE. ESE. ESE. E.	fra. fr. fr. fra.			2,7 4,0 3,8 4,0 4,2
6 7 8 9 10	51.7 50,1 52.6 50,3 52,1 56,3	51,7 50,1 50,6 50,3 52,4 756,3	52,9 47,6 52,6 48,8 51,6 136,0	53,8 48,9 53,1 49,7 52,0 756,2	0.0 0,0 0.0 14.6 0,8 0,0		8,2 3,1 1,2 7,0 4,2 4,4	14.2 13.2 12,3 11.1 10,1 11.0	3.2 1.1 0,1 1.4 0,2 0,3	8,7 7 1 2 6,2 5,2 5,6	0,0 5.3 5.0 6,7 4.4 5.0	6,8 6,1 5,4 6,9 5,1 5,1	75 75 91 70 80	10 11 1 2 1 2	2 2 1 10 2	2,0 1,3 1,7 7,0 1.0	SE, SE, NE, S, NNE,	SE SSE, NNW, SSW, NNE,	fra. fra. fra. fr.			3,5 3,3 4,0 8,5 5,2
11 12 13 14 15 16	61,3 56,7 53,5 57,6 62,2	61.3 56,7 53,5 57,6 62,6	60.2 53.9 52.6 57.3 62.1	60.8 55.3 53.1 57,5 62.4	0.0 0.0 0.0 0.0 0.0	1 1 1 7	4.2 5,4 7,1 6.3 7.2	10.4 10.2 12.1 11.4 12.4	0,0 2,2 1.4 2.0 3,0	5.2 6.2 6.8 6.7 7.7	5,1 6-4 5,5 5,9 5,5	5,8 6,5 6,1 6,3 6,3	83 97 74 82 74	18 54 70 77 71	2 10 10 2 0	2.0 7.0 1,7 1,0 0.0	E. NNW. NNE. ESE. ENE.	NNE. NNW. NNE. ESE. ESE.	fra. fra. fr. fr. fra.	1 1 1 1 1		1.8 1.0 1.2 4,5 2,8 3,0
17 18 19 20 21	60,8 65,9 62,5 56,4 54,7 60,0	66,8 65,9 62,5 56,4 751,7	65.2 63.9 59.9 51.3 751.0 59.1	66,0 64,9 61,2 55,4 751,4 59,5	0.0 0,0 0,0 5.5 7 8		7,0 6,4 5,3 5,2 6,1	13,0 13,2 12,3 11,4 11,1	2.4 2.2 1.1 2.3 2.4 2.4	1.1 1.7 6.7 6.8 6.8	5,6 5,7 5,9 4 8 5,9 7	6.6 6.7 6.2 6.0 7.1	74 79 81 71 85	11448 777 78 80	2 0 1 5	0,7 0,0 1,7 7,0 10,0	NNE, E, ESE, E.	NNE. S. ESE. SSE. SSE.	fra. 			3,7 2,8 1,0 3,7 1,5
223 234 25 20 27	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																					
25 29 30 31	56,4 61,9 62,8 62,4	57,6 61,9 62,8 62,4 ¥strat	56,4 61,2 61,3 61,3 Minima	57,0 61,6 62,0 61,9	15,4 0,0 0,0 0,0 Total		11.1 9,1 8,4 10,0	16,1 15,0 16, ⁹ 17,0	6.4 5.1 4.3 6.0	11,3 10,0 10,3 11,5	8,6 7,4 7,0 7,2	9,4 8,0 8,5 8,3	87 86 80 79	54 22 24 52 52 54	2 4 3 10	4.3 7,7 3,3 7.3	ESE. E. E.	SSW. SSW. E. ESE.	fra. fra. fra. fra.			5,2 1,3 4,2 3,3
Medias	758,89	766,8	747,6	758 53	10,1	-	6.8	12,9	2,8	7,8	5.9	6.7	79.7	76,5	4,0	4,0	E.	ESE.	-	-	~	3,0

345 Tables

Table 1: List of observatories including country, region, latitude, longitude, and elevation. They are listed in decreasing latitude
 order. Only monthly mean O₃ series are available from the four stations flagged with (*).

	Observatory	Country	Region	Lat.	Long.	E
	-		_		_	(m)
1	Montalegre	Portugal	Iberian Pen.	41.82	-7.75	1027
2	Moncorvo	Portugal	Iberian Pen.	41.17	-7.02	415
3	Porto	Portugal	Iberian Pen.	41.15	-8.58	100
4	Vizeu	Portugal	Iberian Pen.	40.65	-7.95	494
5	Guarda	Portugal	Iberian Pen.	40.53	-7.23	1039
6	Serra da Estrela	Portugal	Iberian Pen.	40.42	-7.58	1450
7	S. Fiel (*)	Portugal	Iberian Pen.	40.37	-7.52	516
8	Alcanhoes (*)	Portugal	Iberian Pen.	39.28	-8.67	
9	Campo Maior	Portugal	Iberian Pen.	39.03	-6.98	288
10	Infante D. Luiz	Portugal	Iberian Pen.	38.72	-9.23	95
11	Angra do Heroismo	Portugal	Azores/	38.65	-27.23	44
			Macaronesia			
12	Evora	Portugal	Iberian Pen.	38.58	-7.87	313
13	Villa Fernando	Portugal	Iberian Pen.	38.13	-7.25	375
14	Beja (*)	Portugal	Iberian Pen.	38.02	-7.92	284
15	Ponta Delgada	Portugal	Azores/	37.75	-25.68	20
			Macaronesia			
16	Lagos	Portugal	Iberian Pen.	37.10	-8.63	13
17	Faro (*)	Portugal	Iberian Pen.	36.95	-7.90	14
18	Funchal	Portugal	Madeira/	32.63	-16.92	25
			Macaronesia			
19	S. Vicente	Cape Verde	Macaronesia	16.90	-25.07	11
20	Cidade da Praia	Cape Verde	Macaronesia	14.90	-23.52	34
21	S. Thome	Saint Thomas &	Gulf of	0.33	-6.72	7
		Prince	Guinea			
22	S. Salvador do	Angola	Continental	-6.17	14.53	559
	Congo		Africa			
23	Loanda	Angola	Continental	-8.82	13.12	59
			Africa			

Table 2: Temporal coverage of the rescued daily O₃ for each of the 19 observatories (Infante D. Luiz and associated observatories). The stations are listed in decreasing order of the available number of years with data. Blue cells correspond to the years with data rescued. The numbers inside the cells represents the number of observations conducted daily. One daily observation (1) consisted in a 24-hour strip exposure, between 3 PM of consecutive days. Two daily observations (2) consisted in a 12-hour strip exposure from 9 AM to 9 PM and 9 PM until 9 AM of the following day. Blue cells without number indicate that no information was found about the number of daily observations.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	419	tatio	lte D	ta De	Funct	Port	Guar	npo A	Angra	Evor	ao Th	Aonco	Lago	Iontal	Vize	Loan	Drai	Serra Estre	a Fen	ão Vic	o Salv
	418	S	.Lu	gad	al		la l	Iaio	e e	-	ome	IV0	2	gre		la	a da	da la	land	ente	ado
378 Treet N </td <td>417</td> <td></td> <td>iz</td> <td>-re</td> <td></td> <td></td> <td></td> <td>Ŀ</td> <td></td> <td>윤</td> <td></td> <td>1</td>	417		iz	-re				Ŀ											윤		1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	416	1863	2							\vdash									\vdash		\vdash
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	415	1981	2							\vdash	-								+	-	+
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	414	6001 9981	2							+	-								-	-	⊢
378 716 716 1 </td <td>413</td> <td>2981</td> <td>2</td> <td></td> <td>-</td> <td>-</td> <td>-</td>	413	2981	2																-	-	-
378 2161 0 <td>412</td> <td>8981</td> <td>2</td> <td></td>	412	8981	2																		
378 2161 0 <td>411</td> <td>eð81</td> <td>2</td> <td></td>	411	e ð81	2																		
378 Trst N <td>410</td> <td>0281</td> <td>2</td> <td></td>	410	0281	2																		
378 Tref N <td>409</td> <td>1281</td> <td>2</td> <td></td> <td>\vdash</td> <td></td> <td>\vdash</td>	409	1281	2																\vdash		\vdash
378 Tref N I <td>408</td> <td>7/81</td> <td>2</td> <td>2</td> <td>2</td> <td>2</td> <td>-</td> <td>2</td> <td>2</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>\vdash</td> <td></td> <td>\vdash</td>	408	7/81	2	2	2	2	-	2	2	-									\vdash		\vdash
376 TEG N I <td>407</td> <td>E781</td> <td>2</td> <td>2</td> <td>2</td> <td>2</td> <td>-</td> <td>2</td> <td>2</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>\vdash</td> <td>-</td> <td>⊢</td>	407	E781	2	2	2	2	-	2	2	-									\vdash	-	⊢
377 Titet N I </td <td>406</td> <td>5281</td> <td>2</td> <td>2 2</td> <td>2 2</td> <td>2 2</td> <td>-</td> <td>2 2</td> <td>2</td> <td>E</td> <td>=</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>+</td>	406	5281	2	2 2	2 2	2 2	-	2 2	2	E	=		-						-	-	+
377 2161 N <td>405</td> <td>9281</td> <td>2</td> <td>5</td> <td>2</td> <td>5</td> <td>-</td> <td>2</td> <td>2</td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td>	405	9281	2	5	2	5	-	2	2	-	-		-						-	-	-
377 2161 N <td>404</td> <td>1877</td> <td>2</td> <td>2</td> <td>2</td> <td>2</td> <td>-</td> <td>2</td> <td>2</td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	404	1877	2	2	2	2	-	2	2	-	-		-								
377 Tet N I </td <td>403</td> <td>8781</td> <td>2</td> <td>2</td> <td>2</td> <td>2</td> <td>1</td> <td>2</td> <td>2</td> <td>1</td> <td>1</td> <td>-</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	403	8781	2	2	2	2	1	2	2	1	1	-	1								
377 ZIGI N I <td>402</td> <td>6781</td> <td>2</td> <td>2</td> <td>2</td> <td>2</td> <td>1</td> <td>2</td> <td>2</td> <td>1</td> <td>-</td> <td>-</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	402	6781	2	2	2	2	1	2	2	1	-	-	1								
377 2161 N I <td>401</td> <td>0881</td> <td>2</td> <td>2</td> <td>2</td> <td>2</td> <td>-</td> <td>2</td> <td>2</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>\vdash</td> <td></td> <td>\vdash</td>	401	0881	2	2	2	2	-	2	2	-	-	-	-						\vdash		\vdash
377 2161 N I <td>400</td> <td>1881</td> <td>2</td> <td>2</td> <td>2</td> <td>2</td> <td>-</td> <td>2</td> <td>2</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>2</td> <td></td> <td></td> <td></td> <td>\vdash</td> <td></td> <td>\vdash</td>	400	1881	2	2	2	2	-	2	2	-	-	-	-	-	2				\vdash		\vdash
377 76 <t< td=""><td>399</td><td>2881</td><td>2</td><td>2</td><td>2</td><td>2</td><td>1</td><td>2</td><td>2</td><td>-</td><td>-</td><td>-</td><td>1</td><td>1</td><td>2</td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>\vdash</td></t<>	399	2881	2	2	2	2	1	2	2	-	-	-	1	1	2			-	-	-	\vdash
377 76 <t< td=""><td>398</td><td>2881</td><td>2 2</td><td>2 2</td><td>2 2</td><td>2</td><td>-</td><td>2 2</td><td>2</td><td>=</td><td>1 2</td><td>-</td><td>-</td><td>-</td><td>2</td><td>2</td><td></td><td>2</td><td>-</td><td>-</td><td>-</td></t<>	398	2881	2 2	2 2	2 2	2	-	2 2	2	=	1 2	-	-	-	2	2		2	-	-	-
377 Z161 N I <td>397</td> <td>2881</td> <td>2</td> <td>2</td> <td>2</td> <td>2</td> <td>-</td> <td>2</td> <td>2</td> <td>-</td> <td>2</td> <td>-</td> <td></td> <td>-</td> <td>5</td> <td>2</td> <td></td> <td>~</td> <td></td> <td>-</td> <td>-</td>	397	2881	2	2	2	2	-	2	2	-	2	-		-	5	2		~		-	-
377 Zt6t N <td>396</td> <td>9881</td> <td>2</td> <td>2</td> <td>2</td> <td>2</td> <td>-</td> <td>2</td> <td>2</td> <td>1</td> <td>2</td> <td>-</td> <td></td> <td>-</td> <td>2</td> <td>2</td> <td></td> <td>2</td> <td></td> <td></td> <td></td>	396	9881	2	2	2	2	-	2	2	1	2	-		-	2	2		2			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	395	7881	2	2	2	2	1	2	2	1	2	1		1	2	2		2			
377 2161 N <td>394</td> <td>8881</td> <td>2</td> <td>2</td> <td>2</td> <td></td> <td>1</td> <td></td> <td>2</td> <td>1</td> <td>2</td> <td>1</td> <td></td> <td>1</td> <td>2</td> <td></td> <td></td> <td>2</td> <td></td> <td></td> <td></td>	394	8881	2	2	2		1		2	1	2	1		1	2			2			
377 2161 0 <td>393</td> <td>e881</td> <td>2</td> <td></td>	393	e 881	2																		
377 2161 N <td>392</td> <td>0681</td> <td>2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>\vdash</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>\vdash</td> <td></td> <td>\vdash</td>	392	0681	2							\vdash									\vdash		\vdash
377 2161 N <td>391</td> <td>1681</td> <td>2</td> <td></td> <td></td> <td>\vdash</td> <td></td> <td></td> <td></td> <td>\vdash</td> <td>-</td> <td></td> <td></td> <td></td> <td>\vdash</td> <td>\square</td> <td></td> <td><u> </u></td> <td>\vdash</td> <td>-</td> <td>⊢</td>	391	1681	2			\vdash				\vdash	-				\vdash	\square		<u> </u>	\vdash	-	⊢
377 2161 N <td>390</td> <td>2681</td> <td>2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>\vdash</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><u> </u></td> <td>\vdash</td> <td>-</td> <td>+</td>	390	2681	2							\vdash	-							<u> </u>	\vdash	-	+
377 2161 1 <td>389</td> <td>1894</td> <td>2</td> <td></td> <td></td> <td>\vdash</td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><u> </u></td> <td>-</td> <td>-</td> <td>\vdash</td>	389	1894	2			\vdash				-	-							<u> </u>	-	-	\vdash
37/ 2161 1 <td>388</td> <td>2681</td> <td>5</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td><u> </u></td> <td>-</td> <td>-</td> <td>+</td>	388	2681	5				-		-	-	-					_		<u> </u>	-	-	+
377 2161 N <td>387</td> <td>9681</td> <td>2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td>	387	9681	2							-									-	-	-
377 2161 0 <td>386</td> <td>7681</td> <td>2</td> <td></td>	386	7681	2																		
377 2161 1 <td>202</td> <td>8681</td> <td>2</td> <td></td>	202	8681	2																		
377 2161 378 1161 379 378 1161 379 379 378 379 378 379 378 379 378 379 379 379 378 379 378 379 378 379 379 360 360 360 380 <t< td=""><td>205</td><td>ee81</td><td>2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>\vdash</td><td></td><td></td></t<>	205	ee81	2																\vdash		
377 2161 1 <td>384</td> <td>0061</td> <td>2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>\vdash</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>\vdash</td> <td>-</td> <td>\vdash</td>	384	0061	2							\vdash	-								\vdash	-	\vdash
377 2161 1 <td< td=""><td></td><td>1061</td><td>2</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td>+</td></td<>		1061	2							-	-								-	-	+
377 2161 1 <td< td=""><td>383</td><td>1903</td><td>2</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td></td<>	383	1903	2							-	-								-		
377 2161 0 <td< td=""><td>502</td><td>1904</td><td>2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	502	1904	2																		
377 2161 1 <td< td=""><td>202</td><td>2061</td><td>2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	202	2061	2																		
377 2161 1 1 1 1 1 1 378 1161 1 1 1 1 1 1 379 0161 1 1 1 1 1 1 380 8061 1 1 1 1 1 1	381	9061	2																		
378 2161 1 1 1 1 1 379 0161 1 1 1 1 1 380 8061 1 1 1 1 1	204	2061	2																\vdash		t
378 2161 1 1 379 0161 1 1	380	8061	5							+	-							<u> </u>	+	-	+
378 IIII IIII IIIII IIIIII 379 IIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		0161	2							+	-	-						<u> </u>	+	-	+
378	379	1161	2							-									-	<u> </u>	-
	378	2161	2																		
	377	1913	2																		

Table 3: Temporal coverage of the rescued monthly mean O₃ for each of the observatories: period rescued and available data.

432 Brown cells correspond to the years with data rescued. The numbers inside the cells represent the number of monthly means
433 available per year.
String

Station	8	81 8	28	8	2 2	3 6	8	18	18	899	2 2	28	8	8	819	99	2 2	3 6	181	8	18	18	8	8	8	8	8	83	P :	99	2 6	3 6	8	18	18	8	18	8	2 B	99	16	19	13	13	10	13	13	51 5	1 5	15	16	19
Alcanhoes		T					T					9	12	3		T	T			Τ							T		T	T			T							T						T				T	T	\square
Angra do Heroismo										3 1	.11	2 12	11	12	11														1	21	21	2 1	2 12	2 12	12	12	12	12	12 1	21	2 12	2 12	12								_	
Beja																																						12	12 1	21	2 12	2 1 2	12	12	12					T		
Campo Maior							1	12	12	12 1	21	2 12	12	12	11														1	101	11	2 1	2 12	2 12																		
Cidade da Praia								1	12	5																				1	11	2												12	12					T		
Evora												1	12	12	12 1	.2 1	21	21	2 1:	2 12	2 12	2 12	12	12	12	12	12 :	12	12 1	121	21	2 1	2 12	2 12	12	12	12	12	12 1	21	2		12	12								
Faro																																				12	12	12	12 1	.2 1	111	111	12	12	12							
Funchal								1	11	11 1	21	2 12	12	12	11 1	.2 1	21	21	11	2 12	2 10) 12	12	10	12	10	11	11	12 1	12	21	21	1 1 2	2	11		12	12	12 1	.1 1	1 12	2 1 2	12	12	12							
Guarda							12	2 12	12	12 1	.2 1	2 12	12	12	12 1	.2 1	21	21	11	2 12	2 12	2 12	11	12	12	12	12 :	12	12 1	121	21	2 1	2 12	2 12	12	12	12	12	11 1	.2 1	2 12	2 1 2	12	12	12							
Illa de S. Vicente																										12	11	10	10 1	11	.2 1	2	12	2 12	11	12	12	12	12 1	.2 1	2											
Infante D Luiz	1	12 1	2 12	2 12	12 1	21	2 12	2 12	12	12 1	.2 1	2 12	12	12	12 1	.2 1	21	21	2 1	2 12	2 12	2 12	12	12	12	12	12	12	12 1	12	.2 1	2 1	2 12	2 12	12	12	12	12	12 1	.2 1	2 12	2 12	12	12	12	12	12 1	12 1	12	2 12	2 12	2 10
Lagos															6	6 1	01	21	2 1	1 12	2 1 1	12	12	5																				11	12							
Loanda																						12	12	12	12	12	12	12	12																							
Moncorvo																			13	2 12	2 12	2 12	12	12	12	12	12	12	12 1	12	21	2 1	2 12	2 12	12	12	12	12	12 1	21	2 12	2 1 2	12	12	12							
Montalegre																					12	2 12	12	12	12	12	12	12	12 1	12	21	2 1	2 12	2 12	12	12	12	12	12 1	.2 1	2 12	2 1 2	12	12	12							
Ponta Delgada									10	12 1	.2 1	2 1 1	. 10	12	12 1	.11	21	21	2 1	2 12	2 12	2 12	12	12	12	12	12	12	12 1	12	21	2 1	2 12	2 12	12	12	12	12	12 1	.2 1	2 12	2 12	12									
Porto						1	. 12	2 12	12	12 1	.2 1	1 12	12	12	12 1	.2 1	21	21	1 1:	2 12	2 12	2 12	12	12	12	12	11	12	12									12		1	2 12	2										
S. Fiel																																										11	12	12	12							
S. Thome															5	8 1	21	2 8	3 12	2 12	2 1 2	2 12	12	10	10	6		12	12 1	21	2																			Τ		
Salvador do Congo							Τ	Γ								Т	Т			Т					6	4	11	11	12	8			Т							Т										Т		
Serra da Estrela							Τ																	11	12	12	12 :	11	11 1	121	21	21	1 10)11	12	12	12	12	10 9	9 1	2 12	2 1 2	11	12	12					Т		
Villa Fernando																										7	12	12	12 1	21	21	2 1	2 12	2 12	12	12	12	12	12 1	21	2 1 1	111	12	12	12					Τ		
Vizeu																					12	12	12	9	12	12	12 1	12	12																							

Table 4: Observatory, date and SNHT value for the O₃ breakpoints.

able 4. Observatory,		
Observatory	Date	SNHT
Angra do Heroismo	1891-10-01	59.8
Веја	1902-11-01	31.2
Campo Maior	1866-05-01	25.8
Campo Maior	1888-01-01	27.6
Campo Maior	1891-12-01	39.2
Evora	1874-01-01	28.4
Evora	1890-07-01	66.7
Evora	1899-11-01	45.4
Funchal	1870-09-01	28.2
Funchal	1879-11-01	25.7
Funchal	1885-04-01	48.2
Funchal	1901-01-01	33.4
Guarda	1864-01-01	73.9
Guarda	1867-11-01	25.6
Guarda	1871-08-01	35.8
Guarda	1885-05-01	55.5
Guarda	1887-10-01	26.7
Guarda	1896-07-01	55.7
Infante D. Luiz	1866-06-01	30.9
Infante D. Luiz	1875-10-01	30.6
Infante D. Luiz	1879-04-01	70.6
Infante D. Luiz	1883-05-01	54.4
Infante D. Luiz	1889-12-01	27.0
Lagos	1904-02-01	65.2
Moncorvo	1878-11-01	36.8
Moncorvo	1879-08-01	43.9
Moncorvo	1887-09-01	87.0
Moncorvo	1904-10-01	26.9
Montalegre	1880-06-01	27.8
Montalegre	1892-05-01	69.9
Ponta Delgada	1867-12-01	88.6
Ponta Delgada	1898-09-01	40.1
Ponta Delgada	1902-06-01	25.1
Porto	1863-12-01	91.6
Porto	1886-10-01	37.5
Porto	1900-06-01	30.3
Porto	1900-12-01	26.4
S. Thome	1874-10-01	28.7
S. Thome	1886-01-01	76.6
S. Vicente	1886-07-01	36.9
S. Vicente	1892-02-01	32.2
S. Vicente	1895-04-01	36.8
Serra da Estrela	1889-08-01	26.6
Villa Fernando	1890-02-01	62.8
Villa Fernando	1896-07-01	75.2
Villa Fernando	1903-02-01	30.8
Vizeu	1882-10-01	31.6

491	Table 5: Observatory,	date and SNF	HT value for th	e RH breakpoints.
-----	-----------------------	--------------	-----------------	-------------------

Observatory	Date	SNHT
Angra do Heroismo	1888-05-01	55.1
Angra do Heroismo	1891-10-01	53.0
Angra do Heroismo	1902-05-01	15.7
Campo Maior	1864-07-01	16.5
Campo Maior	1872-11-01	31.5
Campo Maior	1890-06-01	17.4
Cidade da Praia	1904-06-01	21.7
Evora	1873-10-01	28.2
Evora	1878-04-01	37.0
Evora	1883-10-01	15.5
Evora	1888-12-01	39.5
Evora	1904-03-01	15.1
Faro	1904-04-01	15.6
Funchal	1871-10-01	24.8
Funchal	1884-06-01	16.6
Funchal	1888-11-01	32.1
Funchal	1894-03-01	39.3
Funchal	1896-11-01	18.6
Guarda	1879-08-01	69.1
Guarda	1887-09-01	20.3
Guarda	1895-10-01	16.2
Guarda	1904-04-01	17.8
Infante D Luiz	1863-10-01	28.4
Infante D Luiz	1866-09-01	15.3
Infante D Luiz	1873-12-01	18.1
Infante D Luiz	1891-09-01	21.9
Loanda	1881-05-01	19.4
Loanda	1884-10-01	17.4
Moncorvo	1879-10-01	27.9
Moncorvo	1887-06-01	59.1
Montalegre	1894-11-01	15.2
Ponta Delgada	1867-12-01	65.1
Ponta Delgada	1887-04-01	19.3
Ponta Delgada	1894-03-01	28.3
Ponta Delgada	1896-08-01	18.9
Porto	1882-03-01	27.4
Porto	1883-09-01	17.1
Porto	1885-01-01	63.9
Porto	1885-08-01	15.9
Porto	1887-06-01	78.3
S. Fiel	1902-07-01	16.0
S. Fiel	1904-10-01	18.1
S. Salvador do Congo	1885-11-01	21.1
S. Vicente	1889-03-01	24.2
S. Vicente	1890-12-01	30.2
Vizeu	1882-04-01	16.8