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Abstract. Snow water equivalent (SWE) quantifies the volume of water stored in snowpacks and therefore critically attributes 

to the timing and amount of water discharged into groundwater sources and rivers. The SWE has been estimated using various 

methods, including in situ measurements, remote sensing, and physics-based models. However, each of these methods present 

certain limitations, including high costs, low spatiotemporal resolution, and uncertainty in model representation and parameter 

calibration. To address these challenges, in this study, we developed a machine learning-based daily global gridded SWE 15 

(SWEML) product with a spatial resolution of 0.25º, covering the period from 1980 through 2020. To develop this product, 

we first applied the k-means clustering algorithm using topographical and climatic variables to classify global in situ SWE 

measurements into 13 clusters. Subsequently, we adopted the random forest algorithm to correlate daily in situ SWE 

measurements (n = 11,653) with meteorological forcing and terrain attributes. We compared SWEML with other SWE datasets, 

including the GlobSnow dataset from the European Space Agency, the Global Land Data Assimilation System dataset, and 20 

SWE estimates from the Advanced Microwave Scanning Radiometer for the Earth Observation System. The overall root mean 

square error (RMSE) was 10.80 mm, and the overall bias was -6.89 mm globally, in particular, with high accuracy with Pearson 

correlation coefficient, R, of 0.99 and RMSE of 16.88 mm in mountainous and high-elevation areas, such as the Rocky 

Mountains in the U.S. Furthermore, both snow accumulation during winter and snow melting during spring, were well depicted 

in the SWEML, which is only possible with a high-temporal-resolution product. Overall, the daily gap-free global SWEML 25 

product introduced in this study can significantly contribute to water resource management efforts in snow-dominant regions 
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and provide a robust reference for data assimilation in global-scale land surface modeling. The SWEML is available at 

https://doi.org/10.5281/zenodo.14195794  (Seo et al., 2024). 
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1. Introduction  30 

Snow is an essential component of the hydrological cycle of Earth, affecting the volume of water flowing into rivers, lakes, 

and streams and providing a supply of water for millions of people (Barnett et al., 2005; Viviroli et al., 2011; Musselman et 

al., 2021). Snow can be characterized by its depth, cover, and snow water equivalent (SWE), which quantifies the amount of 

water stored in the snowpack. Accurate SWE estimations are essential for various purposes, including water resource 

management (Musselman et al., 2021), global water cycle modeling (Kraft et al., 2022), and the prediction of landslides 35 

(Matsuyama et al., 2021), flood (Meshyk et al., 2021), and drought prediction (Dierauer et al., 2019). Despite being recognized 

as an essential climate variable by the Global Climate Observing System (GCOS) of the World Meteorological Organization, 

SWE remains an under-observed component of the global water cycle (Mudryk et al., 2015; Pulliainen et al., 2020; Tsang et 

al., 2022). 

To date, numerous ground-based observation networks have been deployed to measure the SWE, including the Snow Climate 40 

Analysis Network (SCAN), SNOwpack TELemetry Network (SNOTEL), Russian Snow Survey Data (RSSD), and Norwegian 

Water Resources and Energy Directorate (NVE). However, these ground-based measurements are expensive, labor-intensive, 

limited to point scale data, and insufficient to cover the vast extent of the Northern Hemisphere (Tsang et al., 2022; Fang et 

al., 2022). As viable alternatives, passive remote sensing observations can provide long-term global-scale SWE data (Luojus 

et al., 2021; Tsang., 2022). However, SWE estimates based on remote sensing have some inherent limitations depending on 45 

the sensors mounted onto each instrument (Frei et al., 2012; Fang et al., 2022). For instance, SWE retrievals from passive 

microwave instruments, such as the Special Sensor Microwave/Imager and the Advanced Microwave Scanning Radiometer 

for the Earth Observation System (AMSRE), exhibit uncertainties under deep-snow conditions (i.e., SWE >150 mm) and are 

particularly sensitive to forest cover (Frei et al., 2012; Mortimer et al., 2020). Hence, significant efforts have been devoted to 

leveraging radar data across different bands (e.g., C, P, Ku, and X) to acquire long-term spatially distributed SWE data (Yueh 50 

et al., 2021). This use of active data has yielded promising results, but their implementation remains challenging and demands 

advanced technical developments (Merkouriadi et al., 2021; Tsang et al., 2022).  

In addition to passive remote sensing observations, physically based models also provide seamless global-scale SWE 

estimates (Kim et al., 2021), but there can be substantial differences between their estimates owing to uncertainties in model 

https://doi.org/10.5194/essd-2024-349
Preprint. Discussion started: 28 January 2025
c© Author(s) 2025. CC BY 4.0 License.



4 
 

parameterizations, simplistic model assumptions, and structural model errors (Snauffer et al., 2016; Lundquist et al., 2019; 55 

Wrzesien et al., 2019; Menard et al., 2021). To address these challenges, Pulliainen et al. (2006) and Takala et al. (2011) 

combined ground synoptic weather measurements with space-borne passive microwave data within a Bayesian non-linear 

iterative assimilation approach to produce the GlobSnow v3.0 dataset. Despite certain limitations, such as overestimations and 

the exclusion of mountain areas, GlobSnow v3.0 is still the reliable SWE product at a continental scale across the Northern 

Hemisphere (Takala et al., 2011; Luojous et al., 2021). Each of these existing datasets has its own limitations, and thus it 60 

remains necessary to develop an accurate SWE product that can be used reliably by the scientific community (Bokhorst et al., 

2016; Mortimer et al., 2020). 

Machine learning (ML) has been used as a viable alternative approach that merges independent variables from various sources 

to simulate the SWE (Broxton et al., 2019; Shao et al., 2022; Cui et al., 2023). Furthermore, these ML approaches have been 

demonstrated to effectively learn the complex relationships between meteorological variables (i.e., predictors) and the SWE 65 

(Fang et al., 2019; Cui et al., 2023). Consequently, numerous studies have utilized ML for SWE estimations. For instance, 

Broxton et al. (2019) adopted an artificial neural network to combine snow density measurements with lidar snow depth data, 

thereby creating high-resolution SWE maps. Furthermore, Shao et al. (2022) applied the ridge regression ML approach for 

SWE estimation in regions above 45°N, while Cui et al. (2023) employed a long short-term memory algorithm for SWE 

estimation in Sierra Nevada, California. As illustrated in these studies, ML algorithms can provide offer more accurate SWE 70 

estimates compared to traditional physics- and remote-sensing-based approaches (Bair et al. 2018; Broxton et al., 2019; Shao 

et al., 2022; Cui et al., 2023). Furthermore, ML approaches can successfully predict or simulate various hydrometeorological 

processes, including runoff (e.g., Ghiggi et al., 2019), streamflow (e.g., Cheng et al., 2020; Cho and Kim, 2022), soil moisture 

(e.g., O and Orth, 2021), and precipitation (e.g., Ravuri et al., 2021; Choi and Kim, 2022), along with their social impacts (e.g., 

Dodangeh et al., 2020; Seo and Kim, 2023) using diverse meteorological and geographical datasets from local to global scales.  75 

In this study, we develop a new global-scale SWE product covering the period from 1980 through 2020 using the random 

forest (RF) algorithm. Notably, the RF algorithm uses meteorological and terrain attributes as predictor variables and relates 

them to daily SWE measurements as dependent variables. To develop the SWE estimation tool, we collected 11,653 daily in 

situ SWE measurements from eight sources during 1980–2020. Subsequently, mini-batch k-means (MBK) clustering was 
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adopted to regionalize these measurements. Thereafter, we constructed SWEML ‒ a global daily SWE product covering all 80 

land areas except Antarctica, using RF models trained for each cluster.  SWEML was evaluated with that of reference datasets, 

and it demonstrated an improved performance, especially at high elevations and the ability to reflect monthly trends more 

precisely. A schematic overview of this study is provided in Fig. 1.  

2. Data and methods 

2.1. SWE data 85 

2.1.1. In situ measurements and reanalysis data 

In situ daily SWE measurements were collected from eight different sources spread across the Northern Hemisphere (Table 

1 and Fig. 2a). The RSSD provides point-scale SWE data across Russia (Bulygina et al., 2011), while the Hemispheric-Scale 

Snow Course (HSSC) data contain SWE measurements from Russia, Finland, Canada, and some parts of Eastern Europe 

(Brönnimann et al., 2018; Brown et al., 2019; Pulliainen et al., 2020). Meanwhile, the Global Historical Climatology Network 90 

(GHCN) provides SWE measurement data observed by numerous ground stations spread across approximately 179 countries 

worldwide and has been subject to rigorous quality checks (Menne et al., 2012). In this study, we used GHCN SWE data 

exclusively for the U.S. owing to temporal limitations. The SNOTEL and SCAN data include an extensive network of 

automated sub-daily SWE observations, encompassing a diverse range of snow climates and characteristics across the western 

U.S., including high-latitude tundra and taiga regions, the Rocky Mountains, and the maritime Cascades Mountain range 95 

(Serreze et al., 1999; USDA NRCS, 2022b, 2022c). Meanwhile, the California Cooperator Snow Sensors (CCSS) provide sub-

daily snowpack data collected from remote mountain locations in the western U.S. (Osterhuber, 2014; USDA NRCS, 2022a). 

The NVE provides real-time quality-checked SWE data (NVE, 2023), and the GCOS includes SWE data collected from various 

global sources. Among these diverse sources, we utilized GCOS SWE data from Switzerland (Marty, 2020). Furthermore, we 

utilized the SWE reanalysis data with a spatial resolution of 0.25° in China, including the in situ measurements and field survey 100 

course by the National Meteorological Information Centre of the China Meteorology Administration (Jiang et al., 2022). To 

ensure data quality, we excluded data with fewer than three months of observations and removed outliers not subjected to data 

correction by the related agency. Using the coordinates of the selected point-scale SWE measurements, we obtained 
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meteorological data corresponding to each SWE measurement. The SWE measurements and their corresponding 

meteorological data are used as outputs and inputs for the RF algorithm. In total, we collected SWE data at 11,653 grid points, 105 

with most of these data covering a period of more than 20 years, with a consistent elevation distribution (Fig. 2b). 

In-situ SWE measurements collected by various agencies and countries are inevitably inconsistent because different 

measurement methods are used. Furthermore, point-scale data potentially lack spatial representativeness regarding its 

surroundings (e.g., high-elevation regions) owing to high heterogeneity. To address these issues, in this study, we adjusted the 

raw in situ SWE measurements within individual grid cells to align them with the mean and variance of the corresponding 110 

SWE data sourced from the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5-Land. This allowed us 

to consistently use SWE measurements from different sites and time periods, while maintaining the daily temporal variations. 

Notably, point-scale SWE measurements are particularly effective at capturing temporal variations and physical snow 

processes (Kinar and Pomeroy, 2015; Zhang and Ma, 2018), thus point-scale data generally provide sufficient information to 

understand snow dynamics at the grid scale. 115 

2.1.2. Reference datasets for validation 

  In this study, we employed datasets provided by the Global Land Data Assimilation System (GLDAS, Rodell et al., 2004), 

GlobSnow (ESAGB, Luojus et al., 2021), and AMSRE (Kelly, 2009; Imaoka et al., 2010; Tedesco and Jeyaratnam, 2019) for 

result validation. Notably, the GLDAS, based on a land surface model, provides precipitation, temperature, runoff, soil 

moisture, and snow data with spatial resolutions of 0.25˚ and 1.0˚ and temporal resolutions of 3 hours, 1 day, and 1 month 120 

(Rodell et al., 2004). For this study, we used the daily SWE dataset from the GLDAS Catchment Land Surface Model. 

Meanwhile, the ESAGB dataset includes SWE and snow-cover data for the Northern Hemisphere above a latitude of 35˚ N, 

released by the European Space Agency (Luojus et al., 2021). The SWE estimates in this dataset are based on the combination 

of Canadian Meteorological Center daily snow depth analysis data (Walker et al., 2011), ground-based weather station data, 

and satellite-based microwave radiometer observations. However, the ESAGB dataset exhibits limited spatial coverage as it 125 

excludes regions with very-high-elevation mountainous areas or grids below 35°N. AMSRE is a satellite-based dataset that 

includes data collected by microwave scanning radiometers on the Aqua satellite of the National Aeronautics and Space 

Administration (NASA) Earth Observation System and the GCOM-W1 satellite of the Japan Aerospace Exploration Agency 
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(JAXA). The AMSRE from NASA (AMSR-E) provides global daily SWE data from 19 June, 2002, to 3 October, 2011, and 

the AMSRE from JAXA (AMSR2) has been providing global daily SWE data from 2 July, 2012, to the present. For this study, 130 

we utilized SWE data with a spatial resolution of 0.25˚ (approximately 25 km) and a daily temporal resolution. Although the 

AMSRE satellite began recording observations in 2002, there are gaps during 2011 and 2012. Therefore, we used the grids 

available across all datasets to ensure consistency in the spatiotemporal extent of the reference data. We used each SWE dataset 

for validation based on the spatiotemporal extent of AMSRE and ESAGB, focusing on grids above 35˚ N and the period from 

2013 through 2017. In addition, we considered only the observed dates based on the rotation cycle of AMSRE. Consequently, 135 

we evaluated the accuracy of SWEML using 1,706,825 data points from 6,133 sites between 2013 and 2017. We calculated 

the error to evaluate the accuracy by comparing SWEML and reference datasets with in situ measurements. The root mean 

square error (RMSE), mean absolute error (MAE), Pearson correlation coefficient (R) and bias were adopted to assess the 

accuracy of the SWE datasets. The equations of the accuracy evaluation metric are described as follows:  

𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀 = �∑ (𝑟𝑟𝑖𝑖−𝑚𝑚𝑖𝑖)2
𝑛𝑛
𝑖𝑖=0

𝑛𝑛
 ,           (1) 140 

𝑀𝑀𝐴𝐴𝑀𝑀 = 1
𝑛𝑛
∑ |𝑟𝑟𝑖𝑖 − 𝑚𝑚𝑖𝑖|𝑛𝑛
𝑖𝑖=1  ,            (2) 

𝑅𝑅 = ∑(𝑟𝑟𝑖𝑖−�̅�𝑟)(𝑚𝑚𝑖𝑖−𝑚𝑚�)
�∑(𝑟𝑟𝑖𝑖−�̅�𝑟)2 ∑(𝑚𝑚𝑖𝑖−𝑚𝑚� )2

 ,           (3) 

𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑟𝑟𝑖𝑖 − 𝑚𝑚𝑖𝑖 ,            (4) 

where 𝑛𝑛 is the number of samples, 𝑟𝑟𝑖𝑖 is the SWE value of each dataset, 𝑚𝑚𝑖𝑖 is the in situ measurements, �̅�𝑟 and 𝑚𝑚�  are the average 

of SWE dataset and in situ measurements, respectively.  145 

2.2. Ancillary data 

2.2.1. Topographical data 

  Five terrain characteristics including vegetation type, elevation, and the angle, anisotropy, and slope of the orography were 

collected from multiple sources (Table 2) and used as inputs to the RF algorithm owing to the significant influence of these 

characteristics on the SWE. Vegetation type data were sourced from GLDAS Dominant Vegetation Type Data Version 2. It 150 

affects the melting and accumulation of snow (Friedl et al., 2002; Varhola et al., 2010; Snauffer et al., 2016; Luojus et al., 

2021) owing to its shading effects, such as canopy interception and changes in the radiation balance, that can affect ablation 
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by up to 70% and accumulation by up to 40% compared to nearby open areas (Varhola et al., 2010). Elevation is an important 

predictor of the SWE that has been widely used in previous studies (Kim et al., 2021; Fang et al., 2022; Shao et al., 2022). 

Higher elevations are typically associated with lower temperatures, leading to an earlier onset of the snowing season and 155 

delayed melting compared to lower elevations (Xie et al., 2020). Elevation also interacts with land cover to influence snow 

accumulation, with more pronounced differences in melting observed between clear-cut and forested areas at higher elevations 

(Trujillo et al., 2012; Tennant et al., 2017). For this study, we utilized the mean and standard deviation of the digital elevation 

data from ETOPO1 (Amante and Eaken, 2009). For orography, which is the study of the terrain characteristics of mountainous 

areas, we utilized slope, aspect, and anisotropy data sourced from ERA5 (Harrison et al., 2022; Hersbach et al., 2023). Notably, 160 

slope, aspect, and anisotropy have a strong relationship with solar radiation and blowing wind, which affects SWE in 

mountainous regions (Tennant et al., 2017; Niedzielski et al., 2019). Consequently, numerous studies have adopted these 

variables as SWE predictors (Niedzielski et al., 2019; Fang et al., 2022; Cui et al., 2023).  

2.2.2. Meteorological data 

  We utilized hourly meteorological forcing data with a spatial resolution of 0.25° from the ERA5 reanalysis dataset, provided 165 

by the ECMWF (Hersbach et al., 2020). We converted the temporal scale of meteorological forcing data from hourly to daily 

for our use. Notably, ERA5 merges various types of data, such as ground-based synoptic station data, radar precipitation 

information, and satellite radiance via the 4D-Var data assimilation, to provide comprehensive and accurate reanalysis datasets 

(Hersbach et al., 2020). It incorporates more observation data and advanced modeling techniques compared to its predecessor, 

ERA-Interim, thus it offers improved forcing data (Albergel et al., 2018). Furthermore, the ERA5 dataset provides a consistent 170 

data structure that is suitable for the derivation of long-term global-scale data. The direct use of observation data, such as 

satellite data across a global scale, can pose challenges due to spatiotemporal differences between the variables of interest. 

Therefore, the SWE data constructed using our approach can be employed to evaluate the accuracy of SWE data originating 

from other approaches. ERA5 is also open source and provides the latest data, suggesting that our products can be updated 

regularly as needed. 175 

In this study, we trained the RF model using five meteorological forcings (land surface temperature, precipitation, relative 

humidity, downward solar radiation, and precipitation type), snow depth, and the antecedent precipitation index (API) (Table 

https://doi.org/10.5194/essd-2024-349
Preprint. Discussion started: 28 January 2025
c© Author(s) 2025. CC BY 4.0 License.



9 
 

2). Notably, the number of years and months were also included to account for annual and seasonal variations, respectively. 

We selected input forcing variables based on a literature review, and correlation analysis. Correlation analysis in Fig. 3 showed 

that each input variable exhibited weak correlations with other input variables, suggesting that they could be considered 180 

independent. Among the selected meteorological forcings, snow depth exhibits the strongest negative correlation with land 

surface temperature, while relative humidity has the strongest positive correlation with precipitation type. Relative humidity, 

in particular, influences the temperature threshold for rain–snow partitioning (Ye et al., 2013; Jennings et al., 2018; Wang et 

al., 2019). Precipitation is a fundamental factor controlling the SWE (Raleigh et al., 2015; Broxton et al., 2016b; Cho et al., 

2022), with the SWE being sensitive to both the amount of precipitation (Schirmer et al., 2011; Broxton et al., 2016a) and 185 

rain–snow partitioning (Harder and Pomeroy, 2014; Jennings and Molotch, 2019). Hence, the precipitation type (rain or snow) 

on land (Hersbach et al., 2023) and relative humidity were considered as inputs in this study to address rain–snow partitioning. 

Snow depth directly affects the SWE and was, therefore, adopted as an input variable (Hill et al., 2019). Meanwhile, land 

surface temperature and downward solar radiation affect the phase transitions of snow, influencing its melting and freezing 

behaviors upon contact with the land surface; hence, these variables significantly impact the SWE (Anderton et al., 2004; Lapo 190 

et al., 2015). Finally, SWE is influenced by the precipitation in prior days; hence, we utilized the API, which represents the 

accumulation of precipitation, as an input variable. Notably, the API is calculated as the weighted sum of daily precipitation 

over previous days (Kohler and Linsley, 1951; Singh, 1989) and is defined as follows: 

𝐴𝐴𝐴𝐴𝐴𝐴 = ∑ 𝐴𝐴𝑛𝑛𝑘𝑘−𝑛𝑛−𝑖𝑖
𝑛𝑛=−1 ,           (5) 

where 𝐴𝐴𝑛𝑛 is the precipitation on the nth day, 𝑖𝑖 denotes the number of previous days, and 𝑘𝑘 is the decay constant. Typically, 𝑖𝑖 195 

is set to 5 days or more (Ali et al., 2010; Hong et al., 2010), while 𝑘𝑘, representing an empirical parameter, is set to values 

ranging from 0.8 to 1.0 (Zêzere et al., 2005; Ma et al., 2014; Dingman, 2015; Li et al., 2021a). In this study, k was varied from 

0.8 to 1 in increments of 0.05, while i was varied from 1 to 30 in increments of 1. Finally, we selected 𝑖𝑖 and k values that led 

to the highest correlation between the API and in situ SWE. In this study, 𝑖𝑖 and k of values were 23 and 1, respectively, yielded 

the highest correlation coefficient between API and SWE. 200 
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2.3. Regionalization 

SWE presents regional variability based on meteorological and geographical characteristics (Mizukami et al., 2011; 

Herderson et al., 2018; Pulliainen et al., 2020). Hence, regionalization can be useful for analyzing the SWE dynamics, 

especially when SWE data are collected in different continents with diverse meteorological and geographical attributes. In this 

study, we regionalized the training and testing data (Fig. 4) using the MBK clustering method, a modification of the traditional 205 

k-means clustering algorithm (Sculley, 2010). Notably, the traditional k-means approach is an unsupervised ML algorithm that 

assigns each data point to the nearest cluster and iterates this process until convergence, thereby dividing the dataset into 

distinct, non-overlapping clusters (Li et al., 2021b; Hu et al., 2023). However, this approach can be computationally intensive 

and inefficient owing to the repeated use of every data point in each iteration. The MBK clustering method addresses these 

issues by adopting a probabilistic approach for each iteration, thus reducing computational costs, particularly for extensive 210 

datasets (Biswas et al., 2023; Ikotun et al., 2023). 

To determine the optimal number of clusters, we adopted three techniques: the elbow method (Thorndike, 1953), silhouette 

coefficient (Rousseeuw, 1987), and gap statistic (Tibshirani et al., 2001). In particular, the elbow method determines the 

optimal cluster count by visualizing the point at which the sum of the squared error (SSE) between points within a cluster and 

the cluster centroid is minimized. The silhouette coefficient represents the average distance between a data point and other 215 

points within the same cluster relative to the mean distance to points in other clusters. Hence, higher silhouette coefficients 

indicate better cluster quality. The gap statistic compares the total intra-cluster variation for different cluster numbers with the 

expected variation under an appropriate reference null distribution (i.e., a distribution with no clustering), aiming to identify 

the point where the gap statistic is maximized. The number of reference null distributions for gap statistics is subjective to the 

user. In this study, we used 500 reference null distributions, as suggested by Iwasawa et al. (2022), where the statistics remained 220 

stable.  

The optimal number of clusters was determined based on the silhouette coefficient, beginning from the intersection point at 

which the SSE is minimized and the gap statistics are maximized. Based on the intersection between the elbow and gap 

statistics, the minimum number of clusters was identified as 10, while the silhouette coefficient values suggested that the 

optimal number of clusters was 13. Therefore, we partitioned the 11,653 training data points into 13 clusters (Fig. 4). Northern 225 
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America was broadly divided into four regions based on distinctive features in regions such as Alaska and the Rocky Mountains. 

Eurasia was divided into three major regions: Europe, the Far East, and inland Central Siberia. China was divided into six 

regions, the largest number of clusters, where significant variability in meteorological and geographical characteristics is 

presented with the largest number of grid points (Carvalho et al., 2016). 

2.4. ML algorithm 230 

We utilized the RF algorithm to generate a global SWE product as introduced in the schematic of Fig. 1. The RF is an 

ensemble-learning method that utilizes decision trees as its foundation and has been widely used for classification and 

regression due to its high accuracy and speed (Breiman, 2001). The RF is based on the concept of bootstrap aggregating (i.e., 

bagging), which generates a bootstrapped datasets by randomly selecting samples with replacements for each decision tree. 

This technique reduces overfitting instances by averaging over multiple decision trees, making the model less sensitive to the 235 

original training dataset, potential noise, and outliers, thus resulting in better predictive performance and greater stability (Josso 

et al., 2023; Isles, 2024). In RF, each decision tree is trained on an individual bootstrap sample, resulting in some data points 

being unused in the training process (referred to as out-of-bag samples). An advantage of this process is that these samples can 

be used to assess the performance of the model without the need for a separate validation set.  

As described in Fig. 1 and Sect 2.3, we utilized the MBK algorithm to generate 13 clusters for SWE measurements. The 240 

regionalization allowed for more accurate and efficient training of the ML model owing to the inclusion of diverse in situ SWE 

data collected from various global sites. We employed two types of RF models to derive the global SWE. First, an individual 

RF regression model for each cluster is used to establish the relationship between the in situ SWE measurements and 

meteorological forcing and terrain data, allowing the SWE to be determined directly for each grid cell. An individual RF 

regression model for each cluster uses data divided at a 7:3 ratio for its training and validation. Furthermore, by clustering the 245 

available SWE data, we could account for the regional variability in the SWE, leading to a more accurate estimation of the 

global SWE.  

Second, an RF classification model is used to establish the relationship between SWE for each cluster and the corresponding 

meteorological forcing and terrain data. We use data divided at an 8.5:1.5 ratio for its training and validation. With a larger 

dataset, a smaller proportion of data can be allocated to the validation set, while still having sufficient data to evaluate the 250 
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performance of the model. The grids without any in-situ SWE measurements were classified into respective clusters using the 

RF classification model. After all the grids were assigned into different clusters, an individual RF regression model was 

implemented for each cluster, and finally the global SWE estimation was completed. 

The predictive performance of the models for each cluster was evaluated using three statistical metrics: the coefficient of 

determination (R2), R, and standard deviation. The obtained results were presented using a Taylor diagram, which offers a 255 

comprehensive visual representation using multiple statistical metrics, including R and standard deviation (Taylor et al., 2001). 

The standard deviation is particularly valuable for assessing the variability of the predicted data compared to in situ 

measurements (Paul et al., 2023).  

3 Results and discussion 

3.1 Evaluating the performance of the RF approach 260 

We evaluated the predictive accuracy of the RF model across the 13 clusters (Figs. 5 and 6). The R2 values between the 

SWEML and in situ SWE measurements ranged from 0.86 to 0.99 across the 13 clusters (Fig. 5), indicating strong model 

reliability and good predictive accuracy. As illustrated in the Taylor diagram (Fig. 6), the normalized standard deviation (i.e., 

the ratio of the standard deviation of the predicted SWE to that of the corresponding in situ measurement) ranged from 0.89 to 

1. This suggests that the SWEML product accurately captured the inherent variability of the observation data. Furthermore, 265 

the R values ranged from 0.93 to 0.99, demonstrating good agreement between the predicted and observation data. Notably, 

the RF model accurately represented the high variability of the SWE in snow-dominant regions such as Alaska, the Rocky 

Mountains, the Alps, Scandinavia, and the Himalayas (clusters 1, 2, 5, and 10, respectively). 

3.2 Comparison of SWEML with existing SWE products 

We compared the accuracy of SWEML with those of three reference datasets (i.e., GLDAS, ESAGB, and AMSRE) during 270 

2013 through 2017 (Fig. 7). Notably, SWEML exhibited a spatial mean RMSE of 10.80 mm, with a range from 0.15 mm to 

30.02 mm, which is lower than the RMSEs of the other products (15.66 mm, 21.65 mm, and 26.06 mm for GLDAS, ESAGB, 

and AMSRE, respectively) (Fig. 7a). The spatial distribution of RMSEs of different products showed that the SWEML is 

substantially more accurate over snow-dominant regions, such as Alaska, the Rocky Mountains, the Scandinavian Peninsula, 
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Siberia, Northern China, and the Far East. In particular, the SWEML showed significant improvements in Alaska, the Rocky 275 

Mountains, and the Scandinavian peninsula compared to the reference datasets (Table 3). For instance, in the Rocky Mountains, 

the RMSE of SWEML was 16.88 mm, demonstrating reductions of 84.77%, 81.84%, and 84.26% compared to the RMSEs of 

GLDAS, ESAGB, and AMSRE (110.81 mm, 92.84 mm, 107.34 mm, respectively). Although the spatial mean RMSE of the 

GLDAS dataset was lower than that of the ESAGB dataset, it exhibited greater deviations in Alaska, the Rocky Mountains, 

and Russia, with RMSEs that exceeded those of ESAGB by 19.89 mm, 17.97 mm, and 8.03 mm, respectively. While ESAGB 280 

exhibited a relatively low spatial mean RMSE of 23.47 mm in Russia, it is still 10 mm higher than that of SWEML. In snow-

dominant regions, namely Alaska, the Rocky Mountains, and Scandinavia, ESAGB demonstrated higher errors, with RMSEs 

of 48.93 mm, 92.84 mm, and 183.00 mm, respectively (Table 3). Among all the four datasets considered in this study, AMSRE 

exhibited the highest spatial mean RMSE, particularly in Alaska, the Rocky Mountains, the Scandinavian Peninsula, Russia, 

and China, with RMSEs of 71.28 mm, 107.34 mm, 233.58 mm, 36.61 mm and 29.14 mm, respectively. Given the 285 

abovementioned RMSE values, it was evident that SWEML most accurately captures the SWE variability.  

In terms of bias (Fig. 7b), both SWEML and GLDAS tended to underestimate the SWE, with mean biases of −6.89 mm and 

−9.95 mm, respectively. In contrast, ESAGB and AMSRE overestimated the SWE, resulting in mean biases of 6.7 mm and 

8.17 mm, respectively. Furthermore, the spatial distribution of biases showed that SWEML slightly underestimated the SWE 

in most regions except for Alaska and the Scandinavian Peninsula, while GLDAS consistently underestimated SWE in most 290 

regions. Both ESAGB and AMSRE underestimated the SWE in North America but overestimated it across the Eurasian 

continent, while AMSRE also underestimated the SWE in Russia. In particular, ESAGB largely underestimated the SWE in 

the high-elevation regions of central Eurasia, demonstrating a high RMSE (Fig. 7a, Luojus et al., 2021). The SWEML showed 

a lower bias than the reference datasets in different regions with 2.22 mm, −3.58 mm, 2.57 mm, −10.97 mm, and −6.72 mm, 

respectively (Table 3). Notably, the improvements in the SWEML were noticeable with the bias less than 53.83 mm, 67.7 mm, 295 

and 134.75 mm in Alaska, the Rocky Mountains, and the Scandinavian Peninsula, respectively. In Russia, ESAGB had the 

lowest bias of 4.74 mm, and high accuracy with RMSE, MAE, and R of 23.47 mm, 0.44 mm, and 0.8, respectively, 

outperforming the other two reference datasets. Conversely, while SWEML had a higher bias of −10.97 mm, it had a lower 

RMSE of 13.47 mm, MAE of 0.33 mm, and a higher R of 0.98.  
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Furthermore, the ranges of RMSE and bias of each SWE product were examined in Fig. 8. SWEML had a small interquartile 300 

range (IQR) of RMSE and the lowest maximum RMSE of 30.02 mm, which implies its robust performance (Fig. 8a). In 

contrast, the reference datasets presented a relatively wider IQR of the RMSE, indicating their weaker performance. The 

maximum RMSEs of GLDAS, ESAGB, and AMSRE were 91.04 mm, 99.13 mm, and 99.94 mm, respectively. Furthermore, 

the bias of SWEML varies from −29.45 mm to 28.93 mm, which is lower than that of GLDAS, with a range of bias of −78.80 

mm to 38.30 mm (Fig. 8b). The bias of ESAGB varies from −88.39 mm to 88.61 mm. The low mean bias of ESAGB was due 305 

to its large positive and negative biases. The bias of SWEML also had a smaller variability compared to that of ESAGB, 

implying greater accuracy. AMSRE demonstrated the widest range of bias with exhibiting the highest and lowest biases of 

−99.14 mm and 85.63 mm, respectively. 

3.3 Elevational and seasonal characteristics of various SWE products 

We compared the performance of SWEML with that of the three reference datasets (ESAGB, GLDAS, and AMSRE) at 310 

different elevations (Fig. 9). Notably, SWEML demonstrated a better performance than the three reference datasets in terms 

of the RMSE, normalized (N)MAE, and R across all elevations. In particular, SWEML exhibited the best performance at 

elevations above 1000 m, where high levels of snow are present, with the RMSE, NMAE, and R of 8.38 mm, 0.35%, and 0.98, 

respectively. In contrast, the performance of the other reference datasets at elevations above 1000 m was relatively poor. 

Specifically, the AMSRE demonstrated the lowest accuracy at altitudes above 1000 m, with an RMSE, NMAE, and R of 36.76 315 

mm, 1.07%, and 0.13, respectively. This dataset also demonstrated poor performance at lower elevations below 300 m (e.g., 

100 m to 200 m), with an RMSE, NMAE, R, and bias of 41.31 mm, 1.44%, 0.24, and 15.91 mm, respectively. 

In Fig. 10, we compared the monthly means of SWE products with the in-situ measurements. Notably, the monthly variations 

in SWEML closely follow those in the measurements, with snow accumulation beginning in September (early Fall) and 

continuing until April (early summer) (Fig. 10a). Then, snow starts to melt in April as the weather warms up in summer. The 320 

temporal pattern of GLDAS SWE estimates was similar to that of measurements, but it overestimated the SWE. Meanwhile, 

AMSRE and ESAGB underestimated the SWE from January to March and December to March, respectively, with a sharp 

increase shown in April. As illustrated in Fig. 10b, SWEML consistently demonstrated the lowest RMSEs across all months. 

Furthermore, the RMSEs of SWEML were insignificant in different months, indicating its reliability throughout the year. In 
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contrast, by the start of snowmelt in February, other reference datasets exhibited a remarkable increase in the RMSE, which 325 

makes these datasets less accurate during spring and summer.  

3.4 Spatial comparison among the SWE datasets  

We analyzed the spatial distribution of the SWEML in comparison to the three reference datasets (Fig. 11). Overall, SWEML 

demonstrated high SWE values over mountainous areas such as the Rocky Mountains, Alps, Himalayas, Ural, and Andes, as 

well as in snow-dominant regions such as Alaska and the Scandinavian Peninsula (Fig. 11a). Notably, the misfit maps 330 

comparing the predictions of SWEML with those of GLDAS and AMSRE (i.e., Figs 11b and 11d) revealed some similarities, 

while the corresponding map for ESAGB exhibited slight discrepancies (Fig. 11c). The large positive values in Fig. 11b show 

that GLDAS SWE was significantly lower than SWEML in most of the snow-dominant regions, such as the Rocky Mountains, 

Alaska, the Scandinavian Peninsula, the Alps, the Himalayas, the Ural, and the Andes. These low SWE estimates for GLDAS 

have also been reported by Shao et al. (2022). The SWE patterns of AMSRE and GLDAS were similar, demonstrating lower 335 

SWE estimates compared to SWEML in most snow-dominant regions, particularly over northeastern Canada, northern Siberia, 

and the Kamchatka Peninsula. Meanwhile, the ESAGB dataset, covering parts of the Northern Hemisphere above a 35˚ latitude 

with numerous gaps (Fig. 11c), exhibited lower SWE values in Europe and Alaska but higher SWE values across the Eurasia 

continent compared to SWEML. Previous studies reported the high accuracy of the ESAGB over Russia (Pulliainen et al., 

2020; Shao et al., 2022), where the SWEML also has a high accuracy as well (Fig. 11d). 340 

4 Code and data availability  

The code used in this study is available on GitHub repository (https://github.com/krsmsuh/SWEML). The SWEML product 

can be freely downloaded from Zenodo (https://doi.org/10.5281/zenodo.14195794 , Seo et al., 2024). This dataset provides 

data with a daily temporal resolution and 25 km spatial resolution. Furthermore, it covers global latitudes from 90°S to 90°N 

and longitudes from 180°W to 180°E, excluding Antarctica. 345 
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5 Conclusions  

This study demonstrates a new daily gap-free global SWE product (i.e., SWEML) using a widely used ML algorithm trained 

using in situ SWE measurements, meteorological forcings, and terrain attributes. The performance of SWEML was 

consistently robust across all regions and elevations when compared to that of the reference SWE datasets (i.e., GLDAS, 

ESAGB, and AMSRE). In particular, SWEML had the highest accuracy over snow-dominating regions as well as high-350 

elevation regions. It also captures seasonal patterns in the SWE more effectively compared to the reference datasets, with 

significant improvements during the critical snowmelt period from spring to early summer. 

The results of our study demonstrate the efficacy of the RF model in capturing the complexities of SWE dynamics, which is 

still challenging for conventional process-based models. This capability of the RF model allowed us to develop a highly 

accurate SWE product on a global scale at a daily resolution. SWE data can be estimated readily on a global scale by using 355 

observable predictors with the trained RF approach, without explicit knowledge of the physical processes underlying the 

system. Moreover, this approach provides insights for developing physically based models, particularly for processes that are 

yet to be well understood. By ML algorithms, by learning SWE dynamics directly from input data, have the potential to uncover 

crucial but yet unidentified dynamics.  

SWEML can provide important information for regions with heavy snow cover, therefore critical for the water resource 360 

management by snow-melted water. Furthermore, this dataset can contribute toward research on climate change and the 

cryosphere, as the high albedo values of snow-covered regions are crucial for energy partitioning. Furthermore, SWE anomaly 

analyses based on SWEML can assess regional variations in snow relative to climate change within the global water cycle. 

The SWEML dataset can also be used across various other applications, such as for improving the initialization of land surface 

models and global climate frameworks. Furthermore, SWEML could be also useful when producing other snow-related 365 

datasets, such as snowmelt timing map with high spatial resolutions. Given the importance of snow cover in natural systems, 

the daily gap-free global SWE product developed in this study represents a significant resource for snow-dominant regions.  
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 655 

Figure 1: Schematic overview of the process of the RF-based global-scale gridded SWE (SWEML) product. First, point-scale in situ 

SWE measurements are allocated to a 0.25°-degree using the long-term mean and standard deviation of SWE data from ERA5-land. 

Subsequently, grid cells containing in situ SWE measurements are regionalized into 13 clusters (Random Forest classification). A 

Random Forest regression model is then implemented on each cluster to predict SWE data. The resulting global SWE predictions 

are validated against in situ SWE measurements and compared with reference datasets, including GLDAS, AMSRE, and ESAGB. 660 
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Figure 2: (a) Spatial distribution of the in situ SWE measurements utilized in this study (11,653 grid points). (b) Distribution of grid 

cells based on elevation and data period over the study period from 1980 through 2020. 665 
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 670 
 

Figure 3: Correlation matrix demonstrating the relationships between several input predictors: LST: land surface temperature, 

SD: snow depth, Rs: downward solar radiation, RH: relative humidity, P: precipitation, API: antecedent precipitation index, PT: 

precipitation type, DEM: digital elevation map, Veg: vegetation type, Anis: anisotropy of orography, and Slope: slope of 

orography. 675 
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Figure 4: Regionalization map generated by the MiniBatch K-means (MBK) clustering, presenting the number of in situ 

measurement sites in each cluster (CL). 
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Figure 5: Scatterplots comparing the estimations of SWEML with corresponding in situ measurements over all grid cells within 

each cluster. 
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 685 

  
Figure 6: Taylor diagram for comparison between the SWEML and in situ measurements over all grid cells in each cluster.  

https://doi.org/10.5194/essd-2024-349
Preprint. Discussion started: 28 January 2025
c© Author(s) 2025. CC BY 4.0 License.



35 
 

  

Figure 7: Comparison of SWEML with reference SWE products (GLDAS, ESAGB, and AMSRE): (a) RMSE (mm) and (b) bias 

(mm). 690 
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Figure 8: Spear boxplot of the (a) RMSE and (b) bias of each SWE product at all in situ measurement sites. The left and right sides 

of each box represent the 25th and 75th percentiles, respectively. The solid vertical line within each box indicates the median value, 

while error bars denote the minimum and maximum values.  
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 695 

Figure 9: Comparison of SWEML with the reference products (GLDAS, ESAGB, and AMSRE) across different elevations. 

Numbers with an asterisk (*) correspond to the best-performing dataset at the given elevation. 
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Figure 10: (a) Spatial mean values of the SWE datasets and in situ measurements for each month. (b) RMSE of the SWE datasets 700 

compared to the corresponding in situ measurements for each month. 
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Figure 11: (a) Annual mean SWE values derived from SWEML. Differences between SWEML and (b) GLDAS, (c) ESAGB, and (d) 

AMSRE SWE datasets. 
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Table 1. List of SWE data sources used in this study. 705 

Data type Data  Data periods 
Temporal 

resolution 

Spatial 

resolution 
Spatial coverage 

Remote 

sensing 

AMSR-E 

(https://nsidc.org/data/ae_dysno/versions/2) / 

AMSR2 

(https://nsidc.org/data/ae_dysno/versions/1) 

(Aqua/GCOM-W1) 

2012-07 through 2020-12 Daily 25 km 
Global (except 

Greenland) 

In situ  

HSSC (Finnish Meteorological Institute; FMI) 

1980-01 through 2020-12 

5–15 

daily 

3064 

data points 

Canada, Finland, and 

former Soviet 

Union/Russia (FSU) 

RSSD (Russia Research Institute of 

Hydrometeorological Information; RIHMI-

WDC) 

5–15 

daily 
517 sites Russia 

SNOTEL (USDA NRCS) 

Daily 

846 sites 

Western U.S. SCAN (USDA NRCS) 2 sites 

CCSS (USDA NRCS) 144 sites 

GCOS (EnviDat) 
15 

daily 
11 sites Switzerland  

NVE (Norwegian Water Resources and 

Energy Directorate) 
Daily 29 sites Norway 

GHCN (National Oceanic and Atmospheric 

Administration; NOAA) 
Daily 

14,690 

data points 
Eastern U.S. 

Data 

assimilation 

dataset 

GLDAS  

(https://disc.gsfc.nasa.gov) 
1980-01 through 2020-12 Daily 25 km Global 

Reanalysis 

ESA GlobSnow Reanalysis 

(https://www.globsnow.info/swe) 
1980-01 through 2020-12 Daily 25 km 

North Hemisphere above 

35º latitude (except 

Greenland) 

Daily SWE Dataset (Jian, L et al., 2022) 

[included China Meteorology Administration 

(CMA)] 

1980-01 through 2020-12 
1–5 

daily 
25 km China 

ERA5-Land SWE 1980-01 through 2020-12 Hourly 10 km Global 
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Table 2. Input data used in the RF model. 

 Variable Source Description 

Dynamic  

Precipitation (P) 

ERA5 
 

Daily meteorological forcing data obtained from the 

ECMWF reanalysis 

Precipitation type (PT) 

Relative humidity (RH) 

Snow depth (SD) 

Land surface temperature (LST) 

Downward solar radiation (Rs) 

Antecedent precipitation index 

(API) 

Derived from precipitation measurements conducted on the 

given day and previous days 

Year Year of in situ SWE measurements 

Month Month of in situ SWE measurements 

Invariant 

Vegetation type (Veg) 

GLDAS 

(https://ldas,gsfc.nasa.gov/gldas/

vegetation-class-mask) 

Predominant vegetation type (MODIS-derived) within each 

grid cell  

Digital elevation map (DEM) ETOPO1 
Mean and standard deviation of sub-grid scale elevation 

values within each grid cell 

Angle of orography (Ang) 

ERA5 

Mean and standard deviation of sub-grid scale angle values 

within each grid cell 

Anisotropy of orography (Anis) 
Mean and standard deviation of sub-grid scale anisotropy 

values within each grid cell 

Slope of orography (Slope) 
Mean and standard deviation of sub-grid scale slope values 

within each grid cell 
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Table 3. Statistical metrics of each SWE product based on region. 710 

Region Statistical metric 
SWE Product 

SWEML GLDAS ESAGB AMSRE 

Alaska 

RMSE (mm) 16.33 68.82 48.93 71.28 
MAE (mm) 0.16 0.61 0.43 0.67 

R 0.95 0.26 0.57 0.47 
Bias (mm) 2.22 –43.28 –10.28 –56.05 

Rocky Mountains 

RMSE (mm) 16.88 110.81 92.84 107.34 
MAE (mm) 0.17 0.85 0.71 0.85 

R 0.99 0.44 0.58 0.54 
Bias (mm) –3.58 –71.28 –54.83 –70.82 

Scandinavia 

RMSE (mm) 17.53 98.80 183.00 233.58 
MAE (mm) 0.09 0.38 0.69 0.88 

R 0.99 0.94 0.86 0.62 
Bias (mm) 2.57 –57.78 –109.49 –137.32 

Russia 

RMSE (mm) 13.47 31.50 23.47 36.61 
MAE (mm) 0.33 0.51 0.44 0.52 

R 0.98 0.67 0.80 0.34 
Bias (mm) –10.97 –16.36 4.74 –11.97 

China 

RMSE (mm) 9.93 13.08 23.71 29.14 
MAE (mm) 0.52 0.63 1.11 1.22 

R 0.84 0.64 0.51 0.37 
Bias –6.72 –8.10 8.46 11.95 

- 
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