
Response to Reviewer#2 Comments 

The authors have addressed most of the concerns raised in the initial review, and the 
manuscript has improved significantly.  
 
Point 1: However, regarding Point 2, while the authors added an extended explanation 
about the differences between single-site models and their proposed model, much of 
the text is verbose and does not add meaningful insights. It still fails to clarify what 
preprocessing or modeling steps make the model sensitive to geographic information. 
Additionally, the term “regional relationship” is unclear. That said, for a data-focused 
article, it is not strictly necessary to explain these points in detail. I recommend either 
deleting the redundant text (around line 140) or providing a simple, clear explanation. 
The manuscript can then be accepted. 
Response:  

Thanks for your constructive suggestion! In this version we deleted the redundant 
text and added a flowchart for the modeling processes of our model, hope this revision 
could be readable: 

 
2.5 All-site Modeling Framework 

Full details of the ASM can be found at Yang et al.(2023). Here, a brief description 
of its modeling processes is provided. Assuming there are six available TGs within 45°S 
to 45°N (Fig. 3(a)): 
(1) Obtaining predictors (Fig. 3(b)). Four atmospheric data (mslp, u10, v10, and t2m) 
for each TG station are extracted from the ERA5 dataset through linear interpolation. 
Changes in sea level pressure and wind are the main factors in generating SSs  
(Woodworth et al., 2019); adding temperature variations considers the effects of 
thermal expansion and contraction. Meanwhile, following Yang et al.(2023) and Yang 
et al. (2024a), another three variables (longitude, latitude, and timestamp) are 
considered since geographical locations and record lengths of TGs are different. Hence, 
the predictor matrix for each TG consists of 7 columns: mslp, u10, v10, t2m, longitude, 
latitude, and time; 
(2) All-site modeling (Fig. 3(c)). Predictor matrices and SSs of all six TG stations are 
stacked into one predictor matrix and one SS matrix. Then, the eXtreme Gradient 
Boosting Tree (XGBoost) (Chen & Guestrin, 2016) is used to learn the relationship 
between these two matrices. The XGBoost is a residual machine learning model that 
generates a new decision tree using SS residuals from the previous tree. Therefore, the 
new tree will pay more attention to training where the residual errors are significant, 
making it suitable for modeling SS extremes; 
(3) Reconstruction (Fig. 3(d)). SSs can be estimated for any target node along the 
coastline by inputting the corresponding predictor matrix of that location into the model 
established in step (2). 



 
Figure 3: The modeling processes of the ASM framework 

 
 
 
 
 
 
 



Point 2: Additionally, please add spaces before "(m)" in Fig. 4 for consistency. 
Response:   

Thanks for reminding. The following figure was the adjusted version: 

 

Figure 5: Temporal variations of the ASM model's precision at tide gauges from 1940 to 2020. (a-

c) Entire surge evaluation statistics for different regions every 10 years; (d-f) 95th extreme 

evaluation statistics for different regions every 10 years. 



Response to Reviewer#3 Comments 

After preparing my comments, I looked at other reviewers' comments and I believe that 
further clarifications are needed. 
 
Point 1: Given the long period considered, the authors need to critically explain how 
changes in the observation-based datasets used can affect their results. Are there any 
spurious changes in predictors to be accounted for? The discussion of this aspect is not 
detailed and remains speculative. The suggestion is to present some examples not from 
the training split.  
Response:  

Thanks for the recommendation. From Yang et al., (2024), the evaluation showed 
that the precision of the data-driven model is affected by the spatial resolution of TGs.  

 

From Haigh et al., (2023), it can be seen that the number of TGs in GESLA-3 was 
increasing from 1940 to 2020, which means the spatial resolution of TGs was increasing. 
This can partly explain why "the overall precision (i.e., for ALL TGs) of entire surges 
and 95th extremes gradually increased from 1940 to 2020." in line 191. 

 



For ERA5 atmospheric data, on the one hand, satellite observations were used in 
assimilation after the 1970s; on the other hand, the volume of satellite data has increased 
significantly in recent years (Soci et al., 2024, Figure 2). These developments improve 
the quality of ERA5 data and hence benefit the data-driven model. As for spurious 
changes in predictors, it is difficult to evaluate since ERA5 is the best atmospheric 
product now. 

To avoid confusion, in this version, we rewrote the relevant statement in lines 191-
195: Results indicate that the overall precision (i.e., for ALL TGs) of entire surges and 
95th extremes gradually increased from 1940 to 2020. Possible reasons are as follows: 
on the one hand, the ASM model is affected by the spatial resolution of TGs (Yang et 
al., 2024). The increase of TGs in recent decades (Haigh et al., 2023) enhances its 
precision; on the other hand, the quality of ERA5 reanalysis data improved as 
increasing satellite data has been assimilated since the 1970s (Soci et al., 2024), which 
benefits the data-driven model. 
 
Haigh, I. D., Marcos, M., Talke, S. A., Woodworth, P. L., Hunter, J. R., Hague, B. S., A

rns, A., Bradshaw, E., and Thompson, P.: GESLA Version 3: A major update to the 

global higher‐frequency sea‐level dataset, Geoscience Data Journal, 10, 293–314, https:

//doi.org/10.1002/gdj3.174, 2023. 

Soci, C., Hersbach, H., Simmons, A., Poli, P., Bell, B., Berrisford, P., Horányi, A., Muñoz

‐Sabater, J., Nicolas, J., Radu, R., Schepers, D., Villaume, S., Haimberger, L., Woolle

n, J., Buontempo, C., and Thépaut, J.: The ERA5 global reanalysis from 1940 to 202

2, Quart J Royal Meteoro Soc, qj.4803, https://doi.org/10.1002/qj.4803, 2024. 

Yang, L., Jin, T., and Jiang, W.: Improving Coastal Storm Surge Monitoring Through Joint

 Modeling Based on Permanent and Temporary Tide Gauges, Geophysical Research L

etters, 51, e2024GL108886, https://doi.org/10.1029/2024GL108886, 2024. 

 
Point 2: The description of the model is sketchy, and the choice of predictors should be 
explained. Other variables may be relevant, but how this choice was made is not clear 
to me. Contribution of each variable should also be documented with some tailored 
experiment. Moreover, results seem to indicate a strong dependence on the availability 
of long time series (maps of Fig 3). Care should be taken to avoid data leakage. 
Response: 

Thanks for your suggestion. The atmospheric predictors are commonly used by 
existing studies (Bruneau et al., 2020; Ebel et al., 2024; Tadesse et al., 2020; Tiggeloven 
et al., 2021). As for the longitude, latitude, and time, we tested them before proposing 
the all-site modeling framework in 2023. We found that adding these three parameters 
improved the reconstruction precision: 



 
We also evaluated their contributions through the Permutation Importance analysis: 

 

Bruneau, N., Polton, J., Williams, J., and Holt, J.: Estimation of global coastal sea level e

xtremes using neural networks, Environ. Res. Lett., 15, 074030, https://doi.org/10.1088/

1748-9326/ab89d6, 2020. 

Ebel, P., Victor, B., Naylor, P., Meoni, G., Serva, F., and Schneider, R.: Implicit Assimilati

on of Sparse In Situ Data for Dense & Global Storm Surge Forecasting, in: 2024 IE

EE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPR

W), 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Worksh

ops (CVPRW), Seattle, WA, USA, 471–480, https://doi.org/10.1109/CVPRW63382.2024.

00052, 2024. 

Tadesse, M., Wahl, T., and Cid, A.: Data-Driven Modeling of Global Storm Surges, Front.

 Mar. Sci., 7, 260, https://doi.org/10.3389/fmars.2020.00260, 2020. 

Tiggeloven, T., Couasnon, A., van Straaten, C., Muis, S., and Ward, P. J.: Exploring deep 

learning capabilities for surge predictions in coastal areas, Sci Rep, 11, 17224, https://

doi.org/10.1038/s41598-021-96674-0, 2021. 

.  
Point 3: The Authors need to make clear what is the advantage of their dataset 
compared to what is already public (e.g. https://cds.climate.copernicus.eu/datasets/sis-
water-level-change-timeseries-cmip6?tab=overview). For this they should include 
analysis of selected globally distributed examples, such as heavy impact events across 
their model, observations, and other datasets. This could clarify which other phenomena 
affect surges, as hinted in the text but not clarified. 



Response: 
The numerical storm surge data we used was obtained from the website mentioned 

by the reviewer. The advantage of our dataset was clarified in this paper: 1) longer than 
the numerical dataset; 2) the precision is better. The extreme events we selected using 
the 95th percentile are, in a sense, what the reviewer termed "heavy impact events." As 
for which other phenomena affect surges, experts have discussed and analyzed them in 
detail. For example, Idier et al., (2019) and Woodworth et al., (2019). 

To avoid confusion, in this version we clarified in lines 217-219: At the regional 
scale (Fig. 6(d-i)), ASM and GTSM perform poorly in areas with no tropical cyclones 
(ER, SWA, SWS, and SES), indicating that in addition to meteorological factors, 
oceanographic processes in these regions also contribute to the extremes (Cid et al., 
2017; Woodworth et al., 2019). 

A similar statement was mentioned by Cid et al., (2017) as well: 

 

Cid, A., Camus, P., Castanedo, S., Méndez, F. J., and Medina, R.: Global reconstructed daily surge 

levels from the 20th Century Reanalysis (1871–2010), Global and Planetary Change, 148, 9–

21, https://doi.org/10.1016/j.gloplacha.2016.11.006, 2017. 

Idier, D., Bertin, X., Thompson, P., and Pickering, M. D.: Interactions Between Mean Sea Level, 

Tide, Surge, Waves and Flooding: Mechanisms and Contributions to Sea Level Variations at 

the Coast, Surv Geophys, 40, 1603–1630, https://doi.org/10.1007/s10712-019-09549-5, 2019. 

Woodworth, P. L., Melet, A., Marcos, M., Ray, R. D., Wöppelmann, G., Sasaki, Y. N., Ci

rano, M., Hibbert, A., Huthnance, J. M., Monserrat, S., and Merrifield, M. A.: Forcin

g Factors Affecting Sea Level Changes at the Coast, Surv Geophys, 40, 1351–1397, 

https://doi.org/10.1007/s10712-019-09531-1, 2019. 

 
Point 4: I am also missing references to relevant works, such as Nevo et al 2022 
(https://hess.copernicus.org/articles/26/4013/2022/hess-26-4013-2022.html), Nearing 
et al. 2024 (https://www.nature.com/articles/s41586-024-07145-1), Ebel et al. 2024 
(10.1109/CVPRW63382.2024.00052). 
Response: 

Thanks for reminding us. These papers are excellent works. They were added in 
line 56: …through multiple linear regression (Cid et al., 2018) or artificial intelligence 
(Nevo et al., 2022; Bruneau et al., 2020; Ebel et al., 2024; Nearing et al., 2024)  
 
Ebel, P., Victor, B., Naylor, P., Meoni, G., Serva, F., and Schneider, R.: Implicit Assimilation of 

Sparse In Situ Data for Dense & Global Storm Surge Forecasting, in: 2024 IEEE/CVF 

Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2024 

IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 

Seattle, WA, USA, 471–480, https://doi.org/10.1109/CVPRW63382.2024.00052, 2024. 



Nearing, G., Cohen, D., Dube, V., Gauch, M., Gilon, O., Harrigan, S., Hassidim, A., Klotz, D., 

Kratzert, F., Metzger, A., Nevo, S., Pappenberger, F., Prudhomme, C., Shalev, G., Shenzis, S., 

Tekalign, T. Y., Weitzner, D., and Matias, Y.: Global prediction of extreme floods in ungauged 

watersheds, Nature, 627, 559–563, https://doi.org/10.1038/s41586-024-07145-1, 2024. 

Nevo, S., Morin, E., Gerzi Rosenthal, A., Metzger, A., Barshai, C., Weitzner, D., Voloshin, D., 

Kratzert, F., Elidan, G., Dror, G., Begelman, G., Nearing, G., Shalev, G., Noga, H., Shavitt, I., 

Yuklea, L., Royz, M., Giladi, N., Peled Levi, N., Reich, O., Gilon, O., Maor, R., Timnat, S., 

Shechter, T., Anisimov, V., Gigi, Y., Levin, Y., Moshe, Z., Ben-Haim, Z., Hassidim, A., and 

Matias, Y.: Flood forecasting with machine learning models in an operational framework, 

Hydrol. Earth Syst. Sci., 26, 4013–4032, https://doi.org/10.5194/hess-26-4013-2022, 2022. 
 
Point 5: The writing is imprecise in many places, as I reported in the comments by line. 
Please make sure to support every statement and avoid ambiguities. For example, the 
recurring phrase "their basic ideas differ" on models just means that you are using 
transfer learning in the ASM framework, right? 
Response: 

We are sorry for any difficulties in understanding caused by our writing issues. In 
this version we meticulously revised this manuscript based on the reviewer’s 
suggestions, hoping this version can be more precise and readable. 

To avoid ambiguities, in this version, we replaced the phrase "their basic ideas 
differ" in line 70 with "their modeling processes differ" 
 
Point 6: Colors used in maps are not great. White for correlation is not visible (use a 
colormap with grey or yellow in the middle), and 0 should be at the middle. Colorbars 
seem adjusted, e.g. with a single color for near zero values or discontibuity. Please 
consult the journal specification for these aspects. 
Response: 

Thanks for your recommendation. In this version, we removed white in the middle 
of the correlation colorbar in Fig 4, 6, and 8 (differences please see the following figure), 
hoping this would make maps visible. Additionally, 0 is not at the middle because the 
data's range is not symmetrically distributed around zero. The case "with a single color 
for near zero" appears in mean bias (MB), since near-zero MBs (whether positive or 
negative) represent high precision, there's no need to use different colors to distinguish 
them. 



 
 
Point 7: The data dimensions are "time" and "node", the latter to be mapped to static 
longitudes and latitudes. This is reasonable to save space but complicates access 
compared e.g. to gridded datasets. 
Response: 

Thanks for your suggestion. Since the nodes of our model are distributed along the 
coast, not in a grid, if it is stored in a grid format, there will be many areas without data. 
In addition, the data storage style (see the following figure) is consistent with the 
numerical dataset the reviewer mentioned in Point 3.  



 
 
Specific comments: 
Point 8: Line 10: I guess also yours can be considered a model 
Response: 

Thanks for your suggestion. Since both single-site modeling and all-site modeling 
belong to the data-driven model, in order to avoid confusion, we used "framework" in 
the paper we proposed the all-site modeling, so we continued to use it here. 
 
Point 9: Line 11: I would not say this is a limitation of models. What is limiting is 
observational data to constrain them. 
Response: 

We are sorry for the unclear expression. This is indeed not a limitation of the 
numerical models themselves, but a limitation of the products released by the numerical 
models. In this version we rewrote this sentence in line 11 as: such global or quasi-
global information could only be provided by global numerical models, while their 
simulation products span mainly the most recent decades. 
 
Point 10: Line 13: What is a "node" here? 
Response: 

To avoid misunderstanding, we deleted this term here and changed this sentence in 
line 14 to: …we generated a high spatial resolution (10 km along the coastline) hourly 
SS dataset ASM-SS (all-site modeling storm surge) within 45°S to 45°N. 
 
Point 11: Line 14: You should mention the data used for this, which I suspect it's ERA5 
Response: 

We are sorry for forgetting this information. In this version, this sentence was 
rewritten in line 13 as: "Using tide gauge records and European Centre for Medium-



Range Weather Forecasts Reanalysis 5 (ERA5) data, we generated a high spatial 
resolution…" 
 
Point 12: Line 15: Which model? 
Response: 

We are sorry for the confusion. It was changed in the new version in line 16: …the 
precision of the ASM-SS model (medians of correlation coefficients, root mean square 
errors, and mean biases are… 
 
Point 13: Line 57: This statement is misleading. Model performances will anyway 
depend on features such as bathymetry and grid resolution. 
Response: 

Data-driven models do not require grid like numerical models to resolve storm 
surges. As for bathymetry, in theory, this parameter should be considered in the data-
driven model. However, to our knowledge, existing data-driven models for storm surge 
reconstruction rarely consider this parameter.  

These two features (bathymetry and grid resolution) are not used in the modeling 
process, hence the precision of data-driven models is not affected by them. 

 
Point 14: Line 66: This statement makes no sense to me. When constrained by 
observations, a surrogate model would work better than a free-running physical model. 
Or do you mean something else? 
Response: 

We are sorry for any difficulties in understanding. The surrogate model here is 
defined as "training the data-driven model with the storm surge outputs from numerical 
models". Therefore, the relationships learned by a surrogate model during the training 
process are only those expressed by the numerical model. In this case, when we input 
the same atmospheric data (such as mslp, u10, v10) into the surrogate model and the 
numerical model to generate hindcast storm surges, theoretically, the precision of the 
former can at most match but cannot surpass the latter. Hope this explanation could be 
helpful. 
 
Point 15: Line 76: I don't see how this can be a general prerequisite 
Response: 
These are some examples: 

(1) Sufficiently long and high-spatial resolution: for example, evaluating return 
levels of extreme storm surge (SS) through the extreme value analysis theory heavily 
relies on the length of records; the extrapolation of return periods should not be longer 
than four times the length of available time series (Pugh and Woodworth, 2014, Page 
323). For example, at least 50-year SS data are needed to estimate 1 in 200-year SS 
levels since the estimation uncertainty will increase if the records are too short. In 
addition, the higher the spatial coverage of SS data, the more information for different 
places can be obtained. 

(2) High-temporal resolution: the SSs caused by tropical cyclones vary quickly, 



and cover frequencies from hours to days (WMO, 2011, Figure 1.2). If the time 
resolution is not enough, it is difficult to provide effective information to study the 
characteristics of SSs during tropical cyclones. 

To avoid confusion, we changed the sentence "High spatiotemporal resolution and 
sufficiently long SS dataset is the basis for analyzing this disaster" to "High 
spatiotemporal resolution and sufficiently long SS dataset is important for better 
analyzing this disaster" in line 77.  
 
Pugh, D. and Woodworth, P.: Sea-level science: understanding tides, surges, tsunamis and mean sea-

level changes, Cambridge University Press, Cambridge ; New York, 395 pp., 2014. 

WMO: Guide to storm surge forecasting, 2011 ed., World Meteorological Organization, Geneva, 

Switzerland, 2011. 

 
Point 16: Line 78: I count two at line 76? 
Response: 

Apologies for this confusion. Since we think "high spatiotemporal resolution" 
contains two demands (i.e. space and time). In this version we changed the sentence in 
line 79 from "cannot fulfill all three demands simultaneously" to "cannot fulfill all 
demands simultaneously". 
 
Point 17: Line 80: ET cyclones go way beyond that, check for example the IBTraCS 
dataset and expand/clarify 
Response: 

We are sorry for the inaccurate statement. This article focuses on the areas affected 
by tropical cyclones. We rewrote this sentence in line 81 from "most destructive tropical 
and extratropical cyclones" to "most destructive tropical cyclones". Similar inaccurate 
statements elsewhere in this article have also been deleted. 
 
Point 18: Line 84: I am confused between "support for communities" and "our 
understanding" 
Response: 

Apologies for this confusion. In this version we rewrote the sentence in line 85 as: 
for coastal communities to deepen the understanding of SSs and ESLs 
 
Point 19: Line 88: The paper by Hersbach should be cited as well. 
Response: 

Thanks for reminding. Hersbach et al., (2020) focus on the dataset from 1979 
onwards, the latest paper (Soci et al., 2024) covers the period from 1940-2022. 
Therefore, we only cited the latest paper. 



 
 
Point 20: Line 90: "with...grids" is incorrect. There's just one grid. 
Response: 

Thanks for reminding. This sentence was changed in line 91 as: …with a 
0.25°×0.25° resolution grid. 
 
Point 21: Line 91: please elaborate why other wind variables, such as wind gusts, are 
not considered. Moreover, u and v are swapped compared to the bracket. 
Response: 

We are sorry for this mistake. In this version, we rewrote the sentence in line 92 
"…10 m northward and eastward wind (u10, v10) …" to "…10 m eastward and 
northward wind (u10, v10) …" 

Existing models all use these two parameters (e.g. Bruneau et al., 2020; Ebel et al., 
2024; Tadesse et al., 2020; Tiggeloven et al., 2021), we haven’t seen studies using wind 
gusts or other wind variables. 
 
Bruneau, N., Polton, J., Williams, J., and Holt, J.: Estimation of global coastal sea level e

xtremes using neural networks, Environ. Res. Lett., 15, 074030, https://doi.org/10.1088/

1748-9326/ab89d6, 2020. 

Ebel, P., Victor, B., Naylor, P., Meoni, G., Serva, F., and Schneider, R.: Implicit Assimilati

on of Sparse In Situ Data for Dense & Global Storm Surge Forecasting, in: 2024 IE

EE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPR

W), 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Worksh

ops (CVPRW), Seattle, WA, USA, 471–480, https://doi.org/10.1109/CVPRW63382.2024.

00052, 2024. 

Tadesse, M., Wahl, T., and Cid, A.: Data-Driven Modeling of Global Storm Surges, Front.



 Mar. Sci., 7, 260, https://doi.org/10.3389/fmars.2020.00260, 2020. 

Tiggeloven, T., Couasnon, A., van Straaten, C., Muis, S., and Ward, P. J.: Exploring deep 

learning capabilities for surge predictions in coastal areas, Sci Rep, 11, 17224, https://

doi.org/10.1038/s41598-021-96674-0, 2021. 

 
Point 22: Line 105: "Datum" as in geodesy? Or data? 
Response: 

Datum. Caused by earthquakes or changes in instrument. In this version, we revised 
it in line 106 as: Datum jumps caused by earthquakes or changes in instrument were 
adjusted. 
 
Point 23: Line 116: The title does not sound right 
Response: 

Thanks for reminding. In this version, we changed it in line 117 from "Numerical 
Model Surge" to "Surge Data Simulated from Numerical Model" 
 
Point 24: Line 123: rather than "participate" I guess they "were not used" 
Response: 

Thanks for your suggestion. We rewrote it in this version in line 124: they were not 
used in the training process of the latter. 
 
Point 25:  
1) Line 138: please use a clearer symbol than "n" 
2) Line 141: I doubt the ASM "believes", rephrase to avoid humanization 
3) Line 145: It is unclear what relevance means here 
4) Line 151: How the model is trained is unclear to me. What is the training period? 

How do you define train and validation splits? These details are required. 
Response: 

Based on the comments from two reviewers, we rewrote Section 2.5, deleted the 
redundant text, and added a flowchart for the ASM modeling, hope this revision could 
be clear and readable: 

 
2.5 All-site Modeling Framework 

Full details of the ASM can be found at Yang et al.(2023). Here, a brief description 
of its modeling processes is provided. Assuming there are six available TGs within 45°S 
to 45°N (Fig. 3(a)): 
(1) Obtaining predictors (Fig. 3(b)). Four atmospheric data (mslp, u10, v10, and t2m) 
for each TG station are extracted from the ERA5 dataset through linear interpolation. 
Changes in sea level pressure and wind are the main factors in generating SSs  
(Woodworth et al., 2019); adding temperature variations considers the effects of 
thermal expansion and contraction. Meanwhile, following Yang et al.(2023) and Yang 
et al. (2024a), another three variables (longitude, latitude, and timestamp) are 
considered since geographical locations and record lengths of TGs are different. Hence, 
the predictor matrix for each TG consists of 7 columns: mslp, u10, v10, t2m, longitude, 



latitude, and time; 
(2) All-site modeling (Fig. 3(c)). Predictor matrices and SSs of all six TG stations are 
stacked into one predictor matrix and one SS matrix. Then, the eXtreme Gradient 
Boosting Tree (XGBoost) (Chen & Guestrin, 2016) is used to learn the relationship 
between these two matrices. The XGBoost is a residual machine learning model that 
generates a new decision tree using SS residuals from the previous tree. Therefore, the 
new tree will pay more attention to training where the residual errors are significant, 
making it suitable for modeling SS extremes; 
(3) Reconstruction (Fig. 3(d)). SSs can be estimated for any target node along the 
coastline by inputting the corresponding predictor matrix of that location into the model 
established in step (2). 

 
Figure 3: The modeling processes of the ASM framework 

 



Point 26: Line 148: If you refer to seawater, I guess you should rather use skin 
temperature 
Response: 

Thanks for your suggestion. This parameter is consistent with Žust et al., (2021). 
As for whether the skin temperature is more appropriate than 2m temperature, we will 
discuss it in the future. 

 
Žust, L., Fettich, A., Kristan, M., and Ličer, M.: HIDRA 1.0: deep-learning-based ensembl

e sea level forecasting in the northern Adriatic, Geosci. Model Dev., 14, 2057–2074, 

https://doi.org/10.5194/gmd-14-2057-2021, 2021. 

 
Point 27: Line 174: according to whom the 95th percentile is a good metric? 
Response: 

The "Peaks Over Threshold" is a commonly used method in the extreme value 
analysis theory. Following Bruneau et al. (2020), as well as the articles (Tadesse et al., 
2021, 2022) from Thomas Wahl’s research group, we used the 95th percentile. 
 
Bruneau, N., Polton, J., Williams, J., and Holt, J.: Estimation of global coastal sea level extremes 

using neural networks, Environ. Res. Lett., 15, 074030, https://doi.org/10.1088/1748-

9326/ab89d6, 2020. 

Tadesse, M. G. and Wahl, T.: A database of global storm surge reconstructions, Sci Data, 8, 125, 

https://doi.org/10.1038/s41597-021-00906-x, 2021. 

Tadesse, M. G., Wahl, T., Rashid, M. M., Dangendorf, S., Rodríguez-Enríquez, A., and Talke, S. A.: 

Long-term trends in storm surge climate derived from an ensemble of global surge 

reconstructions, Sci Rep, 12, 13307, https://doi.org/10.1038/s41598-022-17099-x, 2022. 

 
Point 28: Line 182: I don't think you ever mentioned the data source for cyclone tracks 
Response: 

Thanks for reminding. We added the source in Acknowledgments in line 305: The 
tropical cyclone paths shown in Fig. 4, 6, and 8 are from Gahtan et al. (2024). 
 
Gahtan, J., Knapp, K. R., Schreck, C. J. I., Diamond, H. J., Kossin, J. P., and Kruk, M. C.: 

International Best Track Archive for Climate Stewardship (IBTrACS) Project, Version 4.01 

[data set], https://doi.org/10.25921/82ty-9e16, 2024. 

 

Point 29: Line 216: The information is a bit lost in the text, please consider adding a 
summary table 
Response: 



Thanks for your constructive suggestion. In this version, we added three summary 
tables for Figures 4, 6, and 8. 
 
Table 1: The median of evaluation statistics for different regions in Fig. 4. 

 Median of CORRs Median of RMSEs (m) Median of MBs (m) 

 
Entire 

surges 

95th 

extremes 

Entire 

surges 

95th 

extremes 

Entire 

surges 

95th 

extremes 

ALL 0.78  0.59  0.063  0.094  0.014  -0.052  

ER 0.39  0.20  0.054  0.120  0.002  -0.106  

WEU 0.87  0.68  0.050  0.069  0.011  -0.020  

NAF 0.76  0.55  0.036  0.059  0.004  -0.031  

SWA 0.25  0.19  0.074  0.080  0.029  -0.046  

SEA 0.61  0.43  0.070  0.105  0.012  -0.087  

WNA 0.83  0.69  0.044  0.055  0.018  -0.019  

ENA 0.84  0.75  0.073  0.117  0.016  -0.053  

CA 0.30  0.19  0.072  0.116  0.027  -0.098  

SWS 0.29  0.25  0.061  0.098  0.017  -0.088  

SES 0.29  0.15  0.141  0.312  0.011  -0.303  

WAS 0.09  0.17  0.091  0.131  0.016  -0.083  

EAS 0.81  0.62  0.054  0.077  0.013  -0.037  

SAS 0.34  0.24  0.060  0.107  0.012  -0.099  

NOC 0.62  0.54  0.068  0.101  0.013  -0.056  

SOC 0.83  0.53  0.064  0.093  0.017  -0.046  

 
Table 2: The median of evaluation statistics for different regions in Fig. 6. 

 Median of CORRs Median of RMSEs (m) Median of MBs (m) 

 
ASM-

GESLA 

GTSM-

GESLA 

ASM-

GESLA 

GTSM-

GESLA 

ASM-

GESLA 

GTSM-

GESLA 

ALL 0.63  0.55  0.093  0.106  -0.050  -0.045  

ER 0.20  0.10  0.122  0.075  -0.106  -0.026  

WEU 0.72  0.62  0.066  0.071  -0.019  -0.001  

NAF 0.53  0.46  0.057  0.044  -0.025  0.003  

SWA 0.20  0.30  0.081  0.087  -0.048  -0.063  

SEA 0.44  0.35  0.103  0.076  -0.087  -0.058  

WNA 0.72  0.58  0.054  0.085  -0.019  -0.061  

ENA 0.77  0.72  0.112  0.138  -0.052  -0.072  

CA 0.21  0.19  0.116  0.122  -0.107  -0.106  

SWS 0.25  0.14  0.098  0.105  -0.088  -0.086  

SES 0.21  0.24  0.340  0.155  -0.329  -0.123  

WAS 0.17  0.22  0.131  0.077  -0.083  -0.056  

EAS 0.66  0.59  0.071  0.096  -0.036  -0.041  

SAS 0.27  0.29  0.107  0.092  -0.099  -0.045  

NOC 0.58  0.48  0.095  0.113  -0.057  0.017  

SOC 0.57  0.47  0.088  0.102  -0.047  -0.010  



Table 3: The median of evaluation statistics for different regions in Fig. 8. 

 Median of CORRs Median of RMSEs (m) Median of MBs (m) 

 
Entire 

surges 

95th 

extremes 

Entire 

surges 

95th 

extremes 

Entire 

surges 

95th 

extremes 

ALL 0.32  0.23  0.084  0.138  -0.056  -0.126  

ER 0.19  0.09  0.085  0.127  -0.076  -0.123  

WEU 0.89  0.70  0.058  0.090  -0.039  -0.073  

NAF 0.28  0.10  0.060  0.118  -0.022  -0.112  

SWA 0.37  0.12  0.068  0.060  0.030  -0.050  

SEA 0.30  0.36  0.114  0.176  -0.105  -0.172  

WNA 0.70  0.70  0.055  0.080  -0.025  -0.023  

ENA 0.48  0.52  0.073  0.144  -0.009  -0.091  

CA 0.38  0.28  0.063  0.098  -0.037  -0.083  

SWS 0.30  0.09  0.043  0.060  -0.008  -0.044  

SES 0.42  0.11  0.118  0.204  -0.059  -0.180  

WAS 0.28  0.12  0.090  0.174  -0.040  -0.167  

EAS 0.47  0.40  0.132  0.225  -0.065  -0.212  

SAS 0.29  0.25  0.100  0.148  -0.083  -0.143  

NOC 0.22  0.22  0.100  0.159  -0.074  -0.149  

SOC 0.82  0.39  0.095  0.154  -0.068  -0.140  

 
Point 30: Line 219: Indeed, please provide explanations.  
Response: 

Thanks for reminding. A similar conclusion was mentioned by Cid et al., (2017): 

 

We rewrote the sentence "indicating that there may be additional contributions 
from other physical factors to the extremes" as "indicating that in addition to 
meteorological factors, oceanographic processes in these regions also contribute to the 
extremes (Cid et al., 2017; Woodworth et al., 2019)." in lines 218-219. 
 
Cid, A., Camus, P., Castanedo, S., Méndez, F. J., and Medina, R.: Global reconstructed daily surge 

levels from the 20th Century Reanalysis (1871–2010), Global and Planetary Change, 148, 9–

21, https://doi.org/10.1016/j.gloplacha.2016.11.006, 2017. 

 
Point 31: Fig 6 Is it possible to normalize the data somehow and facilitate comparison 
across regions? 
Response: 

Thanks for reminding. However, we haven't found a more suitable way yet. The 



storm surge Amax range varies greatly in different regions (some places are over 4.5 
meters, some are less than 0.7 meters). If we unify the y-axis, the readability of the area 
with a small Amax range would be affected. For example, the Western Asia (WAS): 

 

 
Point 32: Line 231: Spatial resolution of your method does not seem so superior 
compared to GTSM, moreover I am concerned about the use of TG data for both 
training and evaluation (if this is not done carefully) 
Response: 

"Meanwhile, the grid with a resolution of several kilometers affects the effective 
simulation of small-scale physical factors", this sentence means that if the resolution of 
the grid used to resolve storm surges is, for example, 2.5km, the physical process 
smaller than this spatial scale would not be effectively simulated by the numerical 
model. This was mentioned by Parker et al. (2023) as well.  

 
For the data-driven model in this article, on the one hand, it does not require the 

grid; on the other hand, the training process is based on the observations from tide 
gauges directly. Tide gauges are currently the most precise coastal sea-level monitoring 
method, which can be considered to capture the impact of more small-scale physical 
factors than numerical models. 

As for TG data preprocessing. First, the team produced the GESLA-3 dataset has 
processed it very carefully, this dataset was used in a wide range of ocean research 
(details see Haigh et al., 2023). Second, we also checked all TGs one by one through 
visual inspection before they were used for training and evaluation. This was a huge 
amount of work. 
 
Parker, K., Erikson, L., Thomas, J., Nederhoff, K., Barnard, P., and Muis, S.: Relative contributions 

of water-level components to extreme water levels along the US Southeast Atlantic Coast from 

a regional-scale water-level hindcast, Nat Hazards, https://doi.org/10.1007/s11069-023-05939-

6, 2023. 



Haigh, I. D., Marcos, M., Talke, S. A., Woodworth, P. L., Hunter, J. R., Hague, B. S., A

rns, A., Bradshaw, E., and Thompson, P.: GESLA Version 3: A major update to the 

global higher‐frequency sea‐level dataset, Geoscience Data Journal, 10, 293–314, https:

//doi.org/10.1002/gdj3.174, 2023. 

 
Point 33: Line 260: Both variables should be available in ERA5: why not adding those? 
Response: 

There are currently no numerical/data-driven storm surge model products that 
consider the effects of rainfall and runoff, which may not be a simple linear addition 
relationship. How to add both variables into data-driven models and how they affect 
model precision need to be analyzed in future work. 
 
Point 34: Line 268: 10 km or rather 0.1 degrees, hence variable with latitude? 
Response: 

"10 km along the coastline" means "there is a node every 10 kilometers along the 
coastline". 

 


