
Reviewer 1 comments and our response 

 

This manuscript presents monthly GrIS elevation changes from a long-term series using multi-
sources satellite and airborne altimeter data. The authors improved the previous annual 
elevation change method to detect monthly elevation changes. They also separated the 
seasonal surface variation from the time series of surface elevation observations. This method 
seems to be effective; however, I still have some concerns about this paper. 

Authors: Thank you very much for your time and for reviewing this paper. In light of the insightful 
feedback from you and the other reviewers, we have made several changes that have greatly 
improved the revised manuscript. A detailed response to your comments, addressing all the 
identified issues, is listed below. 

Major comments: 

1. This paper resembles more a technical report than a scientific paper because it lacks 
careful organization of original data and a logical description of the methods. 

Authors: We follow the guidelines from ESSD regarding the organization of the paper. We agree 
that the paper provides no new science and is structured more like a technical report. 

2. The authors use the seasonal terms derived from ICESat or ICESat-2 to represent the 
seasonal surface elevation changes observed in other satellite altimeters. The rationale 
and the associated uncertainties should be discussed further. 

Authors: correct, the rationale behind this selection is Figure 12 and Figure 13. 

While ICESat and ICESat-2-derived seasonal amplitude maps show the same spatial pattern 
(Fig. 12a and 12b), CryoSat-2-derived seasonal amplitude maps show some differences, likely 
caused by radar signals penetrating through surface snowfall. 

Figure 8 shows the seasonal signal from CryoSat-2 and ICESat/ICESat-2 for the exact same 
location. We note that CryoSat-2 shows a smaller amplitude than ICESat/ICESat-2, likely due to 
radar signal penetration through surface snowfall. 

In addition, ICESat (2003–2009) and ICESat-2 (2018–2023) show almost the same spatial 
pattern of the amplitude (new Figure 13). 

However, the multiannual variations in surface elevations from ICESat-2 and CryoSat-2 are 
consistent. Similar findings have recently been published by Ravinder et al. (2024); see their 
Figure 2b. 

 

3. The validation and cross-comparison with other monthly GrIS elevation change 
methods should be discussed, such as the method developed by Lai et al.  R. Lai and L. 
Wang, Monthly Surface Elevation Changes of the Greenland Ice Sheet From ICESat-1, 
CryoSat-2, and ICESat-2 Altimetry Missions, IEEE Geoscience and Remote Sensing 
Letters, vol. 19, pp. 1-5, 2022, doi: 10.1109/LGRS.2021.3058956 

Authors: Thanks for this paper. We mention the method from  Lai et al. in the introduction.  In 
addition, we also list the recent paper Ravinder, N., Shepherd, A., Otosaka, I., Slater, T., Muir, A., 



& Gilbert, L. (2024). Greenland Ice Sheet elevation change from CryoSat-2 and ICESat-
2. Geophysical Research Letters, 51, e2024GL110822. https://doi.org/10.1029/2024GL110822 

 

4. The accuracy of the time series elevation change detection method depends on the 
validity of observations in a specific grid. With higher resolution grids, there are fewer 
observations. Did the authors analyze the distribution of valid observations at 1 km 
resolution across the whole GrIS on a monthly scale? If so, please add this distribution. 

Authors: Yes, we did. We have now added a figure that shows the number of observations used 
in each single-point time series from each sensor. 

Note that for our method, it is not necessary to consider the distribution of valid observations 
on a monthly scale. However, the distribution of valid observations over the entire length of the 
dataset is relevant. This is shown, for example, in Figure 6, which presents a surface elevation 
change time series derived from ICESat data for a single point. The error bars denote observed 
elevations, but the best-fitting 7th-order polynomial is used to estimate monthly elevation 
changes for this particular point. 

The number of observations used in each single-point time series is shown in the figure below. 

 

 

 

 

Minor comments: 

1. In Section 2, please add a table to summarize the data and its characteristics, such as 
time span and original accuracy. 

Authors: Done, table added. 

https://doi.org/10.1029/2024GL110822


 

2. Line 155: “For each grid point with the center at (x0, y0), we identify the nearest data point 
within a 1000 m radius (xi, yi, hi, ti )……”. Since the resolution of the grid is 1000 m, why 
not use a 500 m radius instead? 

Authors: Very good question. A 500 m radius compared to a 1 km radius will result in fewer 
observations to fit a 7th-order polynomial for characterizing temporal elevation changes and a 
3rd-order polynomial for describing the surface shape and seasonal signal. This also means 
that a 2 km radius will provide even more observations. However, as the radius increases, we 
need to increase the order of the polynomial that describes the surface shape. 

Note that in our method, using a 1 km radius, we allow “observations” to be included in the time 
series at more than one grid point. In principle, this means that we spatially smooth elevation 
changes. The goal of this paper is to provide smoothed elevation changes. 

 

3. Line 185: “Using the above equation, we only need to estimate two unknowns, A and 𝜑𝜑.” 
In fact, Equation 5 has three parameters. 

Authors: No, only two unknowns a18 and a19. 

 

4. Line 250: “For the 2009-2018 period, (when data from both missions is available), we 
derive the seasonal signal averaged from ICESat and ICESat-2.” The ICESat spans 2003–
2009, while ICESat-2 spans 2018–2023. How can the seasonal signal be averaged over 
these periods? 

Authors: By averaged seasonal signal we mean, average of a18 and a19 for each grid point 
estimated from ICESat and ICESat-2, respectively. This is now clarified in the text. As show in 
new figure 13a, the amplitude is more less the same for ICESat and ICESat-2. 

 

5. Line 380: The ice loss from other methods should be listed here. 

Authors: Many studies have estimated ice loss, and we mention them in the introduction based 
on temporal and spatial resolution. In general, our results agree with those of previous studies. 
The main goal of this paper is to provide data useful for solid Earth deformation and ice flow 
modeling. 

 

6. Line 395 and Figure 15(a): “with R values ranging from 0.88 to 0.92”. The R value should 
be referred to as the coefficient of determination (R²). 

Authors: corrected. 

 

7. I suggest listing the data in the appendix. 

Authors: we follow ESSD guideline for manuscript structure and list data in the section entitled 
“Data and code Availability”. All data is already available through the link for download. 
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Recommendation: Major/Moderate revision 

Overall Evaluation 

This manuscript presents a comprehensive analysis of Greenland Ice Sheet elevation changes 
from 2003 to 2023, integrating multiple satellite and airborne altimetry datasets. The 
methodology demonstrates considerable rigor in data processing and uncertainty assessment, 
particularly in combining diverse data sources to produce a consistent long-term record. The 
approach to data integration and uncertainty quantification shows careful attention to detail. 
However, several aspects of the analysis require additional clarification and enhancement to 
strengthen the scientific contribution of this work. These concerns primarily relate to the 
physical basis of the seasonal model, methodology justification, and validation approaches. 

Authors: Thank you very much for your time and for reviewing this paper. In light of the insightful 
feedback from you and the other reviewers, we have made several changes that have greatly 
improved the revised manuscript. A detailed response to your comments, addressing all the 
identified issues, is listed below. 

 

Major Scientific Concerns and Suggested Improvements 

Seasonal Signal Modeling and Physical Basis 

The seasonal signal modeling presented in Section 3.2 (pages 7-8) requires substantial revision. 
The authors propose a new seasonal model in equation (4) that assumes 8 months of mass gain 
and 4 months of mass loss. While Figure 5 illustrates this seasonal pattern, the physical basis 
for this temporal distribution needs more rigorous justification. Specifically, the manuscript 
should explain how this seasonal pattern relates to known atmospheric circulation patterns and 
seasonal precipitation variability across Greenland. The relationship with regional climate 
dynamics, including the influence of the North Atlantic Oscillation on seasonal mass balance 
patterns, should be addressed. The authors should also demonstrate why their model performs 
better than the conventional cosine function described in equation (5), particularly in capturing 
the asymmetric nature of accumulation and ablation processes. 

Authors: 

Please note that this is primarily a "data" paper. We utilize GRACE, IOM, and SMB data to 
demonstrate the structure of the seasonal signal, which consists of 8 months of mass gain and 
4 months of mass loss. Explaining the underlying causes of this behavior falls outside the scope 
of this study, as ESSD focuses solely on data presentation rather than scientific interpretation. 



However, we acknowledge the reviewer's point that the North Atlantic Oscillation significantly 
influences the structure of the signal. 

In response, we have added a new figure displaying seasonal mass variability from Altimetry, 
GRACE, IOM, and SMB data. For each method, we plot the seasonal signal for each year on the 
same graph, stacking them together. To ensure consistency, we detrend the data and remove 
the mean for each year, setting the seasonal mass to 0 at time = 0 and 1 year. In panel (d), we 
show the seasonal signal from SMB alongside a conventional cosine function (red curve), which 
represents a mass increase over 6 months and a decrease over the following 6 months. 

Our results show that GRACE and IOM, which are based on direct mass change observations, 
align better with our seasonal model than a conventional cosine function. While the cosine 
function commonly used in many studies provides a useful first-order approximation for 
describing the seasonal signal, our model is more consistent with the observed data. The SMB 
model, which incorporates accumulation, runoff, and evaporation processes. Previous studies 
have highlighted the correlation between accumulation and melting with the North Atlantic 
Oscillation. 

 

We have added a new section entitled “5.3 Seasonal signal”. 

 

Methodology and Parameter Selection 

The methodology section (Section 3.2-3.4) should better justify key analytical choices. The use 
of a 7th-order polynomial for fitting elevation changes (equation 2, page 7) lacks sufficient 
justification. The authors should demonstrate why this order is optimal by comparing residuals 
across different polynomial orders and discussing potential overfitting issues. A systematic 
analysis of model performance with different polynomial orders would strengthen this choice. 
Additionally, the kriging interpolation parameters described on page 17 (lines 334-335) need 
more detailed explanation, particularly regarding the choice of the 65 km range parameter. The 
spatial correlation structure of elevation changes and its influence on interpolation parameters 
should be more thoroughly discussed. 

Authors: The Greenland ice sheet exhibits complex spatial and temporal elevation change with 
rapid thinning e.g. in 2012 and 2019. For example, Jakobshavn Isbræ show thinning until 2016, 
followed by thickening during 2016–2018, and return to thinning from 2019 to 2023. In addition, 



thinning was extraordinary large in 2012, and 2019.   To capture these events higher order 
polynomial is required. As show in figure 7, polynomials  of order of 5-7 seems to capture 
changes very well. Figure 7b shows residual for different polynomials. However, the selection of 
polynomials is a compromise on data availability. We have 19 unknows parameters, and using a 
1x1 km grid we set a threshold of 50 observations, excluding any time series with fewer data 
points. We have added a new figure displaying the total number of observations per grid point 
for each sensor.  

 

To estimate parameters, we incorporate all observations within a 1 km radius of the center grid 
point. While a 500 m radius could be used, it would lead to large areas with insufficient 
observations and potential overfitting issues. We use a 3rd-order polynomial to represent 
surface topography, with the choice of polynomial order dependent on the selected radius. A 
larger radius (e.g., 5 km) requires a higher-order polynomial to capture complex topographic 
variations, whereas a smaller radius (e.g., 500 m) allows for a simpler 1st- or 2nd-order 
polynomial. 

Our selection of polynomials for describing both surface changes and topography is a balance 
between ensuring sufficient observations and reliably estimating all parameters (19 in total). To 
assess parameter reliability, we have introduced a new figure (Figure 9) displaying the RMS of 
residuals from point time series for each sensor. Notably, RMS values are highest near the 
margin, where surface topography is more complex and may require higher-order polynomials. 
Alternatively, integrating high-resolution (100×100 m) Digital Elevation Model (DEM) data could 
improve complex topographic representation. 

 



  

 

The kriging interpolator's weights are determined by the modeled variogram, making it highly 
sensitive to any mis-specification of the variogram model. Its interpolation accuracy is limited 
when the number of sampled observations is small, the data has a restricted spatial extent, or 
there is insufficient spatial correlation. In such cases, constructing a reliable sample variogram 
becomes challenging. Using data from a single sensor—such as CryoSat-2 or EnviSat—near the 
ice margin (see Fig. 8g and 8h) where data gaps are large can lead to significant large 
uncertainty. However, our approach, which integrates multiple data sources, particularly the 
inclusion of ATM data concentrated along glacier flow lines, helps to reduce uncertainty. 
However, ATM data does not provide complete coverage of all glaciers in Greenland. In 
particular, elevation changes in small glaciers, especially those 1–2 km wide in southeast 
Greenland, may not be well captured. 

 

Validation and Comparison 

The validation approach presented in Section 5 (pages 20-23) should be expanded. While the 
comparison with GRACE data and the Input-Output method provides valuable insight, the 
analysis should include: 

• Quantitative metrics for agreement between different methods, including correlation 
coefficients and root-mean-square differences 

• Analysis of spatial patterns in the differences between methods, particularly in regions 
with complex topography 

• Discussion of temporal variations in the agreement between different approaches, 
especially during periods of rapid change 

• Assessment of seasonal cycle differences between methods and their implications for 
mass balance estimates 



Authors:  

It is very difficult to asses spatial patterns in the differences between methods. IOM total mass 
loss of a whole glacier basin. No basin wide elevation change is provided. GRACE has spatial 
resolution of about 200 km, and cannot separate ice loss from the different glaciers. However, 
we do provide elevation change in figure 18 from altimetry and GRACE. GRACE show thickening 
in the interior, altimetry does not. We do observe inconsistently between altimetry and GRACE, 
likely do to the poor resolution of GRACE.  

we have added a new “5.3 Seasonal signal” where we justify of choice of seasonal signal. 
However, the choice of seasonal signal has less or no implications for long term mass balance 
estimates (trends). 

 

In 2012 and 2019, the Greenland Ice Sheet experienced record-high ice loss during the summer 
months, as observed by satellite altimetry, GRACE, and the input-output method. In both years, 
extreme melt events were driven by anomalously warm atmospheric conditions, leading to 
significant surface mass loss (Bevis et al., 2019). Satellite altimetry recorded a rapid decline in 
ice surface elevation, while GRACE data detected substantial reductions in gravitational mass, 
confirming extensive ice loss. The input-output method further confirmed the ice mass loss. 
New Figure 21 illustrates the level of agreement between the three methods during the rapid ice 
losses in 2012 and 2019. All three methods detected ice loss ranging from 381 to 439 Gt in 2012 
and 426 to 589 Gt in 2019. 

 

Discussion and Implications 

The discussion section (Section 6, pages 24-25) should be expanded to address methodological 
limitations more comprehensively. The authors should discuss: 

• The implications of combining data from sensors with different spatial footprints, 
particularly for capturing small-scale elevation changes 

• The challenges in detecting rapid elevation changes and their impact on mass balance 
estimates 

• The potential impact of these limitations on ice sheet modeling applications, especially 
for initialization and validation 

• Future improvements that could address current limitations, including upcoming satellite 
missions and methodological advances 



• The broader implications for understanding ice sheet response to climate change 

Our main motivation behind this study is to make critical data available for ice sheet and 
solid earth models. We have added the following text to the discussion section: 

Recent studies using high-resolution modeling of Greenland’s major outlet glaciers has shown 
that short-term changes in terminus position, ice thickness, and basal conditions significantly 
influence ice velocity (Cheng 2022, Lippert 2024, Lu 2025). For example, studies on Helheim 
Glacier (100–1,500 m resolution), Kangerlussuaq Glacier (350 m–12 km), and Jakobshavn Isbræ 
(100–1,500 m) have all demonstrated that ice front retreat and thickness variations drive 
substantial seasonal and multi-annual ice velocity fluctuation. These studies emphasize that 
annual elevation changes at a 5 km or higher resolution risk averaging out critical seasonal 
dynamics, leading to inaccuracies in modeling ice dynamics and underestimating short-term 
variations that are essential for projecting future changes of the ice sheet. Ultimately, the 
incorporation of observed high-resolution data into ice sheet models is essential for improving 
the fidelity of simulations and enhancing our ability to assess the implications of climate 
change on ice sheet stability and sea-level rise (Choi et al., 2023). 

In addition, a 1×1 km grid resolution of ice surface elevation data is essential for accurately 
modeling elastic land deformation of the crust because it captures the spatial variability of ice 
load changes at a fine enough scale to resolve localized flexural responses. Ice mass variations 
exert pressure on the Earth's crust, causing it to deform elastically, but these deformations are 
not uniform across the ice sheet. In regions with steep ice surface gradients, such as outlet 
glaciers and ice sheet margins, coarse-resolution data may smooth out critical variations in ice 
load, leading to inaccuracies in predicted uplift and subsidence patterns (Khan et al., 2022). A 
high-resolution grid allows for more precise calculations of surface mass redistribution, 
improving estimates of bedrock displacement. This level of detail is particularly crucial when 
observing Glacial Isostatic Adjustment with GPS observations, where corrections for elastic 
deformation need to be applied. 

Combining data from sensors with different spatial footprints presents challenges in accurately 
capturing small-scale elevation changes. Sensors with coarse spatial resolution tend to smooth 
out localized ice surface variations, potentially underestimating rapid or heterogeneous 
changes. In contrast, higher-resolution sensors provide more detail but often have limited 
coverage or increased noise. Merging datasets requires careful interpolation to reconcile 
differences in sampling density, measurement techniques, and error characteristics. 
Discrepancies in spatial footprints can also result in mismatches when detecting localized 
thinning, particularly at glacier termini or steep ice sheet margins, which may affect estimates 
of mass loss and ice dynamics at finer scales. 

A key limitation in detecting rapid ice sheet elevation changes using satellite altimetry is the 
temporal resolution of the data. Many altimetry satellites have repeat cycles spanning months, 
making it difficult to capture short-lived or sudden elevation changes, such as those driven by 
extreme melt events or rapid ice flow acceleration. Gaps between observations can lead to 
underestimation or misinterpretation of transient changes, especially in highly dynamic regions 
where ice loss occurs on short timescales. Additionally, seasonal variations in surface 
conditions, such as snowfall accumulation or meltwater refreezing, introduce further 
uncertainties when interpolating between measurement periods. 

Since most ice loss occurs at the ice sheet margin, where the terrain is rough and data coverage 
is sparse, an alternative approach may be necessary. One method involves fitting a third-order 
polynomial equation to describe the surface shape using observations within a 1 km radius. 



While this approach works well for much of the ice sheet, it may be insufficient in fast-flowing 
regions with rugged terrain. Using a higher-order polynomial is not feasible due to the limited 
number of observations relative to the unknown parameters in Equation 1. Additionally, we 
assume that surface topography remains constant over time intervals of 4–7 years. While this is 
a reasonable approximation for most of the ice sheet, near the termini of outlet glaciers, 
topography can change significantly from year to year. To address these challenges, integrating 
high-resolution (10×10 m) annual Digital Elevation Model (DEM) data with altimetry 
observations may improve topographic representation (Winstrup et al., 2024). 

 

 

 

Technical Corrections and Presentation 

Figures and Visualization 

Several figures require improvement: 

• Figure 5 (page 8): Add more detailed axis labels and improve legend readability, and if 
possible, include error bounds on the seasonal signals to better represent uncertainty in 
the temporal patterns 

• Figures 13-14 (pages 20-21): Consider adding difference maps to better illustrate spatial 
patterns and include quantitative measures of uncertainty in the spatial comparisons 

Authors: The primary purpose of Figure 5 is to illustrate the difference between the two 
seasonal signals. It represents an artificial signal rather than an observed one. However, we 
have added a new figure (Figure 20) based on actual observations. 

Regarding Figures 13–14, we have already included five additional figures in the updated 
version, and adding more subpanels would make the figures overly complex. Uncertainty data is 
provided in the uploaded files accompanying this manuscript. 

 

Recommendation 

Major/Moderate Revision. The manuscript requires substantial revisions before it can be 
considered for publication. The authors should: 

1. Provide a thorough physical justification for their seasonal model, including regional analysis 
and comparison with known climate patterns 

• Strengthen the methodology section with quantitative justification for key parameter 
choices 

• Expand the validation analysis with comprehensive statistical metrics and spatial 
comparisons 

• Enhance the discussion of limitations and implications 

 



These revisions are essential to ensure that this valuable dataset can be effectively utilized by 
the broader scientific community. Upon addressing these concerns, this work will make a 
significant contribution to our understanding of Greenland Ice Sheet mass changes and provide 
an important resource for future research in glaciology and climate science. 

Authors: Thanks, we have Strengthen the methodology, Expand the validation analysis, 
Enhance the discussion of limitations and implications with 6 new figures and new sections. 

 

 



This paper presents a valuable new altimetric dataset of the Greenland Ice Sheet (GIS), derived 
from satellite and airborne altimetry data. The authors describe the processing steps for 
generating gridded (1 km × 1 km) monthly time series of surface elevation change for the GIS. 
The dataset was created using altimetry data from Envisat, ICESat, CryoSat-2, ICESat-2, and 
Operation IceBridge ATM. The authors also validate their monthly GIS elevation products 
against results from satellite gravimetry and the Input-Output method. However, I have a few 
suggestions and points of clarification before the manuscript is finalized. Detailed comments 
are outlined below. 

Authors: Thank you very much for your time and for reviewing this paper. In light of the insightful 
feedback from you and the other reviewers, we have made several changes that have greatly 
improved the revised manuscript. A detailed response to your comments, addressing all the 
identified issues, is listed below. 

Major Comments: 

1. Section 3.2: I notice the spatial resolution of ICESat is much lower than 1 km, especially 
in lower-latitude regions of the GIS. Given this, ICESat data points within 1 km of grid 
nodes are typically located along repeat tracks from different cycles. How can the 
authors ensure the stability of the multi-parameter solution (7th-order polynomial, 3rd-
order surface topography, seasonal term, and 21 parameters in total) with such sparse 
data points? If the number of height observations is smaller than the number of 
parameters to be solved, could the authors clarify how this issue is addressed? 

Authors: This is not an issue. We have added a new figure (Figure 8) displaying the total number 
of observations per grid point for each sensor. A threshold of 50 observations is applied, 
excluding any time series with fewer data points. To estimate parameters, we incorporate all 
observations within a 1 km radius of the center grid point. This ensures a sufficient number of 
observations to reliably estimate all parameters (in total 19), including the 7th-order 
polynomial, 3rd-order surface topography, and seasonal term. 

 



2. Lines 240-253: In this step, the radar seasonal signal is removed and replaced with the 
laser seasonal signal. ICESat/GLAS data covers only 18 discontinuous cycles between 
2003 and 2010. How much will this substitution improve the estimate of the seasonal 
term, especially during the period between 2009 and 2017, when laser altimeter data is 
missing? Could the authors elaborate on this aspect? 

Authors: We have added a new figure (figure 13) illustrating the difference in seasonal 
amplitude between icesat-2 and the various sensors. Notably, the amplitude difference 
between ICESat and ICESat-2 is minimal. This discrepancy may stem from the fact that 
amplitudes are estimated over different time periods using data from two sensors with varying 
spatial and temporal resolutions. Given the strong overall agreement between the two sensors, 
we propose that the mean amplitude from ICESat and ICESat-2 serves as a reasonable 
approximation for filling the gap from 2009 to 2018. The figure suggests that Envisat and 
Cryosat-2 yields larger amplitude compared to icesat-2.   

 

 

 

3. Please double check the following references: 

Nilsson, J. and Gardner, A. S.: Elevation Change of the Greenland Ice Sheet and its Peripheral 
Glaciers: 1992–2023, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-
2024-311, in review, 2024. 

Nilsson, J., Gardner, A. S., and Paolo, F. S.: Elevation change of the Antarctic Ice Sheet: 1985 to 
2020, Earth Syst. Sci. Data, 14, 3573–3598, https://doi.org/10.5194/essd-14-3573-2022, 2022. 

Authors: Both are now included. 

 

 



Minor Comments: 

1. Line 234: "Furthermore, we detect and remove outliers from each time series." How are 
outliers removed? Please provide more detail on the method used. 

Authors: Outliers are identified based on residuals, which represent the difference between the 
observed elevation and the polynomial fit. Any values falling outside the 2-σ range are excluded. 

2. Lines 255-262: The processing steps for Envisat and CryoSat-2 are similar, except for 
two individual time sub-intervals for CryoSat-2. I suggest the authors separately 
introduce the separate processing steps for radar and laser altimeter data to make this 
section clearer. 

Authors: we fit and remove the seasonal signal from Envisat and CryoSat-2, and replace with 
and ICESat/ICESat-2 derived seasonal signal. We have added a new figure 13 that shows the 
difference in seasonal amplitude between the difference sensors. 

3. Section 3.7: When creating the multi-sensor monthly grid, how are the estimated 
monthly change rates for the same month and grid cell merged? Did the authors 
consider the potential inconsistency in reference frames between different altimetry 
missions? Please specify. 

Authors: we do not merge elevation time series estimates from the different sensors. Instead, 
we merge estimated elevation changes. We have not detected any inconsistency due to 
reference frames. 

4. Line 296 and Figure 11: The merged data also contains many NaN grids. The 
interpolation method used is crucial in such cases. Could the authors provide the 
average percentage of effective raw grids used each month? 

Authors: Good point. We now present the average percentage of effective raw grids for each 
month from 2003 to 2023. While we acknowledge that the "average percentage" is important for 
interpolation, the spatial distribution of the data is equally crucial. For instance, if all 
observations are concentrated in the north while the south remains unrepresented, the ice 
sheet-wide interpolation would be poorly estimated. 



   

Figure of average percentage of effective raw grids for each month from 2003 to 2023 

 

5. Figure 12: The time series of cumulative monthly ice mass change is presented, but it 
would be helpful to include the average annual rate of mass change in the same period 
calculated by different methods. This would provide additional context and comparison. 

Authors: we find average annual rates from the three methods unnecessary here, since we 
already compare the 3 methods in figures 16. 

6. Line 180: SMB -> Surface Mass Balance (SMB). 

Authors: changed accordingly. 

7. Section 3.8.3: How did the authors account for the impact of SMB in the step of 
converting volume to mass? 

Authors: Elevation changes caused by firn compaction are simulated using a simple firn model 
that accounts for melt and refreezing (Khan et al., 2022b). Our approach incorporates 
temperature, accumulation, melt, and refreezing data from the regional climate model 
RACMO2.3p2. In this study, we provide estimates of ice volume and ice mass changes. Thus, 
users can easily substitute the firn compaction model with one of their choice. 
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