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Abstract. Seafloor topography, as a fundamental marine spatial geographic information, plays a vital role in marine 

observation and science research. With the growing demand for high-precision bathymetric models, the Multi-layer 

Perceptron (MLP) neural network is used to integrate multi-source marine geodetic data in this paper. A new bathymetric 

model of the global ocean, spanning 0°-360°E and 80°S-80°N, has been constructed, known as the Shandong University of 15 

Science and Technology 2023 Bathymetric Chart of the Oceans (SDUST2023BCO), with a grid size of 1′×1′. The multi-

source marine geodetic data used include gravity anomaly data released by Shandong University of Science and Technology, 

vertical gravity gradient and the vertical deflection data released by Scripps Institution of Oceanography, as well as mean 

dynamic topography data released by the Centre National d’Etudes Spatiales. First, input and output data are organized from 

the multi-source marine geodetic data to train the MLP model. Second, the input data at interesting points are fed into the 20 

MLP model to obtain prediction bathymetry at interesting points. Finally, a high-precision bathymetric model with a 

resolution of 1′×1′ has been constructed for the global marine area. The validity and reliability of the SDUST2023BCO 

model is evaluated by comparing with shipborne single-beam bathymetric data, and GEBCO_2023 and topo_25.1 models. 

The results demonstrate that the SDUST2023BCO model is accurate and reliable, effectively capturing and reflecting global 

marine bathymetric information. The SDUST2023BCO model is available at https://doi.org/10.5281/zenodo.13341896 25 

(Zhou et al., 2024). 

1 Introduction 

As a critical foundational dataset for marine scientific research, global bathymetric information plays a vital role in multiple 

disciplines such as marine geodesy, geophysics, biology and seafloor geology. It is also essential for marine economic 

development, oceanographic surveys, maritime navigation and rescue operations (Hirt and Rexer, 2015; Hu et al., 2015; 30 

Yang et al., 2018; Sandwell et al., 2022). Currently, shipborne single-beam bathymetric techniques can provide high-

precision bathymetric data, which is one of the most direct ways for detecting seafloor topography. However, despite the 
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accumulation of data collected through shipborne techniques, large areas of the global oceans, especially in the Southern 

Hemisphere, remain largely uncharted (Hu et al., 2014). Moreover, shipborne single-beam bathymetric data, characterized 

by its low resolution, expensive expenses and low precision in positioning and measurements of older datasets, presents 35 

significant limitations (Hu et al., 2014; Xing et al., 2020). The progression in satellite altimetry technology has ushered in a 

novel era for the development of bathymetric models. Satellite altimetry, as one of the critical techniques for acquiring 

global marine data, can obtain the global-coverage, uniformly distributed, high-precision, and high-resolution sea surface 

heights. The global marine gravity field information can be recovered based on relevant geodetic methods (Marks and Smith, 

2012; Sun et al., 2021; Kim et al., 2011). The global bathymetric model can be obtained with seafloor-inversion methods, 40 

considering the inherent correlation between seafloor topography and global marine gravity information (Wang, 2000; Hu et 

al., 2021, Yeu et al., 2018). 

Currently, the inversion of bathymetric values based on marine gravity data acquired from satellite altimeter data has become 

a reliable approach to construct global bathymetric models. The methods employed for predicting seafloor topography based 

on satellite altimeter data mainly include frequency-domain methods, spatial-domain methods (analytical methods), least 45 

squares collocation methods, and gravity-geological methods (GGM). While these methods have effectively constructed 

high-precision bathymetric models for specific regions, such as the South China Sea (Fan et al., 2020; An et al., 2022, Hu et 

al., 2020), the western Pacific Ocean (Yang et al., 2018), the Gulf of Guinea (Annan and Wan, 2020), the Philippine Sea (An 

et al., 2023) and the New Zealand (Ramillien & Wright, 2000), the nonlinear relationship between gravity data and seafloor 

topography is still not adequately used by these methods. At the same time, the seafloor topography is constructed solely 50 

based on the linear relationship between gravity anomalies or vertical gravity gradients and the seafloor topography. 

Consequently, a global bathymetric model can be constructed by integrating the nonlinear components inherent in the 

relationship between multi-source marine geodetic data and the seafloor topography. At the same time, the long-wavelength 

information in multi-source marine geodetic data will affect the prediction accuracy of the seafloor topography model. 

Therefore, it is necessary to mitigate the impact of long-wavelength information on the accuracy of model establishment. 55 

With the continuous advancement in computer storage and computational capabilities, the machine learning or deep learning 

has been widely applied in various scientific fields, such as environmental science (Sunil et al., 2024), geology (Kuster and 

Toksoz, 1974), and clinical medicine (Lee et al., 2019). Currently, the machine learning or deep learning methods are 

increasingly used to construct bathymetric models. Sun et al. (2021) proposed a method combining neural networks and 

wavelet decomposition of gravity information, and the superiority of this method was validated. However, this model only 60 

used gravity anomaly and vertical gravity gradient data, without considering other multi-source marine geodetic data. Zhou 

et al. (2023) used Multi-layer Perceptron (MLP) neural network with a regional inversion approach to construct a high-

precision bathymetric model of the Gulf of Mexico. However, the impact of long-wavelength information from multi-source 

marine geodetic data on the accuracy of the constructed bathymetric model was not considered.  

The focus of this paper is the establishment of a new global (0°-360°E, 80°S-80°N) bathymetric model, named Shandong 65 

University of Science and Technology 2023 Bathymetric Chart of the Oceans (SDUST2023BCO). This model is constructed 
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based on a MLP neural network, using the differences between the multi-source marine geodetic data (gravity anomalies, 

vertical gravity gradients, the meridional and prime components of vertical deflection, mean dynamic topography) of 

training/prediction points, and their surrounding grid points. The reliability of SDUST2023BCO model is validated by 

comparing it with the GEBCO_2023 and topo_25.1 models. Section 2 introduces the multi-source marine geodetic data used 70 

in this paper. Section 3 explains the processing methods for shipborne single-beam bathymetric data, the principle of MLP 

neural network, the organization of input/output data, and the procedure for constructing the bathymetric model. Section 4 is 

the results and discussions. By comparing with the shipborne single-beam bathymetric data, the GEBCO_2023 model and 

topo_25.1 model, the SDUST2023BCO model is verified. Section 5 is the conclusion. 

2 Data 75 

The global ocean (0°-360°E, 80°S-80°N) is designated as the study region in this paper. Due to the limitations in 

computational power and storage capacity, the study region is divided into 144 sub-regions, as shown in Fig. 1. From west to 

east, the area is divided into 18 columns and marked from LON1 to LON18; From north to south, the region is divided into 8 

rows and marked from LAT1 to LAT8. To mitigate edge effects and stitching issues between different sub-regions, each 

sub-region is expanded by 0.1° in all directions. The extended data is used for the inversion of seafloor topography. 80 

 

Figure 1. Division map and the distribution of shipborne single-beam bathymetry data. 

2.1 Shipborne single-beam bathymetry data 

The shipborne single-beam bathymetry data are provided by the National Centers for Environmental Information (NCEI), a 

division of the National Oceanic and Atmospheric Administration (NOAA) in the United States. The dataset contains global 85 
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marine bathymetric data collected since the 1950s. The study region includes 5,374 shipborne single-beam bathymetry tracks, 

as shown in Fig. 1. 

Owing to the large time span of the shipborne single-beam bathymetric data, some datasets have imprecise localization and 

significant measurement inaccuracies. Therefore, it is necessary to preprocess the data to remove some points with 

substantial errors. Now, the global marine bathymetric models derived from satellite altimetry data achieve a high level of 90 

accuracy. The topo_25.1 model, as the latest bathymetric model released by the Scripps Institution of Oceanography (SIO), 

shows a standard deviation (STD) of approximately 435m compared to global shipborne single-beam bathymetric data. 

Therefore, this paper uses the topo_25.1 model as a prior model to remove shipborne single-beam bathymetric points with 

significant errors. The process of elimination primarily consists of two parts: 

The first step is to remove shipborne single-beam bathymetric tracks that contain significant errors. First, the topo_25.1 95 

model is used to calculate the predicted bathymetry at each shipborne single-beam bathymetric point using a cubic spline 

interpolation method. The difference between the topo_25.1 predicted bathymetric values and the actual measured 

bathymetry at each point is calculated, and the standard deviation (STD1) of these differences is calculated. Second, the 

topo_25.1 model is interpolated onto each shipborne single-beam bathymetric track to obtain corresponding bathymetry. The 

differences between these interpolated values and the actual measured depths along each track are calculated, and the STD of 100 

these differences is computed for each track. Finally, the entire shipborne single-beam bathymetric track is removed if its 

STD exceeds three times the STD1. Using this method, 38 ship tracks with significantly errors are eliminated, leaving 5,336 

shipborne single-beam bathymetric tracks, which consist of a total of 11,335,376 shipborne single-beam bathymetric points. 

The second step is to remove shipborne single-beam bathymetric points with large errors. Despite the initial removal of 

entire tracks, some individual shipborne single-beam bathymetric points with significant large errors may still remain. 105 

Therefore, the method is employed to eliminate shipborne single-beam bathymetric points that exhibit significant errors. 

First, the topo_25.1 model is interpolated onto all the remaining shipborne single-beam bathymetric points to obtain the 

topo_25.1 predicted bathymetry at these points. The difference between the topo_25.1 predicted bathymetry and the actual 

measured bathymetry at each point is calculated. The STD of these differences is calculated and shipborne single-beam 

bathymetric points with absolute bathymetric residuals greater than three times the STD are removed. Finally, the 1,016,374 110 

shipborne single-beam bathymetric points are eliminated, leaving 112,319,002 shipborne single-beam bathymetric points, 

with a removal rate of 0.90%. The 112319002 shipborne single-beam bathymetric points are used to train the MLP model 

which is employed to construct the SDUST2023BCO model. Among them, the largest shipborne single-beam bathymetric 

data is 10949.5m, and the average bathymetry is 2819.8m. 

2.2 Marine Geodetic Data 115 

2.2.1 Marine Gravity Data 
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Gravity anomaly data originates from the global gravity anomaly model (SDUST2022GRA) constructed by Shandong 

University of Science and Technology in 2022. This model is constructed based on the along-track radar altimeter data (Li et 

al., 2023) and the accuracy and reliability of this model have been verified by comparing with the DTU17 model, SIO 

grav_32.1 model, and shipborne gravity data from NCEI. In local coastal and high-latitude regions, SDUST2022GRA 120 

showed an enhancement of 0.16-0.24 mGal compared to the altimeter-derived global gravity anomaly models (DTU17, 

V32.1, NSOAS22) and shipborne gravity measurements. The model is available for download at 

https://doi.org/10.5281/zenodo.8337387, with a resolution of 1'×1'. 

Based on the correlation between vertical deflection, vertical gravity gradient, and bathymetry, those data can also be utilized 

to predict bathymetry. These gravity data are derived from the 32.1 version released by SIO in 2022, with a resolution of 125 

1'×1', and can be freely obtained from https://topex.ucsd.edu/pub/global_grav_1min/.  

2.2.2 MDT model 

The MDT model used in this study is the MDT-CNES-CLS18 model released by the Centre National d’Etudes Spatiales. 

This model plays a crucial role in land-sea elevation data, physical oceanography, and global climate change studies 

(Woodworth et al., 2015), and it can be downloaded from https://www.aviso.altimetry.fr/en/data/products/. The MDT model 130 

has a resolution of 7.5'×7.5', and is calculated using data from the CNES-CLS15 mean sea level model (Pujol et al., 2018), 

the GOCO05S geoid model, hydrographic data, and drifting data. 

2.2.3 Bathymetric Models 

To validate the accuracy of the SDUST2023BCO model, this paper introduces the GEBCO_2023 model and the topo_25.1 

model. 135 

The GEBCO_2023 model, released in 2023 by the Nippon Foundation-GEBCO Seabed 2030 Project, is a global elevation 

model developed in collaboration between the Nippon Foundation (Japan) and GEBCO (General Bathymetric Chart of the 

Oceans). It covers the latitude range from 90°N to 90°S with a resolution of 15", and can be downloaded from 

https://www.gebco.net. 

The topo_25.1 model, released by the SIO in 2023, is the 25.1 version of the global bathymetric model. It covers latitudes 140 

from 80°N to 80°S with a resolution of 1'×1'. The model is available at https://topex.ucsd.edu/pub/global_topo_1min/. 

3 Methodology 

3.1 MLP Neural Network 
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Neural networks, which do not rely on explicit mathematical expressions between input data and output data, can learn and 

model nonlinear relationships between input and output vectors, facilitating complex function approximation. They have a 145 

strong capacity to learn the intrinsic features of datasets, which has been applied in numerous domains (Jin et al., 2021; 

Kuremoto et al., 2014). 

The MLP neural network, as a machine learning method, is a type of feedforward neural network. An MLP neural network 

consists of an input layer, an output layer, and a number of hidden layers, which can be adjusted according to the practical 

requirements. Each layer is composed of several neurons, also known as nodes. The layers in the network are fully connected, 150 

meaning every neuron in one layer is linked to every neuron in the next layer. Due to the linear connections between neurons 

across different layers, activation functions are introduced to enhance the nonlinearity. Consequently, the output of a neuron 

can be expressed as: 

( )y f Wx b= +   (1) 

where x and y  represent the input and the output data from a neuron, W and b  represent the weights and biases, ( )f •  

represents the tanh activation function in this paper, which adds the nonlinearity to the MLP neural network, enabling it to 155 

approximate complex functions. The activation function allows the model to learn and fit complex patterns in the dataset.  

3.2 Organization of Input/Output Data 

The organization format of input/output data significantly influences the training and predictive accuracy of MLP neural 

networks. In the traditional methods of constructing seafloor topography models, marine gravity data is typically used as the 

initial data. Based on the correlation between gravity data and bathymetry (Smith & Sandwell, 1994), the gravity anomaly, 160 

vertical gravity gradient, the meridional and prime components of vertical deflection are used as input data for training and 

prediction. Since MDT data can reflect the bathymetric information to a certain extent (Pujol et al., 2018; Mulet et al., 2021), 

MDT data has also been introduced.  

The bathymetry at a particular point is influenced by various factors in its surroundings, the more surrounding points there 

are, the more information is provided (Zhu et al., 2021, 2023). Due to the limitations in computational processing power and 165 

memory storage, an 8' × 8' grid centered on each interesting point is constructed by extending outward from each point, as 

shown in Fig. 2. Grid points on the 8'×8' grid are marked from point 1 to point 64. To mitigate the impact of long-

wavelength information in multi-source geodetic data, this paper uses the differences between the multi-source marine 

geodetic data at each grid point within an 8′×8′ area surrounding the interesting point and the multi-source marine geodetic 

data at the interesting point. These differences are used as the input data to train the MLP neural network. Due to some 170 

shipborne single-beam bathymetric points are close to the shore, and some grid points will be located on the land area. In 

order to improve the accuracy of SDUST2023BCO model, the shipborne single-beam bathymetric points farther than 6′ from 
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the shore are used to train MLP neural network. At the same time, when modeling SDUST2023BCO model, the bathymetric 

values of the topo_25.1 model replace the areas within approximately 6′ from the shore. 

Hidden layerInput layer Output layer

576 1

Input data

Eq.(1)

H Slope ξ η g VGG MDTL B

Δ SlopeΔH ΔηΔξ ΔMDTΔVGGΔgΔL ΔB

H Slope ξ η g VGG MDTL B

/

Legend

Grid points

Predicted points

Training points

Neuron

Output data

Subtracting shipborne 

single-beam bathymetry 

from topo_25.1 

bathymetry.

 175 

Figure 2. The organization of input/output data and structure of MLP. 

The training dataset includes all shipborne single-beam bathymetric point within global ocean, which will be referred to as 

the training points. The input data used for training/prediction in this paper are the differences between the multi-source 

marine geodetic data of training/prediction points, and their surrounding grid points, which include location information 

(longitude, latitude), bathymetry, slope, the meridional components of vertical deflection, the prime components of vertical 180 

deflection, vertical gravity gradient, gravity anomaly and MDT data. As the ratio of depth difference to distance, slope 

contains information about the undulating variations of seafloor topography. Therefore, slope is also used as input data in 

this paper. The relevant calculation equation is as follows: 
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where i represents the i-th grid node; i

gridL , i

gridB  are the longitude and latitude at the i-th grid node, while 
sL , 

sB  represent 

the longitude and latitude at the training or prediction point; i

gridh , i

grid , i

grid , i

gridg , i

gridVGG , i

gridMDT  represent the 185 

interpolations of the topo_25.1 model, the SIO meridional components of vertical deflection model, the SIO prime 

components of vertical deflection model, the SDUST2022GRA gravity anomaly model, the SIO vertical gravity gradient 

model, and the MDT model at the i-th grid node; 
sh , 

s , 
s , 

sg , 
sVGG and

sMDT  represent the interpolations of the 

topo_25.1 model, the SIO meridional components of vertical deflection model, SIO prime components of vertical deflection 

model, the SDUST2022GRA gravity anomaly model, the SIO vertical gravity gradient model, and the MDT model at the 190 

training or prediction point. The slope, defined as the ratio of the difference in seafloor height to distance, is calculated by 

the following equation: 

1

2 2

1 1( ) ( )

i i

i

i i i i

h h
slope

x x y y

+

+ +

−
=

− + −
  (3) 

where
islope  represents the slope of the target point at the i-th location, 

ih  is the bathymetry at the i-th point, and 
1ih +
 is the 

bathymetry at the i+1-th point, which is 1' longitudinally or latitudinally apart from the i-th point. 
ix ,

iy  are the horizontal 

and vertical coordinates of the i-th point, while 
1ix +
, 

1iy +
 are the corresponding coordinates of the i+1-th point. Using Eq. (3), 195 

the slopes in four directions -longitudinal and latitudinal- are calculated. The maximum value among these four directional 

slopes is taken as the final slope for the target point. 

The output data used for training is: 

output topo sh h h = −   (4) 
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where 
outputh  represents the output data, 

topoh  represents the bathymetry of topo_25.1 model at training point, and 
sh  

represents the measured bathymetry at the training point. 200 

3.3 Method for model construction 

The procedure for constructing a global marine bathymetric model using an MLP neural network is illustrated in Table 1, 

with the specific steps detailed as follows: 

The first step is the standardization of the input and output data. Due to the significant differences in magnitude among 

various types of data, it is essential to standardize both the input and output data to mitigate the effects of dimensional 205 

discrepancies. The calculation equation is as follows: 

ix
x̂

x



−
=  

 
(5) 

 

where x̂  represents the standardized data, 
ix is the data before standardization, x  is the mean of the input data, and   is 

the STD of the input data. After standardization, the mean of the input data becomes 0 and the STD becomes 1, ensuring that 

all input data contribute equally to the training of the MLP neural network. 210 

The second step is to select appropriate neural network parameters. The choice of parameters is critical for the training and 

prediction accuracy of the MLP model. This includes the initialization of weights and biases, the number of hidden layers, 

activation function, learning rate, and batch_size. In order to achieve high-precision in training and prediction, the selection 

of parameters may be adjusted in different sub-regions. Relevant parameters are initially set randomly, and then individual 

parameters are adjusted based on training accuracy until the most suitable parameters are obtained. For example, if the 215 

training accuracy is poor, increasing the number of hidden layers, the number of neurons in each hidden layer, or the number 

of iterations, or decreasing the learning rate or batch size can help achieve the most appropriate parameters. The relevant 

hyperparameters were determined through the training set and validation set. In this paper, a four-layer hidden neural 

network is used, with each layer containing 512, 256, 128, and 64 neurons, respectively. The learning rate is set to 0.0001, 

and the batch_size is set to 8. 220 

The third step is the training of the MLP model. First, the MLP neural network is trained using the input and output data. 

Second, an appropriate loss function and optimization algorithm should be selected. Finally, the MLP neural network models 

for 144 sub-regions are established through training. In this paper, the mean squared error (MSE) is chosen as the loss 

function, and the Adam optimization algorithm is used to update the weights and biases. 

The fourth step is the calculation of bathymetric values. Based on step (3), 144 MLP neural network models for the sub-225 

regions are established. The prediction outcomes for each sub-region are obtained by feeding the input data into the 

corresponding MLP models for all 144 sub-regions. Since the prediction result is the differences between the topo_25.1 



10 

 

model at the prediction points and the actual bathymetric value at these points, the equation for calculating the predicted 

bathymetry value is: 

' '

_ 25.1

pred

output topo resulth h h= −   (6) 

where pred

outputh  represents the predicted bathymetric value at the prediction point, '

resulth  represents the prediction output result 230 

of the MLP model, and '

_ 25.1topoh  represents the bathymetric interpolation from the topo_25.1 model at the prediction point.  

The final step is the construction of the global bathymetric model. Due to each sub-region has been extended outward by 

0.1°, the average bathymetry of the overlapping areas is taken as the final bathymetric value. This method ensures a smooth 

transition between sub-regions and avoids any abrupt changes in the bathymetric model. By integrating all sub-regions, a 

new global bathymetric model is constructed. 235 

Table 1. The algorithm of MLP neural network for constructing the seafloor topography model. 

Algorithm 1: MLP neural network algorithm for constructing the seafloor topography model. 

1. Input: Training set T and prediction set P for each sub-region. 

2. Initialization: Normalize the datasets using the Eq. (5); N denotes the number of iterations. 

3. for i = 1 to N do 

4.   Initialize the weights W and biases b. 

5.   Compute the output of each neuron in each layer and the final output, using Eq. (1). 

6.   Calculate the loss function. 

7.   Update the weights W and biases b using the Adam algorithm. 

8. end for 

9. until the maximum number of iterations is reached or the loss function no longer decreases; 

10. Save the MLP model. 

11. Obtain prediction values using the prediction set P. 

12. Recover the bathymetry values using Eq. (6). 

13. Bathymetry models for each sub-region. 

14. Output: Global bathymetry model. 

4. Results and Analysis 

4.1 Training Results of the MLP Neural Network 

First, input and output data are organized according the Sect. 3.2. Second, the MLP neural network is trained with those data 

to establish MLP models for each sub-region. Through the training phase, the weights within the MLP neural network are 240 

iteratively adjusted via the Adam optimization algorithm. The training outcomes gradually converges to the actual 

bathymetric values, and the MLP models for each sub-region are constructed.  

In order to evaluate the training accuracy of the MLP neural network, the coefficient of determination (R²) is introduced, the 

calculation equation is as follows: 
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(7) 

Where 
pred

ih  is the predicted bathymetry of i-th training point,  
ih  is the measured bathymetry of i-th training point, h is the 245 

average value of the measured bathymetry of training point, and n  is the number of training point. 
2R  is generally used to 

indicate the accuracy of training, and the greater it is, the better it is. 

Table 2 shows the training accuracy for each sub-region, which indicates that approximately 91.4% of the sub-regions 

achieve a training accuracy exceeding 95%. This indicates that the MLP models constructed for these sub-regions have 

achieved a high level of accuracy. This satisfies the requirements for predicting bathymetry, demonstrating the effectiveness 250 

of these models for this application. 

Table 2. Training accuracy of each sub_region. 

Aera 
Evaluation 

Metrics 
LAT1 LAT2 LAT3 LAT4 LAT5 LAT6 LAT7 LAT8 

LON1 
R2/% 98.32 98.61 99.32 95.04 93.69 96.15 98.23 97.98 

STD/m 10.69 8.07 10.83 25.68 14.46 5.64 9.45 3.84 

LON2 
R2/% 98.41 96.88 99.27 98.80 98.01 99.33 98.33 98.96 

STD/m 0.91 3.69 7.19 4.57 1.21 5.22 8.63 8.41 

LON3 
R2/% 98.09 93.69 98.96 96.50 97.58 99.26 97.17 97.43 

STD/m 1.77 2.51 5.25 11.18 6.99 9.34 6.99 6.52 

LON4 
R2/% 95.94 - 97.78 97.45 97.55 98.97 96.90 97.03 

STD/m 1.67 - 5.28 7.10 9.56 9.62 8.00 5.75 

LON5 
R2/% 92.55 - 99.71 98.61 96.04 98.63 97.84 97.89 

STD/m 2.19 - 1.55 3.55 6.53 5.11 5.98 5.21 

LON6 
R2/% 86.68 - 95.36 97.19 96.91 96.71 98.92 96.93 

STD/m 0.58 - 2.33 10.52 9.56 10.32 5.90 3.76 

LON7 
R2/% 97.23 98.23 99.06 95.77 98.18 97.66 98.57 98.88 

STD/m 3.91 6.87 8.68 12.51 7.29 6.34 7.27 5.15 

LON8 
R2/% 98.68 97.94 93.07 93.39 98.90 96.40 97.05 97.47 

STD/m 2.03 9.83 17.71 15.28 13.51 7.79 10.31 5.82 

LON9 
R2/% 97.21 97.49 95.90 96.99 95.95 95.50 94.19 95.66 

STD/m 3.74 9.99 9.57 10.62 13.91 7.20 9.09 8.62 

LON10 
R2/% 99.27 95.99 96.93 97.15 96.19 94.44 97.48 97.97 

STD/m 4.23 11.94 13.04 11.42 15.51 12.54 6.68 7.38 

LON11 
R2/% 98.85 97.80 96.59 97.30 97.16 96.94 97.95 98.10 

STD/m 6.53 9.98 11.18 9.54 11.39 7.16 7.35 6.93 

LON12 
R2/% 98.24 96.09 96.78 96.34 96.71 97.81 97.16 95.91 

STD/m 8.31 9.05 8.23 6.61 7.57 5.85 9.29 5.21 

LON13 
R2/% 94.12 - 94.54 97.08 96.77 98.47 98.99 96.96 

STD/m 1.45 - 9.52 10.85 9.54 9.21 5.83 3.14 
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LON14 
R2/% 98.53 99.90 97.57 96.71 96.01 97.98 98.53 95.81 

STD/m 1.95 1.77 9.70 11.02 11.51 8.39 6.93 2.59 

LON15 
R2/% 99.87 97.10 98.57 95.25 97.18 98.71 98.09 97.50 

STD/m 3.47 4.01 5.17 14.25 7.37 9.25 8.06 5.20 

LON16 
R2/% 97.11 96.73 97.16 95.56 99.24 98.97 95.69 98.38 

STD/m 6.83 7.09 14.59 13.03 3.31 6.81 11.64 3.59 

LON17 
R2/% 97.30 97.22 97.86 98.73 98.32 94.95 99.15 94.63 

STD/m 4.88 12.31 13.59 10.07 9.17 4.29 9.85 8.41 

LON18 
R2/% 96.26 95.97 96.74 95.90 96.16 98.23 98.17 95.21 

STD/m 9.37 10.04 11.34 9.07 13.44 11.74 7.55 6.42 

Note: "-" indicates that the area is land or does not have shipboard bathymetric soundings. 

4.2 SDUST2023BCO model based on MLP neural network 

Input data at the prediction points within each sub-region is fed into the respective MLP model, the predicted bathymetry for 255 

the center points of each 1'×1' grid are obtained. The predicted bathymetry is the difference between the STUST2023BCO 

model and the topo_25.1 model. Figure 3 presents the difference map between the two models, illustrating that the 

discrepancies are mainly centered around 0m. According to statistics, the ratio of differences that fall within the range of 

±100m is 96.89%. The high correlation and minimal differences between the two models, as revealed by this analysis, 

further validate the effectiveness of the MLP neural network method in constructing bathymetric models. 260 

 

Figure 3. Difference of seafloor topography between SDUST2023BCO model and topo_25.1 model. 
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Using Eq. (6), the predicted bathymetry for each sub-region is obtained. In the overlapping areas of sub-regions, the final 

bathymetric value is obtained by averaging the values from these regions. Finally, the STUST2023BCO model is constructed 

using this method, as shown in Fig. 4. 265 

 

Figure 4. The SDUST2023BCO model. 

4.3 Comparison with NCEI shipborne single-beam bathymetric points 

The distribution of shipborne single-beam bathymetric points is showed in Fig. 1. In order to verify the similarity between 

the SDUST2023BCO, GEBCO_2023, topo_25.1 models and shipborne single-beam bathymetric data, the RMS of the 270 

differences between the shipborne single-beam bathymetric data and the three global marine bathymetric models is 

calculated within each sub-region, as shown in Table 3. 

Table 3. RMSE of differences between bathymetric model and shipborne single-beam bathymetric data (unit: m). 

Aera 
Evaluation 

Metrics 
LAT1 LAT2 LAT3 LAT4 LAT5 LAT6 LAT7 LAT8 

LON1 

SDUST2023BCO 65.55 54.85 110.00 53.00 41.60 35.53 63.36 30.59 

GEBCO_2023 83.02 57.03 114.81 115.66 55.38 50.40 101.87 48.29 

topo_25.1 80.47 59.28 117.69 72.83 43.94 47.46 62.92 36.71 

LON2 

SDUST2023BCO 9.44 54.94 102.50 89.41 62.88 122.41 85.33 120.73 

GEBCO_2023 16.20 67.03 105.12 95.95 42.96 128.78 104.80 135.55 

topo_25.1 14.68 68.64 109.62 102.69 128.41 127.38 90.25 136.13 

LON3 

SDUST2023BCO 11.88 44.10 84.40 75.13 53.00 165.52 68.91 68.27 

GEBCO_2023 16.81 35.86 90.38 88.05 64.27 171.80 86.21 79.43 

topo_25.1 13.71 45.10 88.88 87.53 66.45 172.36 74.00 78.51 

LON4 

SDUST2023BCO 19.46 - 53.34 53.56 69.81 138.95 75.72 40.12 

GEBCO_2023 32.68 - 74.55 66.98 74.97 129.62 68.17 61.79 

topo_25.1 20.55 - 66.39 65.49 71.83 192.42 119.28 49.32 
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LON5 

SDUST2023BCO 13.54 - 69.08 50.83 56.58 146.90 53.62 44.35 

GEBCO_2023 23.87 - 77.11 62.75 50.91 83.22 53.91 64.55 

topo_25.1 14.05 - 75.52 62.14 64.24 164.16 60.54 54.11 

LON6 

SDUST2023BCO 1.55 - 39.23 89.20 73.58 59.11 76.50 37.05 

GEBCO_2023 2.63 - 36.86 96.05 78.76 96.36 77.72 48.90 

topo_25.1 2.27 - 47.91 121.88 95.89 90.65 78.35 45.80 

LON7 

SDUST2023BCO 45.29 73.18 75.40 73.14 37.94 45.14 79.51 62.62 

GEBCO_2023 45.48 91.73 74.35 89.39 97.51 84.20 81.37 88.91 

topo_25.1 31.04 84.75 77.33 85.89 68.72 77.76 86.80 74.45 

LON8 

SDUST2023BCO 50.40 70.51 110.90 108.05 67.89 46.67 63.41 51.28 

GEBCO_2023 129.65 112.30 100.51 90.08 70.66 68.40 95.46 59.08 

topo_25.1 83.81 94.38 115.30 118.94 77.84 64.56 77.85 60.65 

LON9 

SDUST2023BCO 42.35 63.25 60.33 76.69 94.14 52.94 53.10 57.51 

GEBCO_2023 74.78 92.40 69.72 94.11 97.61 60.76 66.73 68.50 

topo_25.1 75.94 77.61 73.69 98.14 103.83 62.57 73.73 65.00 

LON10 

SDUST2023BCO 86.58 75.64 107.87 150.55 170.00 78.29 51.85 68.37 

GEBCO_2023 94.68 96.65 109.06 85.64 93.06 76.22 69.46 83.28 

topo_25.1 94.04 90.29 112.11 231.69 209.53 88.53 67.60 78.56 

LON11 

SDUST2023BCO 98.10 67.24 86.15 84.09 103.52 60.85 79.76 67.20 

GEBCO_2023 112.28 76.59 85.92 84.45 75.32 61.94 90.36 105.21 

topo_25.1 113.42 76.37 86.99 87.22 114.59 70.45 88.06 101.02 

LON12 

SDUST2023BCO 68.21 68.76 62.98 63.68 51.63 56.84 82.77 45.54 

GEBCO_2023 72.42 70.47 60.91 58.06 48.76 59.37 98.29 71.07 

topo_25.1 66.67 70.87 63.21 70.02 58.34 68.04 90.03 55.38 

LON13 

SDUST2023BCO 24.92 - 70.83 92.18 54.72 114.17 65.85 33.06 

GEBCO_2023 45.05 - 75.44 90.76 44.56 59.65 80.47 39.98 

topo_25.1 39.73 - 71.94 97.40 60.02 124.54 74.88 41.57 

LON14 

SDUST2023BCO 48.71 132.98 48.73 77.96 58.43 80.05 73.78 31.75 

GEBCO_2023 50.71 133.43 48.56 78.16 59.94 77.68 84.25 58.81 

topo_25.1 49.73 132.84 51.05 81.37 66.49 85.88 82.20 40.26 

LON15 

SDUST2023BCO 156.79 59.05 96.16 90.32 56.70 111.03 92.13 62.90 

GEBCO_2023 164.46 57.94 95.50 98.09 67.53 119.65 101.24 62.34 

topo_25.1 162.80 61.01 98.99 98.82 66.88 119.96 100.57 78.95 

LON16 

SDUST2023BCO 48.93 45.00 112.02 86.95 65.75 40.90 70.13 60.13 

GEBCO_2023 67.81 50.83 114.80 96.41 80.22 23.03 91.02 52.04 

topo_25.1 64.64 50.82 116.23 94.84 79.69 52.08 77.58 69.75 

LON17 

SDUST2023BCO 43.29 94.30 129.94 114.02 103.47 40.62 110.35 42.10 

GEBCO_2023 44.02 106.14 135.38 129.15 108.97 46.61 167.49 66.70 

topo_25.1 58.87 98.55 134.60 126.66 163.78 58.29 154.82 50.35 

LON18 

SDUST2023BCO 60.85 71.59 68.84 64.33 95.16 82.34 173.11 38.66 

GEBCO_2023 80.66 79.93 78.35 79.73 97.81 116.30 181.99 50.91 

topo_25.1 73.72 73.54 78.17 72.96 91.39 92.75 172.09 47.96 
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Table 3 shows that the SDUST2023BCO, topo_25.1, and GEBCO_2023 models have their strengths and weaknesses in 

different sub-regions. The results indicate that the SDUST2023BCO model shows closer resemblance to shipborne single-275 

beam bathymetric data in 112 and 134 sub-regions, compared to the GEBCO_2023 model and the topo_25.1 model, 

respectively, which corresponds to approximately 80.00% and 95.71% of the total sub-regions. In conclusion, the 

SDUST2023BCO model is more closely aligned with the shipborne single-beam bathymetric data. 

To validate the reliability of the SDUST2023BCO model, each model is interpolated onto all shipborne single-beam 

bathymetric points using a cubic spline interpolation method, the relevant statistical results are showed in Table 4. Table 4 280 

shows that the models, ranked from closest to furthest resemblance with the shipborne single-beam bathymetric data, are the 

SDUST2023BCO model, followed by the GEBCO_2023 model, and the least similar is the topo_25.1 model. Compared to 

the GEBCO_2023 and topo_25.1 models, the STD of the SDUST2023BCO model is improved by 0.28m and 15.57m, 

respectively. The statistical results show that the SDUST2023BCO model exhibits superior reliability compared to the 

GEBCO_2023 and topo_25.1 models, aligning more closely with the shipborne single-beam bathymetric data. 285 

Table 4. Statistical results between SDUST2023BCO, GEBCO_2023 and topo_25.1 models and shipborne single-beam bathymetric 

points (unit: m). 

Model Max Min Mean STD RMS 

SDUST2023BCO 1846.19 -1782.62 8.53 90.23 90.63 

GEBCO_2023 4413.78 -2981.52 10.53 90.51 91.12 

topo_25.1 977.65 -977.65 9.35 105.80 106.21 

Figure 5 shows the histogram distribution of the differences between the SDUST2023BCO, GEBCO_2023, and topo_25.1 

models and the shipborne single-beam bathymetric data, showing that the error distributions of all three models exhibit a 

normal distribution. The percentages of differences between the bathymetric models and the actual bathymetry falling within 290 

the ±50m range are 72.44%, 72.01%, and 68.92%, respectively. The distribution of differences between the 

SDUST2023BCO model and the shipborne single-beam bathymetric data is more concentrated, demonstrating a superior 

reliability to reflect the information of the seafloor topography. 

 

Figure 5. Distribution histogram of the difference between SDUST2023BCO, topo_25.1, GEBCO_2023 models and shipborne 295 
single-beam bathymetric data. (a) SDUST2023BCO; (b) GEBCO_2023; (c) topo_25.1. 
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Table 5 presents the statistical results of the comparison between the SDUST2023BCO, GEBCO_2023, and topo_25.1 

models and shipborne single-beam bathymetric data at different depths. The reliability of the SDUST2023BCO model 

outperforms the GEBCO_2023 and topo_25.1 models across depth intervals of -1000m to -2000m, -2000m to -3000m, and 

below -3000m, with improvements of 8.05m and 17.04m, 7.71m and 9.25m, and 0.97m and 10.41m, respectively. In waters 300 

shallower than 1000m, the GEBCO_2023 model shows closer proximity to the shipborne bathymetric points compared to 

the topo_25.1 and SDUST2023BCO models. Overall, the SDUST2023BCO model exhibits commendable reliability in 

deeper waters. 

Table 5. Statistical results of the difference between SDUST2023BCO, GEBCO_2023 and topo_25.1 models and the measured 

bathymetry at shipborne single-beam bathymetric points in different ranges of bathymetry (Unit: m). 305 

Different ranges 

of bathymetry 

Number of 

points 

SDUST2023BCO GEBCO_2023 topo_25.1 

STD RMS STD RMS STD RMS 

(0, -1000) 26753617 87.18 87.63 78.16 79.31 116.62 116.83 

[-1000, -2000) 10794924 84.58 84.71 92.63 92.98 101.62 101.80 

[-2000, -3000) 15120787 77.88 78.63 85.59 86.35 87.13 88.09 

[-3000, -∞) 59649674 95.31 95.69 96.28 96.75 105.72 106.19 

4.4 Comparison with SIO topo_25.1 and GEBCO_2023 

To verify the accuracy of the SDUST2023BCO model, the bathymetric information for the SDUST2023BCO, 

GEBCO_2023, and topo_25.1 models are calculated, as shown in Table 6. 

Table 6. Statistical results of bathymetry of SDUST2023BCO, GEBCO_2023 and topo_25.1 models (unit: m). 

Model Max Min Mean STD RMS 

SDUST2023BCO 0 -10869.8 -3476.2 1749.4 3892.6 

GEBCO_2023 0 -10874.1 -3479.1 1750.9 3894.9 

topo_25.1 0 -10804.8 -3478.0 1749.4 3893.2 

Table 6 shows that the STD of SDUST2023BCO model is 1749.4m, differing by 1.5m and 0.0m from the GEBCO_2023 and 310 

topo_25.1 models, respectively. Additionally, the min and mean values of SDUST2023BCO model are closely aligned with 

those of GEBCO_2023 and topo_25.1 models. Considering all these indicators, the consistency of the SDUST2023BCO 

model with the GEBCO_2023 and topo_25.1 models is effectively validated. 

To further validate the consistency of the SDUST2023BCO model with other models, the differences between the 

SDUST2023BCO, GEBCO_2023, and topo_25.1 models are calculated. Relevant statistical outcomes are showed in Table 7. 315 

Owing to the SDUST2023BCO model having a resolution of 1′×1′, the bathymetric values at 1′ grid nodes are selected from 

the GEBCO_2023 model, and the GEBCO_2023 model is processed into a bathymetric model with a resolution of 1′. 

Table 7. Statistical results of differences of SDUST2023BCO, GEBCO_2023 and topo_25.1 models (unit: m) 
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Model Max Min Mean STD RMS 

SDUST2023BCO - GEBCO_2023 4316.1 -4043.2 3.0 58.4 58.5 

SDUST2023BCO- topo_25.1 2308.8 -3788.4 1.8 41.2 41.2 

GEBCO_2023 - topo_25.1 5204.6 -5219.7 1.1 70.3 70.3 

Table 7 shows that the STD of the differences between the SDUST2023BCO model and the other models are 58.4m and 

41.2m, respectively. This indicates that the SDUST2023BCO model has the highest correlation with the topo_25.1 model, 320 

followed by the GEBCO_2023 model. The SDUST2023BCO model shows commendable consistency with the 

GEBCO_2023 and topo_25.1 models, demonstrating the reliability and effectiveness of this method. 

Figure 6 shows the histogram distributions of the differences between the three bathymetric models. From Fig. 6(a), the 

differences between the SDUST2023BCO and GEBCO_2023 models are mainly within the range of -100m to 100m, 

accounting for approximately 94.51%. From Fig. 6(b), the differences between the SDUST2023BCO and topo_25.1 models 325 

within the same range account for about 96.89%. From Fig. 6(c), the differences between the topo_25.1 model and the 

GEBCO_2023 model within the range of -100m to 100m account for approximately 93.38%. Based on the above statistics, 

the SDUST2023BCO model exhibits commendable consistency with the GEBCO_2023 and topo_25.1 models. 

 

Figure 6. histogram of the difference between SDUST2023BCO, topo_25.1 and GEBCO_2023 models. (a) SDUST2023BCO-330 
GEBCO_2023; (b) SDUST2023BCO-topo_25.1; (c) GEBCO_2023-topo_25.1. 

According to the law of error propagation, assuming that the SDUST2023BCO, GEBCO_2023, and topo_25.1 models are 

uncorrelated, the STD of these three models can be expressed as: 
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where 
_S GSTD , 

_S tSTD  and 
_G tSTD  respectively represent the STD of comparisons between the SDUST2023BCO and 

GEBCO_2023 models, the SDUST2023BCO and topo_25.1 models, and the GEBCO_2023 and topo_25.1 models. 
SSTD ,335 

GSTD and
tSTD  respectively represent the STD of the bathymetric values of the SDUST2023BCO, GEBCO_2023, and 

topo_25.1 models. 

Using Eq. (8) and the statistical results in Table 7, the 
SSTD ,

GSTD and
tSTD  can be calculated as 9.11m, 57.69m, and 

40.18m, respectively. The high correlation between SDUST2023BCO model and topo_25.1 model causes the value of 
SSTD  

to be small. This result indicates that the accuracy of the three models, from highest to lowest, is the SDUST2023BCO, 340 

topo_25.1, and GEBCO_2023 models. This effectively demonstrates that the SDUST2023BCO model has better reliability 

among the three models. 

Furthermore, four regions are selected to validate the reliability of bathymetric model, specifically the North Pacific Ocean 

(120°E-120°W, 0°N-65°N), the South Pacific Ocean (120°E-80°W, 80°S-0°S), the Atlantic Ocean (0°W-60°W, 80°S-80°N), 

and the Indian Ocean (0°E-60°E, 80°S-30°N). Relevant statistical results are showed in Table 8. Table 8 shows that the 345 

SDUST2023BCO model exhibits better reliability across all regions, further substantiating its reliability in the various 

oceans. 

Table 8. Statistical results of the differences between the SDUST2023BCO and GEBCO_2023 and topo_25.1 models within various 

regions (unit: m). 

Range Model Max Min Mean STD RMS 

North Pacific Ocean 

(120°E-120°W, 0°N-65°N) 

SDUST2023BCO- GEBCO_2023 2604.23 -2791.71 -1.96 55.43 55.46 

SDUST2023BCO- topo_25.1 1290.71 -1489.07 -1.47 36.09 36.12 

GEBCO_2023- topo_25.1 3992.29 -3301.33 -0.48 51.55 51.55 

South Pacific Ocean 

(120°E-80°W, 80°S-0°S) 

SDUST2023BCO- GEBCO_2023 4043.23 -4316.07 -4.69 62.08 62.26 

SDUST2023BCO- topo_25.1 2551.56 -1805.10 -2.71 39.12 39.21 

GEBCO_2023- topo_25.1 5219.67 -4996.58 -1.93 73.79 73.81 

Atlantic Ocean  

(0°W-60°W, 80°S-80°N) 

SDUST2023BCO- GEBCO_2023 2413.54 -3012.18 -3.95 60.60 60.72 

SDUST2023BCO- topo_25.1 3788.43 -1685.94 -0.40 43.04 43.04 

GEBCO_2023- topo_25.1 5204.59 -2595.10 3.55 73.76 73.85 

Indian Ocean  

(0°E-60°E, 80°S-30°N) 

SDUST2023BCO- GEBCO_2023 2477.18 -2305.65 -3.57 58.75 58.83 

SDUST2023BCO- topo_25.1 1686.75 -2308.84 -0.52 46.36 46.36 

GEBCO_2023- topo_25.1 2633.55 -3212.54 3.04 75.25 75.31 



19 

 

5. Data availability 350 

The global bathymetric model (SDUST2023BCO) can be downloaded at https://doi.org/10.5281/zenodo.13341896 (Zhou et 

al., 2024). The dataset includes geospatial information (latitude, longitude) and corresponding bathymetric values. 

6. Conclusion 

Considering the effectiveness in the construction of bathymetric models, the influence of long-wavelength information 

derived from multi-source geodetic datasets, and the nonlinear interrelation between multi-source marine geodetic data and 355 

bathymetry, a new global marine model, designated as SDUST2023BCO model, has been constructed. This model has a 

resolution of 1×1', with spatial coverage ranging from 0° to 360°E in longitude and from 80°S to 80°N in latitude. This 

model is constructed based on the MLP neural network, using the differences from multi-source marine geodetic data. The 

reliability of the SDUST2023BCO model has been evaluated by using shipborne single-beam bathymetric data, as well as 

the GEBCO_2023 and topo_25.1 models. 360 

Compared to the shipborne single-beam bathymetric data, the SDUST2023BCO model achieves an STD of 90.23m, which is 

superior to other bathymetric models, demonstrating the reliability of the SDUST2023BCO model. Through the comparison 

of the accuracy of three models in different depth, the SDUST2023BCO model demonstrates superior reliability in deeper 

water regions. 

The discrepancies between the SDUST2023BCO model and the GEBCO_2023, topo_25.1 models primarily fall within 365 

±100m, confirming the consistency of the SDUST2023BCO model with existing models. This paper also evaluates the 

accuracy of the SDUST2023BCO model in four distinct regions across the Pacific, Atlantic, and Indian Oceans, effectively 

validating its reliability.  

The results presented in this paper demonstrate that SDUST2023BCO reaches an international advanced level of global 

bathymetric models. The accuracy of SDUST2023BCO model is better than that of GEBCO_2023 and topo_25.1 models, 370 

especially in deeper water regions. 
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