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Abstract 15 

Dissolved organic carbon (DOC) constitutes the most active carbon pool in soils and plays critical roles in soil 16 

carbon cycling, plant productivity, and global climate change. Accurately assessing soil DOC quantity is essential to 17 

elucidate ecosystem functions and services. However, global driving factors and the spatial distribution of soil DOC 18 

remain poorly quantified, largely due to limited large-scale data. Here, we compile a comprehensive global database 19 

of soil DOC concentrations, encompassing 12,807 observations extracted from 975 scientific publications published 20 

between 1984 and 2020. We also record detailed geographic locations, climatic variables, and soil properties as 21 

predictors. Machine learning techniques were employed, including 10-fold cross-validation and evaluating model 22 

performance by R-squared and root-mean-square error, to predict the relative importance of various predictors and 23 

the global distribution of soil DOC concentrations. Worldwide soil DOC concentrations ranged from 0.04 to 7859 24 

mg kg
-1

, averaging 222.78 mg kg
-1

. The 12 14 selected predictors, including elevation, soil properties, month, and 25 

climate, and ecosystem, explained 65 63 percent of the variance in soil DOC concentrations. Elevation played the 26 

most important predictor for soil DOC prediction, followed by soil organic carbon, seasonal variability of 27 

temperature, and soil clay. Soil DOC decreases initially but increases when soil clay exceeds 20% and seasonal 28 

variability of temperature exceeds 0.7. Among these predictors, elevation, soil clay, and soil organic carbon were the 29 

most influential. Using these findings, a global map of predicted soil DOC concentrations was produced at a 0.05° 30 

by 0.05° resolution. Global soil DOC concentrations generally increased from the equator to the poles, and the 31 

topsoil layer (0-30 cm) holed 12.1713.47 Pg of soil DOC, with substantial variations across continents. These results 32 

informed soil management practices strategies, ecosystem services evaluations, and climate change mitigation 33 

efforts. Furthermore, we envisioned integrating our database with other carbon pools to advance understanding of 34 

total soil carbon turnover and to refine Earth system models. The dataset is publicly available at 35 

https://doi.org/10.6084/m9.figshare.28574183 (Ren and Cai, 2024). 36 

  37 
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1. Introduction 38 

With global changes over the last few decades, terrestrial ecosystems, which serve as the fundamental safeguard for 39 

biodiversity and function as a carbon sink, have become increasingly vital in mitigating global climate warming 40 

(Lee et al., 2023). Soils anchor the largest dynamic carbon reservoirCumulatively, soil carbon pools constitute the 41 

largest carbon reservoirs in terrestrial ecosystems, with the 0-1 meter storing 1,500-2,400 Pg of carbon, which is 42 

triple the atmospheric carbon stock (880 Pg) and quadruple the biotic carbon pools (450-650 Pg)containing three to 43 

four times more carbon than the ambient atmospheric carbon pool (Lal, 2004; Zhou et al., 2024a). Sub-decadal 44 

perturbations as small as ±1% in soil carbon stocks could release 15-24 Pg C, which is equivalent to 1.5-2.4 years of 45 

anthropogenic emissions and could trigger nonlinear climate feedbacks (Schlesinger and Bernhardt, 2020). Even 46 

minor fluctuations in soil carbon can significantly affect on biogeochemical cycles and the global C balance. 47 

Dissolved organic carbon (DOC), a molecular continuum spanning labile metabolites (e.g., glucose, citrate) to 48 

mineral-stabilized colloidscomposed of simple organic acids and complex macromolecular substances, is recognized 49 

as the most active carbon pool in soil (Ren et al., 2024b). Currently, the portion of organic carbon that is water-50 

soluble and able to pass through a 0.45 μm microporous filter membrane is referred to as DOC (Gmach et al., 2020; 51 

Guo et al., 2020a). Despite constituting 0.1-2% of total soil organic carbon, DOC mediates three disproportionately 52 

critical processes: fuelling 65-80% of heterotrophic respiration via rapid turnover, controlling mineral-organic 53 

complexation that stabilizes 40-60% of persistent carbon, and exporting 0.25-0.75 Pg C yr⁻¹ to aquatic systems—a 54 

flux comparable to landuse change emissionsAlthough soil DOC typically accounts for less than 2% of the soil 55 

carbon pool, it provides a substantial source of carbon and energy for soil microorganisms, while playing a key role 56 

in soil carbon sequestration, transport, and stabilization mechanisms (Drake et al., 2018; Nakhavali et al., 2021; Ren 57 

et al., 2024b). Lateral DOC fluxes create a terrestrial - aquatic carbon conveyor belt equivalent to 50% of the 58 

Amazonian carbon sink, while also modifying water chemistry through pH buffering and metal complexationThe 59 

lateral transport of DOC is crucial for linking terrestrial and aquatic ecosystems and for evaluating terrestrial carbon 60 

budgets (Fichot et al., 2023). Thus, an accurate assessment of soil DOC concentrations is vital, given its unique 61 

properties, roles, and broad variability, which can span up to three orders of magnitude (Nakhavali et al., 2020; Ren 62 

et al., 2024b). Despite significant variations in soil DOC concentrations, their global distribution has not yet been 63 

systematically quantified. Bridging this knowledge gap is essential for more accurate representations of the carbon 64 

cycle in Earth system models. 65 
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Soil DOC concentration is regulated by a kinetic equilibrium between production processesdepends on the 66 

dynamic balance between sources (e.g., leachates from decomposing plant litter leaching, rhizodepositionroot 67 

secretions, and microbial necromassdecomposition releaseproducts) and removal pathwayslosses (microbial 68 

mineralization, mineral adsorption, and hydrological leachingmigration and microbial decomposition). Any factor 69 

that alters this balance also influences soil DOC concentrations. Disruption of this equilibrium, whether caused by 70 

altered substrate inputs or shifted microbial metabolic demands, reshapes DOC pool dynamics (Sokol et al., 2022). 71 

Extensive research has shown that Hierarchical controls shaped DOC dynamics: climatic drivers set thermal-72 

hydrological boundaries, vegetation types modulate organic matter stoichiometry, and soil properties dictate 73 

mineral-mediated stabilization soil DOC concentration is affected by climate, vegetation type, and soil properties 74 

(Fichot et al., 2023; Ren et al., 2024b; Smreczak and Ukalska-Jaruga, 2021), each playing a distinct role in shaping 75 

DOC dynamics. For example, cClimate, often characterized by annual mean temperature and precipitation, is 76 

recognized as a primary driver of soil DOC concentrations (Lønborg et al., 2020). Temperature and precipitation 77 

directly influence soil DOC through effects on microbial activity, organic matter decomposition rates, solubility, and 78 

mobility, and indirectly shape DOC dynamics by influencing vegetation growth and soil structure (Ren et al., 2023). 79 

Vegetation type affects soil DOC primarily by altering the quantity and quality of organic matter inputs (Zhao et al., 80 

2022). Together, climate and vegetation type profoundly affect soil biological, chemical, and physical properties, all 81 

closely with the formation and decomposition of soil DOC (Cotrufo and Lavallee, 2022). Some studies have 82 

reported large temporal variations in soil DOC concentrations at certain field sites (Ding et al., 2022; Zhao et al., 83 

2022), with significantly higher DOC concentrations in summer and autumn than in winter and spring. Seasonal 84 

effects on soil DOC concentrations are closely associated with factors such as precipitation, soil moisture, and 85 

substrate availability (Ren et al., 2023). In warmer seasons, soil DOC production can increase due to active organic 86 

matter decomposition, driven by higher microbial activity, as well as greater DOC contributions from root exudation 87 

during periods of more active plant photosynthesis. Although relationships between soil DOC concentrations and 88 

environmental factors have been observed at local and regional scales, the relative importance of these factors at the 89 

global scale remains unclear. This lack of understanding hinders the development of effective strategies for soil 90 

carbon management and climate change mitigation. 91 

Accurate mapping of soil DOC provides critical baseline data for addressing global challenges spanning climate-92 

carbon feedbacks, agricultural sustainability, and aquatic ecosystem managementis essential for addressing pressing 93 
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global challenges, including climate warming, food security, and eutrophication in aquatic systems (Guo et al., 94 

2020b; Langeveld et al., 2020). Current global soil DOC inventories remain limited in both spatial resolution and 95 

mechanistic representation. Existing maps derived from conventional geostatistical approaches, such as those by by 96 

Guo et al. (2020b) and Langeveld et al. (2020), exhibit three fundamental limitations that constrain their utility for 97 

process-based modeling. To the best of our knowledge, few global maps of the spatial distribution of soil DOC exist 98 

(Guo, Z. et al., 2020; Langeveld et al., 2020). However, these maps are subject to considerable uncertainties due to 99 

limited data, restrictive factor selections, and low interpretation rates. First, the global soil DOC maps produced by 100 

Guo et al. (2020b) and Langeveld et al. (2020) rely on relatively few observational data points (2890 and 762 pairs, 101 

respectively), with over 80% of training data clustered in North America and Western Europe, while tropical regions 102 

and continental interiors remain under sampled. There is a lack of valid observational data for Africa, South America, 103 

Eastern Europe, and Central Asia. Africa, South America, Eastern Europe, and Central Asia collectively contribute 104 

less than 5% of the global calibration datasets in these studies. Second, when assessing the global distribution of soil 105 

DOC concentrations, Guo, Z. et al. (2020) and Langeveld et al. (2020) have not considered the impact of seasonal 106 

changes, even though soil DOC concentrations can vary substantially with shift of season. they employ static 107 

representations of DOC dynamics, neglecting well-documented seasonal fluctuations driven by plant phenology and 108 

hydrologic pulses. Field observations demonstrate that temperate forest soils can exhibit 2-3 fold increases in DOC 109 

concentrations during autumn litterfall periods compared to spring thaw events. Third, current models oversimplify 110 

vertical DOC gradients by treating topsoil (0-30 cm) as homogeneous layers, despite empirical evidence showing 111 

exponential decreases in DOC with depthtopsoil DOC concentrations were treated as constant value by Guo, Z. et al. 112 

(2020) and Langeveld et al. (2020), overlooking the dynamic nature of soil DOC, which decrease with increasing 113 

depth. In reality, soil DOC concentrations are higher in surface soils (0-10 cm) and decline with depth, exhibiting a 114 

clear vertical gradient. Finally, traditional linear regression methods used in these studies captureGuo, Z. et al. (2020) 115 

and Langeveld et al. (2020) have explained only 30-40%about one-third of observedthe variation in soil DOC 116 

variability, as they fail to account for threshold responses to environmental drivers such as soil pH transitions below 117 

5.2 that trigger dissolved organic matter flocculationby using multivariate linear equations. Recent advancements in 118 

machine learning has enabled researchers to apply such techniques because of their capacities to automate feature 119 

extraction, handle large datasets, and identify complex patterns, ultimately offering significant advantages in 120 

predictive accuracy and adaptive learning.  121 
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To advance our knowledge of global soil DOC patterns and drivers, we developed a global database of soil DOC 122 

concentrations, comprising 12,807 samples from 975 published studies. Using Random Forest algorithms, we 123 

quantified the relative importance of environmental factors and predicted soil DOC concentrations on a global scale. 124 

The specific aims of this study were: (1) to determine global patterns of soil DOC concentrations, (2) to identify the 125 

primary factors controlling soil DOC concentrations on a global scale and to estimate total global soil DOC storage.  126 

2. Material and method 127 

2.1 Data sources and processing 128 

We searched for publications up to December 2022 using Google Scholar (https://scholar.google.com), the Web of 129 

Science (http://apps.webofknowledge.com), and the China Knowledge Resource Integrated Database 130 

(http://www.cnki.net/) using the following search terms: (dissolved organic carbon OR dissolved organic matter OR 131 

"DOC" OR "DOM") and soil, up to December 2022. The data flow through the selection phases is shown in Fig. S1. 132 

To ensure a standardized and minimally biased dataset, we applied the following inclusion criteria: First, we 133 

included only data from terrestrial ecosystems (excluding oceans and rivers) to maintain consistency in 134 

environmental factors and ecological interactions. Second, we used only topsoil data (0-30 cm) to ensure data 135 

representativeness and quantity. Third, we recorded duplicate results from different articles only once to avoid 136 

overrepresentation of certain research groups or locations. Finally, we included agricultural soils affected by human 137 

activities such as tilling and fertilization but excluded industrial and urban soils to avoid complexity introduced by 138 

industrial and urban settings. We extracted data presented solely in figures using the digitizer function of Origin 139 

2019. Before extracting the target data, we employed the Isolation Forest method for anomaly detection. The 140 

algorithm constructs random binary trees, where anomalies are typically isolated more rapidly, while normal points 141 

require more splitting steps.  142 

Based on these criteria, we compiled a total of 12,807 DOC observations based on 1610 sites from 975 143 

publications (Fig. 1a). We also collected data on experimental sites (longitude, latitude, and altitude), climate (mean 144 

annual temperature [MAT] and mean annual precipitation [MAP]), biomes (wetland, forest, shrubland, tundra, 145 

grassland, and cropland) and soil properties (soil organic carbon, texture, and pH) (Table 1). These environmental 146 

factors are used as predictors. When environmental factors were not reported in original publication, the missing 147 

data were extracted from grid datasets according to the geographic coordinates of each observed site (Table S1). We 148 

https://scholar.google.com/
http://apps.webofknowledge.com/
http://www.cnki.net/
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extracted elevation, MAT, and MAP, monthly evaporation (ETM), seasonal variability of precipitation (SVP), and 149 

seasonal variability of temperature (SVT) data from WorldClim Version 2 (https://www.worldclim.com/) with 150 

resolution of 1 km × 1 km, biomeecosystem data from NASA's Socioeconomic Data and Applications Center 151 

(https://sedac.ciesin.columbia.edu) with resolution of 1 km × 1 km, soil properties from OpenLandMap version 2.0.0 152 

(https://openlandmap.org) with resolution of 0.25 km × 0.25 km, and microbial biomass carbon data from the open 153 

database of figshare (https://doi.org/10.6084/m9.figshare.19556419) with resolution of 1 km × 1 km. Despite bias, 154 

There there is a significant linear relationship between the measured values and the corresponding extracted values 155 

(Fig. S2). Noteworthy, this bias could introduce some uncertainty to the results. Overall, our study sites spanned a 156 

wide range of latitudes (−64.81° to 78.85°) and longitudes (−159.66° to 175.95°) (Table 1), encompassing a large 157 

climate gradient with MAT from −11.16 to 28.00℃ and MAP from 30 to 4200 mm.  158 

2.2 Data standardization  159 

For our database, the DOC concentrations were quantified using a mix of physical and chemical techniques. 160 

Physical methods included soil solution collection using lysimeters or ceramic suction. Chemical methods employed 161 

various solvents like distilled water, potassium chloride (KCl), or potassium sulfate (K2SO4) as described by Li et al. 162 

(2018). Over 74.32% of the DOC was determined using chemical techniques, which highlighted their reliability. For 163 

consistency, the DOC values derived from physical approaches was converted to chemical method values using the 164 

following equation: 165 

DOCsoil = (DOCsolution×V×1000)/W×[1/(V×(1-W) ×BD×1000000)]                                     (1) 166 

where, DOCsoil represents soil DOC concentration determined by chemical methods (mg g
-1

); DOCsolution is the 167 

concentration measured by physical methods (mg L
-1

); W denotes the volumetric soil moisture (m³ m
-
³); V is the 168 

volume of the soil column for solution extraction (m³); and BD is the soil bulk density (g cm
-
³). The factor 1000 169 

converts m³ to L, and 1,000,000 converts m³ to cm³ following established by Guo (Guo et al., 2020b). This 170 

standardization allowed for a consistent comparison and analysis of the DOC data across various studies. 171 

2.3 Predictive modeling  172 

The driving factors of soil DOC concentrations were divided into four four categories: elevation, climate, ecosystem, 173 

and soil properties, and temporal variation. Soil properties included physical attributes (clay, sand, bulk density, and 174 

depth), chemical attributes (SOC, pH), and a biological attributes (microbial biomass carbon) attributes. Temporal 175 

https://www.worldclim.com/
https://sedac.ciesin.columbia.edu/
https://openlandmap.org/
https://doi.org/10.6084/m9.figshare.19556419
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variation was represented by month. Climate comprised MAT, MAP, and elevationETM, SVP, and SVT. Ecosystems 176 

encompassed wetland, forest, shrubland, tundra, grassland, and cropland. In our predictive models, correlated 177 

predictors could substitute for each other, causing their importance to be shared and thus potentially underestimated. 178 

Consequently, we excluded soil total nitrogen, silt, and the aridity index because they were correlated with soil soil 179 

organic carbon, sand, and MAP, respectively (Fig. S3). Further, we did not include some variables (e.g., soil 180 

moisture, soil porosity, ferroaluminum oxide, microbial structures, microbial diversity, and carbon cycling enzymes) 181 

because they were rarely report in the target papers. 182 

To develop and optimize a predictive model for soil DOC, we employed an array of regression methods, which 183 

encompassed three linear and four nonlinear approaches (Table S2). The linear methods included a least absolute 184 

shrinkage and selection operator (LEAPS), elastic net (ENET), and standard linear modeling (LM) to identify the 185 

most important predictor variables, while minimizing overfitting. The nonlinear methods included the random forest 186 

(RF) algorithm, boosted tree (BOOSTED), bagged tree (Bagged), and cubist (CUBIST) models. Each model had 187 

intrinsic feature selection processes, and we fine-tuned them to improve accuracy and control complexity. During 188 

optimization phase, various actions were implemented. LEAPS models were educated to accommodate the largest 189 

number of variables. We applied penalties for feature condensation (diminishing the role of less impactful variables 190 

in the resultant linear formula) between 0 and 0.1, incremented by 0.01, to discipline the models. RF growth was 191 

restricted at a maximum of 1,000 trees and limited the number of predictors to one-third of the maximum possible, 192 

ensuring a balance between complexity and manageability. BOOSTED models underwent training with 10 to 100 193 

trees, each having between 1 to 7 nodes. We incorporated shrinkage rates of 0.01 or 0.1, with a maximum tree size 194 

of 5. For CUBIST model, we explored neighboring values from 1 to 9 in increments of 2 and varied community 195 

sizes from 1 to 100, refining predictive accuracy. In every instance, the models were evaluated using Monte Carlo 196 

cross-validation with 100 iterations, employing a 70/15/15 split between training, validation, and testing sets (Fig. 197 

2b and Fig. S6S7 and 8). The root mean square error and R² values were calculated to evaluate model accuracy and 198 

residual variance, which served as criteria for ranking model performance (Table S2). A 10-fold cross-validation 199 

method was used to evaluate model performance. A flowchart for model selection process was shown in Fig. S5. 200 

Finally, the RF model was used to predict soil DOC concentrations. The factor of ecosystems was excluded based on 201 

the IncNodePurity of RF model (Fig. S6). 202 

To evaluate the effects of independent variables on soil DOC, a variable importance analysis was conducted using 203 
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permutation variable importance measurements. This analysis was performed with the variable importance tool 204 

integrated into the R packages for the RF model that exhibited the highest predictive quality. In essence, this method 205 

assessed prediction errors within the model by calculating mean square errors for each regression tree. The models’ 206 

variable importance scores assessed the influence of predictor variables on the outcomes. For enhanced 207 

comparability of all model inputs, the independent environmental variables were scaled to a 0–100% range to 208 

facilitate comparisons of their proportional contribution to the model's predictions. For evaluate the sensitivity 209 

analysis of model predictions, the Sobol index, a variance of based global sensitivity analysis method, was used to 210 

assesses how model input parameters impact output results (Fig. S9). It breaks down the system's total variance into 211 

contributions from individual inputs and their combinations. 212 

Partial dependence analyses were employed to examine the relationships between predicted soil DOC and 213 

independent variables across their entire value ranges in the RF model. These analyses allowed us to isolate the 214 

effects of specific independent variables by removing the influence of the others. Partial dependence plots offered 215 

insights into the average marginal effects of one or more independent variables on model predictions. For instance, 216 

these plots could reveal whether relationships were linear, monotonic, or more complex. By examining curvature 217 

and inflection points, we could identify where variable exerted strong, immediate effects or where their influences 218 

were more subtle and possibly mediated by other variables. We reported the x-axis as a standardized value, ensuring 219 

a clear progression from low to high values. When we generated partial dependence with RF, several uncertainties 220 

arose. The high model complexity sometimes slowed predictions, especially with many trees. The limited 221 

interpretability of the RF models could complicate understanding partial dependence. Sensitivity to noise potentially 222 

led to overfitting and reduced accuracy. Variable importance measurements could also be biased by varying feature 223 

scales or categories, potentially skewing interpretations of feature-outcome relationships. For explore the interaction 224 

effects between key drivers of derived soil DOC concentration, SHapley Additive exPlanations (SHAP) is used to 225 

interpret machine learning model predictions by calculating the contribution of features to the model's predictions 226 

(Fig. 4). SHAP values can be further decomposed into main effects and interaction effects, where interaction effects 227 

reveal the interactions between features. SHAP interaction values are obtained by first defining an explainer using 228 

the TreeExplainer function (by passing the model to it), and then deriving the interaction values from this explainer. 229 

These values can be interpreted similarly to standard SHAP values, explicitly quantifying how individual features 230 

and their pairwise interactions contribute to specific predictions.  231 



10 

 

2.4 Global soil DOC mapping 232 

The global distribution of soil DOC and the relative uncertainties of our predictions were generated by combining 233 

our DOC dataset with the RF model, which incorporated global climate , vegetation, and soil-rasterized datasets 234 

(Figs. 45, S5 S11 and Table S1). We first produced factor maps from the key input variables, focusing on the 12 14 235 

distinct variables associated with each raster cell. Subsequently, the factor maps were employed to derive a spatially 236 

detailed global map of soil DOC. To achieve global-scale mapping, we processed the driving factors at a 0.05° 237 

resolution to calculate soil DOC values. Areas that did not meet the following criteria were excluded from our 238 

prediction: (1) absence of data for any essential predictors, (2) soil order and biomes not aligning with the previously 239 

discussed aggregated land use systems, or (3) locations in climate zones outside the scope of our model's focus. Duo 240 

to the different spatial resolution of input variables data, resampling techniques enables the conversion of raster data 241 

between spatial resolutions to facilitate spatial analysis and modeling. The core principle of resampling involves 242 

estimating pixel values at new resolutions through interpolation or other mathematical methods. Specifically, down-243 

sampling (high-to-low resolution conversion) requires aggregating values from multiple high-resolution pixels into a 244 

single low-resolution pixel. Up-sampling (low-to-high resolution conversion) necessitates generating new pixel 245 

values through interpolation algorithms. To evaluate uncertainty due to data resampling and unexplained variability 246 

not accounted for by the independent variables, we analyzed finer-resolution (5 km²) grids where driving factors 247 

were available at this detailed. This analysis clarified the overall uncertainty inherent in our global soil DOC 248 

estimation. The corresponding map of relative uncertainty of prediction was built by displaying the standard 249 

deviation divided by the mean prediction, based on our final random forest RF model. The standard deviation 250 

reflected the range of possible predictions derived from the iterative build-up of decision trees after 500 model runs. 251 

Soil DOC concentration varied significantly with temporal changesecosystems (Table 2) and soil depth (Fig. 23). 252 

Ecosystems were divided into wetland, forest, shruland, tundra, grassland, and cropland (Fig. S10).Sampling time 253 

(month) was used to represent seasonal variations in soil DOC concentration. Soil DOC concentration decreased 254 

with soil depth and reached a turning point at approximately 10 cm (Fig. 23). Therefore, when extrapolating the RF 255 

model to the entire globe, we used a month range from 1 to 12 and depths of 5 (0–10 cm) and 20 (10–30 cm). From 256 

this, we generated a total of 24 12 maps of global soil DOC concentration. We combined these 24 12 maps into a 257 

single map representing the global distribution of soil DOC concentration based on soil depth. Finally, we calculated 258 

the global soil DOC stock using the following equation applied to the combined map of global soil DOC 259 
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concentration: 260 

𝑆𝑂𝐶𝑠 = ∑𝑆𝑂𝐶𝑖 × 𝐵𝐷𝑖 × (1 − 𝑓) × 𝑇 ×𝑀𝑖                                                              (2) 261 

where SOCs is SOC stock and SOCi is SOC concentration. The subscript i is the number of global grid. BD, f, and T 262 

are soil bulk density, the volumetric percentage of coarse fraction (>2 mm), and the depth of soil layer, respectively. 263 

M is the effective area of each grid. 264 

3. Results 265 

3.1 Soil DOC concentrations in different ecosystems globally 266 

A total of 12,807 soil DOC observations were compiled from 975 publications that spanned six continents, as well 267 

as major biomes and terrestrial ecosystems (Fig. 1). We found that the natural logarithm of soil DOC concentrations 268 

conformed to a normal distribution (Fig. 1b). Global soil DOC concentrations ranged from 0.04 to 7859 mg kg
-1

. 269 

The global average, median, and standard deviation were 222.78, 101.01, and 445.78 mg kg
-1

, respectively (Table 2). 270 

We observed that soil DOC concentrations varied across ecosystems. Tundra had the highest average and median 271 

soil DOC concentrations at 470.78 and 241.90 mg kg
-1

, respectively. Grassland averaged 327.77 mg kg
-1

 with a 272 

median of 126.48 mg kg
-1

, while forest averaged 256.18 mg kg
-1

 with a median of 115.51 mg kg
-1

. Wetland 273 

averaged 218.53 mg kg
-1

 with a median of 107.11 mg kg
-1

, cropland averaged 165.98 mg kg
-1

 with a median of 274 

83.00 mg kg
-1

, and shrubland averaged 160.24 mg kg
-1

 with a median of 127.84 mg kg
-1

 (Table 2). 275 

3.2 Model performance and drivers of soil DOC concentrations 276 

We estimated RMSE and R² for all tuned models and used these statistics to analyze residual variance and accuracy, 277 

as well as to rank model performance (Table S2). To facilitate interpretation of uncertainty, we also calculated 278 

relative RMSE by dividing the absolute error by the global mean soil DOC concentration. RF model resulted in the 279 

best performance within one standard error of the minimal RMSE and were thus used for further analyses of 280 

variable importance. The residual plot of train, validation, and test data for RF model were randomly distributed 281 

near zero (Fig. S7S8). Overall, nonlinear models (R² = 0.4241–0.635; RMSE = 250248–332327) outperformed 282 

linear models (R² = 0.101–0.1108; RMSE = 410401–427411) (Table S2). The RF model yielded the lowest RMSE 283 

within one standard deviation range and was therefore selected for subsequent analyses of variable importance 284 

(FigTable. S23). The relative importance of soil DOC drivers and the global map of soil DOC distribution were 285 

derived from the RF model outputs (Fig. 4 and Fig. S11). 286 

We based the relative importance of soil DOC drivers and the global map of soil DOC on averaged RF model results.  287 
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The RF model explained 6563% of the variability in soil DOC concentrations across all sites and achieved the 288 

lowest RMSE compared with other models (Fig. 2 and, Table S2). Elevation played the most important predictor for 289 

soil DOC prediction among the selected 14 variables, followed by SOC, SVT, and soil clay. The relative importance 290 

of MAP, SVP, MBC, soil pH, soil sand, and soil C:N was gradually diminishing. Soil properties were the most 291 

important predictor categories, with elevation and soil clay content exerting the greatest influence. Meantime, 292 

elevation and,  SOC, SVT, soilsoil organic  sand and soil clay were the most more sensitivity factors of RF model 293 

than the other predictor (Fig. S8S9). Although less influential, other predictors still contributed; among them, soil 294 

organic carbon and soil pH were notable. Although mean annual precipitation, and mean annual temperature, 295 

microbial biomass carbon, bulk density, sand, depth, month, and ecosystem also affected soil DOC, their 296 

contributions were lower than those of the top four predictors. Elevation has strong interaction with soil pH, bulk 297 

density, and microbial biomass carbon (Fig. S9). Partial dependence analysis produced results (Fig. 3) similar to 298 

Pearson correlation analyses (Fig. S4). We found a positive correlation between soil DOC and both elevation and 299 

soil organic carbon, although there were fewer data points corresponding to higher elevations and greater soil 300 

organic carbon values (Fig. 3f). Soil DOC showed a trend of decreasing first and then increasing with the increase of 301 

MAT (0-30 ℃), SVT (0-1.5), and soil clay (0-50%) (Fig. 3a, d and h). Soil DOC showed a trend of decreasing first 302 

and then stabilizing with the increase of soil depth and soil pH (4-8.5). The inflection point of soil depth and soil pH 303 

was 10 cm and 5.8, respectively (Fig. 3i and k). , and a negative correlation between soil DOC and both mean 304 

annual temperature and soil pH (Fig. 3h). 305 

Elevation, SOC, SVT, and soil clay had strong negative interactions with MAT (Fig. 4). This means as the MAT 306 

variable increases, the influence of the other variables is weakened. Elevation had a positive interaction with bulk 307 

density, suggesting they work together to affect soil DOC. 308 

3.3 Global soil DOC patterns  309 

The RF model has the ability to predict soil DOC in wetland (R
2
=0.87), forest (R

2
=0.8485), shruland (R

2
=0.8485), 310 

tundra (R
2
=0.7077), grassland (R

2
=0.9596), and cropland (R

2
=0.90) ecosystems (Fig. S10). We observed significant 311 

spatial heterogeneity in predicted global soil DOC concentrations (Fig. 4a5a). Soil DOC concentrations increased 312 

from the equator toward the poles (Fig. 4b5b). High soil DOC concentrations were found in high-altitude plateaus 313 

and mountain ranges at low latitudes, including the Andes, African Highlands, and West Indies (Fig. 4a5a). The 314 

global average soil DOC concentration was 237.56224.72 mg kg
-1

 (Table 3), and the topsoil (0-30 cm) DOC stock 315 
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was 12.1713.74 Pg. Asia had the highest soil DOC concentration (274.43259.03 mg kg
-1

), followed by North 316 

America (263.63250.66 mg kg
-1

), South America (219.83 mg kg
-1

), Europe (227.34208.28 mg kg
-1

) and Oceania 317 

(206.36 mg kg
-1

), and South America (215.81 mg kg
-1

). Oceania and Africa had the lowest soil DOC concentrations 318 

(198.13 and 186.35166.73 mg kg
-1

, respectively). For predicted soil DOC stocks, Asia and North America remained 319 

ranked first and second at 4.8 4.93 and 2.452.93 Pg, respectively. Despite its relatively low predicted soil DOC 320 

concentrations, Africa ranked third in total DOC stock (2.07 2.37 Pg) because of its large land area. South America 321 

followed at 1.371.76 Pg, while Europe and Oceania had the lowest stocks at 0.880.98 and 0.590.76 Pg, respectively. 322 

4 Discussions 323 

4.1 Variations in soil DOC between ecosystems 324 

Given the substantial number of measurements included in our study (12,807 observations), the range of topsoil (0–325 

30 cm) DOC concentrations (0.04–7859 mg kg⁻¹) was broader than previously reported for a database of 2,890 326 

observations (Guo, Z. et al., 2020). Our global median soil DOC concentration was 101.01 mg kg⁻¹ (Table 2), in 327 

contast to a previously reported average of only 77.39 mg kg⁻¹. For different ecosystems, the median soil DOC 328 

concentrations of wetlands, tundra, and shrublands in our study aligned with previously reported values (Guo, Z. et 329 

al., 2020), primarily due to the relatively small number of observations for these ecosystems, with tundra comprising 330 

only 1% of our database. However, significant differences emerged in forests, grasslands, and croplands compared 331 

with previous data. Tundra had the highest soil DOC concentration (Table 2). This can be attributed to low soil 332 

temperatures and limited microbial activity, which slow the decomposition of organic material and lead to higher 333 

soil DOC concentrations (Propster et al., 2023). In addition, prolonged soil freezing in tundra areas reduces 334 

evaporation and oxygen supply, further slowing organic decomposition. Soil DOC concentrations were also 335 

relatively high in grassland, forest, and shrub ecosystems because leaves, dead branches, and plant root exudates 336 

provide abundant organic C inputs (Cai et al., 2021). However, our results indicated that DOC concentrations in 337 

forest soils were consistently lower than in grasslands (Table 2). Grassland ecosystems often have higher plant 338 

diversity, including legumes and weeds, whose residue decomposition contributes to increased DOC concentrations 339 

(Perrot et al., 2023). In contrast, the cooler conditions in forest soils limit microbial activity and slow organic matter 340 

decomposition, reducing DOC consumption. Additionally, grassland soils tend to have better water conditions, 341 

promoting higher microbial activity and organic matter breakdown, thus increasing DOC concentrations (Deng et al., 342 

2023). Differences in land use and management, forests being less disturbed while grasslands may be more 343 
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frequently disturbed by grazing, can also influence soil organic matter decomposition and DOC levels. These 344 

combined factors of vegetation type, microbial activity, water conditions, and land use practices result in varying 345 

soil DOC concentrations between these two ecosystems. The lowest median soil DOC concentration appeared in 346 

cropland ecosystems, likely due to decreased soil organic matter inputs resulting from frequent tillage and 347 

harvesting, as well as accelerated DOC decomposition caused by tillage (Ren et al., 2024).  Meanwhile, our median 348 

soil DOC concentration for croplands was 83.00 mg kg⁻¹, whereas a previous value was 60.58 mg kg⁻¹ (Guo, Z. et 349 

al., 2020). This discrepancy may be due to the previous database having only 13% cropland observations, while our 350 

cropland observations were approximately ten times larger. In summary, our study builds on earlier work by 351 

incorporating a more extensive dataset that better represents heterogeneous global conditions. 352 

 353 

4.2 1 Effects of elevation and climate and controlled soil properties on soil DOC concentrations 354 

The two most critical predictors of soil DOC concentrations among the selected 14 variables were were elevation 355 

and soil clay content (Fig. 2). , with soil DOC concentrations exhibiting a significant positive correlation with 356 

elevation after controlling for confounding variables (Fig. 3f). This finding contrasted with several previous studies 357 

that prioritized precipitation regimes (Guo et al., 2020b) or soil texture (Angst et al., 2021) as primary soil DOC 358 

drivers, suggesting that elevation effects may have been obscured in large-scale analyses lacking environmental 359 

stratification. Three interconnected mechanisms may explain this pattern of elevation effects. First, In high-altitude 360 

regions, decreasinglower temperatures at high-altitude regions  (0.6°C/100m adiabatic lapse rate) limit the metabolic 361 

activity of microorganisms (Davidson and Janssens, 2006), slowing the decomposition of soil DOC and favoring 362 

soil DOC accumulation through reduced mineralization. Additionally, these regions typically receive more 363 

precipitation, which increases soil moisture and helps protect soil DOC from rapid breakdown. Typically, high-364 

altitude regions host vegetation types characterized by longer growth cycles and greater litterfall (Pesántez et al., 365 

2018; Wei et al., 2024).High-altitude regions often experience distinct precipitation patterns and soil moisture 366 

conditions compared with lower elevations (Li et al., 2023). Higher precipitation and lower evaporation rates may 367 

promote greater dissolution and leaching of organic matter, thereby increasing soil DOC concentrations (He et al., 368 

2021; Lu et al., 2019). Second, the altitudinal shift in vegetation communities, particularly the transition to 369 

coniferous species and ericaceous shrubs at higher elevations, enhances labile carbon inputs through distinct litter 370 

chemistry (higher phenolic compounds and lower C:N ratios), which created a positive feedback loop for DOC 371 
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production (Pesántez et al., 2018; Wei et al., 2024). Decomposing plant residues contribute to SOC, a portion of 372 

which is converted to DOC. Consequently, differences in vegetation type and productivity also influence soil DOC 373 

concentrations (Camino‐Serrano et al., 2014; Rahbek et al., 2019). We also found that forest and grassland sites 374 

above 2,000 m, which accounted for 73% of the high DOC observations.Third, the orographic precipitation effect 375 

and persistent cloud immersion at higher elevations maintain soil moisture conditions that simultaneously stimulate 376 

DOC release from organic matter while limiting its lateral export through reduced drainage flux (Michalzik et al., 377 

2001). Moreover, high-altitude areas are generally less disturbed by humans activities, which may help preserve soil 378 

DOC. Our results also indicated that soils in low-latitude plateaus and mountain ranges (e.g., Tibetan Plateau, Andes, 379 

African Highlands, and West Indies) exhibited higher DOC concentrations (Fig. 4a5a). These results fundamentally 380 

recalibrated our understanding of topographic controls on soil carbon cycling, which provided a mechanistic basis 381 

for predicting climate feedbacks in vertically stratified landscapes.(Sanders et al., 2021)(Awedat et al., 382 

2021)(Awedat et al., 2021) 383 

Soils with high clay content have a strong adsorption capacity that more effectively retains DOC and reduces its 384 

loss. Clay also provides a suitable habitat for microorganisms, affecting microbial communities’ structure and 385 

activity and thus regulating the rate of soil DOC turnover. The effects of soil clay content on DOC concentrations 386 

are complex, involving adsorption, water retention, microbial activities, and organic matter protection mechanisms 387 

(Kaiser and Zech, 2000; Singh et al., 2017). Generally, high clay content fosters DOC accumulation through the 388 

adsorption and stabilization of organic matter (Gmach et al., 2019; Kalbitz et al., 2000). Our findings revealed a 389 

nonlinear threshold control of soil clay content on soil DOC with minimum DOC concentrations occurring at 20% 390 

clay (Fig. 3h), which was a pedogenic tipping point where the dominant regulatory mechanisms shift from 391 

physicochemical stabilization to biogeochemical accumulation. In soils with clay content below this threshold, 392 

increasing clay promotes organo-mineral association through Fe/Al-oxide bridging and exponential growth of 393 

specific surface area (Sanders et al., 2021), which effectively sequester labile organic carbon into micro-aggregates 394 

while suppressing soil DOC release. Beyond 20% clay, however, the emergence of impermeable microstructures 395 

reduces oxygen diffusion, establishing anaerobic microsites that inhibit phenol oxidase activity and accumulate 396 

phenolic metabolites (Awedat et al., 2021). This shift coincides with clay-organic co-precipitation dynamics: high-397 

clay soils (>25%) exhibit stronger preferential dissolution of Fe-OM complexes during redox oscillations (Awedat et 398 

al., 2021). Furthermore, the effects of SOC and soil pH on DOC should not be overlooked (Fig. 2a). SOC serves as 399 
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the main source of DOC, so higher SOC results in more DOC release through microbial metabolism (Kalbitz et al., 400 

2000; Neff and Asner, 2001). Variations in soil pH can alter the charge of soil colloids, influencing adsorption-401 

desorption mechanisms and thus affecting DOC solubility (Andersson and Nilsson, 2001; Cheng et al., 2020; Kaiser 402 

et al., 2005). Overall, soil DOC concentration arises from interactions among soil and climate factors, as well as 403 

biological, chemical, physical, and human influences at various spatial and temporal scales. Each factor plays a 404 

distinct role in shaping DOC dynamics. 405 

4.2 Effects of climate on soil DOC concentrations 406 

Seasonal temperature variability (SVT) was the predominant climatic driver of soil DOC, exhibiting a nonlinear 407 

threshold response where soil DOC concentrations initially decline but shift to an increasing trend beyond an SVT 408 

threshold of 0.7 after accounting for confounding factors (Fig. 3d). This contrasts sharplied with previous studies 409 

that primarily attributed soil DOC fluctuations to mean annual temperature or precipitation (Guo et al., 2020b) or 410 

emphasized moisture variability over thermal regimes (Li et al., 2018). This makes our work the first study to 411 

identify SVT-driven biphasic DOC behavior in global terrestrial ecosystem. Three interconnected mechanisms could 412 

explain this pattern. First, moderate SVT levels (<0.7) likely enhance microbial carbon use efficiency by promoting 413 

enzymatic acclimation to predictable thermal fluctuations, which reduce soil DOC accumulation through efficient 414 

mineralization (Ren et al., 2024a). Second, surpassing the 0.7 SVT threshold destabilizes microbial communities 415 

through repeated thermal shocks, which increase cell lysis and releasing labile organic compounds into the soil 416 

matrix (Zhou et al., 2024b). Third, extreme temperature variability alters soil physical structure by disrupting 417 

aggregate stability and exposes previously protected organic matter to solubilization during thermal contraction-418 

expansion cycles (Six et al., 2004). The observed DOC rebound at high SVT aligns with plant root exudation 419 

strategies under thermal stress, which suggested that vegetation may compensate for microbial carbon loss by 420 

releasing soluble metabolites to maintain rhizosphere functionality (Kruthika et al., 2024). Overall, the identified 421 

SVT threshold (0.7) serves as an early warning indicator for ecosystems approaching critical thermal instability, 422 

particularly in climate transition zones where seasonal temperature swings are intensifying. Practically, this 423 

threshold could guide land management strategies. For instance, prioritizing organic amendments or shade crops in 424 

regions with SVT >0.7 may mitigate soil DOC leaching risks.  425 

4.3 Global patterns of soil DOC  426 

Using our soil DOC concentration dataset, we quantified the soil DOC concentrations (0-30 cm) in terrestrial 427 
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ecosystems, identified their key driving factors, and produced global predictions. Global DOC stocks in the topsoil 428 

are estimated at 13.7412.17 Pg C, accounting for 0.77587% of global soil organic carbon, which is significantly 429 

higher than previous estimates (Guo et al., 2020b). Our predictions indicated that soil DOC concentrations decreased 430 

markedly toward lower latitudes, particularly in the Northern Hemisphere. Previous global maps of soil DOC 431 

concentrations failed to capture this latitudinal trend, likely due to limited spatial coverage (Guo et al., 2020b; 432 

Langeveld et al., 2020). Our predicted map shows that soil DOC concentrations increase with latitude. In high-433 

latitude regions, low temperatures limit microbial activity, which slows the decomposition of organic matter and 434 

leads to more organic carbon being retained in dissolved form (Patoine et al., 2022) , thereby increasing soil DOC 435 

concentrations. In addition, soils in high-latitude areas are often moist or frozen due to low temperatures, limiting 436 

oxygen supply and further inhibiting microbial decomposition (Zhou et al., 2024c). These moist or frozen conditions 437 

also help protect organic matter, reducing its decomposition and contributing to DOC accumulation. Thus, low 438 

temperatures and specific moisture conditions in high-latitude regions jointly result in relatively high soil DOC 439 

concentrations. However, substantial heterogeneity exists at regional and local scales. For instance, despite their 440 

similar latitudes, soil DOC concentrations in Northern Europe were significantly lower than in Siberia, primarily due 441 

to differences in climatic conditions. Northern Europe’s maritime climate, with mild temperatures and evenly 442 

distributed precipitation, promotes higher microbial activity and accelerates organic matter decomposition. In 443 

contrast, Siberia’s cold subarctic climate results in lower soil temperatures that limit microbial activity and slow 444 

organic matter decomposition, leading to greater DOC retention (Jin and Ma, 2021). Furthermore, soils in Siberia 445 

are often frozen, restricting oxygen supply and further inhibiting decomposition, thereby contributing to DOC 446 

accumulation (Raudina et al., 2022). Climatic conditions thus play a key role in explaining the significant 447 

differences in soil DOC concentrations between these regions. Regional variations may also be related to 448 

topographic conditions. Higher soil DOC concentrations on the Tibetan Plateau compared with Eastern China may 449 

result from high elevation and low MAT in the plateau (Fig. 4a5a). In contrast, other studies reported lower DOC 450 

levels in Arctic regions, which may have been due to omitting DOC concentration measurements in dry or frozen 451 

soils (Langeveld et al., 2020). Our predictive model offered higher accuracy in estimating global soil DOC storage 452 

because our comprehensive dataset included DOC concentrations in both dry soil and soil solutions, providing a 453 

robust data foundation. In addition, we used the optimal model by comparing various linear and nonlinear models to 454 

predict global soil DOC. 455 
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 456 

4.4 Implications for carbon cycling models 457 

Carbon cycling models are key tools for predicting how soil organic carbon responds to future global changes. 458 

Considerable uncertainty exists in simulating and predicting soil organic carbon cycles in many current Earth system 459 

models, largely due to model structure, model parameters, and initial conditions (Luo et al., 2015). Regarding model 460 

structure, the soil carbon pools in models cannot be directly separated through experiments, which hamper the 461 

quantification of many parameters (Bailey et al., 2018). By integrating global soil DOC concentration data and 462 

coupling it with particulate organic carbon, mineral-associated organic carbon, and microbial biomass carbon pools, 463 

future models can establish a quantifiable structure based on measurable pools. Our study reveals key factors 464 

affecting soil DOC concentrations, such as elevation, soil clay content, and soil organic carbon, can be incorporated 465 

into carbon cycle models to improve their predictive capabilities. Moreover, this research provides a detailed global 466 

distribution map of soil DOC, which is essential for model parameterization and validation, particularly in regions 467 

where data are scarce. 468 

4.5 4 Limitations and predictive uncertainties 469 

Although we compiled a comprehensive global soil DOC concentration dataset, identified key drivers, and made a 470 

global prediction, our study had certain limitations. First, certain ecosystems remained underrepresented; for 471 

instance, tundra accounted for only 1% of our database, while shrublands, grasslands, and wetlands collectively 472 

constituted only 21%. This underrepresentation may reduce the accuracy of predictions for different ecosystems. 473 

Second, although we considered the subsoil at the beginning of dataset, we did not explore this further due to the 474 

limited availability of data and considerations of predictive accuracy. We intend to continue expanding the subsoil 475 

DOC database in future work. Third, there was a deficiency in some predictive variables; although we had extracted 476 

missing data through gridded datasets, this inevitably introduced uncertainty in predictions, particularly for soil 477 

variables. Fourth, although data standardization enables consistent comparison and analysis of soil DOC across 478 

different measurement methods, there were potential issues such as the possible loss of original data characteristics, 479 

dependence on accurate parameters, overgeneralization, increasing the complexity of data interpretation, and 480 

introducing bias. Finally, despite employing advanced machine learning methods with multiple predictors to predict 481 

the global soil DOC, 35% of soil DOC concentration variability remains unexplained. However, these limitations 482 

also highlighted areas for future soil DOC research. Future research should enhance the collection of deep soil 483 
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samples to address the current data scarcity and more accurately quantify the DOC reserves across the entire soil 484 

profile. There is a particular need to increase sample collection in key regions such as Siberia and Africa. 485 

5 Data availability 486 

The global soil DOC in this study and raw dataset of driving factors can be downloaded at 487 

https://doi.org/10.6084/m9.figshare.28574183 (Ren and Cai, 2024). 488 

6 Conclusions 489 

Through the development of a comprehensive soil DOC dataset, we quantified soil DOC concentrations in terrestrial 490 

ecosystems, identified their driving factors, and made global predictions. After to comparing multiple predictive 491 

models, we selected the Random Forest model as the best performer for mapping soil DOC concentrations. The 492 

results indicated that tundra exhibited the highest DOC concentrations, while shrubland and cropland soils had 493 

relatively lower concentrations. Elevation played the most important predictor for soil DOC prediction, followed by 494 

SOC, SVT, and soil clay. There was a nonlinear threshold response of soil DOC to soil clay and SVT, which initially 495 

decline but shift to an increasing trend beyond an soil clay threshold of 20% and SVT threshold of 0.7 after 496 

accounting for confounding factors. Climate factors (elevation) and soil properties (clay content, SOC, pH) jointly 497 

regulated DOC variations. We predicted that the soil DOC concentration increased significantly from the equator to 498 

the poles, and estimated that the DOC stocks in the topsoil of terrestrial ecosystems were 12.1713.74 Pg. The global 499 

soil DOC database we created served as a critical resource for future research and enhanced our understanding of the 500 

roles of soil in the global carbon cycle. This database provided valuable data support for climate change research, 501 

ecosystem management, agricultural sustainability, environmental policymaking, and the improvement of 502 

biogeochemical models. It aided in addressing soil degradation, improving food security, and tackling global 503 

environmental challenges. 504 

Author contributions 505 

Andong Cai designed this study. Tianjing Ren collected the data. Tianjing Ren and Andong Cai discussed analyzing 506 

methods. Andong Cai conducted the analysis. Tianjing Ren drafted the manuscript. All authors discussed the results 507 

and contributed to the manuscript. 508 

Competing interests 509 

The contact author has declared that neither they have any competing interests. 510 

Acknowledgements 511 



20 

 

We would like to thank Frank Boehm at NanoApps Consulting2341York Ave. Vancouver, BC, Canada for his 512 

assistance with English language and grammatical editing. 513 

Financial support 514 

This work was financially supported by the National Key Research and Development Program of China 515 

(2022YFD2300500).  516 

References 517 

Andersson, S., & Nilsson, S. I. (2001). Influence of pH and temperature on microbial activity, substrate availability 518 

of soil-solution bacteria and leaching of dissolved organic carbon in a mor humus. Soil Biology and 519 

Biochemistry, 33, 1181-1191. https://doi.org/10.1016/S0038-0717(01)00022-0. 520 

Angst, G., Pokorn, J., Mueller, C. W., Prater, I., Preusser, S., Kandeler, E., Meador, T., Straková, P., Hájek, T., & 521 

Buiten, G. V. (2021). Soil texture affects the coupling of litter decomposition and soil organic matter formation. 522 

Soil Biology and Biochemistry, 159, 108302. https://doi.org/10.1016/j.soilbio.2021.108302. 523 

Awedat, A. M., Zhu, Y., Bennett, J. M., & Raine, S. R. (2021). The impact of clay dispersion and migration on soil 524 

hydraulic conductivity and pore networks. Geoderma, 404, 115297. 525 

https://doi.org/10.1016/j.geoderma.2021.115297.  526 

Bailey, V. L., Bond-Lamberty, B., DeAngelis, K., Grandy, A. S., Hawkes, C. V., Heckman, K., Lajtha, K., Phillips, R. 527 

P., Sulman, B. N., Todd-Brown, K. E. O., & Wallenstein, M. D. (2018). Soil carbon cycling proxies: 528 

Understanding their critical role in predicting climate change feedbacks. Global Change Biology, 24, 895-905. 529 

https://doi.org/10.1111/gcb.13926.  530 

Cai, A., Liang, G., Yang, W., Zhu, J., Han, T., Zhang, W., & Xu, M. (2021). Patterns and driving factors of litter 531 

decomposition across Chinese terrestrial ecosystems. Journal of Cleaner Production, 278, 123964. 532 

https://doi.org/10.1016/j.jclepro.2020.123964.  533 

Camino‐Serrano, M., Gielen, B., Luyssaert, S., Ciais, P., Vicca, S., Guenet, B., Vos, B. D., Cools, N., Ahrens, B., 534 

Altaf Arain, M., Borken, W., Clarke, N., Clarkson, B., Cummins, T., Don, A., Pannatier, E. G., Laudon, H., 535 

Moore, T., Nieminen, T. M., Janssens, I. (2014). Linking variability in soil solution dissolved organic carbon to 536 

climate, soil type, and vegetation type. Global Biogeochemical Cycles, 28, 497-509. 537 

https://doi.org/10.1002/2013gb004726.  538 

https://doi.org/10.1111/gcb.13926
https://doi.org/10.1016/j.jclepro.2020.123964
https://doi.org/10.1002/2013gb004726


21 

 

Cheng, X., Hou, H., Li, R., Zheng, C., & Liu, H. (2020). Adsorption behavior of tetracycline on the soil and 539 

molecular insight into the effect of dissolved organic matter on the adsorption. Journal of Soils and Sediments, 540 

20, 1846-1857. https://doi.org/10.1007/s11368-019-02553-7.  541 

Cotrufo, M. F., & Lavallee, J. M. (2022). Soil organic matter formation, persistence, and functioning: A synthesis of 542 

current understanding to inform its conservation and regeneration. Advances In Agronomy, 172, 1-66. 543 

https://doi.org/10.1016/bs.agron.2021.11.002. 544 

Davidson, E. A., & Janssens, I. A. (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to 545 

climate change. Nature, 440, 165-173. https://doi.org/10.1038/nature04514.  546 

Deng, M., Li, P., Liu, W., Chang, P., Yang, L., Wang, Z., Wang, J., & Liu, L. (2023). Deepened snow cover increases 547 

grassland soil carbon stocks by incorporating carbon inputs into deep soil layers. Global Change Biology, 29, 548 

4686-4696. https://doi.org/10.1111/gcb.16798. 549 

Ding, H., Hu, Q., Cai, M., Cao, C., & Jiang, Y. (2022). Effect of dissolved organic matter (DOM) on greenhouse gas 550 

emissions in rice varieties. Agriculture, Ecosystems & Environment, 330, 107870. 551 

https://doi.org/10.1016/j.agee.2022.107870. 552 

Drake, T. W., Raymond, P. A., & Spencer, R. G. (2018). Terrestrial carbon inputs to inland waters: A current 553 

synthesis of estimates and uncertainty. Limnology and Oceanography Letters, 3, 132-142. 554 

https://doi.org/10.1002/lol2.10055. 555 

Fichot, C. G., Tzortziou, M., & Mannino, A. (2023). Remote sensing of dissolved organic carbon (DOC) stocks, 556 

fluxes and transformations along the land-ocean aquatic continuum: Advances, challenges, and opportunities. 557 

Earth-science Reviews, 242, 104446. https://doi.org/10.1016/j.earscirev.2023.104446. 558 

Gmach, M. R., Cherubin, M. R., Kaiser, K., & Cerri, C. E. P. (2020). Processes that influence dissolved organic 559 

matter in the soil: a review. Scientia Agricola, 77, e20180164. https://doi.org/10.1590/1678-992x-2018-0164.  560 

Guo, B., Zheng, X., Yu, J., Ding, H., Pan, B., Luo, S., & Zhang, Y. (2020). Dissolved organic carbon enhances both 561 

soil N2O production and uptake. Global Ecology and Conservation, 24, e01264. 562 

https://doi.org/10.1016/j.gecco.2020.e01264. 563 

Guo, Z., Wang, Y., Wan, Z., Zuo, Y., He, L., Li, D., Yuan, F., Wang, N., Liu, J., Song, Y., Song, C., Xu, X., & Hickler, 564 

T. (2020). Soil dissolved organic carbon in terrestrial ecosystems: Global budget, spatial distribution and 565 

controls. Global Ecology and Biogeography, 29, 2159-2175. https://doi.org/10.1111/geb.13186.  566 

https://doi.org/10.1007/s11368-019-02553-7
https://doi.org/10.1038/nature04514
https://doi.org/10.1016/j.agee.2022.107870
https://doi.org/10.1590/1678-992x-2018-0164
https://doi.org/10.1111/geb.13186


22 

 

He, X., Augusto, L., Goll, D. S., Ringeval, B., Wang, Y., Helfenstein, J., Huang, Y., Yu, K., Wang, Z., Yang, Y., & 567 

Hou, E. (2021). Global patterns and drivers of soil total phosphorus concentration. Earth System Science Data, 568 

13, 5831-5846. https://doi.org/10.5194/essd-13-5831-2021.  569 

Jin, H., & Ma, Q. (2021). Impacts of permafrost degradation on carbon stocks and emissions under a warming 570 

climate: a review. Atmosphere, 12, 1425. https://doi.org/10.3390/atmos12111425. 571 

Kaiser, K., Guggenberger, G., Haumaier, L., & Zech, W. (2005). Dissolved organic matter sorption on sub soils and 572 

minerals studied by 13C‐NMR and DRIFT spectroscopy. European Journal of Soil Science, 48, 301-310. 573 

https://doi.org/10.1111/j.1365-2389.1997.tb00550.x.  574 

Kaiser, K., & Zech, W. (2000). Dissolved organic matter sorption by mineral constituents of subsoil clay fractions. 575 

Journal of Plant Nutrition and Soil Science, 163, 531-535. https://doi.org/10.1002/1522-2624. 576 

Kalbitz, K., Solinger, S., Park, J.-H., Michalzik, B., & Matzner, E. (2000). Controls on the dynamics of dissolved 577 

organic matter in soils: a review. Soil Science, 165, 277-304. https://doi.org/10.1097/00010694-200004000-578 

00001. 579 

Kruthika, S., Ashu, A., Anand, A., Sammi Reddy, K., Vara Prasad, P. V., & Gurumurthy, S. (2024). Unveiling the 580 

Role of Root Exudates in Plant Adaptation to Drought and Heat Stress. Journal of Crop Health, 76, 941-955. 581 

https://doi.org/10.1007/s10343-024-01013-8.  582 

Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. science, 304, 1623-583 

1627. https://doi.org/10.1126/science.1097396.  584 

Langeveld, J., Bouwman, A. F., van Hoek, W. J., Vilmin, L., Beusen, A. H. W., Mogollón, J. M., & Middelburg, J. J. 585 

(2020). Estimating dissolved carbon concentrations in global soils: a global database and model. Sn Applied 586 

Sciences, 2, 1626.https://doi.org/10.1007/s42452-020-03290-0.  587 

Lee, H., Calvin, K., Dasgupta, D., Krinner, G., Mukherji, A., Thorne, P., Trisos, C., Romero, J., Aldunce, P., & 588 

Barret, K. (2023). IPCC, 2023: Climate Change 2023: Synthesis Report, Summary for Policymakers. 589 

Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on 590 

Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland. 1-34. 591 

https://cir.nii.ac.jp/crid/1360019997669261824. 592 

Li, J., Wu, B., Zhang, D., & Cheng, X. (2023). Elevational variation in soil phosphorus pools and controlling factors 593 

in alpine areas of Southwest China. Geoderma, 431, 116361. https://doi.org/10.1016/j.geoderma.2023.116361.  594 

https://doi.org/10.5194/essd-13-5831-2021
https://doi.org/10.1111/j.1365-2389.1997.tb00550.x
https://doi.org/10.1007/s10343-024-01013-8
https://doi.org/10.1126/science.1097396
https://doi.org/10.1007/s42452-020-03290-0
https://doi.org/10.1016/j.geoderma.2023.116361


23 

 

Li, S., Zheng, X., Liu, C., Yao, Z., Zhang, W., & Han, S. (2018). Influences of observation method, season, soil 595 

depth, land use and management practice on soil dissolvable organic carbon concentrations: A meta-analysis. 596 

Science of the Total Environment, 631-632, 105-114. https://doi.org/10.1016/j.scitotenv.2018.02.238.  597 

Lønborg, C., Carreira, C., Jickells, T., & Álvarez-Salgado, X. A. (2020). Impacts of global change on ocean 598 

dissolved organic carbon (DOC) cycling. Frontiers in Marine Science, 7, 466. 599 

https://doi.org/10.3389/fmars.2020.00466. 600 

Lu, S., Xu, Y., Fu, X., Xiao, H., Ding, W., & Zhang, Y. (2019). Patterns and drivers of soil respiration and vegetation 601 

at different altitudes in Southern China. Applied Ecology & Environmental Research, 17. 602 

https://doi.org/10.15666/aeer/1702_30973106. 603 

Luo, Y., Keenan, T. F., & Smith, M. (2015). Predictability of the terrestrial carbon cycle. Global change biology, 21, 604 

1737-1751. https://doi.org/10.1111/gcb.12766.  605 

Michalzik, B., Kalbitz, K., Park, J. H., Solinger, S., & Matzner, E. (2001). Fluxes and concentrations of dissolved 606 

organic carbon and nitrogen – a synthesis for temperate forests. Biogeochemistry, 52, 173-205. 607 

https://doi.org/10.1023/A:1006441620810. 608 

Nakhavali, M., Lauerwald, R., Regnier, P., Guenet, B., Chadburn, S., & Friedlingstein, P. (2021). Leaching of 609 

dissolved organic carbon from mineral soils plays a significant role in the terrestrial carbon balance. Global 610 

Change Biology, 27, 1083-1096. https://doi.org/10.1111/gcb.15460. 611 

Neff, J. C., & Asner, G. P. (2001). Dissolved organic carbon in terrestrial ecosystems: synthesis and a model. 612 

Ecosystems, 4, 29-48. https://doi.org/10.1007/s100210000058.  613 

Patoine, G., Eisenhauer, N., Cesarz, S., Phillips, H. R. P., Xu, X., Zhang, L., & Guerra, C. A. (2022). Drivers and 614 

trends of global soil microbial carbon over two decades. Nature Communications, 13, 4195. 615 

https://doi.org/10.1038/s41467-022-31833-z.  616 

Perrot, T., Rusch, A., Gaba, S., & Bretagnolle, V. (2023). Both long-term grasslands and crop diversity are needed to 617 

limit pest and weed infestations in agricultural landscapes. Proceedings of the National Academy of Sciences, 618 

120, e2300861120. https://doi.org/10.1073/pnas.2300861120. 619 

Pesántez, J., Mosquera, G. M., Crespo, P., Breuer, L., & Windhorst, D. (2018). Effect of land cover and 620 

hydro‐meteorological controls on soil water DOC concentrations in a high‐elevation tropical environment. 621 

Hydrological Processes, 32, 2624-2635. https://doi.org/10.1002/hyp.13224. 622 

https://doi.org/10.1016/j.scitotenv.2018.02.238
https://doi.org/10.1111/gcb.12766
https://doi.org/10.1023/A:1006441620810
https://doi.org/10.1111/gcb.15460
https://doi.org/10.1007/s100210000058
https://doi.org/10.1038/s41467-022-31833-z


24 

 

Propster, J. R., Schwartz, E., Hayer, M., Miller, S., Monsaint-Queeney, V., Koch, B. J., Morrissey, E. M., Mack, M. 623 

C., & Hungate, B. A. (2023). Distinct growth responses of tundra soil bacteria to short-term and long-term 624 

warming. Applied and Environmental Microbiology, 89, e01543-01522. https://doi.org/10.1128/aem.01543-22. 625 

Rahbek, C., Borregaard, M. K., Colwell, R. K., Dalsgaard, B., Holt, B. G., Morueta-Holme, N., Nogues-Bravo, D., 626 

Whittaker, R. J., & Fjeldså, J. (2019). Humboldt’s enigma: What causes global patterns of mountain biodiversity? 627 

Science, 365, 1108-1113. https://doi.org/10.1126/science.aax0149. 628 

Raudina, T. V., Smirnov, S. V., Lushchaeva, I. V., Istigechev, G. I., Kulizhskiy, S. P., Golovatskaya, E. A., Shirokova, 629 

L. S., & Pokrovsky, O. S. (2022). Seasonal and spatial variations of dissolved organic matter biodegradation 630 

along the aquatic continuum in the Southern Taiga bog complex, Western Siberia. Water, 14, 3969. 631 

https://doi.org/10.3390/w14233969. 632 

Ren, C., Zhou, Z., Delgado-Baquerizo, M., Bastida, F., Zhao, F., Yang, Y., Zhang, S., Wang, J., Zhang, C., Han, X., 633 

Wang, J., Yang, G., & Wei, G. (2024). Thermal sensitivity of soil microbial carbon use efficiency across forest 634 

biomes. Nature Communications, 15, 6269. https://doi.org/10.1038/s41467-024-50593-6.  635 

Ren, T., & Cai, A. (2024). Global patterns and drivers of soil dissolved organic carbon concentrations. Earth System 636 

Science Data Discussions., 2024, 1-25. https://doi.org/10.5194/essd-2024-343.  637 

Ren, T., Tang, S., Han, T., Wang, B., Zhou, Z., Liang, G., Li, Y. e., & Cai, A. (2023). Positive rhizospheric effects on 638 

soil carbon are primarily controlled by abiotic rather than biotic factors across global agroecosystems. Geoderma, 639 

430, 116337. https://doi.org/10.1016/j.geoderma.2023.116337.  640 

Ren, T., Ukalska-Jaruga, A., Smreczak, B., & Cai, A. (2024). Dissolved organic carbon in cropland soils: A global 641 

meta-analysis of management effects. Agriculture, Ecosystems & Environment, 371, 109080. 642 

https://doi.org/10.1016/j.agee.2024.109080.  643 

Sanders, E. D., Pereira, A., & Paulino, G. H. (2021). Optimal and continuous multilattice embedding. Science 644 

Advances, 7, eabf4838. https://doi.org/doi:10.1126/sciadv.abf4838  645 

Schlesinger, W. H., & Bernhardt, E. S. (2020). The atmosphere. Biogeochemistry, 12, 51-97. 646 

https://doi.org/10.1016/B978-0-12-814608-8.00003-7.  647 

Singh, M., Sarkar, B., Hussain, S., Ok, Y. S., Bolan, N. S., & Churchman, G. J. (2017). Influence of physico-648 

chemical properties of soil clay fractions on the retention of dissolved organic carbon. Environmental 649 

Geochemistry and Health, 39, 1335-1350. https://doi.org/10.1007/s10653-017-9939-0. 650 

https://doi.org/10.1038/s41467-024-50593-6
https://doi.org/10.5194/essd-2024-343
https://doi.org/10.1016/j.geoderma.2023.116337
https://doi.org/10.1016/j.agee.2024.109080
https://doi.org/doi:10.1126/sciadv.abf4838
https://doi.org/10.1016/B978-0-12-814608-8.00003-7


25 

 

Six, J., Bossuyt, H., Degryze, S., & Denef, K. (2004). A history of research on the link between (micro)aggregates, 651 

soil biota, and soil organic matter dynamics. Soil and Tillage Research, 79, 7-31. 652 

https://doi.org/https://doi.org/10.1016/j.still.2004.03.008.  653 

Smreczak, B., & Ukalska-Jaruga, A. (2021). Dissolved organic matter in agricultural soils. Soil Science Annual. 654 

72,1. https://doi.org/10.37501/soilsa/132234.  655 

Sokol, N. W., Slessarev, E., Marschmann, G. L., Nicolas, A., Blazewicz, S. J., Brodie, E. L., Firestone, M. K., Foley, 656 

M. M., Hestrin, R., & Hungate, B. A. (2022). Life and death in the soil microbiome: how ecological processes 657 

influence biogeochemistry. Nature Reviews Microbiology, 20, 415-430. https://doi.org/10.1038/s41579-022-658 

00695-z. 659 

Wei, D., Tao, J., Wang, Z., Zhao, H., Zhao, W., & Wang, X. (2024). Elevation-dependent pattern of net CO(2) uptake 660 

across China. Nature Communications, 15, 2489. https://doi.org/10.1038/s41467-024-46930-4.  661 

Zhao, X., Tian, P., Sun, Z., Liu, S., Wang, Q., & Zeng, Z. (2022). Rhizosphere effects on soil organic carbon 662 

processes in terrestrial ecosystems: A meta-analysis. Geoderma, 412, 115739. 663 

https://doi.org/10.1016/j.geoderma.2022.115739.  664 

Zhou, Z., Ren, C., Wang, C., Delgado-Baquerizo, M., Luo, Y., Luo, Z., Du, Z., Zhu, B., Yang, Y., Jiao, S., Zhao, F., 665 

Cai, A., Yang, G., & Wei, G. (2024). Global turnover of soil mineral-associated and particulate organic carbon. 666 

Nature Communications, 15, 5329. https://doi.org/10.1038/s41467-024-49743-7.  667 

Zhou, Z., Wang, C., Cha, X., Zhou, T., Pang, X., Zhao, F., Han, X., Yang, G., Wei, G., & Ren, C. (2024a). The 668 

biogeography of soil microbiome potential growth rates. Nature Communications, 15, 9472. 669 

https://doi.org/10.1038/s41467-024-53753-w.  670 

 671 

 672 

  673 

https://doi.org/https:/doi.org/10.1016/j.still.2004.03.008
https://doi.org/10.37501/soilsa/132234
https://doi.org/10.1038/s41467-024-46930-4
https://doi.org/10.1016/j.geoderma.2022.115739
https://doi.org/10.1038/s41467-024-49743-7
https://doi.org/10.1038/s41467-024-53753-w


26 

 

Figure 1 Global distribution of soil dissolved organic carbon (DOC) concentration according to our site-level 674 

dataset. The dataset contains 12807 sets of data (a, b), which covers major wetland (1106), forest (4867), shrubland 675 

(385), tundra (130), grassland (1192), cropland (5125) terrestrial biomes (c). The dashed red line within the subplot 676 

(b) signifies the average soil DOC concentration, which is 223 mg kg
-1

. 677 
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Figure 2 Result of the random forest model predicting soil dissolved organic carbon (DOC) concentration. (a) The 682 

relative importance of predictors in the random forest model. (b) Predicted vs. observed soil DOC concentration. 683 

The dashed line indicates the 1:1 line and the blue line indicates the regression line between predicted and observed 684 

values. MAT, mean annual temperature; MAP, mean annual precipitation; SVP, seasonal variability of precipitation; 685 

SVT, seasonal variability of temperature; ETM, monthly evaporation; SOC, soil organic carbon; BD, bulk density; 686 

MBC, microbial biomass carbon content; and C:N, ratio of carbon to nitrogen. 687 
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Figure 3 Partial dependence of predictors from random forest algorithm. Soil dissolved organic carbon (DOC) 690 

concentration in relation to mean annual temperature (MAT), mean annual precipitation (MAP), elevation, seasonal 691 

variability of precipitation (SVP), seasonal variability of temperature (SVT), monthly evaporation (ETM), elevation, 692 

soil sand content, soil clay content, soil depth, soil organic carbon (SOC) content, soil pH, bulk density, microbial 693 

biomass carbon content (MBC), and ration of soil carbon to nitrogen (C:N) (a, b, c, d, e, f, g, h, i, j, k, l, m, and n 694 

respectively). The histogram in each plot represents the data distribution of the X-axis indicator. 695 
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Figure 4 Interaction effects between key drivers of derived soil dissolved organic carbon concentration. key drivers 698 

included mean annual temperature (MAT), mean annual precipitation (MAP), elevation, seasonal variability of 699 

precipitation (SVP), seasonal variability of temperature (SVT), monthly evaporation (ETM), elevation, soil sand 700 

content, soil clay content, soil depth, soil organic carbon (SOC) content, soil pH, bulk density, microbial biomass 701 

carbon content (MBC), and ration of soil carbon to nitrogen (C:N). 702 
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Figure 5 Prediction of soil dissolved organic carbon (DOC) concentration in global ecosystems. (a) Global map of 706 

predicted soil DOC concentration. (b) Latitudinal patterns of soil DOC concentration. Blue line indicates the locally 707 

weighted regressions between latitude and soil DOC concentration in the predicted global map. Values in the 708 

predicted map reflect soil DOC concentration within a grid cell resolution of 0.05° × 0.05°. A value in the grid is the 709 

averaged from the result of random forest model. 710 
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Table 1. Variables information of soil dissolved organic carbon dataset in global terrestrial ecosystems. n/a refers to 713 

values that are not applicable. 714 

Variables Description Unit Number Range Mean 

No. Unique identification number of each record n/a 12807 1 to 12807 6404 

Latitude Latitude of study site ° 12807 -64.81 to 78.85 34.89 

Longitude Latitude of study site ° 12807 -159.66 to 175.95 107.05 

MAT Mean annual temperature ℃ 9948 -11.16 to 28.00 11.84 

MAP Mean annual precipitation mm 10325 30 to 4200 1071 

Elevation Altitude of study site m 5578 4 to 4730 881 

Ecosystems Community by the dominant plant species 

 

7 n/a n/a 

Soil sand Soil sand content % 4062 1 to 98 45 

Soil silt Soil silt content % 4025 1 to 95 33 

Soil clay Soil clay content % 4316 0 to 89 22 

Soil depth Mean depth of soil sample cm 12807 0.53 to 30.00 11.36 

SOC Soil organic carbon g kg-1 9136 0.23 to 598.50 38.74 

TN Soil total nitrogen g kg-1 7089 0.00 to 33.30 2.57 

Soil pH Measure by 1:2.5 H2O, n/a 8266 2.30 to 9.59 6.16 

BD Soil bulk density kg m-3 4380 0.07 to 2.52 1.29 

MBC Soil microbial biomass carbon mg kg-1 4218 5.93 to 2986 413 

Date Observation month of DOC month 12807 1 to 12 6.50 

DOCphy Measure by physical method mg kg-1 3289 0.28 to 3181 155.99 

DOCche Measure by chemical process mg kg-1 9518 0.04 to 7859 245.83 

DOC Soil dissolved organic carbon mg kg-1 12807 0.04 to 7859 222.78 
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Table 2. Global soil dissolved organic carbon concentration (mg kg-1) for major ecosystems. 25% and 75% 717 

represent the 25th and 75th percentiles of one group, respectively. SD, Standard deviation; SE, Standard error. 718 

Ecosystems Mean SD SE Skewness Kurtosis 25% Median 75% 

Wetland 218.53 340.35 10.23 5.15 39.41 46.40 107.11 266.51 

Forest 256.18 531.72 7.62 7.09 69.72 47.60 115.51 246.55 

Shrubland 160.24 131.51 6.70 3.40 22.58 76.53 127.84 205.50 

Tundra 470.78 721.70 63.30 4.67 29.59 86.91 241.09 577.00 

Grassland  327.77 674.43 19.53 4.16 18.03 54.62 126.48 303.63 

Cropland 165.98 272.51 3.81 6.53 73.25 40.51 83.00 178.81 

Global 222.78 445.78 3.93 7.16 73.67 45.86 101.01 226.47 
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Table 3. Analysis of the predicted global map of soil dissolved organic carbon. The area-weighted average soil 720 

dissolved organic carbon concentration was calculated based on our predicted map. Converting soil dissolved 721 

organic carbon concentration to soil dissolved organic carbon content and stock used the soil bulk density and land 722 

area. 723 

Continent 
Soil DOC concentration  

(mg kg
-1

) 

Soil DOC content  

(g m
-2

) 

Soil DOC stock  

(Pg) 

Asia 259.03 103.26 4.93 

North America 250.66 111.29 2.93 

Europe 208.28 89.97 0.98 

South America 219.83 92.33 1.76 

Oceania 206.36 91.62 0.76 

Africa 166.73 72.77 2.37 

Global 224.72 97.75 13.74 
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