
The Application of Machine Learning Algorithms to the Global
Forecast of Temperature-Humidity Index with High Temporal
Resolution
Pantelis Georgiades1,2, Theo Economou2,4, Yiannis Proestos2, Jose Araya2, Jos Lelieveld2,3, and Marco
Neira2

1Computation-based Science and Technology Research Center CaSToRC, The Cyprus Institute, Nicosia, Cyprus
2Climate and Athmosphere Research Centre (CARE-C), The Cyprus Institute, Nicosia, Cyprus
3Max Planck Institute for Chemistry, Mainz, Germany
4Department of Mathematics and Statistics, University of Exeter, Exeter, UK

Correspondence: Pantelis Georgiades (p.georgiades@cyi.ac.cy) and Marco Neira (m.neira@cyi.ac.cy)

Abstract.

Climate change poses a significant threat to agriculture, with potential impacts on food security, economic stability, and

human livelihoods. Dairy cattle, a crucial component of the livestock sector, are particularly vulnerable to heat stress, which

can adversely affect milk production, immune function, feed intake, and in extreme cases, lead to mortality. The Temperature

Humidity Index (THI) is a widely used metric to quantify the combined effects of temperature and humidity on cattle. However,5

most studies estimate THI using daily-level data, which fails to capture the full extent of daily thermal load and cumulative

heat stress, especially during nights when cooling is inadequate. To address this limitation, we developed a machine learning

approach to temporally downscale daily climate data to hourly THI values. Utilizing historical ERA5 reanalysis data, we

trained an XGBoost model and generated hourly THI datasets for 12 NEX-GDDP-CMIP6 climate models under two emission

scenarios (SSP2-4.5 and SSP5-8.5) extending to the end of the century. This high-resolution THI data provides a more accurate10

assessment of heat stress in dairy cattle, enabling better predictions and management strategies to mitigate the impacts of

climate change on this vital agricultural sector.

1 Introduction

Climate change, driven by anthropogenic greenhouse gas emissions, is a multifaceted challenge with profound implications for

ecosystems and human societies alike (IPCC, 2023; Malhi et al., 2020). The agricultural sector, which has been the cornerstone15

of global food security and economic activities for the past centuries, is particularly vulnerable to climate change and variability

(Abbass et al., 2022). Within this sector, livestock farming emerges as a critical area of concern due to its susceptibility

to environmental stressors, making the assessment and management of climate impacts critical for sustaining agricultural

productivity and livelihoods (Cheng et al., 2022; Escarcha et al., 2018).

Dairy farming, an integral component of the livestock industry, is particularly sensitive to climatic conditions. Economic20

losses due to heat stress in the US alone are estimated at $1.5 - $1.7 billion per year, accounting for approximately 63.9% of
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the national yearly losses of this economic sector (North et al., 2023; St-Pierre et al., 2003; Cartwright et al., 2023). Predictive

models for the US forecast monetary losses as high as $2.2 billion by the end of the century (Mauger et al., 2014) .

The effects of heat stress on cattle are determined by complex interactions between environmental factors (particularly

temperature and humidity) and biological parameters. Modern-day breeds of dairy cattle are the result of intensive genetic25

selection, aimed primarily at increasing milk productivity. However, this increased productivity is genetically linked to physi-

ological traits such as greater metabolic rates and increased feed intake, both of which augment endogenous heat generation in

the animals, thereby making high-productivity breeds particularly susceptible to heat stress (Kadzere et al., 2002; Moore et al.,

2023).

Dairy cows depend on evaporative heat loss as their main thermoregulatory mechanism (Zhou et al., 2023). Therefore,30

when exposed to increased temperatures, they rely heavily on their ability to dissipate heat by either sweating or panting

in order to regulate their body temperature. Water evaporation rates are negatively correlated with the relative humidity of

the surrounding environment, so a cow’s ability to regulate its body temperature is progressively diminished with increasing

moisture in the air (Bohmanova et al., 2007). As a consequence, even moderate increases in temperature can have severe

biological repercussions under high-humidity conditions. Heat stress has been linked to a plethora of deleterious effects in35

dairy cattle, including reductions in milk yield and quality, decreased reproductive success, decreased feed intake, body-weight

loss, reduced immune function, altered behaviour and, in extreme cases, mortality (Burhans et al., 2022; Cartwright et al.,

2023; Kadzere et al., 2002; Polsky and von Keyserlingk, 2017).

The Temperature Humidity Index (THI) is a relatively simple, non-invasive metric developed to quantify the levels of thermal

stress caused by the combined effects of temperature and humidity on cattle. Its calculation requires meteorological data that is40

generally easy to access (i.e. air temperature and relative humidity), and its correlation with physiological parameters has been

validated by a large body of literature, (Bohmanova et al., 2007; Ravagnolo et al., 2000; Bouraoui et al., 2002; Brügemann

et al., 2012; Igono et al., 1992; Bernabucci et al., 2014). This index has served as reference for early warning systems, such as

the Livestock Weather Safety Index (North et al., 2023) with specific THI thresholds identified for mild, moderate and severe

heat stress (Baca et al., 2019; North et al., 2023).45

In most of the available scientific literature, THI values are estimated using daily-level data (e.g. daily averages or daily

extremes in temperature and humidity, etc.). The reason for this is twofold: On one hand, working at finer temporal resolutions

(e.g. hourly) generally requires the processing and storage of very large datasets, which can pose logistic and computational

difficulties. On the other hand, data provided by traditional climate models is also available at daily or coarser temporal res-

olutions. Unfortunately, daily-level calculations can neither accurately estimate the daily thermal load caused by fluctuating50

climatic conditions across each day (e.g. diurnal vs nocturnal temperatures), nor capture cumulative effects over consecutive

days, particularly during periods when night-time conditions do not allow for efficient heat dissipation (St-Pierre et al., 2003;

Hahn, 1997). This situation underscores the need for finer-scale climate projections that can more accurately reflect the envi-

ronmental stressors impacting dairy cattle, thereby allowing for better forecasts of the expected impacts of climate change on

this key economic sector.55
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In the last few decades there have been enormous advancements in computational capabilities and machine learning algo-

rithms have paved the way for significant improvements in the spatial and temporal resolution of climate data (Huntingford

et al., 2019). Such innovations allow for the spatial and temporal downscaling of global climate models to generate high-

resolution projections that are more aligned with the practical needs of agricultural planning and management. Our study aims

to bridge the gap between coarse-resolution climate projections and the required fine-scale environmental data necessary for60

effective farm management under changing climatic conditions.

2 Methodology

We utilized a well-established machine learning algorithm, specifically the ’Extreme Gradient Boost’ (XGBoost) model, to

temporally downscale daily climate projections to hourly THI values. We opted for the XGBoost model for its computational

efficiency compared to Random Forest and other analogous algorithms, specifically for our use case. Additionally, the imple-65

mentation of Random Forest in Python does not support incremental learning, which was crucial for this study due to the vast

amount of data the model needed to process during training. Furthermore, the model was trained on CPU rather than GPU due

to memory limitations of our available GPUs, necessitated by the very large dataset.

Our approach involves the training of the model using the ERA5 reanalysis dataset, which contains historical hourly data

(Hersbach et al., 2020). The model was subsequently applied to generate hourly THI projections until the end of the century,70

based on bias-adjusted climate projections from the NASA NEX-GDDP-CMIP6 datasets (Thrasher et al., 2022). We developed

data using twelve climate models and concentrated on two distinct Shared Socioeconomic Pathways (SSPs): SSP2-4.5 and

SSP5-8.5, which represent moderate and high greenhouse gas emissions scenarios, respectively, aiming to encompass a broad

range of potential climatic outcomes.

In the following sub-sections, we present the details of our methodology, including data sources, preprocessing procedures,75

feature selection, model training, and evaluation procedures.

2.1 Data

Two distinct sources for climate data were used in this study:

2.1.1 ERA5 reanalysis

The ERA5 reanalysis data, produced by the European Centre for Medium-Range Weather Forecasts (ECMWF) as part of the80

Copernicus Climate Change Service, combine historical observations into global estimates using forecasting models (Hersbach

et al., 2020). This data set is provided at a spatial resolution of 0.25◦ and hourly temporal resolution (atmosphere component).

For the purposes of this study, we retrieved the variables t2m (temperature at 2 m) and d2m (dewpoint temperature at 2 m), for

a time period spanning from 1980 to 2020, from the "ERA5 hourly data on single levels from 1940 to present" entry available

in the Copernicus Data Store (CDS), using the Python API.85

We estimated the relative humidity variable using the Magnus formula (WMO, 2021), as follows:
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e(Td) = 6.1078 · exp
(

17.1 ·Td

235 +Td

)
[hPa] (1)

es(T ) = 6.1078 · exp
(

17.1 ·T
235 +T

)
[hPa]. (2)

where T and Td are the ambient and dew point temperature in degrees Celsius, respectively. e(Td) is the vapor pressure at

temperature Td and es(T ) the saturation vapor pressure at temperature T . Finally, the relative humidity can be calculated by90

taking the ratio of the two, as follows:

RH = 100 · e

es
[%] (3)

2.1.2 NEX-GDDP-CMIP6

The NEX-GDDP-CMIP6 ensemble dataset comprises global downscaled climate change scenarios. These were derived from

the General Circulation Model (GCM) runs conducted under the Coupled Model Intercomparison Project Phase 6 (CMIP6)95

(Thrasher et al., 2022). It includes global downscaled and bias adjusted projections from ScenarioMIP model runs and feature

a 0.25◦ spatial resolution and daily temporal resolution. The data for twelve climate models and two greenhouse gas emissions

scenarios (SSP2-4.5 and SSP5-8.5) were retrieved in netCDF format from the NCCS THREDDS data service. From these

datasets, we utilized the daily average, minimum and maximum temperatures, as well as the mean relative humidity variables.

Table 1 presents the full list of NEX-GDDP-CMIP6 models used in this study to generate hourly THI projections until the end100

of the century.

Table 1. List of NEX-GDDP-CMIP6 models used in this study to generate hourly THI predictions.

No. Model Name No. Model Name

1 ACCESS-ESM1-5 7 GFDL-ESM4

2 CMCC-CM2-SR5 8 INM-CM4-8

3 EC-Earth3 9 INM-CM5-0

4 EC-Earth3-Veg-LR 10 MIROC6

5 FGOALS-g3 11 MRI-ESM2-0

6 GFDL-CM4 12 NorESM2-MM

2.2 Feature selection

The computation of hourly THI values from the ERA5 dataset was performed using the following formula:
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THI = (1.8×T + 32)− (0.55− 0.0055×RH)× (1.8×T − 26) (4)

where T denotes the temperature in degrees Celsius (◦C) and RH represents the relative humidity in percentage (%) (Yeck,105

1971).

To ensure compatibility with the variables available in the NEX-GDDP-CMIP6 datasets, we generated features from the

hourly ERA5 dataset as follows:

– Daily minimum, maximum and average temperature.

– Daily average THI, calculated using the daily average temperature and average relative humidity.110

– Daily average relative humidity

Lastly, we included the hour of the day and day of the year features to account for diurnal and seasonal variations of THI

and the land-sea mask, ranging from 0 (sea) to 1 (land), to differentiate between terrestrial and maritime environments. Table

2 shows a complete list of the input variables used to generate the training and inference data from ERA5 and NEX-GDDP-

CMIP6 data, respectively.115

Table 2. List of the input variables used in this study.

Feature Long Name Feature Long Name

THI_ Daily average THI dayLength Length of day (hours from sunrise to sunset)

t2m Daily average temperature rhmean Daily average relative humidity

t2mmax Daily maximum temperature dayOfYear Day of the year

t2mmin Daily minimum temperature hourOfDay Hour of the day

lsm Land Sea Mask

2.3 Model Training

An XGBoost regressor model was employed to perform the temporal downscaling from daily to hourly resolution. Three mod-

els of increasing complexity were trained to explore the trade-off between model performance and computational efficiency.

The parameters of each of these models is presented in Table 3.

Table 3. The parameters of the three XGBoost models trained to temporally downscale daily climate data to hourly THI values.

Model no. Lambda

regularisation

Max

depth

Number of

parallel trees

Learning

rate

1 1 5 10 0.1

2 1 5 20 0.1

3 5 6 30 0.01
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The selection of the predictive model was partially influenced by the necessity for an approach capable of incremental learn-120

ing. This requirement was dictated by the sheer volume of the training dataset, which precluded the possibility of training on

the entire dataset simultaneously, due to technical limitations. The xgboost library, implemented in Python, was chosen for

its ability to accommodate this need as well as the well-established accuracy and speed compared to other ensemble learning

models (Chen and Guestrin, 2016; Sheik et al., 2024). The framework facilitated the training of the model in monthly incre-

ments, commencing from the year 1980 and concluding in 2017. To ensure the continuity and assess the model’s performance125

over time, checkpoints were stored at the end of each training increment (monthly). The first month of 2018 was used as a test

set throughout the training procedures.

2.4 Model Evaluation

The performance of the trained models was assessed using ground truth data derived from the ERA5 dataset for the period

spanning from February 2018 until December 2020, which wasn’t seen by the model during training. This evaluation phase130

aimed to establish the models’ predictive accuracy and their ability to generalize to unseen data. Model performance was

quantitatively evaluated using standard statistical metrics, including the Root Mean Squared Error (RMSE), Mean Absolute

Error (MAE) and coefficient of determination (R2).

2.4.1 Implementation Details

The data manipulation and feature engineering were performed using Python 3.11 and the xarray, numpy and pandas libraries.135

The input variables were scaled to the 0-1 range using the MinMaxScaler method of the scikit-learn library. Lastly, the xgboost

library was used to implement the training and inference procedures for temporally downscaling daily climatic variables to

hourly THI values.

3 Results

3.1 Model Training and Evaluation140

Consistent with the methodologies put forth in the Methods section, this study included the training of three XGBoost regres-

sion models, each varying in complexity, to establish the optimal parameterization for the prediction of hourly Temperature

Humidity Index (THI) values from daily climatic inputs. Figure 1 illustrates the progression of two key performance indi-

cators—Mean Absolute Error (MAE) and Mean Squared Error (MSE)—throughout the training phases. These metrics were

computed upon the conclusion of each training epoch, corresponding to monthly intervals spanning from January 1980 to145

December 2017. The evaluation was conducted using a test dataset, which included global data from January 2018, to validate

the models’ predictive accuracy and generalization capability.

Furthermore, the right panel of Figure 1 presents a ground truth versus prediction plot for Model 1’s inference on the

validation set (February 2018 - December 2020). We employed a density plot instead of a scatter plot to facilitate visualization
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Figure 1. Evolution of Mean Absolute Error (MAE) and Mean Squared Error (MSE) throughout the training process for three distinct

XGBoost models, each represented by a different color. The left panel shows the MAE (top) and MSE (bottom) metrics over training epochs,

conducted on a monthly basis from January 1980 to December 2017. Solid lines depict the metrics evaluated on the training set in each

epoch, while dashed lines represent the MAE and MSE evaluated on the test set at each epoch. The right panel displays a density plot of

the predictions from Model 1 versus the ground truth for the validation data set (2018-2020), where the diagonal line indicates the optimal

prediction performance.

of the clustering behavior within the large dataset (approximately 10 billion data points). As evident, the model demonstrates150

good performance, with the majority of points concentrated near the diagonal, representing optimal prediction. However, a

potential limitation is observed at the lower end of the Thermal Humidity Index (THI) range. Here, the model appears to

exhibit a prediction floor around ∼-40 THI. It is important to note that these low THI values are of minimal interest for heat

stress studies, as they primarily correspond to regions like Antarctica without human and cattle populations.

The models were trained on a single compute node, which was equipped with two AMD EPYC/Milan 64-core CPUs and155

256 GB of RAM. During both the training and inference phases, each model was configured to utilize 128 parallel processes,

optimizing computational efficiency. Consistent with the approach outlined in the Methods section, the training process for

the models was executed incrementally, with the dataset being segmented into monthly intervals. This approach facilitated the

storage of checkpoints at the conclusion of each epoch, allowing for a systematic evaluation and resumption of the training

process without loss of progress. It total, the models were trained on approximately 130 billion examples; areas comprised160

entirely of sea or ocean were omitted.

The performance metrics of the three models were found to be closely comparable across the evaluation criteria. Both the

Mean Absolute Error (MAE) and Mean Squared Error (MSE) demonstrated a continuous decrease throughout the training

epochs, albeit at a diminished rate of reduction as the training progressed. It is noteworthy that these metrics were also assessed
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Table 4. MAE, MSE and R2 performance metrics evaluated on the last epoch during the training process, the test set for the three models

(data from Jan 2018) and the evaluation set (Feb 2018 - Dec 2020). Furthermore, the total training time and the time needed by the models

to perform inference on a single year are presented.

Training set Test set Validation set Total training Time to evaluate

Model no. MAE MSE R2 MAE MSE R2 MAE MSE R2 time (hrs) 1 year (min)

1 2.163 9.306 0.942 2.262 10.386 0.940 3.432 19.014 0.943 564 ∼ 205

2 2.160 9.294 0.940 2.260 10.392 0.941 3.402 18.624 0.944 792 ∼ 375

3 2.159 9.279 0.939 2.259 10.366 0.944 3.403 18.754 0.944 1156 ∼ 480

using a test set that was not seen by the model during the training phase, ensuring the evaluation of the model’s predictive165

capability on unseen data. As the complexity of the models increased, notably, Model 3 required a substantially longer duration

for training compared to its counterparts. Furthermore, an observable convergence between the curves representing MSE and

MAE was observed, in both the training and test sets, indicating a stabilization in the models’ performance over time. Table 4

shows the performance metrics of the three models across the training and test sets, as well as the total training time and time

needed to perform inference on a single year and scenario. Lastly, the metrics obtained from the validation set were closely170

comparable across all three models; MAE was found to be ∼3.4, MSE ∼19 and R2 ∼0.94.

To further assess the comparative performance of the three trained models, we performed inference using data from 2018

to 2020 (ERA5 reanalysis) to evaluate the precision of the THI predictions relative to the ground truth. Figure 2 displays THI

predictions at four randomly selected grid points and time intervals, representing diverse climatic conditions: a permanent

frost region (top left), a moderate climate (top right), and two hot climate regions (bottom panels). Across these examples, the175

outputs from all three models closely followed the real THI fluctuations during the 10-day periods shown. Additionally, the

predictions generated by the three models were nearly identical, as shown in Figure 2.

The outputs from the three models on ERA5 data align well with the ground truth THI. To evaluate the similarity of their

performance on CMIP6 future projection data, we conducted inference using a single year of data from the ACCESS-ESM1-5

model (year 2020 under scenario SSP2-4.5) for all three models. Figure 3 presents the THI outputs at four randomly selected180

geographical locations and time points over a 10-day period. The outputs from all models closely match each other, corrob-

orating their consistency. Combined with the previously obtained performance metrics, this indicates that the three models

exhibit similar performance on both ERA5 and CMIP6 data. Consequently, we opted for the simplest model (Model 1) due to

its significant computational cost savings compared to the other models. The marginal improvements in performance metrics

did not justify the additional tens of thousands of CPU-hours required for the more complex models, given the close similarity185

in their outputs.

To further assess model performance and identify potential systematic errors, we employed global maps at randomly chosen

time points from the validation set. These maps visualized the Temperature Humidity Index (THI) using both ground truth data

and the chosen model’s predictions, along with their difference. Representative examples are shown in Figure 4. Deviations

from the ground truth are evident in various regions across the globe at these specific hourly time points.190

8

https://doi.org/10.5194/essd-2024-344
Preprint. Discussion started: 22 August 2024
c© Author(s) 2024. CC BY 4.0 License.



Figure 2. Comparative visualization of hourly THI calculations using ERA5 reanalysis data (ground truth) and the outputs from the three

XGBoost models, each differentiated by unique colors. The four-panel display (2x2 arrangement) showcases THI profiles across varying

climatic conditions: the top left panel presents an example from a cold climate region, the top right panel illustrates a moderate climate

scenario, and the bottom panels depict examples from warm climate regions. This arrangement provides a comprehensive overview of the

models’ performance and accuracy in replicating ground truth THI values across a spectrum of environmental conditions. This comparison

explains further the density q-q plot.

To investigate the presence of systematic errors, such as consistent over/underestimation in specific areas, we averaged the

differences across the entire validation set. This resulted in a new set of global maps presented in Figure 5. The mean difference

between ground truth and prediction reveals minimal deviations from zero across most of the world, suggesting an absence of

systematic errors. However, a slight underestimation (approximately less than 1 THI unit) is observed near the borders of India

and Pakistan, and in the eastern part of the Arabian Peninsula. Conversely, a notable overestimation of THI is present in a large195

portion of Antarctica. This overestimation is of limited concern for this study’s scope, as Antarctica is an uninhabited region

with no risk of heat stress. Due to the low relevance of heat stress in this uninhabited region and to optimize computational

resources, Antarctica was excluded from further inference using Model 1.

9
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Figure 3. Comparative visualisation of the THI profiles from the three models’ predictions from the ACCESS-ESM1-5 model (SSP2-45

scenario) at the year 2020. The four panels show four randomly selected grid points and the prediction from each model is colour-coded.

Building upon these findings, we employed Model 1 for inference using 12 GDDP NASA-NEX CMIP6 models under

two distinct climate scenarios: SSP2-4.5 (representing a moderate stabilization emission scenario) and SSP5-8.5 (represent-200

ing a business-as-usual scenario with rising emissions until the end of the century). Utilizing all combinations of climate

models and scenarios, we generated datasets spanning the period 2020 to 2100. These datasets are publicly available at

https://doi.org/10.26050/WDCC/THI for further investigation and use in climate change impact studies (Georgiades, 2024).

4 Conclusions

Climate change, driven by anthropogenic emissions, entails a significant risk to ecosystems and societies worldwide. One of the205

anticipated consequences is rising global temperatures. The agricultural sector, vital for global food security and economies, is

particularly vulnerable. Dairy farming, a crucial sub-sector, faces significant economic challenges due to heat stress impacting

dairy cattle. Heat stress in dairy cows is commonly quantified using the Thermal Humidity Index (THI), a simple metric
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Figure 4. Comparison of Ground Truth THI and Model Predictions. The first row displays the Ground Truth THI values from ERA5 data for

three randomly selected time points within the evaluation period. The second row shows the corresponding THI predictions from our model.

The third row illustrates the differences between the Ground Truth and the model predictions (Ground Truth - Prediction).

requiring only temperature and humidity data. However, most existing literature utilizes daily THI values, lacking the necessary

granularity to capture the crucial intraday climatic variability for accurate heat stress estimation.210

To address this limitation, we trained a machine learning model (XGBoost regressor) on global hourly historical reanalysis

data (ERA5) to effectively downscale daily climate variables to hourly THI values. Our models demonstrably performed well

against ground truth data from an independent validation period. The implicit assumption in this approach is that the diel cycle

of the THI does not alter significantly under climate change scenarios.

Leveraging the good performance and agreement between the three models, we employed the most computationally efficient215

model to generate global hourly THI projections until the end of the century. This involved utilizing 0.25° GDDP NASA-NEX

CMIP6 data with 12 climate models and two emission scenarios (SSP2-4.5 and SSP5-8.5).
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Figure 5. Comparison of Ground Truth THI and model predictions averaged over the validation set (2018-2020). In the top panel, the mean

THI over the three year period is presented, whereas in the middle panel, the corresponding THI predictions from our model is shown. The

third panel presents the difference between the two (Ground Truth - Prediction).

The generated hourly THI datasets hold significant potential to contribute towards the optimization of heat stress manage-

ment in the dairy industry. These datasets can empower stakeholders with the ability to create highly accurate and geographi-
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cally specific heat stress risk assessments for individual farms. This information can then be used to develop targeted mitigation220

strategies, allowing farmers, agricultural communities and organizations to proactively manage heat stress and optimize animal

well-being and production efficiency. Furthermore, incorporating these datasets into climate change adaptation plans allows

policymakers and the dairy cattle sector to develop long-term strategies for ensuring the sustainability of the dairy industry

in the face of a changing climate. Ultimately, this research paves the way for a more resilient and sustainable future for dairy

farming.225

5 Code and data availability

Code to reproduce the results presented in this paper is available in the public github repository github.com/pantelisgeor/Temperature-

Humidity-Index-ML. The code provided is written in Python and the workload can be executed by running a series of bash

scripts, as documented in the repository description. The code is provided under an MIT lisence, which allows for users to

freely use and modify the code.230

The data produced in this study are available at https://doi.org/10.26050/WDCC/THI (Georgiades, 2024) in NetCDF format,

with an hourly temporal resolution and 0.25◦ spatial resolution. The datasets are published under a CC BY 4.0 license.
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