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Abstract 15 

Dissolved organic carbon (DOC) constitutes the most active carbon pool in soils and plays critical roles in soil 16 

carbon cycling, plant productivity, and global climate change. Accurately assessing soil DOC quantity is essential to 17 

elucidate ecosystem functions and services. However, global driving factors and the spatial distribution of soil DOC 18 

remain poorly quantified, largely due to limited large-scale data. Here, we compile a comprehensive global database 19 

of soil DOC concentrations, encompassing 12,807 observations extracted from 975 scientific publications published 20 

between 1984 and 2020. We also record detailed geographic locations, climatic variables, and soil properties as 21 

predictors. Machine learning techniques were employed, including 10-fold cross-validation and evaluating model 22 

performance by R-squared and root-mean-square error, to predict the relative importance of various predictors and 23 

the global distribution of soil DOC concentrations. Worldwide soil DOC concentrations ranged from 0.04 to 7859 24 

mg kg
-1

, averaging 222.78 mg kg
-1

. The 14 selected predictors, including elevation, soil properties, and climate, 25 

explained 63 percent of the variance in soil DOC concentrations. Elevation played the most important predictor for 26 

soil DOC prediction, followed by soil organic carbon, seasonal variability of temperature, and soil clay. Soil DOC 27 

decreases initially but increases when soil clay exceeds 20% and seasonal variability of temperature exceeds 0.7. 28 

Using these findings, a global map of predicted soil DOC concentrations was produced at a 0.05° by 0.05° 29 

resolution. Global soil DOC concentrations generally increased from the equator to the poles, and the topsoil layer 30 

(0-30 cm) holed 13.47 Pg of soil DOC, with substantial variations across continents. These results informed soil 31 

management practices strategies, ecosystem services evaluations, and climate change mitigation efforts. 32 

Furthermore, we envisioned integrating our database with other carbon pools to advance understanding of total soil 33 

carbon turnover and to refine Earth system models. The dataset is publicly available at 34 

https://doi.org/10.6084/m9.figshare.28574183 (Ren and Cai, 2025). 35 

  36 
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1. Introduction 37 

With global changes over the last few decades, terrestrial ecosystems, which serve as the fundamental safeguard for 38 

biodiversity and function as a carbon sink, have become increasingly vital in mitigating global climate warming 39 

(Lee et al., 2023). Soils anchor the largest dynamic carbon reservoir in terrestrial ecosystems, with the 0-1 meter 40 

storing 1,500-2,400 Pg of carbon, which is triple the atmospheric carbon stock (880 Pg) and quadruple the biotic 41 

carbon pools (450-650 Pg) (Lal, 2004; Zhou et al., 2024a). Sub-decadal perturbations as small as ±1% in soil carbon 42 

stocks could release 15-24 Pg C, which is equivalent to 1.5-2.4 years of anthropogenic emissions and could trigger 43 

nonlinear climate feedbacks (Schlesinger and Bernhardt, 2020). Dissolved organic carbon (DOC), a molecular 44 

continuum spanning labile metabolites (e.g., glucose, citrate) to mineral-stabilized colloids, is recognized as the 45 

most active carbon pool in soil (Ren et al., 2024a). Currently, the portion of organic carbon that is water-soluble and 46 

able to pass through a 0.45 μm microporous filter membrane is referred to as DOC (Gmach et al., 2020; Guo et al., 47 

2020a). Despite constituting 0.1-2% of total soil organic carbon, DOC mediates three disproportionately critical 48 

processes: fuelling 65-80% of heterotrophic respiration via rapid turnover, controlling mineral-organic complexation 49 

that stabilizes 40-60% of persistent carbon, and exporting 0.25-0.75 Pg C yr⁻¹ to aquatic systems—a flux 50 

comparable to landuse change emissions (Drake et al., 2018; Nakhavali et al., 2021; Ren et al., 2024b). Lateral DOC 51 

fluxes create a terrestrial - aquatic carbon conveyor belt equivalent to 50% of the Amazonian carbon sink, while also 52 

modifying water chemistry through pH buffering and metal complexation (Fichot et al., 2023). Thus, an accurate 53 

assessment of soil DOC concentrations is vital, given its unique properties, roles, and broad variability, which can 54 

span up to three orders of magnitude (Nakhavali et al., 2020; Ren et al., 2024b). Despite significant variations in soil 55 

DOC concentrations, their global distribution has not yet been systematically quantified. Bridging this knowledge 56 

gap is essential for more accurate representations of the carbon cycle in Earth system models. 57 

Soil DOC concentration is regulated by a kinetic equilibrium between production processes (plant litter leaching, 58 

rhizodeposition, and microbial necromass release) and removal pathways (microbial mineralization, mineral 59 

adsorption, and hydrological leaching). Disruption of this equilibrium, whether caused by altered substrate inputs or 60 

shifted microbial metabolic demands, reshapes DOC pool dynamics (Sokol et al., 2022). Hierarchical controls 61 

shaped DOC dynamics: climatic drivers set thermal-hydrological boundaries, vegetation types modulate organic 62 

matter stoichiometry, and soil properties dictate mineral-mediated stabilization (Fichot et al., 2023; Ren et al., 2024b; 63 
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Smreczak and Ukalska-Jaruga, 2021). Climate, often characterized by annual mean temperature and precipitation, is 64 

recognized as a primary driver of soil DOC concentrations (Lønborg et al., 2020). Temperature and precipitation 65 

directly influence soil DOC through effects on microbial activity, organic matter decomposition rates, solubility, and 66 

mobility, and indirectly shape DOC dynamics by influencing vegetation growth and soil structure (Ren et al., 2023). 67 

Vegetation type affects soil DOC primarily by altering the quantity and quality of organic matter inputs (Zhao et al., 68 

2022). Together, climate and vegetation type profoundly affect soil biological, chemical, and physical properties, all 69 

closely with the formation and decomposition of soil DOC (Cotrufo and Lavallee, 2022). Some studies have 70 

reported large temporal variations in soil DOC concentrations at certain field sites (Ding et al., 2022; Zhao et al., 71 

2022), with significantly higher DOC concentrations in summer and autumn than in winter and spring. Seasonal 72 

effects on soil DOC concentrations are closely associated with factors such as precipitation, soil moisture, and 73 

substrate availability (Ren et al., 2023). In warmer seasons, soil DOC production can increase due to active organic 74 

matter decomposition, driven by higher microbial activity, as well as greater DOC contributions from root exudation 75 

during periods of more active plant photosynthesis. Although relationships between soil DOC concentrations and 76 

environmental factors have been observed at local and regional scales, the relative importance of these factors at the 77 

global scale remains unclear. This lack of understanding hinders the development of effective strategies for soil 78 

carbon management and climate change mitigation. 79 

Accurate mapping of soil DOC provides critical baseline data for addressing global challenges spanning climate-80 

carbon feedbacks, agricultural sustainability, and aquatic ecosystem management (Guo et al., 2020b; Langeveld et 81 

al., 2020). Current global soil DOC inventories remain limited in both spatial resolution and mechanistic 82 

representation. Existing maps derived from conventional geostatistical approaches, such as those by by Guo et al. 83 

(2020b) and Langeveld et al. (2020), exhibit three fundamental limitations that constrain their utility for process-84 

based modeling. First, the global soil DOC maps produced by Guo et al. (2020b) and Langeveld et al. (2020) rely on 85 

relatively few observational data points (2890 and 762 pairs, respectively), with over 80% of training data clustered 86 

in North America and Western Europe, while tropical regions and continental interiors remain under sampled. Africa, 87 

South America, Eastern Europe, and Central Asia collectively contribute less than 5% of the global calibration 88 

datasets in these studies. Second, they employ static representations of DOC dynamics, neglecting well-documented 89 

seasonal fluctuations driven by plant phenology and hydrologic pulses. Field observations demonstrate that 90 

temperate forest soils can exhibit 2-3 fold increases in DOC concentrations during autumn litterfall periods 91 
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compared to spring thaw events. Third, current models oversimplify vertical DOC gradients by treating topsoil (0-30 92 

cm) as homogeneous layers, despite empirical evidence showing exponential decreases in DOC with depth. In 93 

reality, soil DOC concentrations are higher in surface soils (0-10 cm) and decline with depth, exhibiting a clear 94 

vertical gradient. Finally, traditional linear regression methods used in these studies capture only 30-40% of 95 

observed soil DOC variability, as they fail to account for threshold responses to environmental drivers such as soil 96 

pH transitions below 5.2 that trigger dissolved organic matter flocculation. Recent advancements in machine 97 

learning has enabled researchers to apply such techniques because of their capacities to automate feature extraction, 98 

handle large datasets, and identify complex patterns, ultimately offering significant advantages in predictive 99 

accuracy and adaptive learning.  100 

To advance our knowledge of global soil DOC patterns and drivers, we developed a global database of soil DOC 101 

concentrations, comprising 12,807 samples from 975 published studies. Using Random Forest algorithms, we 102 

quantified the relative importance of environmental factors and predicted soil DOC concentrations on a global scale. 103 

The specific aims of this study were: (1) to determine global patterns of soil DOC concentrations, (2) to identify the 104 

primary factors controlling soil DOC concentrations on a global scale and to estimate total global soil DOC storage.  105 

2. Material and method 106 

2.1 Data sources and processing 107 

We searched for publications up to December 2022 using Google Scholar (https://scholar.google.com), the Web of 108 

Science (http://apps.webofknowledge.com), and the China Knowledge Resource Integrated Database 109 

(http://www.cnki.net/) using the following search terms: (dissolved organic carbon OR dissolved organic matter OR 110 

"DOC" OR "DOM") and soil, up to December 2022. The data flow through the selection phases is shown in Fig. S1. 111 

To ensure a standardized and minimally biased dataset, we applied the following inclusion criteria: First, we 112 

included only data from terrestrial ecosystems (excluding oceans and rivers) to maintain consistency in 113 

environmental factors and ecological interactions. Second, we used only topsoil data (0-30 cm) to ensure data 114 

representativeness and quantity. Third, we recorded duplicate results from different articles only once to avoid 115 

overrepresentation of certain research groups or locations. Finally, we included agricultural soils affected by human 116 

activities such as tilling and fertilization but excluded industrial and urban soils to avoid complexity introduced by 117 

industrial and urban settings. We extracted data presented solely in figures using the digitizer function of Origin 118 

https://scholar.google.com/
http://apps.webofknowledge.com/
http://www.cnki.net/
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2019. Before extracting the target data, we employed the Isolation Forest method for anomaly detection. The 119 

algorithm constructs random binary trees, where anomalies are typically isolated more rapidly, while normal points 120 

require more splitting steps.  121 

Based on these criteria, we compiled a total of 12,807 DOC observations based on 1610 sites from 975 122 

publications (Fig. 1a). We also collected data on experimental sites (longitude, latitude, and altitude), climate (mean 123 

annual temperature [MAT] and mean annual precipitation [MAP]), biomes (wetland, forest, shrubland, tundra, 124 

grassland, and cropland) and soil properties (soil organic carbon, texture, and pH) (Table 1). These environmental 125 

factors are used as predictors. When environmental factors were not reported in original publication, the missing 126 

data were extracted from grid datasets according to the geographic coordinates of each observed site (Table S1). We 127 

extracted elevation, MAT, MAP, monthly evaporation (ETM), seasonal variability of precipitation (SVP), and 128 

seasonal variability of temperature (SVT) data from WorldClim Version 2 (https://www.worldclim.com/) with 129 

resolution of 1 km × 1 km, ecosystem data from NASA's Socioeconomic Data and Applications Center 130 

(https://sedac.ciesin.columbia.edu) with resolution of 1 km × 1 km, soil properties from OpenLandMap version 2.0.0 131 

(https://openlandmap.org) with resolution of 0.25 km × 0.25 km, and microbial biomass carbon data from the open 132 

database of figshare (https://doi.org/10.6084/m9.figshare.19556419) with resolution of 1 km × 1 km. Despite bias, 133 

there is a significant linear relationship between the measured values and the corresponding extracted values (Fig. 134 

S2). Noteworthy, this bias could introduce some uncertainty to the results. Overall, our study sites spanned a wide 135 

range of latitudes (−64.81° to 78.85°) and longitudes (−159.66° to 175.95°) (Table 1), encompassing a large climate 136 

gradient with MAT from −11.16 to 28.00℃ and MAP from 30 to 4200 mm.  137 

2.2 Data standardization  138 

For our database, the DOC concentrations were quantified using a mix of physical and chemical techniques. 139 

Physical methods included soil solution collection using lysimeters or ceramic suction. Chemical methods employed 140 

various solvents like distilled water, potassium chloride (KCl), or potassium sulfate (K2SO4) as described by Li et al. 141 

(2018). Over 74.32% of the DOC was determined using chemical techniques, which highlighted their reliability. For 142 

consistency, the DOC values derived from physical approaches was converted to chemical method values using the 143 

following equation: 144 

DOCsoil = (DOCsolution×V×1000)/W×[1/(V×(1-W) ×BD×1000000)]                                     (1) 145 

where, DOCsoil represents soil DOC concentration determined by chemical methods (mg g
-1

); DOCsolution is the 146 

https://www.worldclim.com/
https://sedac.ciesin.columbia.edu/
https://openlandmap.org/
https://doi.org/10.6084/m9.figshare.19556419
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concentration measured by physical methods (mg L
-1

); W denotes the volumetric soil moisture (m³ m
-
³); V is the 147 

volume of the soil column for solution extraction (m³); and BD is the soil bulk density (g cm
-
³). The factor 1000 148 

converts m³ to L, and 1,000,000 converts m³ to cm³ following established by Guo (Guo et al., 2020b). This 149 

standardization allowed for a consistent comparison and analysis of the DOC data across various studies. 150 

2.3 Predictive modeling  151 

The driving factors of soil DOC concentrations were divided into four categories: elevation, climate, ecosystem, and 152 

soil properties. Soil properties included physical attributes (clay, sand, bulk density, and depth), chemical attributes 153 

(SOC, pH), and a biological attributes (microbial biomass carbon) attributes. Climate comprised MAT, MAP, ETM, 154 

SVP, and SVT. Ecosystems encompassed wetland, forest, shrubland, tundra, grassland, and cropland. In our 155 

predictive models, correlated predictors could substitute for each other, causing their importance to be shared and 156 

thus potentially underestimated. Consequently, we excluded soil silt because they were correlated with soil sand (Fig. 157 

S3). Further, we did not include some variables (e.g., soil moisture, soil porosity, ferroaluminum oxide, microbial 158 

structures, microbial diversity, and carbon cycling enzymes) because they were rarely report in the target papers. 159 

To develop and optimize a predictive model for soil DOC, we employed an array of regression methods, which 160 

encompassed three linear and four nonlinear approaches (Table S2). The linear methods included a least absolute 161 

shrinkage and selection operator (LEAPS), elastic net (ENET), and standard linear modeling (LM) to identify the 162 

most important predictor variables, while minimizing overfitting. The nonlinear methods included the random forest 163 

(RF) algorithm, boosted tree (BOOSTED), bagged tree (Bagged), and cubist (CUBIST) models. Each model had 164 

intrinsic feature selection processes, and we fine-tuned them to improve accuracy and control complexity. During 165 

optimization phase, various actions were implemented. LEAPS models were educated to accommodate the largest 166 

number of variables. We applied penalties for feature condensation (diminishing the role of less impactful variables 167 

in the resultant linear formula) between 0 and 0.1, incremented by 0.01, to discipline the models. RF growth was 168 

restricted at a maximum of 1,000 trees and limited the number of predictors to one-third of the maximum possible, 169 

ensuring a balance between complexity and manageability. BOOSTED models underwent training with 10 to 100 170 

trees, each having between 1 to 7 nodes. We incorporated shrinkage rates of 0.01 or 0.1, with a maximum tree size 171 

of 5. For CUBIST model, we explored neighboring values from 1 to 9 in increments of 2 and varied community 172 

sizes from 1 to 100, refining predictive accuracy. In every instance, the models were evaluated using Monte Carlo 173 

cross-validation with 100 iterations, employing a 70/15/15 split between training, validation, and testing sets (Fig. 174 
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2b and Fig. S7 and 8). The root mean square error and R² values were calculated to evaluate model accuracy and 175 

residual variance, which served as criteria for ranking model performance (Table S2). A 10-fold cross-validation 176 

method was used to evaluate model performance. A flowchart for model selection process was shown in Fig. S5. 177 

Finally, the RF model was used to predict soil DOC concentrations. The factor of ecosystems was excluded based on 178 

the IncNodePurity of RF model (Fig. S6). 179 

To evaluate the effects of independent variables on soil DOC, a variable importance analysis was conducted using 180 

permutation variable importance measurements. This analysis was performed with the variable importance tool 181 

integrated into the R packages for the RF model that exhibited the highest predictive quality. In essence, this method 182 

assessed prediction errors within the model by calculating mean square errors for each regression tree. The models’ 183 

variable importance scores assessed the influence of predictor variables on the outcomes. For enhanced 184 

comparability of all model inputs, the independent environmental variables were scaled to a 0–100% range to 185 

facilitate comparisons of their proportional contribution to the model's predictions. For evaluate the sensitivity 186 

analysis of model predictions, the Sobol index, a variance of based global sensitivity analysis method, was used to 187 

assesses how model input parameters impact output results (Fig. S9). It breaks down the system's total variance into 188 

contributions from individual inputs and their combinations. 189 

Partial dependence analyses were employed to examine the relationships between predicted soil DOC and 190 

independent variables across their entire value ranges in the RF model. These analyses allowed us to isolate the 191 

effects of specific independent variables by removing the influence of the others. Partial dependence plots offered 192 

insights into the average marginal effects of one or more independent variables on model predictions. For instance, 193 

these plots could reveal whether relationships were linear, monotonic, or more complex. By examining curvature 194 

and inflection points, we could identify where variable exerted strong, immediate effects or where their influences 195 

were more subtle and possibly mediated by other variables. We reported the x-axis as a standardized value, ensuring 196 

a clear progression from low to high values. When we generated partial dependence with RF, several uncertainties 197 

arose. The high model complexity sometimes slowed predictions, especially with many trees. The limited 198 

interpretability of the RF models could complicate understanding partial dependence. Sensitivity to noise potentially 199 

led to overfitting and reduced accuracy. Variable importance measurements could also be biased by varying feature 200 

scales or categories, potentially skewing interpretations of feature-outcome relationships. For explore the interaction 201 

effects between key drivers of derived soil DOC concentration, SHapley Additive exPlanations (SHAP) is used to 202 
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interpret machine learning model predictions by calculating the contribution of features to the model's predictions 203 

(Fig. 4). SHAP values can be further decomposed into main effects and interaction effects, where interaction effects 204 

reveal the interactions between features. SHAP interaction values are obtained by first defining an explainer using 205 

the TreeExplainer function (by passing the model to it), and then deriving the interaction values from this explainer. 206 

These values can be interpreted similarly to standard SHAP values, explicitly quantifying how individual features 207 

and their pairwise interactions contribute to specific predictions.  208 

2.4 Global soil DOC mapping 209 

The global distribution of soil DOC and the relative uncertainties of our predictions were generated by combining 210 

our DOC dataset with the RF model, which incorporated global climate and soil-rasterized datasets (Figs. 5, S11 and 211 

Table S1). We first produced factor maps from the key input variables, focusing on the 14 distinct variables 212 

associated with each raster cell. Subsequently, the factor maps were employed to derive a spatially detailed global 213 

map of soil DOC. To achieve global-scale mapping, we processed the driving factors at a 0.05° resolution to 214 

calculate soil DOC values. Areas that did not meet the following criteria were excluded from our prediction: (1) 215 

absence of data for any essential predictors, (2) soil order and biomes not aligning with the previously discussed 216 

aggregated land use systems, or (3) locations in climate zones outside the scope of our model's focus. Duo to the 217 

different spatial resolution of input variables data, resampling techniques enables the conversion of raster data 218 

between spatial resolutions to facilitate spatial analysis and modeling. The core principle of resampling involves 219 

estimating pixel values at new resolutions through interpolation or other mathematical methods. Specifically, down-220 

sampling (high-to-low resolution conversion) requires aggregating values from multiple high-resolution pixels into a 221 

single low-resolution pixel. Up-sampling (low-to-high resolution conversion) necessitates generating new pixel 222 

values through interpolation algorithms. To evaluate uncertainty due to data resampling and unexplained variability 223 

not accounted for by the independent variables, we analyzed finer-resolution (5 km²) grids where driving factors 224 

were available at this detailed. This analysis clarified the overall uncertainty inherent in our global soil DOC 225 

estimation. The corresponding map of relative uncertainty of prediction was built by displaying the standard 226 

deviation divided by the mean prediction, based on our final random forest RF model. The standard deviation 227 

reflected the range of possible predictions derived from the iterative build-up of decision trees after 500 model runs. 228 

Soil DOC concentration varied significantly with ecosystems (Table 2) and soil depth (Fig. 3). Ecosystems were 229 

divided into wetland, forest, shruland, tundra, grassland, and cropland (Fig. S10).Soil DOC concentration decreased 230 
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with soil depth and reached a turning point at approximately 10 cm (Fig. 3). Therefore, when extrapolating the RF 231 

model to the entire globe, we used a month range from 1 to 12 and depths of 5 (0–10 cm) and 20 (10–30 cm). From 232 

this, we generated a total of 12 maps of global soil DOC concentration. We combined these 12 maps into a single 233 

map representing the global distribution of soil DOC concentration based on soil depth. Finally, we calculated the 234 

global soil DOC stock using the following equation applied to the combined map of global soil DOC concentration: 235 

𝑆𝑂𝐶𝑠 = ∑𝑆𝑂𝐶𝑖 × 𝐵𝐷𝑖 × (1 − 𝑓) × 𝑇 ×𝑀𝑖                                                              (2) 236 

where SOCs is SOC stock and SOCi is SOC concentration. The subscript i is the number of global grid. BD, f, and T 237 

are soil bulk density, the volumetric percentage of coarse fraction (>2 mm), and the depth of soil layer, respectively. 238 

M is the effective area of each grid. 239 

3. Results 240 

3.1 Soil DOC concentrations in different ecosystems globally 241 

A total of 12,807 soil DOC observations were compiled from 975 publications that spanned six continents, as well 242 

as major biomes and terrestrial ecosystems (Fig. 1). We found that the natural logarithm of soil DOC concentrations 243 

conformed to a normal distribution (Fig. 1b). Global soil DOC concentrations ranged from 0.04 to 7859 mg kg
-1

. 244 

The global average, median, and standard deviation were 222.78, 101.01, and 445.78 mg kg
-1

, respectively (Table 2). 245 

We observed that soil DOC concentrations varied across ecosystems. Tundra had the highest average and median 246 

soil DOC concentrations at 470.78 and 241.90 mg kg
-1

, respectively. Grassland averaged 327.77 mg kg
-1

 with a 247 

median of 126.48 mg kg
-1

, while forest averaged 256.18 mg kg
-1

 with a median of 115.51 mg kg
-1

. Wetland 248 

averaged 218.53 mg kg
-1

 with a median of 107.11 mg kg
-1

, cropland averaged 165.98 mg kg
-1

 with a median of 249 

83.00 mg kg
-1

, and shrubland averaged 160.24 mg kg
-1

 with a median of 127.84 mg kg
-1

 (Table 2). 250 

3.2 Model performance and drivers of soil DOC concentrations 251 

We estimated RMSE and R² for all tuned models and used these statistics to analyze residual variance and accuracy, 252 

as well as to rank model performance (Table S2). To facilitate interpretation of uncertainty, we also calculated 253 

relative RMSE by dividing the absolute error by the global mean soil DOC concentration. RF model resulted in the 254 

best performance within one standard error of the minimal RMSE and were thus used for further analyses of 255 

variable importance. The residual plot of train, validation, and test data for RF model were randomly distributed 256 

near zero (Fig. S8). Overall, nonlinear models (R² = 0.41–0.63; RMSE = 248–327) outperformed linear models (R² 257 

= 0.10–0.11; RMSE = 401–411) (Table S2). The RF model yielded the lowest RMSE within one standard deviation 258 
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range and was therefore selected for subsequent analyses of variable importance (Table S2). The relative importance 259 

of soil DOC drivers and the global map of soil DOC distribution were derived from the RF model outputs (Fig. 4 260 

and Fig. S11). 261 

The RF model explained 63% of the variability in soil DOC concentrations across all sites and achieved the 262 

lowest RMSE compared with other models (Fig. 2 and Table S2). Elevation played the most important predictor for 263 

soil DOC prediction among the selected 14 variables, followed by SOC, SVT, and soil clay. The relative importance 264 

of MAP, SVP, MBC, soil pH, soil sand, and soil C:N was gradually diminishing. Meantime, elevation, SOC, SVT, 265 

soil sand and soil clay were the more sensitivity factors of RF model than the other predictor (Fig. S9). Partial 266 

dependence analysis produced results (Fig. 3) similar to Pearson correlation analyses (Fig. S4). We found a positive 267 

correlation between soil DOC and both elevation and soil organic carbon, although there were fewer data points 268 

corresponding to higher elevations and greater soil organic carbon values (Fig. 3f). Soil DOC showed a trend of 269 

decreasing first and then increasing with the increase of MAT (0-30 ℃), SVT (0-1.5), and soil clay (0-50%) (Fig. 3a, 270 

d and h). Soil DOC showed a trend of decreasing first and then stabilizing with the increase of soil depth and soil pH 271 

(4-8.5). The inflection point of soil depth and soil pH was 10 cm and 5.8, respectively (Fig. 3i and k). Elevation, 272 

SOC, SVT, and soil clay had strong negative interactions with MAT (Fig. 4). This means as the MAT variable 273 

increases, the influence of the other variables is weakened. Elevation had a positive interaction with bulk density, 274 

suggesting they work together to affect soil DOC. 275 

3.3 Global soil DOC patterns  276 

The RF model has the ability to predict soil DOC in wetland (R
2
=0.87), forest (R

2
=0.85), shruland (R

2
=0.85), tundra 277 

(R
2
=0.77), grassland (R

2
=0.96), and cropland (R

2
=0.90) (Fig. S10). We observed significant spatial heterogeneity in 278 

predicted global soil DOC concentrations (Fig. 5a). Soil DOC concentrations increased from the equator toward the 279 

poles (Fig. 5b). High soil DOC concentrations were found in high-altitude plateaus and mountain ranges at low 280 

latitudes, including the Andes, African Highlands, and West Indies (Fig. 5a). The global average soil DOC 281 

concentration was 224.72 mg kg
-1

 (Table 3), and the topsoil (0-30 cm) DOC stock was 13.74 Pg. Asia had the 282 

highest soil DOC concentration (259.03 mg kg
-1

), followed by North America (250.66 mg kg
-1

), South America 283 

(219.83 mg kg
-1

), Europe (208.28 mg kg
-1

) and Oceania (206.36 mg kg
-1

). Africa had the lowest soil DOC 284 

concentrations (166.73 mg kg
-1

). For predicted soil DOC stocks, Asia and North America remained ranked first and 285 

second at 4.93 and 2.93 Pg, respectively. Despite its relatively low predicted soil DOC concentrations, Africa ranked 286 
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third in total DOC stock (2.37 Pg) because of its large land area. South America followed at 1.76 Pg, while Europe 287 

and Oceania had the lowest stocks at 0.98 and 0.76 Pg, respectively. 288 

4 Discussions 289 

4.1 Effects of elevation and soil properties on soil DOC concentrations 290 

The most critical predictors of soil DOC concentrations among the selected 14 variables were elevation (Fig. 2), 291 

with soil DOC concentrations exhibiting a significant positive correlation with elevation after controlling for 292 

confounding variables (Fig. 3f). This finding contrasted with several previous studies that prioritized precipitation 293 

regimes (Guo et al., 2020b) or soil texture (Angst et al., 2021) as primary soil DOC drivers, suggesting that 294 

elevation effects may have been obscured in large-scale analyses lacking environmental stratification. Three 295 

interconnected mechanisms may explain this pattern of elevation effects. First, decreasing temperatures at high-296 

altitude regions  (0.6°C/100m adiabatic lapse rate) limit the metabolic activity of microorganisms (Davidson and 297 

Janssens, 2006), slowing the decomposition of soil DOC and favoring soil DOC accumulation through reduced 298 

mineralization. Additionally, these regions typically receive more precipitation, which increases soil moisture and 299 

helps protect soil DOC from rapid breakdown. High-altitude regions often experience distinct precipitation patterns 300 

and soil moisture conditions compared with lower elevations (Li et al., 2023). Higher precipitation and lower 301 

evaporation rates may promote greater dissolution and leaching of organic matter, thereby increasing soil DOC 302 

concentrations (He et al., 2021; Lu et al., 2019). Second, the altitudinal shift in vegetation communities, particularly 303 

the transition to coniferous species and ericaceous shrubs at higher elevations, enhances labile carbon inputs through 304 

distinct litter chemistry (higher phenolic compounds and lower C:N ratios), which created a positive feedback loop 305 

for DOC production (Pesántez et al., 2018; Wei et al., 2024). Third, the orographic precipitation effect and persistent 306 

cloud immersion at higher elevations maintain soil moisture conditions that simultaneously stimulate DOC release 307 

from organic matter while limiting its lateral export through reduced drainage flux (Michalzik et al., 2001). 308 

Moreover, high-altitude areas are generally less disturbed by humans activities, which may help preserve soil DOC. 309 

Our results also indicated that soils in low-latitude plateaus and mountain ranges (e.g., Tibetan Plateau, Andes, 310 

African Highlands, and West Indies) exhibited higher DOC concentrations (Fig. 5a). These results fundamentally 311 

recalibrated our understanding of topographic controls on soil carbon cycling, which provided a mechanistic basis 312 

for predicting climate feedbacks in vertically stratified landscapes. 313 

The effects of soil clay content on DOC concentrations are complex, involving adsorption, water retention, 314 
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microbial activities, and organic matter protection mechanisms (Kaiser and Zech, 2000; Singh et al., 2017). 315 

Generally, high clay content fosters DOC accumulation through the adsorption and stabilization of organic matter 316 

(Gmach et al., 2019; Kalbitz et al., 2000). Our findings revealed a nonlinear threshold control of soil clay content on 317 

soil DOC with minimum DOC concentrations occurring at 20% clay (Fig. 3h), which was a pedogenic tipping point 318 

where the dominant regulatory mechanisms shift from physicochemical stabilization to biogeochemical 319 

accumulation. In soils with clay content below this threshold, increasing clay promotes organo-mineral association 320 

through Fe/Al-oxide bridging and exponential growth of specific surface area (Sanders et al., 2021), which 321 

effectively sequester labile organic carbon into micro-aggregates while suppressing soil DOC release. Beyond 20% 322 

clay, however, the emergence of impermeable microstructures reduces oxygen diffusion, establishing anaerobic 323 

microsites that inhibit phenol oxidase activity and accumulate phenolic metabolites (Awedat et al., 2021). This shift 324 

coincides with clay-organic co-precipitation dynamics: high-clay soils (>25%) exhibit stronger preferential 325 

dissolution of Fe-OM complexes during redox oscillations (Awedat et al., 2021). Furthermore, SOC serves as the 326 

main source of DOC, so higher SOC results in more DOC release through microbial metabolism (Kalbitz et al., 327 

2000; Neff and Asner, 2001).  328 

4.2 Effects of climate on soil DOC concentrations 329 

Seasonal temperature variability (SVT) was the predominant climatic driver of soil DOC, exhibiting a nonlinear 330 

threshold response where soil DOC concentrations initially decline but shift to an increasing trend beyond an SVT 331 

threshold of 0.7 after accounting for confounding factors (Fig. 3d). This contrasts sharplied with previous studies 332 

that primarily attributed soil DOC fluctuations to mean annual temperature or precipitation (Guo et al., 2020b) or 333 

emphasized moisture variability over thermal regimes (Li et al., 2018). This makes our work the first study to 334 

identify SVT-driven biphasic DOC behavior in global terrestrial ecosystem. Three interconnected mechanisms could 335 

explain this pattern. First, moderate SVT levels (<0.7) likely enhance microbial carbon use efficiency by promoting 336 

enzymatic acclimation to predictable thermal fluctuations, which reduce soil DOC accumulation through efficient 337 

mineralization (Ren et al., 2024b). Second, surpassing the 0.7 SVT threshold destabilizes microbial communities 338 

through repeated thermal shocks, which increase cell lysis and releasing labile organic compounds into the soil 339 

matrix (Zhou et al., 2024b). Third, extreme temperature variability alters soil physical structure by disrupting 340 

aggregate stability and exposes previously protected organic matter to solubilization during thermal contraction-341 

expansion cycles (Six et al., 2004). The observed DOC rebound at high SVT aligns with plant root exudation 342 
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strategies under thermal stress, which suggested that vegetation may compensate for microbial carbon loss by 343 

releasing soluble metabolites to maintain rhizosphere functionality (Kruthika et al., 2024). Overall, the identified 344 

SVT threshold (0.7) serves as an early warning indicator for ecosystems approaching critical thermal instability, 345 

particularly in climate transition zones where seasonal temperature swings are intensifying. Practically, this 346 

threshold could guide land management strategies. For instance, prioritizing organic amendments or shade crops in 347 

regions with SVT >0.7 may mitigate soil DOC leaching risks.  348 

4.3 Global patterns of soil DOC  349 

Using our soil DOC concentration dataset, we quantified the soil DOC concentrations (0-30 cm) in terrestrial 350 

ecosystems, identified their key driving factors, and produced global predictions. Global DOC stocks in the topsoil 351 

are estimated at 13.74 Pg C, accounting for 0.87% of global soil organic carbon, which is significantly higher than 352 

previous estimates (Guo et al., 2020b). Our predictions indicated that soil DOC concentrations decreased markedly 353 

toward lower latitudes, particularly in the Northern Hemisphere. Previous global maps of soil DOC concentrations 354 

failed to capture this latitudinal trend, likely due to limited spatial coverage (Guo et al., 2020b; Langeveld et al., 355 

2020). Our predicted map shows that soil DOC concentrations increase with latitude. In high-latitude regions, low 356 

temperatures limit microbial activity, which slows the decomposition of organic matter and leads to more organic 357 

carbon being retained in dissolved form (Patoine et al., 2022) , thereby increasing soil DOC concentrations. In 358 

addition, soils in high-latitude areas are often moist or frozen due to low temperatures, limiting oxygen supply and 359 

further inhibiting microbial decomposition (Zhou et al., 2024b). These moist or frozen conditions also help protect 360 

organic matter, reducing its decomposition and contributing to DOC accumulation. Thus, low temperatures and 361 

specific moisture conditions in high-latitude regions jointly result in relatively high soil DOC concentrations. 362 

However, substantial heterogeneity exists at regional and local scales. For instance, despite their similar latitudes, 363 

soil DOC concentrations in Northern Europe were significantly lower than in Siberia, primarily due to differences in 364 

climatic conditions. Northern Europe’s maritime climate, with mild temperatures and evenly distributed 365 

precipitation, promotes higher microbial activity and accelerates organic matter decomposition. In contrast, Siberia’s 366 

cold subarctic climate results in lower soil temperatures that limit microbial activity and slow organic matter 367 

decomposition, leading to greater DOC retention (Jin and Ma, 2021). Furthermore, soils in Siberia are often frozen, 368 

restricting oxygen supply and further inhibiting decomposition, thereby contributing to DOC accumulation (Raudina 369 

et al., 2022). Climatic conditions thus play a key role in explaining the significant differences in soil DOC 370 
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concentrations between these regions. Regional variations may also be related to topographic conditions. Higher soil 371 

DOC concentrations on the Tibetan Plateau compared with Eastern China may result from high elevation and low 372 

MAT in the plateau (Fig. 5a). In contrast, other studies reported lower DOC levels in Arctic regions, which may have 373 

been due to omitting DOC concentration measurements in dry or frozen soils (Langeveld et al., 2020). Our 374 

predictive model offered higher accuracy in estimating global soil DOC storage because our comprehensive dataset 375 

included DOC concentrations in both dry soil and soil solutions, providing a robust data foundation. In addition, we 376 

used the optimal model by comparing various linear and nonlinear models to predict global soil DOC. 377 

4.4 Limitations and predictive uncertainties 378 

Although we compiled a comprehensive global soil DOC concentration dataset, identified key drivers, and made a 379 

global prediction, our study had certain limitations. First, certain ecosystems remained underrepresented; for 380 

instance, tundra accounted for only 1% of our database, while shrublands, grasslands, and wetlands collectively 381 

constituted only 21%. This underrepresentation may reduce the accuracy of predictions for different ecosystems. 382 

Second, although we considered the subsoil at the beginning of dataset, we did not explore this further due to the 383 

limited availability of data and considerations of predictive accuracy. We intend to continue expanding the subsoil 384 

DOC database in future work. Third, there was a deficiency in some predictive variables; although we had extracted 385 

missing data through gridded datasets, this inevitably introduced uncertainty in predictions, particularly for soil 386 

variables. Fourth, although data standardization enables consistent comparison and analysis of soil DOC across 387 

different measurement methods, there were potential issues such as the possible loss of original data characteristics, 388 

dependence on accurate parameters, overgeneralization, increasing the complexity of data interpretation, and 389 

introducing bias. Finally, despite employing advanced machine learning methods with multiple predictors to predict 390 

the global soil DOC, 35% of soil DOC concentration variability remains unexplained. However, these limitations 391 

also highlighted areas for future soil DOC research. Future research should enhance the collection of deep soil 392 

samples to address the current data scarcity and more accurately quantify the DOC reserves across the entire soil 393 

profile. There is a particular need to increase sample collection in key regions such as Siberia and Africa. 394 

5 Data availability 395 

The global soil DOC in this study and raw dataset of driving factors can be downloaded at 396 

https://doi.org/10.6084/m9.figshare.28574183 (Ren and Cai, 2025). 397 

6 Conclusions 398 
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Through the development of a comprehensive soil DOC dataset, we quantified soil DOC concentrations in terrestrial 399 

ecosystems, identified their driving factors, and made global predictions. After comparing multiple predictive 400 

models, we selected the Random Forest model as the best performer for mapping soil DOC concentrations. The 401 

results indicated that tundra exhibited the highest DOC concentrations, while shrubland and cropland soils had 402 

relatively lower concentrations. Elevation played the most important predictor for soil DOC prediction, followed by 403 

SOC, SVT, and soil clay. There was a nonlinear threshold response of soil DOC to soil clay and SVT, which initially 404 

decline but shift to an increasing trend beyond an soil clay threshold of 20% and SVT threshold of 0.7 after 405 

accounting for confounding factors. We predicted that the soil DOC concentration increased significantly from the 406 

equator to the poles, and estimated that the DOC stocks in the topsoil of terrestrial ecosystems were 13.74 Pg. The 407 

global soil DOC database we created served as a critical resource for future research and enhanced our 408 

understanding of the roles of soil in the global carbon cycle. This database provided valuable data support for 409 

climate change research, ecosystem management, agricultural sustainability, environmental policymaking, and the 410 

improvement of biogeochemical models. It aided in addressing soil degradation, improving food security, and 411 

tackling global environmental challenges. 412 
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Figure 1 Global distribution of soil dissolved organic carbon (DOC) concentration according to our site-level 582 

dataset. The dataset contains 12807 sets of data (a, b), which covers major wetland (1106), forest (4867), shrubland 583 

(385), tundra (130), grassland (1192), cropland (5125) terrestrial biomes (c). The dashed red line within the subplot 584 

(b) signifies the average soil DOC concentration, which is 223 mg kg
-1

. 585 

 586 

 587 

 588 
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Figure 2 Result of the random forest model predicting soil dissolved organic carbon (DOC) concentration. (a) The 590 

relative importance of predictors in the random forest model. (b) Predicted vs. observed soil DOC concentration. 591 

The dashed line indicates the 1:1 line and the blue line indicates the regression line between predicted and observed 592 

values. MAT, mean annual temperature; MAP, mean annual precipitation; SVP, seasonal variability of precipitation; 593 

SVT, seasonal variability of temperature; ETM, monthly evaporation; SOC, soil organic carbon; BD, bulk density; 594 

MBC, microbial biomass carbon content; and C:N, ratio of carbon to nitrogen. 595 
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Figure 3 Partial dependence of predictors from random forest algorithm. Soil dissolved organic carbon (DOC) 598 

concentration in relation to mean annual temperature (MAT), mean annual precipitation (MAP), elevation, seasonal 599 

variability of precipitation (SVP), seasonal variability of temperature (SVT), monthly evaporation (ETM), elevation, 600 

soil sand content, soil clay content, soil depth, soil organic carbon (SOC) content, soil pH, bulk density, microbial 601 

biomass carbon content (MBC), and ration of soil carbon to nitrogen (C:N) (a, b, c, d, e, f, g, h, i, j, k, l, m, and n 602 

respectively). The histogram in each plot represents the data distribution of the X-axis indicator. 603 
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Figure 4 Interaction effects between key drivers of derived soil dissolved organic carbon concentration. key drivers 606 

included mean annual temperature (MAT), mean annual precipitation (MAP), elevation, seasonal variability of 607 

precipitation (SVP), seasonal variability of temperature (SVT), monthly evaporation (ETM), elevation, soil sand 608 

content, soil clay content, soil depth, soil organic carbon (SOC) content, soil pH, bulk density, microbial biomass 609 

carbon content (MBC), and ration of soil carbon to nitrogen (C:N). 610 

 611 

 612 
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Figure 5 Prediction of soil dissolved organic carbon (DOC) concentration in global ecosystems. (a) Global map of 614 

predicted soil DOC concentration. (b) Latitudinal patterns of soil DOC concentration. Blue line indicates the locally 615 

weighted regressions between latitude and soil DOC concentration in the predicted global map. Values in the 616 

predicted map reflect soil DOC concentration within a grid cell resolution of 0.05° × 0.05°. A value in the grid is the 617 

averaged from the result of random forest model. 618 
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Table 1. Variables information of soil dissolved organic carbon dataset in global terrestrial ecosystems. n/a refers to 621 

values that are not applicable. 622 

Variables Description Unit Number Range Mean 

No. Unique identification number of each record n/a 12807 1 to 12807 6404 

Latitude Latitude of study site ° 12807 -64.81 to 78.85 34.89 

Longitude Latitude of study site ° 12807 -159.66 to 175.95 107.05 

MAT Mean annual temperature ℃ 9948 -11.16 to 28.00 11.84 

MAP Mean annual precipitation mm 10325 30 to 4200 1071 

Elevation Altitude of study site m 5578 4 to 4730 881 

Ecosystems Community by the dominant plant species 

 

7 n/a n/a 

Soil sand Soil sand content % 4062 1 to 98 45 

Soil silt Soil silt content % 4025 1 to 95 33 

Soil clay Soil clay content % 4316 0 to 89 22 

Soil depth Mean depth of soil sample cm 12807 0.53 to 30.00 11.36 

SOC Soil organic carbon g kg-1 9136 0.23 to 598.50 38.74 

TN Soil total nitrogen g kg-1 7089 0.00 to 33.30 2.57 

Soil pH Measure by 1:2.5 H2O, n/a 8266 2.30 to 9.59 6.16 

BD Soil bulk density kg m-3 4380 0.07 to 2.52 1.29 

MBC Soil microbial biomass carbon mg kg-1 4218 5.93 to 2986 413 

Date Observation month of DOC month 12807 1 to 12 6.50 

DOCphy Measure by physical method mg kg-1 3289 0.28 to 3181 155.99 

DOCche Measure by chemical process mg kg-1 9518 0.04 to 7859 245.83 

DOC Soil dissolved organic carbon mg kg-1 12807 0.04 to 7859 222.78 
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Table 2. Global soil dissolved organic carbon concentration (mg kg-1) for major ecosystems. 25% and 75% 625 

represent the 25th and 75th percentiles of one group, respectively. SD, Standard deviation; SE, Standard error. 626 

Ecosystems Mean SD SE Skewness Kurtosis 25% Median 75% 

Wetland 218.53 340.35 10.23 5.15 39.41 46.40 107.11 266.51 

Forest 256.18 531.72 7.62 7.09 69.72 47.60 115.51 246.55 

Shrubland 160.24 131.51 6.70 3.40 22.58 76.53 127.84 205.50 

Tundra 470.78 721.70 63.30 4.67 29.59 86.91 241.09 577.00 

Grassland  327.77 674.43 19.53 4.16 18.03 54.62 126.48 303.63 

Cropland 165.98 272.51 3.81 6.53 73.25 40.51 83.00 178.81 

Global 222.78 445.78 3.93 7.16 73.67 45.86 101.01 226.47 
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Table 3. Analysis of the predicted global map of soil dissolved organic carbon. The area-weighted average soil 628 

dissolved organic carbon concentration was calculated based on our predicted map. Converting soil dissolved 629 

organic carbon concentration to soil dissolved organic carbon content and stock used the soil bulk density and land 630 

area. 631 

Continent 
Soil DOC concentration  

(mg kg
-1

) 

Soil DOC content  

(g m
-2

) 

Soil DOC stock  

(Pg) 

Asia 259.03 103.26 4.93 

North America 250.66 111.29 2.93 

Europe 208.28 89.97 0.98 

South America 219.83 92.33 1.76 

Oceania 206.36 91.62 0.76 

Africa 166.73 72.77 2.37 

Global 224.72 97.75 13.74 

 632 


