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Abstract. We present a building damage dataset following the 2024 Noto Peninsula Earthquake. The database was compiled

from freely available, multi-source, remote sensing data, verified through opt-in crowd-sourced information. The dataset con-

sists of geo-referenced polygons representing the pre-event building footprints of 140,208 structures. Each building was clas-

sified through visual inspection using pre-disaster and post-disaster vertical, oblique, survey, and verifiable news reporting

imagery. Entries were validated using voluntary-submission data sourced through a web-API hosting a live version of the5

database. We calculate classification metrics for a subset of the database where ground survey photographs were provided by

independent surveyors. An average F1-score of 0.94 suggests that the proposed assessment is consistent and high quality. We

aim to inform future research such as disaster-specific physical dynamics models; statistical and machine learning damage mod-

els; logistics and evacuation studies. The present work describes the data collection process, damage assessment methodology,

and rationale; including limitations encountered, the crowd sourcing validation process, and the dataset structure.10

1 Introduction

At 16:10 January 1st 2024, shallow reverse faulting produced a Mw7.5 earthquake (USGS, 2024) that propagated from the

north-most point of Suzu City, Ishikawa Prefecture (Figure: 1). The disaster poses unique challenges for the disaster geo-

physics community due to its context and outfall. The intraplate faulting occurred on the relatively inert western coast of Hon-

shu Island, Japan, following a 3 year long earthquake swarm (Ishikawa and Bai, 2024). Affected areas were the Suzu, Noto,15

Wajima, Nanao, Shika and Anamizu municipalities (NASA, 2024; Japan Meteorological Agency, 2024; Japanese Red Cross

Society, 2024). The Prime Minister’s Office of Japan has provided transcripts for several press conferences and emergency

meetings reporting actions taken to address monitoring and relief operations. Initial reporting informed of near instant tsunami
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Figure 1. Seismic context of the 2024 Noto Peninsula Earthquake showing the distribution of the earthquake swarm following the after-

shocks (USGS, 2024; GSI, 2024).

impacts around the main shock’s epicenter (north Suzu), quickly followed by a comprehensive tsunami warning along the entire

peninsula’s coast. Subsequent statements confirmed the presence of catastrophic damage affecting infrastructure throughout20

the peninsula including, ground shaking, land deformation, liquefaction, and landslides causing varied damage to buildings,

interrupting roads, originating a fire. Later press releases, medical reports, and news outlets confirmed impacts to critical ser-

vices, such as water supply, sewage system, power outages, and telecommunication service disruptions (Egawa et al., 2024;

PrimeMinister’s Office of Japan, 2024; PrimeMinister’s Office of Japan, 2024a, b, c; British Broadcasting Corporation, 2024).

The disaster and following outfall ultimately resulted in injuries and human casualties, the prevention of which represents an25

overarching focus of disaster research (preventable disaster deaths) (Egawa et al., 2024).

The spatial distribution of infrastructure impacts is of particular importance to disaster research. Such data can inform emer-

gency response studies (physical dynamics simulation, damage detection, damage estimation, evacuation simulation, etc.), long

term recovery studies (socioeconomic studies, disaster epidemiology, disaster prevention, probabilistic hazard, etc.), and ulti-

mately the development of more informed codes and regulation. Disaster damage visual assessments are critical to develop a30

comprehensive corpus of disaster impacts to infrastructure and to inform studies such as the aforementioned. These visual as-

sessments can be carried out by an on-the-ground survey team ensuring the highest degree of fidelity and granularity. However

such an investigation is often resource intensive, carries inherent risk of harm, and may be highly invasive. Alternative meth-

ods generally employ remote sensing data and have historically been carried out by experts (Gokon and Koshimura, 2012) and
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Figure 2. Mismatch between original GSI-sourced building polygons
:::::::
provided

::
by

:::
the

::::::::
Geospatial

:::::::::
Information

::::::::
Authority

::
of

:::::
Japan

:::::
(GSI)

and orthophoto imagery. Inconsistencies between the GSI-sourced building polygons and the orthophoto imagery were observed
:::::
appear

::::
more

:::::::
prevalent

:
in rural areas,

:::::
where

:::
the

:::::::
building

:::::::
inventory

::
is

::::
often

::::::::::
inconsistent

:::
with

:::
or

:::
not

::::::::::
representative

:::
of

::::::
vertical

::::::
imagery. As part

of the classification process, newly identified buildings were added to the database, while existing building footprints were adjusted to

match the orthophoto imagery. In case of ambiguity, an existing GSI
::
the

:::::::
original,

::::::::
ambiguous

:
building is

::::::
polygon marked as 99 (missing or

inconsistent)and replacing buildings
:
.
:::
One

::
or

::::
more

:::
new

:::::::
building

::::::
polygons

:
are redrawn before being

::::
drawn

::::
over

::
the

:::::::::
ambiguous

::::::
polygon,

:::::
based

::
on

::
the

::::
most

:::::
recent

:::::::
pre-event

::::::
vertical

:::::::
imagery,

::
to

::::
more

:::::::
faithfully

:::::::
represent

:::
the

:::::::::
pre-disaster

:::::::
condition;

:::
the

::::
new

:::::::
polygons

::
are

::::
then classifies as

described in Section 2 (Basemap attribution: © Google, 2024 Airbus, CNES/Airbus, Japan Hydrographic Association, Landsat/Copernicus,

Maxar Technologies 2024).

institutions (CEMS, 2025). Human visual assessments have informed several studies that have contributed to a deeper under-35

standing of seismic and tsunami building damage. Chua et al. (2021) for example conducted a limited scope visual assessment

of the 2011 Great East Earthquake and Tsunami using multi-source multi-modal imagery (Modality refers to the viewing an-

gle, including aerial or satellite orthophoto, standard aerial photography, ground level photo, or aerial oblique photos, among

others. Source refers to the type and capabilities of the sensor used to capture the imagery) to generate fragility curves of port

structures in Ishinomaki City. More recently automated methods employing pre-trained machine learning models have been40

explored (Deng and Wang, 2022; Miura et al., 2020; Wiguna et al., 2024a). Such methods generally leverage vertical imagery
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as input to a machine learning model to perform automatic classification of building damage. These automated image based

assessments carry inherent limitations beyond human interpretation, such as the capability to generalize between domains and

hazard induced damage (e.g. damage to buildings from tsunami, earthquake, fire, etc. all look different). A preliminary inves-

tigation of the
:::::
official

:
building footprint inventory

:
,
:::::::
provided

:::
by

:::
the

:::::::::
Geospatial

::::::::::
Information

::::::::
Authority

::
of

:::::
Japan

:::::
(GSI),

:
revealed45

large discrepancies with pre-event imagery (Figure 2). Moreover, the variable aerial survey periods, image capture quality,

meteorological conditions (Table 1), and different mechanisms driving building failure (Such as fire, tsunami, earthquake, etc.;

Figure 3) contributed to a visually fragmented and inconsistent domain.

Date taken GSI mosaic name Notes

2024–01–02

Suzu modest overcast (east), inland snow buildup (mild)

Wajima-Naka mostly overcast, inland snow buildup (modest)

Wajima-Higashi minimal overcast (east), inland snow buildup (mild)

2024–01–05

Suzu mild overcast (west), otherwise clear

Nanao minimal overcast (southwest), generally clear, heavy desaturation

Anamizu major overcast, central coast clear

2024–01–11

Wajima-Naka minimal overcast (southeast), snow buildup (modest)

Anamizu minimal overcast (center), inland snow buildup (modest)

Wajima-Nishi mild overcast (south), snow buildup (modest)

2024–01–17

Nanao clear, snow buildup (heavy), slight desaturation

Wajima-Nishi clear, inland snow buildup (modest), coast snow buildup (mild)

Anamizu clear, snow buildup (heavy)

Table 1. Characteristics and date of each GSI vertical mosaic
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Figure 3. Building damage across the Noto Peninsula is split between failure modes consequent to different, often compounding hazards.

Vertical aerial imagery by GSI (2024), Oblique imagery by © KKC (2024)

Despite these challenges, the unprecedented availability of open-source & multi-source data provided us with a unique

opportunity for a rapid visual damage assessment. With the above considerations in mind, we opted for a manual approach50

to curate this dataset. We hope that this dataset will serve as a reference for future studies and as a benchmark for automated

methods. The primary sources for the investigation were post-disaster vertical imagery captured by the Geospatial Information

Authority of Japan (GSI )
:::
GSI

:
and made available online. In addition oblique imagery of select portions of Noto Peninsula

were made available by Kokusai Kogyo (KKC) through the free version of their proprietary aerial survey database (for details

regarding licensing, usage, and distribution, see Section 6). The post-disaster imagery data informed the classification of the55

public GSI building footprint inventory vector data. Our criteria was developed iteratively in response to limitations presented

by the data. Following an initially limited-scope investigation, the assessment was made available to the public for a progressive

appraisal at the online portal: https://experience.arcgis.com/experience/70aae9964dc54e4190b6b360dcbb3759/. End users

may request corrections regarding potential misclassifications. Requests must include proof to substantiate the amendment,

usually in the form of a photo of the target building. Finally, two limited-scope on-site surveys by independent research teams60

informed a secondary round of corrections. We hope to contribute to the growing corpus natural hazard driven building damage

datasets, in the manner of the 2009 L’Aquila Earthquake Dataset (Tertulliani et al., 2012) and the 2011 Great East Japan
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Earthquake Dataset (Sekimoto et al., 2013) which have been widely studied and applied downstream to advance the field

of disaster research (Anniballe et al., 2018; Suppasri et al., 2014; Charvet et al., 2014). The initiative takes inspiration from

previous efforts to democratize this process such as Tomnod (DigitalGlobe and formerly GEO-CAN) for cases like Haiti (Zhai65

et al., 2012), Christchurch (Barrington et al., 2012; Ghosh et al., 2011), and Nepal (Poiani et al., 2016), who in different ways

employed crowd source techniques to supplement the damage assessment process. Beyond just contributing more data, we hope

to inform future research in three fundamental ways:

– Prove the feasibility of multi-modal, multi-source visual assessment methodologies;

– Provide a measure of expected accuracy when employing such methods; and70

– Contribute a damage dataset of a profoundly complex disaster, with significant multi-hazard interactions and impacts.

2 Methods

Herein, we relate the methodology used to generate the dataset, including: considerations, challenges, and limitations encoun-

tered during the creation of the dataset (Figure 4). The working group was formed in response to the disaster and included

members from Tohoku University, the International Research Institute of Disaster Science (IRIDeS), and the Faculty of Social75

and Environmental Studies at Tokoha University who provided a secondary survey sample to conduct the technical validation.

The assessment was conducted by our internal working group, which included a mix of civil engineers, geophysicists, and

disaster researchers. We conducted the assessment in a collaborative manner, with each member of the working group con-

tributing to the assessment of different areas of the peninsula, followed by a quality control round to ensure consistency. The

assessment progress was publicly documented through a web portal, which allowed for real-time feedback from the public and80

other researchers, as more parts of the peninsula were documented and served online. After the initial assessment, we conducted

a secondary round of validation using limited-scope surveys by independent research teams, and crowd-sourced feedback from

the public.

2.1 Data sourcing

The initial review consisted of a general overview of available data from official sources. The Government of Japan provides85

basic geographic information through the GSI (https://fgd.gsi.go.jp/download/menu.php, Japanese). An inventory of building

footprints, pre-event aerial imagery, and digital elevation data, provided a general level of clarity for the feasibility of a visual

assessment. Moreover, GSI hosts an index of information pertinent to the Noto Peninsula Earthquake on a dedicated page (GSI,

2024) (https://www.gsi.go.jp/BOUSAI/20240101_noto_earthquake.html, Japanese) at time of writing. Available data includes:

ground subsidence and slope failure extents, post-event aerial vertical imagery, tsunami inundation extent estimates, and crustal90

deformation estimates. From this portal we obtained post-processed vertical imagery xyz tiles for the post disaster period: GSI

conducted photographic missions on January 2nd, 5th, 11th, and 17th, covering the whole Noto Peninsula with a significant degree

of redundancy to minimize visual obstruction due to atmospheric and environmental effects such a cloud coverage, smoke,

6
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Figure 4. Building damage visual assessment workflow illustrating the working group’s approach to multi-source & multi-modal data, each

stage of inclusion and expert-feedback-driven iterative validation process. Pre-event orthophoto by © Google 2024, Post event aerial by GSI

(2024), All oblique imagery courtesy of © KKC (2024).

sunshade, and snow. Similarly, Kokusai Kogyo (KKC), a for-profit consulting agency specializing in geospatial technology,

has been issuing special investigative products free of charge through a Noto Peninsula Earthquake information page (KKC,95

2024). Available data includes geotagged high-resolution oblique imagery of specific high-profile areas that were affected

catastrophically by the disaster (KKC, 2024); oblique imagery missions were conducted on January 2nd; Oblique images are

available through Kokusaki Kogyo’s proprietary BOIS portal https://bois-free.bousai.genavis.jp/diarsweb (Japanese). The

assessment was supplemented by news sources
::::::::::::::::::::::::::
(Minami, 2024; xTECH, 2024) for select areas of Nanao City, due to visibility

issues with the vertical and oblique images(Table 1)(Minami, 2024; xTECH, 2024).100
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2.2 General Methods

We provide a short summary of the general methodology used to conduct the visual assessment (Refer to Table 2 for precise

criteria):

1. areas
::::
Areas

:
with oblique images were treated first.

2. Each aerial was screened for cloud cover and potentially obstructed buildings weremarked as 9 unless the oblique imagery105

provided a clear view of the building, in which case the oblique was used to classify the building;

3. for
:::
For each building we checked first against the pre-disaster aerial for footprint geometry consistency, in case of mis-

match or ambiguity we classified the existing polygon as 99 and added a new polygon (based on the pre-disaster aerial)

to the database;

4. in
::
In case of coherence between the footprint polygon and the pre-disaster aerial, we classified the building as 0 or 1110

(survived/destroyed) using the post-disaster vertical imagery; and corroborated against the oblique image if available

and clear.

5. After each section was completed, we conducted a quality control round to ensure consistency across the assessment.

6. After the initial assessment, we conducted a secondary round of validation using limited-scope surveys by independent

research teams, and crowd-sourced feedback from the public.115

The assessment began as a limited-scope pilot investigation for the tsunami affected area, but expanded to include the entire

peninsula. Based on the pilot investigation, we conceived an initial “binary+” classification schema that was eventually formal-

ized into the final classification system with minimal adjustment - these classes are defined as reported in Table 2. We provide

an approximate equivalence table between classification methods in Table 3. This decision is in part supported by previous

findings by Huynh et al. (2014) who mention that crowd-sourcing yields bias towards edge classes (“No Damage” and “De-120

stroyed”) in spite of middle classes (Damage and/or Possibly Damaged). Where possible, the visual assessment is supported by

oblique imagery, which proved invaluable in many instances. This was especially true for edge cases such as areas with poor

visibility, densely packed areas wherein buildings collapsed vertically (“pancake” collapse), or overcast areas. Initially we con-

sidered a multi-class damage assessment to fully leverage the oblique imagery. However, a combination of cloud obfuscation

in the vertical imagery and limited coverage of the obliques conditions disallowed a comprehensive assessment (Figure 5).125

As mentioned in Section 1, there exist significant discrepancies between the GSI building inventory and the pre-event or-

thophotos. These discrepancies are particularly pronounced in rural areas where the GSI building inventory is often missing

or inconsistent with the orthophoto baseline. These mismatches range from minor misalignments, to geometry changes (in the

case of additionsor refurbishing
:
,
:::::::::::
refurbishing,

::
or

:::::
Knock

::::::
Down

:::::::
Rebuild), to significant changes in the building footprint (in the

case of demolitions or new constructions), we highlight an example in Figure 2
:::
that

:::
are

:::::::::::
unattributable

:::::
even

::::
when

:::::::::::::
cross-checking130

::
the

::::::::
historical

:::::::
imagery. When reasonable, we attempted to adjust the GSI building footprints to match the orthophoto baseline,
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Class

label

Database

value
Criterion

0 Survived

Damage does not appear to affect the bearing mode of the structure - Includes:

• Partial damage of the roof requiring replacement or repair.

• Buildings in the vicinity of structurally unsound buildings but appear structurally

sound.

• Undamaged buildings.

1 Destroyed

Structurally unsound based on visual interpretation - Includes:

• Partially or completely washed away buildings.

• Partially, completely collapsed, or severely inclined buildings.

• Partially or completely buried buildings.

• Buildings burned to the degree that they are structurally unsound.

9
Obstructed

view

Building is marked by a footprint according to the GSI registry but is visually

obstructed - Includes:

• Buildings under cloud cover.

• Buildings under sunshade such that they are indistinguishable from their

surroundings.

• Buildings under canopy cover such that structural features are indistinguishable.

99
Missing or

inconsistent

Buildings that whose GSI registry footprint is significantly inconsistent relative to

available imagery - Includes:

• Building footprints that do not match an existing building across pre-event and

post-event imagery even when allowing for a degree of vertical shift.

• Building footprints that demarcate a non-existing building across pre-event and

post-event imagery.

Table 2. Criteria used for binary classification of the entire Noto Peninsula building damage visual assessment.

this is done in order to preserve the original GSI building metadata (see Section 3). However, in most cases the ambiguity is

significant enough that the building is marked as 99 (missing or inconsistent, Table 2) and a new buildings are drawn based in

its place.
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Damage Grade

(Grünthal et al., 1998)

Damage Index

(Okada and Takai, 1999)

Damage Index

acronyms

Copernicus EMS

(CEMS, 2025)
Present Study

D0 0.0 Nd0 Possibly damaged

SurvivedD1 0.1∼0.2 Md1

Damaged
D2 0.2∼0.4 Md2

D3 0.4∼0.6
Ud3, Gd3, Ed3,

Rd3, Sd3

D4 0.6∼0.8
Ud4, Gd4,

Ed4, Sd4
Destroyed Destroyed

D5
0.8∼0.9

Ud5-, Ud5+, Gd5-,

Gd5+, Sd5

0.9∼1.0 Cd5+

Table 3. Comparison of popular reference damage scales for building damage visual assessment with approximate relative equivalences.
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Figure 5. Oblique coverage by Kokusai Kogyo (KKC, 2024) and inherent confidence of visual assessment. Inset basemap © Google 2024
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Since only ∼ 16% of buildings lie within the viewing angle of oblique imagery a multi-class assessment was deemed less135

viable. Miura et al. (2020) make a case for the inclusion of blue-tarp covered buildings as a separate class in their deep learning

classification framework: they notice that presence of blue-tarp covered structures correlated with moderate-heavy building

damage classes. Although we initially considered including tarp-covered buildings as a distinct class, there exist mismatches

between the GSI provided vertical images: this is observable for segments where overlapping orthophotos
::
are

::::::::
available, such

as Wajima City, are available (A schedule of vertical imagery acquisition missions conducted by GSI is provided in Table 1).140

Figure 6 provides an example of the mismatch in tarp presence between mission dates. In other instances, such as Anamizu-

machi, spotty cloud cover makes the identification of tarp-covered buildings particularly challenging. Ultimately, a conservative

approach was deemed preferable.

2.3 Tsunami damage assessment

The tsunami that impacted the eastern coast of the Noto Peninsula was purportedly generated in part by the rupturing of several145

offshore active faults. In addition, seismic activity may have aggravated submarine landslides in southern Toyama Bay, leading

to subsequent tsunami amplification that was ultimately responsible for much of the damage experienced in along the eastern

coast of the Noto Peninsula (Masuda et al., 2024). The estimated tsunami inundation extent lies almost entirely along the

northeastern coast of the Noto Peninsula area and stretches from the northern most point of the Suzu municipality, to the

Nanao municipality in the south. Yuhi et al. (2024a, b) conducted several surveys of the tsunami inundation area and provided150

comprehensive information on the inundation and run-up heights of the tsunami. On the western coast, only a small extent on the

northern portion of the Shikamunicipality was indicated as inundated (Figure 7). The intersection between the estimated tsunami

inundation and the GSI building inventory was the first portion of the damage assessment to be carried out as a preliminary

measure. 3,261 were originally included, however significant mismatch exists between the GSI footprints and the orthophoto

base map - particularly in non urban areas. Mismatches have been handled as .
::::
This

:::::
pilot

::::::::::
investigation

::::::
served

::
as

:::
the

::::
basis

:::
for

:::
the155

:::::
initial

::::::
criteria,

::::::
which

:::
was

::::
then

::::::::
expanded

:::
to

::::::
include

:::
the

:::::
entire

:::::::::
peninsula.

:::::::
Notably,

::::
this

:
is
::::::
where

:
it
::::
was

::::::::
originally

:::::
noted

::::
that

:::
the

:::
GSI

:::::::
building

:::::::::
inventory

:::
was

:::::
often

::::::::::
inconsistent

::::
with

:::
the

::::::::
pre-event

::::::::::
orthophoto

:::::::
baseline.

:::
In

::::
these

:::::
cases

:::
we

:::::::
handled

::::::::::
mismatches

::::
with

:::
the

:::::::
heuristic noted in Table 4;

::::
this

:::
was

::::
later

::::::
folded

::::
into

:::
the

::::
final

:::::::::::
classification

::::::
system

:::
and

:::::::
process

:::::::
heuristic

:::::::::
explained

::
at

::
the

:::
top

:::
of

:::
this

::::::
section.

Case Action

Polygon does not reflect the shape in the orthophoto → Adjust (add, split, merge)

Polygon does not appear to correspond to a pre-event or post-event building → Mark building as 99

Polygon does not exist, building is evident on pre-disaster orthophoto → Polygon is manually added

Table 4. Approach to mismatches between footprint polygons and the orthophoto baseline.
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Figure 6. Examples of change in blue tarp coverage inWajima City between aerial imagery capture missions. The figure highlights challenges

faced through potential issues in coverage, atmospheric conditions, and source mismatch. Aerial imagery courtesy of GSI (2024).
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Figure 7. Estimated inundation area provided by GSI; backdrop: GEBCO Bathymetric Compilation Group 2023 (2023).

2.4 Earthquake damage assessment160

The scope of the visual assessment was expanded upon completion of the tsunami assessment. The criteria was adjusted to

include modes of damage exogenous to tsunami induced failure: including considerations for landslide displacement & burial,

fire damage. Moreover, concessions were made for sunshade and buildings under canopy; conditions that seldom affect urban-

ized coastal settlements where tree cover is diminished. The final damage inventory for the whole domain resolves to 140,208

buildings of which 25,685 were digitized manually. The large proportional disparity in digitized buildings between the tsunami165

affected areas (4.1%) and the entire domain (18.3%) is largely due to vast portions of building footprints in the countryside

being mismatched(Figure 2).

2.5 Crowd sourced feedback

An initial version of the database was made public for viewing on February 11, 2024 https://experience.arcgis.com/ex

perience/70aae9964dc54e4190b6b360dcbb3759/. The working group encouraged specialist opinions to validate potential170

14

https://experience.arcgis.com/experience/70aae9964dc54e4190b6b360dcbb3759/
https://experience.arcgis.com/experience/70aae9964dc54e4190b6b360dcbb3759/
https://experience.arcgis.com/experience/70aae9964dc54e4190b6b360dcbb3759/


errors in the data. Corrections are submitted directly through the website and must include photos for the review process to be

formalized. Building damage in Nanao City was particularly challenging due to the a combination of poor exposure, vertical

image desaturation, and densely packed houses. In this case we relied on news public reporting (xTECH, 2024; Minami, 2024)

that included images and location descriptions to identify damaged buildings.

A second set of review informationwasmade available by limited-scope surveys (conducted by research teams) who provided175

photo evidence to assist the technical validation process. This data informed a quantitative statistical analysis of error margins

for the assessment.

3 Data Description

In this section we describe the structure of the dataset, technical notes, attributes, and secondary sources. The database is stored

as a GeoPackage (Yutzler, 2024) Noto_Peninsula_Damage_X_Y.gpkg (where X and Y are version values). A single layer180

(vX.Y) with table entries for contents (features) and geometries (MultiPolygon) is used to store the building footprints. Details

regarding each feature are given in Table 5. A total of 140,208 entries (features + geometries) are included in the dataset. The

basis of the analysis was conducted on top of GSI (2024)’s “basic map information” publicly available at https://fgd.gsi.go.j

p/download/. The raw data is organized in tiles comprising the standard national mesh defined in JIS X 0410:2002 (Japanese

Industrial Standard Committee, 2021). Each tile archive (Provided as: FG-GML-nnnnnn-ALL-YYYYMMDD.zip, where nnnnnn185

is the mesh tile number and YYYYMMDD is the date of the last update). In our assessment we only consider the FG-GML-nnnnnn-

BldA-YYYYMMDD-0001.xml files which contain the building polygons. We retain only the geometry and the s_fid attribute

from the original dataset. Tiles relevant to the present assessment are given in Figure 8, however we aggregate them into a

single table in preprocessing. The dataset uses coordinate reference system (CRS) EPSG:4326 (WGS 84).

4 Technical Validation190

The databasewas split intoworking subsections to annotate using single-source ormulti-source remote-sensing imagery(Figure 5)
:
–we

refer to this process as human annotation (Xia et al., 2023). Once completely classified, each subsection was reviewed by a

different team member and integrated into the live database. Our Iterative validation was twofold: Through our open web API,

we collected voluntary requests for correction, each submission requiring photographic evidence(Figure 4). Each building for

which a correction was submitted was given a new validated damage class (Table 5) with the new classification provided that195

the submitted evidence conformed to our criteria (Table 2)
:::
our

::::::
binary

:::::::
damage

::::::::::::
classification.

Data provided by two independent on-site photographic surveys, respectively Tokoha University and Tohoku University,

was used to validate portions of the database similar to how crowd-sourced data was handled. The surveys provide coherent

coverage of 4 major settlements: Wajima City, Suzu City, Anamizu, and Monzenmachi (Wajima City); as well as scattered

inland rural settlements (Figure 9). Since the data is unbiased with respect to the database (i.e., all damaged buildings were200

documented along the survey path irrespective of the damage assessment class), the coverage was used to statistically impute

15

https://fgd.gsi.go.jp/download/
https://fgd.gsi.go.jp/download/
https://fgd.gsi.go.jp/download/


Attribute Type | Length Valid entries Description

fid Int64 [1 — 140 208] Unique identifier for the building (original).

s_fid String|80
GSI serialization

standard or ‘manual’

Serial feature identifier from the original xml

file GSI (2024);manual when manually added.

damage Int8 [0, 1, 9, 99]
Damage class attributed as part of this assessment,

as per Table 2.

damage_val Int8 [0, 1, 9, 99]
Damage class after technical validation (Section 4)

attributed as part of this assessment.

source String|30 array or NULL

Oblique image source number from KKC

inventory(KKC, 2024) (where available); see

Section 6 for access to the KKC repository.

municipality String|20
Prefecture-City-Town

(Japanese)

Municipality name from e-Stata

(MIAC, 2024).

conf String|10 [single, multi]
Confidence level of the assessment as per

Figure 5 based on oblique coverage.

GSI_fire Bool [0,1]
Whether building intersects GSI (2024)

fire-impacted polygon

GSI_slope_failure Bool [0,1]
Whether building intersects GSI (2024)

slope failure polygons

GSI_tsunami Bool [0,1]
Whether building intersects GSI (2024)

tsunami inundation polygons

USGS_MMI float Real
Modified Mercalli Index inherited from the

USGS (2024) layer

geometry MultiPolygon MultiPolygon[Polygon (…)…] Vector geometry of the building

footprint (GSI, 2024).

a Available at: https://www.e-stat.go.jp/gis.

Sitemap (JP): トップページ / 統計地理情報システム / 境界データダウンロード

Query tags (JP): 小地域, 国勢調査, 2020年, 小地域 (基本単位区) (JGD2011), 世界測地系緯度経度・Shapefile,石川県

Table 5. Details regarding table attributes contained in the GeoPackage dataset.

the accuracy of human annotation: Each photo was taken from ground level and geo-tagged, forming a dense set of nodes.

An approximate path was generated using a range-limited nearest neighbor algorithm. Finally, the intersection between the
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Figure 8. GSI mesh tiles considered for the assessment (GSI, 2024), available at: https://fgd.gsi.go.jp/download/.

building database and a 40m buffer (reasonable field of view, assumed from photo inspection) around the paths was taken

as the surveyed extent. Our initial labels (human annotation) are taken as the estimates ŷ and measured against the surveyed205

(corrected) ground truth yGT , we report standard classification metrics in Table 6. The harmonic F1-score between survived

Class Precision Recall F1-score Samples

Survived 0.95 0.99 0.97 1666

Destroyed 0.99 0.84 0.91 559

Table 6. Classification statistics for independently surveyed areas, showing the approximate accuracy of the visual assessment against com-

prehensive ground documentation.

and destroyed classes is 0.939, suggesting high confidence in the assessment. A spatial representation of the survey coverage is

given in Figure 9, notably a large portion of the surveyed areas are outside of multi-source coverage, suggesting that despite the

limitations described above, the proposed visual assessment framework is robust. We hope that this exercise in crowd-sourced
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Figure 9. Dataset validation areas are estimated from imagery provided by an independent survey team. A path was fit through the location

metadata of each photo. We assume a 40 m range buffer around the path as a reasonable visible area for the survey team, judging by the

photographic evidence provided. Inset basemap courtesy of © Google 2024.
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and survey validation will permit further statistical investigations into the features and limitations of manual image-based rapid210

building damage visual assessments.

5 Discussion

The unique nature of the disaster is reflected in its varied impacts on buildings, such as: ground shaking, subsidence, uplifting,

tsunami surge, soil liquefaction, landslide, fire, among others (Figure 3). The dataset provides a comprehensive visual assess-

ment of building damage across the Noto Peninsula, including all the aforementioned impacts. With this contribution, we aim215

to provide a reference for future studies and a benchmark for automated methods.

To guarantee a high degree of consistency across all working members, our classes needed to be as clear-cut as they were

manageable. A potentially useful third class would necessarily split the “Survived” class, analogous to the scale provided

by Copernicus Emergency Management Service (CEMS) (CEMS, 2025). Roof damage and horizontally displaced rubble are

generally the only visible signs of a damage spectrum between ideal “no-damage” and “destroyed” classes. Any potential third220

class would be predicated on the presence of these defining characteristics.

Regrettably, timing and weather conditions severely limited the return period of sufficiently clear or redundant vertical

imagery (Table 1). Major seasonal pressure systems accompanied modest seasonal snowfall across the peninsula, over the first

3 weeks of the year. The cloud cover and snow buildup effectively impeded the classification of 9,456 buildings (Criteria details

are given in Table 2). Notable among the mosaics described in Table 1 is the Nanao_2024-01-05 mosaic which is particularly225

faded and unsaturated.

The winter season poses particular challenges to image classification –much of the natural environment tends towards darker,

less saturated colors due to a combination of factors: Houses in the Noto Peninsula generally feature traditional black roof tiles.

Overcast weather can decrease color saturation by reducing available light (hence reflection). Relative darkening can reduce

the contrast between dark roofs and the background environment, in both cities (concrete & asphalt colors) and countryside230

(deciduous vegetation tends towards browns and greys). Many of these challenges can hamper the visibility of roof cracks,

missing tiles, exposed roof beams, and scattered rubble that may used to distinguish between classification grades.

The Copernicus guidelines for CEMS make a case to diverge from EMS-98 (Grünthal et al., 1998) citing that “such method-

ologies are fundamentally designed for ground-based field assessments, and thus are not intentionally tailored to be used with

remotely sensed images”. Moreover, EMS-98 only considers masonry and reinforced concrete buildings, which are inappropri-235

ate for a context such as Japan where wooden buildings are overwhelmingly prevalent. Okada et al. (Okada and Takai, 1999)

provide a damage index (and equivalent grades) better suited to the context of the Noto Peninsula, however, this index is also

conceived for ground-based assessments and relies on accurately assessing the condition of load-bearing walls and pillars. In

principle, the CEMS index provides the most appropriate framework for our use case, however CEMS is not designed with

a consideration for multi-source, multi-modal data. Obliques can allow for vastly more granular classification contingent on240

the viewing angle and distance from the target building. The following items contributed to our final decision to use a binary

classification:
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– Only ∼ 16% of buildings lie within the viewing angle of oblique imagery.

– While oblique imagery provides significant redundancy, not all buildings visible in the frame are clear, draw distance

and image resolution are significantly more variable than in vertical imagery where the distance to the target is more245

consistent.

– The failure modes varies depending on the hazard (e.g., tsunami, landslide, fire, etc., Figure 3) hence some sort of equiv-

alence is needed to compare the different failure modes relative to the same scale.

– Oblique cover is split between failure modes: for example, in Suzu City, earthquake and tsunami damage is present;

while in Wajima City, earthquake and fire damage is present; finally along the north coast between wajima and Suzu250

City, majority of the damage is landslide and slope failure.

Ultimately, we valued consistency and comparability over the potential for a conditional, more granular classification. For the

purposes of this project a binary classification was deemed preferable – a breakdown of how our assessment relates to popular

reference scales is given in Table 3. We fully endorse and encourage the use of this dataset by the research community and

beyond, as the starting point for more granular and detailed assessments of the damage now that significantly more information255

is available.

5.1 On multi-hazard failure modes

The dataset can inform studies that aim to understand the different multi-hazard failure modes given the different impacts

listed above — Valentijn et al. (2020) explore multi-hazard damage detection models, but focus on aggregating each hazard

discretely by type. However, as Figure 10 illustrates, multi-hazard failures not only occur within the same domain, but can260

present in contiguous sections of the same town. In the figure, we show how earthquake damage is often compounded by fire,

landslide, or tsunami damage; in cases of more populated areas, multiple hazards are present at once, as can be seen in Wajima

City where fire, landslide, and earthquake damage are all present.

5.2 Machine learning applications

In the field of disaster geo-informatics, our dataset can serve as training data for machine learning tasks. In its current form, the265

dataset can be used to test pre-trained models such as those proposed by Miura et al. (2020); Deng and Wang (2022); Wiguna

et al. (2024a). In this context our dataset offers a new, valuable out-of-domain test set (Wiguna et al., 2024a). A speculative

framework, specifically focused on the multi-hazard nature of the Noto Earthquake disaster discussed above, is illustrated

in Figure 11. Combined with population data, our database can enable more granular quantitative research into injury and

mortality.270
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Figure 10. Different impacts across contiguous areas of the Noto Peninsula illustrate how multiple hazards may manifest across a single

event with extreme proximity. Basemap courtesy of © Google 2024, Obliques by © KKC (2024).
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Figure 11. A speculative framework that might be used to investigate multi-hazard failure modes (for illustrative purposes). Basemaps

courtesy of © Google 2024.

5.3 Statistical approaches and baseline model

To stoke the research community’s engagement, we provide a statistical baseline of the damage across the non-inundated

portion of the Noto Peninsula dataset (Figure 12). We propose an aggregated seismic empirical fragility function relative to

the Peak Ground Velocity (PGV) registered during the event. Importantly, this fragility function is built on the subset of data

that was not affected by aggravating hazards (inundation, fire, or landslide) illustrated in Figure 13. Hence we assume that the275

damage is solely due to seismic shaking. We fit the aggregated data using a lognormal distribution (Equation 1) and estimate

the parameters using ordinary least squares (µ= 6.436,σ = 0.9869).

FX(x) =Φ

(
ln x−µ

σ

)
(1)

As a frame of reference, we report two fragility functions proposed by Torisawa et al. (2022) for new wooden buildings affected

by the Kumamoto Earthquake in 2016. Our baseline fragility function suggests that buildings in the Noto Peninsula were280

similarly vulnerable to wood buildings built between 2001 and 2016 and destroyed in the Kumamoto Earthquake.

6 Data Availability

The database is provided as a standard GeoPackage (Yutzler, 2024) containing a single vector layer accessible through any soft-

ware implementing the Geospatial Data Abstraction Library (GDAL/OGR) such as QGIS or ArcGIS. Each entry is represented

by a building footprint with 7 attributes summarized in Table 5.285
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Figure 12. Left: Histogram of aggregated building damage. Right: Empirical fragility function (red solid line) for earthquake-affected build-

ings relative to PGV. We provide two wood buildings fragility functions for “Major” and “Moderate+” damage classes (respectively dotted

line and dashed line) proposed by Torisawa et al. (2022) for buildings built between 2001 and 2016 and affected by the 2016 Kumamoto

Earthquake.

1. The database is available in its most updated version at our public repository at (Vescovo et al., 2025) 1,

2. Epicenter and intensity contours are available at the USGS event page 2,

3. Earthquake swarm data is available through the Japan meteorological Agency (JMA)’s website 3,

4. Post event raster orthophotography, inundation, fire, and slope failure vector extents are available through the GSI’s

dedicated Noto Peninsula Earthquake page (GSI, 2024) 4,290

5. Oblique imagery is provided by KKC (KKC, 2024). For disaster events, KKC may make their products available for free

through the BOIS portal 5, subject to terms and conditions 6. With permission from KKC, only oblique images freely

available through BOIS were employed in the present study.

1https://doi.org/10.5281/zenodo.11055711
2https://earthquake.usgs.gov/earthquakes/eventpage/us6000m0xl
3https://www.data.jma.go.jp/eqdb/data/shindo/
4https://www.gsi.go.jp/BOUSAI/20240101_noto_earthquake.html, Japanese.
5https://bois-free.bousai.genavis.jp/diarsweb, Japanese.
6https://www.kkc.co.jp/contact/image/, Japanese.
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Figure 13. Composite of exacerbating hazards (in addition to seismic impact). Inundation, fire area, and slope failure/sedimentation extents

are provided by the GSI (2024). Peak ground acceleration estimates provided by KKE (2024) in collaboration with NIED (2019).

7 Conclusions

We present a comprehensive building damage database for the Noto Peninsula Earthquake of 2024, developed through a multi-295

source, multi-modal visual assessment of building damage. The particular circumstances of this event, timeliness of data avail-

ability, degree of coverage, and access to in-situ survey information, presented a singular opportunity to develop and validate

this new dataset through a unique framework. By providing this dataset offers the opportunity to study impacts of multi-

hazard disasters on building damage. Figure 10 illustrates how different hazards manifested across contiguous areas of the

Noto Peninsula. Understanding the different impacts may provide valuable insights to disaster response and recovery planning.300

Future studies may leverage our dataset to develop novel multi-hazard models that can predict building damage across different

impacts (A speculative framework is shown in Figure 11). With this contribution we hope to enrich the global corpus of disas-

ter building damage datasets. We provide the hand curated building inventory as a GeoPackage through the public repository

at https://doi.org/10.5281/zenodo.11055711 (Vescovo et al., 2025). Each building was classified into 4 classes: Survived,

Destroyed, Obstructed view through human inspection, and Missing or inconsistent. Limited scope validation was conducted305

through crowd-sourced community feedback through our online portal and independent survey data conducted by experts in

the field. In its immediate form, the dataset may be used to:

– train
::::
Train

:
site specific statistical and machine learning models for building damage assessment.
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– test
::::
Test domain adaptation frameworks for building damage assessment by testing pre-trained models on our new out-

of-domain dataset as illustrated by Wiguna et al. (2024a).310

– fine-tune
:::::::
Fine-tune

:
pre-trained models on our dataset to improve performance across datasets as shown in Wiguna et al.

(2024b).

– develop
:::::::
Develop novel multi-hazard models that can predict building damage across different impacts.

In combination with additional data source, such as population data, and post disaster information, our dataset can inform further

investigation into disaster logistics, evacuation, injury, and mortality. We hope that this dataset will serve as a reference for315

future studies on building damage assessment, disaster response, and recovery planning.
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