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Abstract. Storm surges (SSs) cause massive loss of life and property in coastal areas each year. High spatial coverage and 

long-term SS records are the basis for deepening our understanding of this disaster. Due to the sparse and uneven distribution 

of tide gauge stations, such global or quasi-global information could only be provided by global numerical models, while their 10 

simulation products span mainly the most recent decades. In this paper, for the first time, the all-site modeling framework for 

the data-driven model was implemented on a quasi-global scale within areas severely affected by SSs caused by tropical 

cyclones. Using tide gauge records and European Centre for Medium-Range Weather Forecasts Reanalysis 5 (ERA5) data, we 

generated a high spatial resolution (10 km along the coastline) hourly SS dataset ASM-SS (all-site modeling storm surge) 

within 45°S to 45°N, whose record length is over 80 years from 1940 to 2020. Assessments indicate that for 95th extreme SSs, 15 

the precision of the ASM-SS model (medians of correlation coefficients, root mean square errors, and mean biases are 0.63, 

0.093 m, and -0.050 m, respectively) is better than that of the state-of-the-art global hydrodynamic model (medians are 0.55, 

0.106 m, and -0.045 m); for annual maximum SSs, it is more stable than the numerical model with overall root mean square 

error and coefficient of determination optimizing by 22.3% and 14.8%, respectively. This dataset could provide possible 

alternative support for coastal communities on relevant SS analysis applications requiring high spatial resolution and 20 

sufficiently long records. The ASM-SS dataset is available at https://doi.org/10.5281/zenodo.14034726 (Yang et al., 2024a). 

1 Introduction 

Extreme sea level (ESL) events, defined as exceptional variations of sea-surface height caused by tides, storm surges, and 

sea-surface waves (Gregory et al., 2019), lead to severe economic losses globally each year (Kron, 2013). Around 680 million 

people living in low-lying coastal zones with elevation lower than 10 m above sea level (Pörtner et al., 2022) are already 25 

directly or indirectly affected by ESLs in current climate conditions (Hinkel et al., 2014). Even more concerning, the impacts 

of ESLs are expected to intensify in the future due to the rise in global sea level (Palmer et al., 2021), the increasing intensity 

of tropical cyclones (Knutson et al., 2020), and the growth of coastal population (Merkens et al., 2016). Storm surges (SSs) 

caused by tropical and extratropical cyclones have significant uncertainty compared to deterministic and predictable tides. 
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Understanding how SSs varied in different regions, interacted with other components, and responded to climate change in the 30 

past can better prepare coastal communities for incoming ESLs. 

High-frequency (at least hourly), sufficient spatial coverage, and long-term records are important for in-depth SS analysis. 

To date, tide gauges (TGs) are the most reliable source of coastal sea-level observations (Marcos et al., 2019). However, their 

distribution is sparse and uneven. For example, as the most complete high-frequency TG collection currently, though the 

Global Extreme Sea Level Analysis version 3 (GESLA-3) dataset included 5,119 stations around the world, most of them were 35 

distributed in North America, Europe, Japan, and Australia (Haigh et al., 2023). Interpolating TG observations among different 

stations cannot accurately capture the variabilities of SSs (Muis et al., 2016) since they are affected by many factors, such as 

storminess, coastline shape, and bathymetry (Resio and Westerink, 2008). This always limits in-depth analysis of the spatial 

characteristics of SSs from TG records directly, especially on a global or quasi-global scale. In addition, though some of the 

oldest TG stations can date back to the eighteenth century, only ~10% (554 stations) of TG records in the GESLA-3 dataset 40 

were longer than 50 years, which makes it difficult to obtain more detailed long-term variations in SSs. 

Numerical models can provide simulated data with better spatial coverage by resolving coastal physical processes 

inducing SSs (Muis et al., 2016, 2023; Lockwood et al., 2024). A common limitation of numerical models is that they require 

accurate and high-resolution bathymetric data for sufficiently precise SS estimations since SSs are significantly affected by 

water depth in shallow water (Resio and Westerink, 2008). However, such bathymetric data is often unavailable in nearshore 45 

areas (Cid et al., 2018). In addition, in global or quasi-global SS simulations, the coastal grid resolution of numerical models 

is usually set to several kilometers to balance the computational complexity (Muis et al., 2020; Mentaschi et al., 2023), which 

means that nearshore physical features with a spatial scale smaller than this resolution cannot be sufficiently simulated (Parker 

et al., 2023), and hence affecting the SS precision. Meanwhile, the computational efficiency of global numerical models tends 

to affect the length of simulated SSs (Muis et al., 2019). For instance, the state-of-the-art Global Tide and Surge Model (GTSM), 50 

though its outputs have been widely used in relevant studies (Kirezci et al., 2020; Dullaart et al., 2021; Fang et al., 2021; Yang 

et al., 2024b), its simulations spaned only the most recent decades from 1979 to 2018 (Muis et al., 2020). This imposed 

limitations on studies requiring long-term SS records. 

Unlike numerical models, data-driven models do not need to resolve coastal physical processes. They obtain the statistical 

relationship between SSs (predictand) and relevant atmospheric factors (predictor) through multiple linear regression (Cid et 55 

al., 2018) or artificial intelligence (Nevo et al., 2022; Bruneau et al., 2020; Ebel et al., 2024; Nearing et al., 2024). Therefore, 

the precision of data-driven models is unaffected by bathymetric data and grid resolution. In addition, long-term SSs can be 

reconstructed efficiently after the statistical relationship is established (Tadesse et al., 2020). However, the commonly used 

single-site modeling framework for data-driven models heavily relies on TGs; it must establish independent relationships for 

every TG site by site (Cid et al., 2017; Bruneau et al., 2020; Tiggeloven et al., 2021) and cannot provide any SS information 60 

at ungauged coastal locations. For example, the Global Storm Surge Reconstruction (GSSR) database, the only publicly 

released global SS dataset from the data-driven model, provided SS reconstructions at 882 points globally going as far back as 

1836, which benefited the research on long-term trend analysis of SSs (Tadesse and Wahl, 2021). However, it cannot address 
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issues caused by the sparseness and uneven distribution of TG stations. Some studies replaced TG observations with numerical 

SS simulations to train the data-driven model (so-called 'surrogate model') (Lee et al., 2021; Ayyad et al., 2022; Lockwood et 65 

al., 2022). This combination improved the spatial resolution, but numerical models' precision limitations were also transferred 

to the surrogate model. Moreover, in theory, surrogate models cannot be better than numerical models compared to TG 

observations. Yang et al. (2023) proposed a novel all-site modeling (ASM) framework, which allowed the data-driven model 

to reconstruct high spatial-coverage SSs in research areas by learning from TG observations (without SS simulations from 

numerical models). Although single-site modeling and ASM belong to the data-driven model, their modeling processes differ. 70 

The former presumes SS observations at different TGs are independent. Therefore, the relationship between predictors and 

SSs needs to be learned for every TG site by site; this relationship is unsuitable for other locations. In contrast, the latter 

assumes there is a universal connection between SSs at different TGs, so all available TGs within the research area can be 

pooled into one model to learn the only relationship between predictors and SSs. This essential difference enables the ASM 

framework to reconstruct SSs at any coastal point in the research area. In addition, the study has shown that ASM's precision 75 

is better than single-site modeling's (Yang et al., 2023). 

High spatiotemporal resolution and sufficiently long SS dataset is important for better analyzing this disaster. However, 

the existing SS datasets, whether from TG observations, numerical model simulations, or data-driven reconstructions, cannot 

fulfill all demands simultaneously on a global or quasi-global scale. The ASM provides an opportunity to fix this gap. This 

research used it to establish a SS data-driven model in coastal areas within ~45°S to ~45°N, which are severely affected by 80 

SSs since most destructive tropical cyclones occur here (Knapp et al., 2010). After precision assessment by comparing it with 

TG observations and the numerical model GTSM, we released, for the first time, a long-term (> 80 years from 1940 to 2020) 

quasi-global hourly SS dataset reconstructed from the data-driven model with high spatial resolution (10 km along the 

coastline). We hope this dataset, the ASM-SS (all-site modeling storm surge), can provide possible alternative support for 

coastal communities to deepen the understanding of SSs and ESLs. 85 

2 Materials and Methods 

2.1 Atmospheric Data 

Atmospheric predictors from 1940 to 2020 were obtained from the European Centre for Medium-Range Weather 

Forecasts (ECMWF) Reanalysis v5 (ERA5) database (Soci et al., 2024). It is the fifth generation ECMWF reanalysis through 

assimilating model data with observations across the world into a globally complete and consistent dataset, which can provide 90 

hourly atmosphere fields with a 0.25°×0.25° resolution grid. Following Yang et al.(2023) and Yang et al.(2024b), four 

variables from ERA5 were used, including mean sea level pressure (mslp), 10 m eastward and northward wind (u10, v10), and 

2 m temperature (t2m). 
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2.2 Tide Gauge Data 

TG observations from 1940 to 2020 came from the high-frequency (15 minutes or one hour) GESLA-3 dataset collected 95 

from 36 international and national data providers (Haigh et al., 2023). This dataset unified the time units (to coordinated 

universal time) and length units (to meters) of water level records from different sources. In addition, the analysis flag was 

added to each TG record, making it convenient to select available sea-level data. However, a stricter quality control process is 

needed since some sites still contain datum jumps and outliers (Haigh et al., 2023). Detailed TG preprocessing is as follows:  

(1) Coastal TG stations located between 45°S-45°N were selected (excluding the Mediterranean, Black, and Caspian Sea). 100 

Additionally, two stations at the southernmost tip of New Zealand were retained, though they are beyond 45°S; 

(2) For the case that TG data was provided by different sources covering similar periods, the file with longer records was kept; 

for the case that the sea-level time series for the same site was split into different files, they were merged to obtain the 

longest possible records; 

(3) TG data were resampled to hourly, and the analysis flag=1 (means 'use') was used to filter out the available data for each 105 

TG. Datum jumps caused by earthquakes or changes in instrument were adjusted, and obvious outliers were removed 

through visual inspection. Then, 1,315 stations with a length longer than one year remained (Fig. 1);  

(4) After removing the inter-annual mean sea-level variability from TG data through the annual moving average, the SS time 

series can be obtained by subtracting tides estimated from the Utide (Unified Tidal Analysis and Prediction Functions) 

package (Codiga, 2011), which can select the most important components from 146 tidal constituents through an 110 

automated decision tree; 

(5) Finally, a 12-hour moving average was applied to SS data to limit possible remaining tidal signals (Tiggeloven et al., 2021; 

Yang et al., 2023), which are generally generated by small phase shifts in predicted tides due to the difficulty of obtaining 

perfect and completely accurate estimates through harmonic analysis (Horsburgh and Wilson, 2007). 

 115 

Figure 1: The distribution and data length of selected tide gauges. 

2.3 Surge Data Simulated from Numerical Model 

Numerical model SSs came from GTSM version 3 global simulation forced with mean sea level pressure and wind from 

the ERA5 reanalysis (1979-2018), whose SS precision has been extensively evaluated and shown to have fair to good 

agreement with TG observations (Bloemendaal et al., 2019; Muis et al., 2020; Parker et al., 2023; Yang et al., 2023). This 120 
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model was solved based on Delft3D Flexible Mesh (Kernkamp et al., 2011) with the unstructured grid resolution from 2.5 km 

(1.25 km in Europe) along the coast to 25 km in the deep ocean (Muis et al., 2020). It provided outputs both in the ocean and 

along the coastline; the latter's resolution was resampled to approximately every 20 km per coastal point to limit the data 

volume (Muis et al., 2020). Note that GTSM SSs were only used to assess our ASM data-driven model; they were not used in 

the training process of the latter. 125 

2.4 Coastline Contour Data 

The Global Self-consistent, Hierarchical, High-resolution Geography (GSHHG version 2.3.7) shoreline database (Wessel 

and Smith, 1996) was used to generate coastal nodes for the ASM-SS in the research area (45°S to 45°N). The shoreline of 

this dataset was developed from the World Vector Shorelines and Atlas of the Cryosphere, providing five different-resolution 

coastline contours (crude, low, intermediate, high, and full). We used the high-resolution data (~300m). After smoothing the 130 

shoreline with a window of 50 points, coastal nodes with a 10 km resolution were sampled evenly from the smoothed coastline. 

Figure 2 shows their distribution. The total number of nodes is 20,440: Western Europe (200), Africa (2,806), North America 

(3,165), South America (2,218), Oceania (3,471), and Asia (8,580). 

 

Figure 2: The distribution of coastal nodes for reconstructed storm surges. 135 

2.5 All-site Modeling Framework 

Full details of the ASM can be found at Yang et al.(2023). Here, a brief description of its modeling processes is provided. 

Assuming there are six available TGs within 45°S to 45°N (Fig. 3(a)): 

 (1) Obtaining predictors (Fig. 3(b)). Four atmospheric data (mslp, u10, v10, and t2m) for each TG station are extracted from 

the ERA5 dataset through linear interpolation. Changes in sea level pressure and wind are the main factors in generating SSs  140 

(Woodworth et al., 2019); adding temperature variations considers the effects of thermal expansion and contraction. 

Meanwhile, following Yang et al.(2023) and Yang et al.(2024b), another three variables (longitude, latitude, and timestamp) 

are considered since geographical locations and record lengths of TGs are different. Hence, the predictor matrix for each TG 

consists of 7 columns: mslp, u10, v10, t2m, longitude, latitude, and time; 

(2) All-site modeling (Fig. 3(c)). Predictor matrices and SSs of all six TG stations are stacked into one predictor matrix and 145 

one SS matrix. Then, the eXtreme Gradient Boosting Tree (XGBoost) (Chen & Guestrin, 2016) is used to learn the relationship 
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between these two matrices. The XGBoost is a residual machine learning model that generates a new decision tree using SS 

residuals from the previous tree. Therefore, the new tree will pay more attention to training where the residual errors are 

significant, making it suitable for modeling SS extremes; 

(3) Reconstruction (Fig. 3(d)). SSs can be estimated for any target node along the coastline by inputting the corresponding 150 

predictor matrix of that location into the model established in step (2). 

 

Figure 3: The modeling processes of the ASM framework 
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2.6 Model Performance Metrics 

Three model performance metrics are used to evaluate the differences between reconstructed and observed SS levels: 155 

Pearson product-moment correlation coefficient (CORR), root mean square error (RMSE), and mean bias (MB): 

 CORR=
∑ ൫SSLr,i-SSLr൯

N
i=1 ൫SSLo,i-SSLo൯

ට∑ ൫SSLr,i-SSLr൯
2N

i=1
ට∑ ൫SSLo,i-SSLo൯

2N
i=1

 (1) 

 RMSE=ට
∑ ൫SSLr,i-SSLo,i൯

2N
i=1

N
 (2) 

 MB=
1

N
∑ ሺSSLr-SSLoሻ

N
i=1  (3) 

where N is the length of the evaluation time series; SSLr,i  and SSLo,i  indicate the reconstructed and observed SS levels, 160 

respectively. SSLr and SSLo are the average values of them.  

3 Results 

3.1 ASM Model Evaluation at Tide Gauges 

The k-fold cross-validation strategy was chosen to evaluate the ASM model at TGs. 823 TG stations with time lengths 

exceeding 10 years between 1940 and 2020 were randomly divided into ten parts (i.e., 10-fold cross-validation), with the last 165 

part containing 85 TGs. Each time, 9 of the parts were used for training. After the model was established, predictor matrices 

of the excluded part of TGs were inputted into the model to obtain their SSs. The SSs of all parts of TGs can be estimated once 

each part has been excluded. Then, we compared the reconstructed entire surge time series (evaluating the overall variation 

trend) and the 95th percentile SSs (assessing extreme events) with TG observations. As shown in Fig. 4 and Table 1, we 

divided the research area into fifteen sub-regions (ER: the equatorial region, WEU: Western Europe, NAF: Northern Africa, 170 

SWA: Southwestern Africa, SEA: Southeastern Africa, WNA: Western North America, ENA: Eastern North America, CA: 

Central America, SWS: Southwestern South America, SES: Southeastern South America, WAS: Western Asia, EAS: Eastern 

Asia, SAS: Southern Asia, NOC: Northern Oceania, and SOC: Southern Oceania) for more detailed assessment information. 

Note that the equatorial region (~6°S to ~6°N) was separated as an independent area since it has almost no tropical cyclones.  
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 175 

Figure 4: ASM model evaluation at tide gauges from 1940 to 2020. (a-c) Entire surge and 95th extreme evaluation statistics for 
different regions; (d-i) Distributions of evaluation metrics. Gray lines are tropical cyclone paths. 
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Table 1: The median of evaluation statistics for different regions in Fig. 4. 

 Median of CORRs Median of RMSEs (m) Median of MBs (m) 
 Entire surges 95th extremes Entire surges 95th extremes Entire surges 95th extremes 

ALL 0.78  0.59  0.063  0.094  0.014  -0.052  
ER 0.39  0.20  0.054  0.120  0.002  -0.106  

WEU 0.87  0.68  0.050  0.069  0.011  -0.020  
NAF 0.76  0.55  0.036  0.059  0.004  -0.031  
SWA 0.25  0.19  0.074  0.080  0.029  -0.046  
SEA 0.61  0.43  0.070  0.105  0.012  -0.087  

WNA 0.83  0.69  0.044  0.055  0.018  -0.019  
ENA 0.84  0.75  0.073  0.117  0.016  -0.053  
CA 0.30  0.19  0.072  0.116  0.027  -0.098  

SWS 0.29  0.25  0.061  0.098  0.017  -0.088  
SES 0.29  0.15  0.141  0.312  0.011  -0.303  

WAS 0.09  0.17  0.091  0.131  0.016  -0.083  
EAS 0.81  0.62  0.054  0.077  0.013  -0.037  
SAS 0.34  0.24  0.060  0.107  0.012  -0.099  
NOC 0.62  0.54  0.068  0.101  0.013  -0.056  
SOC 0.83  0.53  0.064  0.093  0.017  -0.046  

Figure 4(a-c) and Table 1 show that on a quasi-global scale (i.e., for ALL TGs), the median CORR of the entire time 180 

series of surges is 0.78, RMSE is 0.063m, and MB is 0.014m. In comparison, the reconstruction precision for extreme events 

(>95th percentile) is lower: CORR is 0.59, RMSE is 0.094m, and MB is -0.052m (indicating a slight underestimation of the 

magnitude of extreme events). At the regional scale, there are differences between sub-regions (Fig. 4(d-i)). In areas with 

almost no tropical cyclones, including ER, SWA, SWS, and SES, precision is low for both entire surges and 95th extremes. 

For other places, the precision of estimated SSs is better in regions with a relatively high density of TG stations, such as WEU, 185 

WNA, ENA, EAS, NOC, and SOC. This result is consistent with the conclusion of Yang et al. (2024b) that reducing the spatial 

interval of TG stations can benefit the estimation of SSs, especially the extremes. 

It is necessary to evaluate temporal variations in reconstructed SSs further since their length is over 80 years, during 

which the number of TG stations and the quality of atmospheric data have changed. As shown in Fig. 5, the precision of ASM 

model at TGs in each sub-region was calculated every 10 years (excluding TGs with less than one year of data in a given 190 

decade). Results indicate that the overall precision (i.e., for ALL TGs) of entire surges and 95th extremes gradually increased 

from 1940 to 2020. Possible reasons are as follows: on the one hand, ASM model is affected by the spatial resolution of TGs 

(Yang et al., 2024b). The increase of TGs in recent decades (Haigh et al., 2023) enhances its precision; on the other hand, the 

quality of ERA5 reanalysis data improved as increasing satellite data has been assimilated since the 1970s (Soci et al., 2024), 

which benefits the data-driven model. At the regional scale, for entire surges, Figure 5(a) indicates that except for SWA (CORR 195 

decreases) and WAS (CORR remains unchanged), CORRs of other sub-regions present an upward trend; Figure 5(b) shows 

the RMSE in SES increases, while RMSEs in other regions decrease; Figure 5(c) gives that MBs of sub-regions have been 

gradually optimized (excluding WAS). For 95th extremes, in terms of CORR (Fig. 5(d)), WEU, NAF, WNA, ENA, EAS, 

NOC, and SOC show an upward trend, whereas there is no obvious pattern in other regions; for RMSE (Fig. 5(e)), ER, SEA, 
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and SES present an increasing trend, other regions decrease; for MB (Fig. 5(f)), the underestimation of SSs in ER and SAS 200 

rises, and there is no noticeable change in WNA and SES. MBs in WEU, NAF, ENA, WAS, EAS, NOC, and SOC are 

optimized, while there is no clear pattern in SWA, SEA, CA, and SWS. 

 

Figure 5: Temporal variations of the ASM model's precision at tide gauges from 1940 to 2020. (a-c) Entire surge evaluation statistics 
for different regions every 10 years; (d-f) 95th extreme evaluation statistics for different regions every 10 years 205 
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3.2 ASM Model Comparison with Numerical Model at Tide Gauge Scale 

Since GTSM provided numerical surges from 1979 to 2018, ASM data in the same period were extracted from SSs 

reconstructed in section 3.1. In addition, since points of GTSM did not completely coincide with TG stations, linear 

interpolation was used to interpolate GTSM SSs to corresponding TG locations. Figure 6 and Table 2 give the 95th extremes 

comparison results between ASM, GTSM, and TG observations. 210 
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Figure 6: ASM model comparison with the numerical model at tide gauges from 1979 to 2018. (a-c) ASM and GTSM 95th extreme 
evaluation statistics for different regions; (d-i) Distributions of evaluation metrics. Gray lines are tropical cyclone paths. 

Table 2: The median of evaluation statistics for different regions in Fig. 6. 

 Median of CORRs Median of RMSEs (m) Median of MBs (m) 
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 ASM-GESLA GTSM-GESLA ASM-GESLA GTSM-GESLA ASM-GESLA GTSM-GESLA 
ALL 0.63  0.55  0.093  0.106  -0.050  -0.045  
ER 0.20  0.10  0.122  0.075  -0.106  -0.026  

WEU 0.72  0.62  0.066  0.071  -0.019  -0.001  
NAF 0.53  0.46  0.057  0.044  -0.025  0.003  
SWA 0.20  0.30  0.081  0.087  -0.048  -0.063  
SEA 0.44  0.35  0.103  0.076  -0.087  -0.058  

WNA 0.72  0.58  0.054  0.085  -0.019  -0.061  
ENA 0.77  0.72  0.112  0.138  -0.052  -0.072  
CA 0.21  0.19  0.116  0.122  -0.107  -0.106  

SWS 0.25  0.14  0.098  0.105  -0.088  -0.086  
SES 0.21  0.24  0.340  0.155  -0.329  -0.123  

WAS 0.17  0.22  0.131  0.077  -0.083  -0.056  
EAS 0.66  0.59  0.071  0.096  -0.036  -0.041  
SAS 0.27  0.29  0.107  0.092  -0.099  -0.045  
NOC 0.58  0.48  0.095  0.113  -0.057  0.017  
SOC 0.57  0.47  0.088  0.102  -0.047  -0.010  

It can be seen from Fig. 6(a-c) and Table 2 that on the quasi-global scale, ASM (medians of CORRs, RMSEs, and MBs 215 

for 95th extremes are 0.63, 0.093 m, and -0.050 m, respectively) outperforms the numerical model GTSM (medians are 0.55, 

0.106 m, and -0.045 m). At the regional scale (Fig. 6(d-i)), ASM and GTSM perform poorly in areas with no tropical cyclones 

(ER, SWA, SWS, and SES), indicating that in addition to meteorological factors, oceanographic processes in these regions 

also contribute to the extremes (Cid et al., 2017; Woodworth et al., 2019). For areas severely affected by tropical cyclones 

(such as WEU, WNA, ENA, EAS, NOC, and SOC), ASM and GTSM are more precise. Moreover, CORRs and RMSEs of 220 

ASM are better than those of GTSM in these sub-regions, while MBs of GTSM are closer to zero meter in WEU, NOC, and 

SOC (Fig. 6(a-c)). However, GTSM appears to overestimate extremes in some areas, such as NOC and SOC (Fig. 6(i)). For 

further insight, Figure 7 presents scatter density plots of ASM and GTSM annual maximum SSs compared with TG records. 

Among the fifteen sub-regions, the determination coefficient (R2) of ASM in 10 of them is better than GTSM (Fig. 7(b-i, k, 

o)); the RMSE of ASM is smaller than GTSM in 12 areas (Fig. 7(b-j, m, o, p)). However, there are two sub-regions where the 225 

R2 and RMSE of ASM are worse than that of GTSM ((Fig. 7(l, n)), possibly because the available TGs are sparse, especially 

in WAS. On a quasi-global scale, ASM's overall RMSE and R2 improvements compared to GTSM are 22.3% (from 0.184 m 

to 0.143 m) and 14.8% (from 0.61 to 0.70), respectively (Fig. 7(a)), which means ASM is more stable than GTSM. The reason 

why ASM outperforms GTSM can be attributed to two main aspects. For the global numerical model GTSM, as mentioned in 

the introduction, the accuracy and spatial resolution of bathymetric data in the nearshore area limits the precision of SSs. 230 

Meanwhile, the grid with a resolution of several kilometers affects the effective simulation of small-scale physical factors. For 

the ASM data-driven model, the training process is based on TG observations. TGs are the most accurate source for sea level 

monitoring, and their records can be considered to include effects from all spatial-scale physical processes. In addition, the 

machine learning method XGBoost is a residual model that pays more attention to where residual errors are significant, which 

also benefits the estimation of extreme SSs. 235 
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Figure 7: Scatter density plots of ASM and GTSM annual maxima (Amax) compared with tide gauge observations in different 
regions. The data for tide gauges were combined. The red dotted line indicates the perfect fit line. 

3.3 ASM Model Comparison with Numerical Model at Coastal Scale 

As mentioned in the introduction, though ASM and single-site modeling belong to the data-driven model, the former can 240 

provide SS information for ungauged points since their basic ideas differ. This advantage of ASM allows us to compare the 
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data-driven model and numerical model on a quasi-global scale with high spatial resolution. In this section, the ASM model 

was trained based on all 1,315 TGs within the research area with records longer than one year from 1940 to 2020 (Figure 1). 

Then SSs from 1979 to 2018 were reconstructed to all coastal points of GTSM to assess their differences (Fig. 8 and Table 3). 

 245 

Figure 8: Differences between ASM and GTSM at the coastal scale from 1979 to 2018. (a-c) Comparison statistics between ASM 
and GTSM modeled entire surges and 95th extremes for different regions; (d-i) Distributions of comparison metrics. Gray lines 

are tropical cyclone paths. 
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Table 3: The median of evaluation statistics for different regions in Fig. 8. 

 Median of CORRs Median of RMSEs (m) Median of MBs (m) 
 Entire surges 95th extremes Entire surges 95th extremes Entire surges 95th extremes 

ALL 0.32  0.23  0.084  0.138  -0.056  -0.126  
ER 0.19  0.09  0.085  0.127  -0.076  -0.123  

WEU 0.89  0.70  0.058  0.090  -0.039  -0.073  
NAF 0.28  0.10  0.060  0.118  -0.022  -0.112  
SWA 0.37  0.12  0.068  0.060  0.030  -0.050  
SEA 0.30  0.36  0.114  0.176  -0.105  -0.172  

WNA 0.70  0.70  0.055  0.080  -0.025  -0.023  
ENA 0.48  0.52  0.073  0.144  -0.009  -0.091  
CA 0.38  0.28  0.063  0.098  -0.037  -0.083  

SWS 0.30  0.09  0.043  0.060  -0.008  -0.044  
SES 0.42  0.11  0.118  0.204  -0.059  -0.180  

WAS 0.28  0.12  0.090  0.174  -0.040  -0.167  
EAS 0.47  0.40  0.132  0.225  -0.065  -0.212  
SAS 0.29  0.25  0.100  0.148  -0.083  -0.143  
NOC 0.22  0.22  0.100  0.159  -0.074  -0.149  
SOC 0.82  0.39  0.095  0.154  -0.068  -0.140  

Figure 8 and Table 3 give the comparison results between ASM and GTSM modeled entire surges and 95th extremes. 250 

Note that since both ASM and GTSM SSs were estimated, we used GTSM as the baseline here. As shown in Fig. 8 and Table 

3, there are noticeable differences between ASM and GTSM. On the quasi-global scale, medians of CORRs, RMSEs, and MBs 

of the entire surges (95th extremes) between them are 0.32 (0.23), 0.084 m (0.138 m), and -0.056 m (-0.126 m), respectively 

(Fig. 8(a-c)). The negative MBs indicate that ASM tends to give lower SS estimates than GTSM, which is consistent with the 

conclusion from the comparison with TGs in section 3.2. From the regional perspective, the agreement between ASM and 255 

GTSM ( Fig. 8(d, f, h) for entire surges, Fig. 8(e, g, i) for 95th extremes) are better in WEU, SEA, WNA, ENA, EAS and SOC. 

For other places, on the one hand, both ASM and GTSM showed relatively poor agreement with TG observations in section 

3.2 (Fig. 6 (d-i)); on the other hand, there are also visible discrepancies between ASM and GTSM (Fig. 8(d-i)). Possible reasons 

could be as follows: For ASM, its extreme SS reconstruction is affected by the distribution and spatial interval of TG stations 

(Yang et al., 2024b). For GTSM, the grid resolution and the bathymetric data's precision also impact the simulation results. 260 

Additionally, neither of them considers sea level variations caused by runoff and precipitation.  Nevertheless, the precision of 

ASM and GTSM for these regions needs further improvement in the future. 

4 Data availability 

The ASM-SS quasi-global storm surge dataset was generated from the ASM data-driven model established in section 3.3. The 

dataset is available at https://doi.org/10.5281/zenodo.14034726 (Yang et al., 2024a) as NetCDF files month by month from 265 

1940 to 2020. Each file includes five parameters: longitude, latitude, nodes, time, and surge level. Longitude and latitude are 

the location information of nodes in degree; the unit of time is accumulated hours since 1900-01-01 00:00:00; surge levels are 
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given in meters. Users can use longitude, latitude, and time as keywords to select surge levels at nodes of interest within a 

target period. In addition, the spatial resolution of nodes is 10 km along the coastline (as shown in Figure 2). Since the sea 

surface varies rapidly during tropical cyclones, the temporal resolution of surge levels is set to hourly. Though this temporal 270 

resolution increases the data volume, it can provide sufficient information for users who want to analyze high-frequency 

variations of storm surges during extreme events. 

5 Conclusion and Discussion 

High spatial coverage and long-term SS records are the basis for deepening our understanding and better preparing coastal 

communities for incoming ESLs. However, high spatial resolution SS information on a global or quasi-global scale could only 275 

be simulated by global numerical models due to the sparse and uneven distribution of TG stations. Here, based on the ASM 

framework, we established a SS data-driven model using observations from TGs between 45°S-45°N. Then, for the first time, 

a high spatial resolution (every 10 km per node along the coastline), long-term (over 80 years from 1940 to 2020), quasi-global 

(within 45°S-45°N), hourly data-driven SS dataset ASM-SS was reconstructed from this ASM model. Evaluation results 

indicate that for 95th extreme SSs, this model (medians of CORRs, RMSEs, and MBs are 0.63, 0.093 m, and -0.050 m, 280 

respectively) is better than the state-of-the-art hydrodynamic model GTSM (medians are 0.55, 0.106 m, and -0.045 m); for 

annual maximum SSs, ASM is more stable than GTSM with overall RMSE and coefficient of determination optimizing by 

22.3% and 14.8%, respectively. This dataset could provide possible alternative support aside from numerical models for coastal 

communities to analyze variations of SSs, assess the contribution of SSs to ESL, and other relevant applications. 

Nonetheless, several details of this model can be studied more deeply in our future work: (1) Generally speaking, tropical 285 

cyclones are usually accompanied by heavy rainfall when they make landfall, which might affect sea-surface height. In addition, 

the impact of river runoff in estuarine areas may need to be considered. (2) The distribution and spatial interval of TG stations 

have been proven to affect the precision of ASM (Yang et al., 2024b). Because establishing and maintaining a permanent TG 

network with high spatial coverage in coastal regions is expensive and complex, it is necessary to consider integrating various 

water level observation technologies, such as Global Navigation Satellite System reflectometry (GNSS-R) and satellite 290 

altimetry. (3) From the predictor side, several studies showed that ERA5 data tends to relatively underestimate higher wind 

speeds (Graham et al., 2019; Xiong, 2022), which may lead to underestimations of extreme SSs. Therefore, the atmospheric 

predictors can also be optimized through multi-source data fusion, such as considering wind speeds obtained from spaceborne 

GNSS-R (e.g., Cyclone Global Navigation Satellite System) or cyclone information obtained from remote sensing satellites. 
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