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Abstract 14 

Dissolved organic carbon (DOC) is the most active carbon pool in soils, which plays critical roles in soil carbon 15 

cycling, plant productivity, and global climate change. An accurate assessment of the quantity of DOC in the soil is 16 

essential for the detailed elucidation of ecosystem functions and services. Nevertheless, the global driving factors 17 

and distribution of soil DOC remain inadequately quantified due to the scarcity of large-scale data. Here, a 18 

comprehensive global database of 12807 soil DOC concentrations derived from 975 target papers in the literature 19 

was compiled. Detailed geographic locations, climate, and soil properties were also recorded as predictors of soil 20 

DOC. Machine learning techniques were employed to assess the relative importance of various predictors in the 21 

determination of soil DOC concentrations, which were subsequently extended for their prediction on a global scale. 22 

The worldwide soil DOC concentration spanned a wide range (0.04 to 7859 mg kg-1), averaging 222.78 mg kg-1. 23 

The 12 selected variables (including soil properties, month, climate, and ecosystem) explained 65% of the variance 24 

in soil DOC concentrations. Elevation, soil clay, and soil organic carbon were three of the most important predictors. 25 

Global soil DOC concentration increased from the equator to the poles. The soil DOC stocks in the topsoil layer (0-26 

30 cm) amounted to 12.17 Pg, with significant variations observed across different continents. These results are 27 

instrumental for informing strategies on soil management practices, ecosystem services, and the mitigation of 28 

climate change. Furthermore, our database can be combined with other carbon pools to explore the total soil carbon 29 

turnover and constrain Earth carbon models. The dataset is publicly available at 30 

https://doi.org/10.6084/m9.figshare.26379898 (Ren and Cai, 2024). 31 

  32 
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1. Introduction 33 

With global changes over the last few decades, terrestrial ecosystems, which serve as the fundamental safeguard for 34 

biodiversity and carbon sink on Earth, are becoming increasingly vital toward mitigating global climate warming 35 

(IPCC, 2014). Cumulatively, soil carbon pools constitute the largest carbon reservoirs of terrestrial ecosystems, 36 

which are three to four times greater than that of the ambient atmospheric carbon pool (Lal, 2004). Even minor 37 

fluctuations in soil carbon can have significant impacts on biogeochemical cycles and the global C balance. 38 

Dissolved organic carbon (DOC), which consists of simple organic acids and complex macromolecular substances, 39 

is recognized as the most active carbon pool in the soil. Currently, the portion of organic carbon that is water-soluble 40 

and can filter through 0.45 μm microporous filter membrane is referred to as DOC (Kalbitz et al., 2000; Zsolnay, 41 

2003). Although soil DOC typically accounts for only < 2% of soil carbon pool, it provides a substantial source of 42 

carbon and energy for soil microorganisms, while playing a key role in soil carbon sequestration, transport, and 43 

stabilization mechanisms (Nakhavali et al., 2021; Ren et al., 2024). The lateral transport of DOC is crucial for 44 

linking terrestrial and aquatic ecosystems and plays a key role in the evaluation of terrestrial carbon budgets 45 

(Kindler et al., 2011; Sanderman & Amundson, 2008). Thus, an accurate assessment of soil DOC concentrations is 46 

vital due to its unique properties and roles, given its broad variations that can span up to three orders of magnitude 47 

(Nakhavali et al., 2020; Ren et al., 2024). Despite the significant variations in soil DOC concentrations, their global 48 

distribution has not yet been systematically quantified. Bridging this knowledge gap is essential for more accurately 49 

depicting the carbon cycle in Earth system models. 50 

The soil DOC concentration depends on the dynamic balance between its sources (e.g., leachates from 51 

decomposing plant litter, plant root secretions, and microbial decomposition products) and losses (migration and 52 

microbial decomposition) (Bolan et al., 2011). Therefore, any factors that affect this dynamic balance would also 53 

influence the soil DOC concentrations. Extensive research has demonstrated that the soil DOC concentration is the 54 

outcome of climate, vegetation type, as well as soil properties (Chen et al., 2021; Guo et al., 2020; Smreczak & 55 

Ukalska-Jaruga, 2021). Each factor plays a distinct role in shaping soil DOC dynamics. For example, the climate, 56 

which is characterized by the annual mean temperature and precipitation, is typically recognized as a primary 57 

driving factor that influences the soil DOC concentrations (Kalbitz et al., 2000; Neff & Asner, 2001). Temperature 58 

and precipitation directly influence soil DOC concentrations by affecting microbial activities, organic matter 59 
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decomposition rates, its solubility and mobility, and indirectly modulate DOC dynamics by manipulating vegetation 60 

growth and soil structures (Andersson & Nilsson, 2001; Kalbitz et al., 2000). The type of vegetation impacts soil 61 

DOC concentrations mainly by affecting the input quantity and quality of organic matter (Guo et al., 2020). Together, 62 

climate and vegetation types have profound effects on soil biological, chemical, and physical properties, which are 63 

closely interconnected with the creation and decomposition of soil DOC (Camino‐Serrano et al., 2014). The 64 

relationships between soil DOC concentrations and environmental factors have been revealed based on local and 65 

regional scales. However, the relative importance of environmental factors that predict soil DOC concentrations on a 66 

global scale is still lacking, which impedes the development of effective strategies for the management of soil 67 

carbon and mitigation of climate change. 68 

Accurate mapping of the soil DOC is essential for addressing pressing global challenges, including climate 69 

warming, food security, and eutrophication in aquatic systems (Guo et al., 2020; Langeveld et al., 2020). To the best 70 

of our knowledge, there are few global maps of the spatial distribution of soil DOC (Guo et al., 2020; Langeveld et 71 

al., 2020). However, these maps have subject to considerable uncertainties due to the limited data employed and the 72 

low interpretation rate. Firstly, there is a lack of valid observational data for Africa, South America, Eastern Europe, 73 

and Central Asia. Secondly, Guo (Guo et al., 2020) explained only 31% of the variations in the soil DOC using 74 

linear regression equations, while Langeveld (Langeveld et al., 2020) explained only 36%. In contrast to linear 75 

regression, machine learning has been extensively applied in research due to its capacities to automate feature 76 

extraction, handle large datasets, and recognize complex patterns, which offers significant advantages in terms of 77 

predictive accuracy and adaptive learning.  78 

To address these challenges, we developed a comprehensive database of global soil DOC concentrations, 79 

comprising 12,807 samples from 975 published studies. Utilizing Random Forest algorithms, we quantified the 80 

relative importance of environmental factors, and further, predicted the soil DOC concentrations on a global scale. 81 

The special aims of this study were: (1) What are the global patterns of soil DOC concentrations? (2) What are the 82 

primary factors that control soil DOC concentrations on a global scale?  (3) How large is total global soil DOC 83 

storage?  84 

2. Material and method 85 

2.1 Data sources and processing 86 
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Publication search for this study was performed using Google Scholar (https://scholar.google.com), the Web of 87 

Science (http://apps.webofknowledge.com), and the China Knowledge Resource Integrated Database 88 

(http://www.cnki.net/) using the following search terms: (dissolved organic carbon OR dissolved organic matter OR 89 

"DOC" OR "DOM") AND soil, up to December 2022. The specific data flow through the different phases for the 90 

selected papers is shown in Fig. S1. To ensure a standardized and bias-minimized dataset, the following inclusion 91 

criteria were applied: (1) Data must be from terrestrial ecosystems, excluding oceans and rivers; (2) Only the topsoil 92 

layer data (0-30 cm) were used; (3) Duplicate results from different articles were recorded only once; (4) Soils 93 

included agricultural soils that were affected by human activities through tilling and fertilization etc., but did not 94 

cover industrial and urban soils. Data presented solely in figures were extracted using the digitizer function of 95 

Origin 2019 software.  96 

Based on these criteria, a total of 12807 observations of soil DOC were compiled from 975 publications. 97 

Additional data included specifics of the experimental sites (longitude, latitude, and altitude), climatic conditions 98 

(mean annual temperature (MAT) and mean annual precipitation (MAP)), biomes (e.g., wetland，forest，shrubland，99 

tundra，grassland，and cropland) and soil physical and chemical properties (e.g., soil organic carbon, texture, and 100 

pH) (Table 1). These environmental factors are used as predictors. When those environmental factors were missing 101 

within the original publication, the missing data were extracted from the grid dataset according to geographic 102 

coordinates of observed site (Table S1). This study sites spanned a wide range of latitudes (-64.81° to 78.85°) and 103 

longitudes (-159.66° to 175.95°) (Table 1). This database encompassed a large gradient of climate regimes, with 104 

MAT from −11.16 to 28.00℃ and MAP from 30 to 4200 mm. 105 

2.2 Data standardization  106 

In our database, the DOC concentrations were quantified using a mix of physical and chemical techniques. Physical 107 

methods included soil solution collection using lysimeters or ceramic suction. Chemical methods employed various 108 

solvents like distilled water, potassium chloride (KCl), or potassium sulfate (K2SO4) as described by Li et al. (2018). 109 

Over 74.32% of the DOC was determined using chemical techniques, which highlighted their reliability. For 110 

consistency, the DOC values derived from physical approaches was converted to chemical method values using the 111 

following equation: 112 

DOCsoil = (DOCsolution×V×1000)/W×[1/(V×(1-W) ×BD×1000000)]                                     (1) 113 

https://doi.org/10.5194/essd-2024-343
Preprint. Discussion started: 29 August 2024
c© Author(s) 2024. CC BY 4.0 License.



6 

 

 where, DOCsoil represents soil DOC concentration determined by chemical methods (mg g-1); DOCsolution is the 114 

concentration measured by physical methods (mg L-1); W denotes the volumetric soil moisture (m³ m-³); V is the 115 

volume of the soil column for solution extraction (m³); and BD is the soil bulk density (g cm-³). The factor 1000 116 

converts m³ to L, and 1000000 converts m³ to cm³ following the protocol established by Guo (Guo et al., 2020). This 117 

standardization allowed for a consistent comparison and analysis of the DOC data across various studies. 118 

2.3 Predictive modeling  119 

The driving factors of soil DOC concentrations were divided into four categories (climate, ecosystem, soil properties, 120 

and observation time). The soil properties included physical (clay, sand, bulk density, and depth), chemical (SOC, 121 

pH), biological (microbial biomass carbon) attributes. The observation time was represented by month. Climate 122 

referred to MAT, MAP, and elevation. Ecosystems encompassed wetland, forest, shrubland, tundra, grassland, and 123 

cropland. In predictive models, correlated predictors may substitute for each other, such that their importance will be 124 

shared, which results in an estimated importance that is less than the true value. Consequently, the soil total nitrogen, 125 

silt, and aridity index were not included as they were correlated with the soil organic carbon, sand, and MAP, 126 

respectively (Fig. S2). Further, some variables were not included due to rarely report in target paper. 127 

To develop and optimize a predictive model for soil DOC an array of regression methods was employed, which 128 

encompassed three linear and four nonlinear approaches (Table S2). The linear regression methods included a least 129 

absolute shrinkage and selection operator (LEAPS), elastic net (ENET), and standard linear modeling (LM) to 130 

identify the most important predictor variable in a regression model, while minimizing the risk of overfitting. The 131 

nonlinear regression methods included the random forest (RF) algorithm, boosted tree (BOOSTED), bagged tree 132 

(Bagged), and cubist (CUBIST) models. Each model was equipped with intrinsic feature selection processes and 133 

was fine-tuned to improve accuracy and control complexity. During the optimization phase, various actions were 134 

implemented; LEAPS models were educated to accommodate the highest count of variables. To discipline the 135 

models, the penalty for feature condensation (diminishing the role of less impactful variables in the resultant linear 136 

formula) varied between 0 and 0.1, incremented by 0.01. RF models' growth was capped at a maximum of 1,000 137 

trees, and the model's predictors were restricted to a third of the possible maximum, ensuring a balance between 138 

complexity and manageability. BOOSTED models underwent training with a tree count ranging from ten to a 139 

hundred, where each tree had a node range of one to seven. They incorporated a shrinkage rate of either 0.01 or 0.1, 140 

and a maximum size limit set to five, optimizing the models' learning process. CUBIST model utilized a sequence of 141 
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neighboring values from 1 to 9 with increments of 2, alongside community sizes spanning 1 to 100, to refine its 142 

predictive accuracy. In every instance, the models were evaluated using Monte Carlo cross-validation, which 143 

involved 100 iterations of data resampling with an 80/20 split between training and validation datasets, ensuring an 144 

accurate estimation of model uncertainty and safeguarding against over-fitting. The root mean square error and R² 145 

values were calculated to evaluate model accuracy and residual variance, which served as criteria for ranking model 146 

performance (Table S2). The relative RMSE, a measure of the estimation uncertainty for soil DOC, was determined 147 

by dividing the error's magnitude by the overall average soil DOC value. The nonlinear models (R2 = 0.42-0.65; root 148 

mean square error (RMSE) = 250-332) outperformed the linear models (R2 = 0.101-0.108; RMSE = 410-427) (Table 149 

S2). The RF model distinguished itself with the lowest RMSE within a standard deviation range, and the model was 150 

then selected for subsequent analyses focusing on variable importance (Fig. S3). Consequently, the relative 151 

importance of driving the soil DOC and the global map of soil DOC were the averaged values of the RF model 152 

results. 153 

To evaluate the impacts of independent variables on the soil DOC, a variable importance analysis was conducted 154 

using permutation variable importance measurements (Fig. 2). This analysis was performed utilizing the variable 155 

importance tool integrated into the R packages for the RF model that exhibited the highest accuracy and predictive 156 

quality. In essence, this method assessed prediction errors within the model by calculating mean square errors for 157 

each regression tree. The models' variable importance scores assessed the influence of predictor variables on the 158 

outcomes. For enhanced comparability of all model inputs, the independent environmental variables were scaled to a 159 

0 to 100% range, reflecting their proportional contribution to the model's predictions. 160 

Partial dependence analyses were employed to test the relationships between the predicted soil DOC and 161 

independent variables across the entire spectrum of potential values considered in the RF model (Fig. 3). In essence, 162 

this approach provided insights into the global relationships between the independent variables and predicted 163 

outcomes. The focus was set solely on the effects of the targeted independent variables by eliminating the influences 164 

of other independent variables. Partial dependence analyses, along with their graphical representations known as 165 

partial dependence plots, provided insight into the average marginal effect of one or more independent variables on a 166 

machine learning model's predictions within a defined value scope, offering a more nuanced view than assessing the 167 

overall relative importance of an independent variable. For instance, partial dependence plots can expose whether 168 

the connection between a predicted variable and an independent control is linear, monotonic, or complex. The 169 
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curvature and inflection points of the partial dependence plot curve help us to decipher and pinpoint areas where an 170 

independent variable exerts a notably strong and immediate effect on the forecasted outcome. Additionally, it can 171 

indicate where the variable's influence is more subtle, potentially mediated through its effects on other independent 172 

variables. To facilitate the interpretation of the partial dependence plots, the x-axis for the standardized value was 173 

reported, which ensured a clear progression from low to high values in all curves. 174 

2.4 Global soil DOC mapping 175 

The global distribution of the soil DOC and the relative uncertainties of predictions were generated (Figs. 4, S5). 176 

These maps were derived by utilizing our DOC dataset in conjunction with the RF model, which incorporated the 177 

global climate, vegetation, and soil-rasterized datasets (Table S1). We generated factor maps from the key input 178 

variables, focusing on the 12 distinct variables associated with each raster cell. Subsequently, the factor maps were 179 

employed to derive a spatially detailed global map of soil DOC. For global scale mapping, the driving factors were 180 

initially processed at a 0.05° resolution to calculate the soil DOC values. Areas that did not meet the following 181 

criteria were excluded from our prediction: (1) absence of data for any essential predictors, (2) soil order and biomes 182 

not aligning with the previously discussed aggregated land use systems, or (3) locations in climate zones outside the 183 

scope of our model's focus. To evaluate the uncertainty associated with map creation due to data resampling and any 184 

unexplained variability unaccounted for by the independent variables, we analyzed finer resolution (5 km²) grids in 185 

regions where driving factors were accessible at this detailed level. This analysis illuminated the overall uncertainty 186 

inherent in our global soil DOC estimation. A map representing the relative prediction uncertainty was crafted, 187 

showcasing the standard deviation in relation to the mean of the predictions. The standard deviation, indicative of 188 

the dispersion in potential predictions, was derived from the decision tree model's structure after 500 iterations of the 189 

model. 190 

 191 

3. Results 192 

3.1 Soil DOC concentrations in different ecosystems globally 193 

A total of 12,807 soil DOC observations were compiled from 975 publications, which spanned six continents as well 194 

as major biomes and terrestrial ecosystems (Fig. 1), and the database conformed to a normal distribution (Fig. 1b). 195 

The global soil DOC concentrations varied between 0.04 and 7859 mg kg-1. The global average, median, and 196 

standard deviation were 222.78, 101.01, and 445.78 mg kg-1, respectively (Table 2). The concentrations of soil DOC 197 
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varied across different ecosystems. Tundra had the highest soil DOC concentration (470.78 mg kg-1), while 198 

shrubland had the lowest (160.24 mg kg-1). The average soil DOC concentrations for grassland, forest, wetland, and 199 

cropland were 327.77, 256.18, 218.53, and 165.98 mg kg-1, respectively (Table 2).  200 

 201 

3.2 Model performance and drivers of soil DOC concentrations 202 

Random forest model accounted for 65% of the variability in soil DOC concentrations across all sites, with the 203 

lowest RMSE compared with other models (Fig. 2, Table S2). The most important categories of predictors for soil 204 

DOC concentrations were climate and soil properties, with elevation and the soil clay content emerging as   the most 205 

significant. Although less influential, other predictors were nonetheless considered, with soil organic carbon and soil 206 

pH having the most notable effects (Fig. 2a). Although the mean annual precipitation and temperature, microbial 207 

biomass carbon, bulk density, sand, depth, month, and ecosystem affected soil DOC concentrations, their relative 208 

contributions were lower than aforementioned four predictors (Fig. 2). Partial dependence analysis showed similar 209 

results to Pearson correlation analysis (Fig. S4) and indicated that there was a positive correlation between the soil 210 

DOC and both the elevation and soil organic carbon (Fig. 3g). Conversely, the soil DOC was negatively correlated 211 

with mean annual temperature and soil pH (Fig. 3h). 212 

 213 

3.3 Global soil DOC patterns  214 

Our predicted global soil DOC mapping implied that there was a significant spatial heterogeneity of soil DOC 215 

concentrations (Fig. 4a). This revealed a latitudinal pattern that soil DOC concentrations increased from the equator 216 

to poles (Fig. 4b). High soil DOC concentrations were found in high-altitude plateaus and mountain ranges at low 217 

latitude (e.g., Andes, African Highlands, West Indies) (Fig. 4a). The global average soil DOC concentration was 218 

237.56 mg kg-1 (Table 3), while the soil DOC stock in the topsoil (0-30 cm) was 12.17 Pg.  219 

Asia had the highest soil DOC concentration (274.43 mg kg-1) followed by North America (263.63 mg kg-1). Next 220 

were Europe and South America (227.34 and 215.81 mg kg-1, respectively), with Oceania and Africa having the 221 

lowest soil DOC concentrations (198.13 and 186.35 mg kg-1, respectively). For predicted soil DOC stocks, Asia and 222 

North America remained in first and second place (4.8 and 2.45 Pg, respectively). Despite the marginal predicted 223 

soil DOC concentrations in Africa, its predicted soil DOC stocks ranked third (2.07 Pg) due to its vast area. South 224 
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America was in fourth place with a predicted soil DOC stock of 1.37 Pg. Finally, Europe and Oceania showed the 225 

lowest predicted soil DOC stocks (0.88 and 0.59 Pg, respectively). 226 

 227 

4 Discussions 228 

4.1 Variations in soil DOC between ecosystems 229 

Given the substantial number of measurements included in our study (12,807 observations), the range of soil DOC 230 

concentrations (0.04-7859 mg kg⁻¹) was broader than that reported by Guo (3,869 observations) (Guo et al., 2020). 231 

Our reported global average soil DOC concentration was 222.78 mg kg⁻¹ (Table 2), in contast to Guo's reported 232 

average of only 77.39 mg kg⁻¹. For different ecosystems, the soil DOC concentrations of wetlands, tundra, and 233 

shrublands in our study aligned with those of previous research (Guo et al., 2020), which was primarily due to the 234 

relatively lower number of observations for these ecosystems in comparison withothers, with tundra comprising only 235 

1% of our database (Guo et al., 2020). However, significant differences were found in forests, grasslands, and 236 

croplands compared with Guo's data. For instance, our average soil DOC concentration for croplands was 165.98 237 

mg kg⁻¹, while Guo reported only 60.58 mg kg⁻¹. This discrepancy was due to Guo's database including only 13% 238 

cropland observations, whereas our cropland observations are approximately ten times larger (Guo et al., 2020). 239 

However, our results consistently indicated that DOC concentrations in forest soils were lower than in grasslands, 240 

with tundra showing the highest DOC levels (Table 2) (Guo et al., 2020). This was due to the higher lignin content 241 

in forests, which reduces the quality of plant litter, hinders microbial decomposition, and releases less DOC (Wang 242 

et al., 2015). For tundra, besides low microbial activities in permafrost due to low temperatures, anaerobic 243 

conditions from soil oversaturation severely limit microbial activities and growth, reduce decomposition rates, and 244 

increase the DOC (Boddy et al., 2008; Petrone, 2005). Despite the frequent addition of nutrients in croplands, the 245 

DOC concentrations remained lower than expected. Intensive anthropogenic activities, such as management 246 

practices and frequent harvesting induced the significant loss of soil organic matter, which translated to reduced 247 

DOC (Guo et al., 2020; Li et al., 2019; Ren et al., 2024). In summary, our study built on preceding work by 248 

incorporating a more extensive dataset that better represented the heterogeneous conditions found globally. 249 

 250 

4.2 Effects of climate and controlled soil properties on soil DOC concentrations 251 
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The two most critical predictors of soil DOC concentrations were climate and soil properties, with elevation and soil 252 

clay content being the two most significant factors (Fig. 3). As the elevation gradient increase, temperatures 253 

generally decrease, which can constrain microbial metabolic rates and reduce the decomposition of organic matter, 254 

which leads to additional organic carbon being retained in the soil as DOC (Li et al., 2023; Nottingham et al., 2019; 255 

Wei et al., 2024). Typically, high-altitude regions host specific vegetation types with longer growth cycles and more 256 

litterfall (Pesántez et al., 2018; Wei et al., 2024). These plant residues decompose to SOC, a portion of which 257 

converts to DOC. Consequently, differences in the vegetation type and productivity also influence the soil DOC 258 

concentrations (Camino‐Serrano et al., 2014; Rahbek et al., 2019). We also found that forest and grassland sites 259 

above 2000 m (which constituted 73% of the high DOC observations) were significant contributors. High-altitude 260 

regions often experience distinct precipitation patterns and soil moisture conditions compared with lower elevations 261 

(Li et al., 2023). Higher precipitation and lower evaporation rates may result in the greater dissolution and leaching 262 

of organic matter, thereby increasing DOC concentrations in the soil (He et al., 2021; Lu et al., 2019). High-altitude 263 

areas are generally less frequented by humans, which may assist in the preservation of the DOC in the soil through 264 

the prevention of disturbances and losses. Our results also indicated that soils in low-latitude plateaus and mountain 265 

ranges (e.g., Tibetan Plateau, Andes, African Highlands, and West Indies) exhibited higher DOC concentrations (Fig. 266 

4a). The impacts of the soil clay content on DOC concentrations are complex, which occurred primarily through 267 

adsorption, water retention, microbial activities, and organic matter protection mechanisms (Kaiser & Zech, 2000; 268 

Singh et al., 2017). Generally, a high clay content tends to stimulate the accumulation of soil DOC through the 269 

adsorption and stabilization of organic matter (Gmach et al., 2019; Kalbitz et al., 2000). Furthermore, the effects of 270 

SOC and soil pH on DOC should not be overlooked (Fig. 2a). SOC serves as the main source of DOC, where higher 271 

SOC generally implies that more DOC can be released into the soil through microbial metabolism (Kalbitz et al., 272 

2000; Neff & Asner, 2001). Variations in the soil pH can affect the charge of soil colloids, thereby altering their 273 

adsorption-desorption mechanisms for DOC, which affects its solubility in the soil (Andersson & Nilsson, 2001; 274 

Cheng et al., 2020; Kaiser et al., 2005). In summary, the soil DOC concentration is the result of interactions between 275 

the soil and climate, biological, chemical, physical processes, and human influences at various spatial and temporal 276 

scales, with each factor playing a unique role in shaping DOC dynamics. 277 

 278 

4.3 Global patterns of soil DOC  279 
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Using our soil DOC concentration dataset, we quantified the soil DOC concentrations (0-30 cm) in terrestrial 280 

ecosystems, identified their key driving factors, and made global predictions. Global DOC stocks in the topsoil are 281 

estimated at 12.17 Pg C, accounting for 0.775% of the global soil organic carbon, which is significantly higher than 282 

previous estimates (Guo et al., 2020). Our predictions indicated that soil DOC concentrations decreased significantly 283 

with lower latitudes, particularly in the Northern Hemisphere. Previous global maps of soil DOC concentrations 284 

failed to capture this latitudinal trend, which was likely due to their limited spatial coverage (Guo et al., 2020; 285 

Langeveld et al., 2020). Our predicted map shows that the soil DOC concentrations increased with latitude. This 286 

trend was attributed to lower temperatures, specific vegetation types, higher soil moisture, and reduced human 287 

activities at higher latitudes (Camino‐Serrano et al., 2014; Lapierre et al., 2015). However, there was substantial 288 

heterogeneity at regional and local scales. For instance, despite being at similar latitudes, soil DOC concentrations in 289 

Northern Europe were significantly lower than in Siberia, which we surmised was primarily due to differences 290 

between the maritime climate of Northern Europe and the cold subarctic climate of Siberia. Regional variations in 291 

soil DOC concentrations might be related to topographic condition. Higher soil DOC concentrations on the Tibetan 292 

Plateau compared to Eastern China might result from the high elevation and low MAT in the plateau (Fig. 4a). In 293 

contrast, lower DOC levels in Arctic regions was reported, which might have been due to their omission of DOC 294 

concentration in the soil and dry or frozen soil (Langeveld et al., 2020). The predictive model offered higher 295 

accuracy in estimating the global soil DOC storage (Fig. 3). This advantage stemmed from our comprehensive 296 

dataset, which included DOC concentrations in both dry soil and soil solutions, which provided a robust data 297 

foundation for global soil DOC predictions. Additionally, we employed the optimal model for predicting the global 298 

soil DOC by comparing various linear and non-linear models. 299 

 300 

4.4 Limitations and predictive uncertainties 301 

Although we compiled a comprehensive global soil DOC concentration dataset, identified key drivers, and made a 302 

global prediction, our study had certain limitations. First, certain ecosystems remained underrepresented; for 303 

instance, tundra accounted for only 1% of our database, while shrublands, grasslands, and wetlands collectively 304 

constituted only 21%. This underrepresentation may reduce the accuracy of predictions for different ecosystems. 305 

Second, although we considered the subsoil at the beginning of dataset, we did not explore this further due to the 306 

limited availability of data and considerations of predictive accuracy. We intend to continue expanding the subsoil 307 
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DOC database in future work. Third, there was a deficiency in some predictive variables; although we had extracted 308 

missing data through gridded datasets, this inevitably introduced uncertainty in predictions, particularly for soil 309 

variables. Fourth, despite employing advanced machine learning methods with multiple predictors to predict the 310 

global soil DOC, 35% of soil DOC concentration variability remains unexplained. However, these limitations also 311 

highlighted areas for future soil DOC research. 312 

 313 

5 Data availability 314 

The global soil DOC in this study and raw dataset of driving factors can be downloaded at 315 

https://doi.org/10.6084/m9.figshare.26379898 (Ren and Cai, 2024). 316 

 317 

6 Conclusions 318 

Through the development of a comprehensive soil DOC dataset, we quantified soil DOC concentrations in terrestrial 319 

ecosystems, identified their driving factors, and made global predictions. Subsequent to comparing multiple 320 

predictive models, we selected the Random Forest model as the best performer for mapping soil DOC 321 

concentrations. The results indicated that tundra exhibited the highest DOC concentrations, while shrubland and 322 

cropland soils had relatively lower concentrations. Climate factors (elevation) and soil properties (clay content, SOC, 323 

pH) jointly regulated the DOC variations. The predicted that the soil DOC concentration increased significantly 324 

from the equator to the poles, and estimated the DOC stocks in the topsoil of terrestrial ecosystems was 12.17 Pg. 325 

The global soil DOC database we created will serve as a critical resource for future research, while enhancing our 326 

understanding of the roles of soil in the global carbon cycle. This database provides valuable data support for 327 

climate change research, ecosystem management, agricultural sustainability, environmental policymaking, and the 328 

improvement of biogeochemical models. This will aid in addressing soil degradation, improving food security, and 329 

tackling global environmental challenges. 330 
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Figure 1 Global distribution of soil dissolved organic carbon (DOC) concentration according to our site-level 452 
dataset. The dataset contains 12807 sets of data (a, b), which covers major terrestrial biomes (c). The dashed red line 453 
within the subplot (b) signifies the average soil DOC concentration, which is 223 mg kg-1. 454 

 455 

 456 
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Figure 2 Partial dependence of predictors from random forest algorithm. Soil dissolved organic carbon (DOC) 459 
concentration in relation to mean annual temperature (MAT), mean annual precipitation (MAP), elevation, soil sand 460 
content, soil clay content, soil depth, soil organic carbon (SOC) content, soil pH, bulk density, microbial biomass 461 
carbon content (MBC), and month (a, b, c, d, e, f, g, h, i, k, l, respectively).  462 

 463 
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Figure 3 Result of the random forest model predicting soil dissolved organic carbon (DOC) concentration. (a) The 466 
relative importance of predictors in the random forest model. (b) Predicted vs. observed soil DOC concentration. 467 
The dashed line indicates the 1:1 line and the blue line indicates the regression line between predicted and observed 468 
values. 469 
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Figure 4 Prediction of soil dissolved organic carbon (DOC) concentration in global ecosystems. (a) Global map of 472 
predicted soil DOC concentration. (b) Latitudinal patterns of soil DOC concentration. Blue line indicates the locally 473 
weighted regressions between latitude and soil DOC concentration in the predicted global map. Values in the 474 
predicted map reflect soil DOC concentration within a grid cell resolution of 0.05° × 0.05°. A value in the grid is the 475 
averaged from the result of random forest model. 476 
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Table 1. Variables information of soil dissolved organic carbon dataset in global terrestrial ecosystems. n/a refers to 479 
values that are not applicable. 480 

Variables Description Unit Number Range Mean 

No. Unique identification number of each record n/a 12807 1 to 12807 6404 

Latitude Latitude of study site ° 12807 -64.81 to 78.85 34.89 

Longitude Latitude of study site ° 12807 -159.66 to 175.95 107.05 

MAT Mean annual temperature ℃ 9948 -11.16 to 28.00 11.84 

MAP Mean annual precipitation mm 10325 30 to 4200 1071 

Elevation Altitude of study site m 5578 4 to 4730 881 

Ecosystems Community by the dominant plant species 

 

7 n/a n/a 

Soil sand Soil sand content % 4062 1 to 98 45 

Soil silt Soil silt content % 4025 1 to 95 33 

Soil clay Soil clay content % 4316 0 to 89 22 

Soil depth Mean depth of soil sample cm 12807 0.53 to 30.00 11.36 

SOC Soil organic carbon g kg-1 9136 0.23 to 598.50 38.74 

TN Soil total nitrogen g kg-1 7089 0.00 to 33.30 2.57 

Soil pH Measure by 1:2.5 H2O, n/a 8266 2.30 to 9.59 6.16 

BD Soil bulk density kg m-3 4380 0.07 to 2.52 1.29 

MBC Soil microbial biomass carbon mg kg-1 4218 5.93 to 2986 413 

Date Observation month of DOC month 12807 1 to 12 6.50 

DOCphy Measure by physical method mg kg-1 3289 0.28 to 3181 155.99 

DOCche Measure by chemical process mg kg-1 9518 0.04 to 7859 245.83 

DOC Soil dissolved organic carbon mg kg-1 12807 0.04 to 7859 222.78 
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Table 2. Global soil dissolved organic carbon concentration (mg kg-1) for major ecosystems. 25% and 75% represent 483 
the 25th and 75th percentiles of one group, respectively. SD, Standard deviation; SE, Standard error. 484 

Ecosystems Mean SD SE Skewness Kurtosis 25% Median 75% 

Wetland 218.53 340.35 10.23 5.15 39.41 46.40 107.11 266.51 

Forest 256.18 531.72 7.62 7.09 69.72 47.60 115.51 246.55 

Shrubland 160.24 131.51 6.70 3.40 22.58 76.53 127.84 205.50 

Tundra 470.78 721.70 63.30 4.67 29.59 86.91 241.09 577.00 

Grassland  327.77 674.43 19.53 4.16 18.03 54.62 126.48 303.63 

Cropland 165.98 272.51 3.81 6.53 73.25 40.51 83.00 178.81 

Global 222.78 445.78 3.93 7.16 73.67 45.86 101.01 226.47 
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Table 3. Analysis of the predicted global map of soil dissolved organic carbon. The area-weighted average soil 486 
dissolved organic carbon concentration was calculated based on our predicted map. Converting soil dissolved 487 
organic carbon concentration to soil dissolved organic carbon content and stock used the soil bulk density and land 488 
area. 489 

Continent 
Soil DOC concentration  

(mg kg-1) 

Soil DOC content  

(g m-2) 

Soil DOC stock  

(Pg) 

Asia 274.43 107.79 4.80 

North America 263.63 99.37 2.45 

Europe 227.34 86.76 0.88 

South America 215.81 77.05 1.37 

Oceania 198.13 76.92 0.59 

Africa 186.35 68.04 2.07 

Global 237.56 89.80 12.17 
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