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Abstract. Severe airborne particulate matter (PM, including PM2.5 and PM10) pollution in India has caused widespread concern. 

Accurate PM concentrations are fundamental for scientific policymaking and health impact assessment, while surface 

observations in India are limited due to scarce sites and uneven distribution. In this work, a simple structured, efficient, and 

robust model based on the Light Gradient Boosting Machine (LightGBM) was developed to fuse multi-source data and 

estimate long-term (1980-2022) historical daily ground PM concentrations in India (LongPMInd). The LightGBM model 20 

shows good accuracy with out-of-sample, out-of-site, and out-of-year cross-validation CV test R2 of 0.77, 0.70, and 0.66, 

respectively. Small performance gaps between PM2.5 training and testing (delta RMSE of 1.06, 3.83, and 7.74 μg m-3) indicate 

low overfitting risks. With great generalization ability, the open-accessible, long-term, and high-quality daily PM2.5 and PM10 

products were then reconstructed (10 km, 1980-2022). It shows that India has experienced severe PM pollution in the Indo-

Gangetic Plain (IGP), especially in winter. PM concentrations significantly increased (p<0.05) in most regions since 2000 25 

(0.34 μg m-3 year-1). The turning point occurred in 2018 when the Indian government launched the National Clean Air Program, 

PM2.5 concentrations declined in most regions (- 0.78 μg m-3 year-1) during 2018-2022. Severe PM2.5 pollution caused 

continuous increased attributable premature mortalities, from 0.73 (95 % CI: 0.65-0.80) million in 2000 to 1.22 (95 % CI: 

1.03-1.41) million in 2019, particularly in the IGP, where attributable mortality increased from 0.36 to 0.60 million. The 

LongPMInd has the potential to support multi-applications of air quality management, public health, and climate change. The 30 

daily and monthly PM2.5 and PM10 concentrations are publicly accessible at https://doi.org/10.5281/zenodo.10073944 (Wang 

et al., 2023a). 
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1 Introduction 

Airborne particulate matter (PM, including PM2.5 with diameters < 2.5 μm and PM10 with diameters < 10 μm) not only impacts 

climate by changing radiation budgets but also has significant adverse effects on human health(Murray et al., 2020; Wang et 35 

al., 2012; Yang et al., 2016). India is one of the most populous countries, with severe PM pollution resulting from rapid 

economic development and industrialization over the last few decades. Exposure to PM2.5 has become one of the leading causes 

of health burden in India, including heart disease, stroke, lung cancer, and premature death (Pandey et al., 2021; Dandona et 

al., 2017). 

Accurate ground PM concentrations are prerequisites for evidence-based policymaking and health impact assessments. The 40 

Central Pollution Control Board (CPCB) of India has established and maintained ground-based monitoring networks with 

~335 continuous ambient air quality monitoring stations (CAAQMS) currently. However, these monitoring sites are unevenly 

distributed (mainly located in urban, residential, and industrial areas), with limited number of sites (monitoring density: ~0.6 

sites per million population) (Brauer et al., 2019), and many cities even have no monitoring sites (Martin et al., 2019). 

Therefore, the surface observations alone are not sufficient to support air quality management, especially on a regional scale 45 

(Pant et al., 2019; Dey et al., 2020). 

Two main approaches have been used for large-scale and long-term PM2.5 estimation: scaling methods and statistical methods. 

Scaling methods use chemical transport modeling (CTM) to simulate the association between aerosol optical depth (AOD) 

and PM2., which requires no ground observations. However, the relationship between PM2.5-AOD is spatially and temporally 

variable and without the constraints of ground observations, this method usually has a large uncertainty (Ma et al., 2022). 50 

Compared with scaling methods, statistical methods based on multivariate data fusion have higher prediction accuracy and 

have been widely used. Statistical models (traditional linear and nonlinear regression and machine learning algorithms) 

estimate PM2.5 concentrations by fitting the relationship between input variables (meteorological, emissions, and other relevant 

variables) and target variables (Wang et al., 2023d; Wei et al., 2021a; Ren et al., 2022b; Katoch et al., 2023). 

Tree-based machine learning (ML) models typically outperform deep learning approaches and traditional machine learning 55 

methods in tabular data (e.g., air pollutant observation datasets), and thus have been widely developed and used (Grinsztajn et 

al., 2022; Sayeed et al., 2022). Wei et al. (2021a) and Li et al. (2021) reconstructed long-term PM2.5 data records in China by 

fusing satellite, meteorological, and emission data using a spatiotemporal tree-based model. Ni et al. (2024) analyzed the 

contribution of meteorology and emissions to O3 in China using the chemical transport model (GEOS-Chem) and a tree-based 

model. Sayeed et al. (2022) improved the PM2.5 concentration in the continental United States using the Random Forest 60 

approach coped with meteorology and aerosol species of MERRA-2. 

Some studies have estimated PM2.5 concentrations in India using different methods. Chowdhury et al. (2019)  used the PM2.5–

AOD equation method to estimate PM2.5 concentrations in Delhi, however, AOD satellite data suffers from significant non-

random misses, especially during cloud cover and hazy polluted days, so it is difficult to derive a spatiotemporal full-coverage 

PM dataset (Wang et al., 2023d; Bai et al., 2022). Bali et al. (2021) and Dey et al. (2020) estimated total PM2.5 in India through 65 
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empirical coefficients and the MERRA2 dataset, while these coefficients vary with geographic location and pollution scenarios, 

which makes the estimation potentially unreliable. Kumar et al. (2023) analyzed PM2.5 for India using a Random Forest model, 

which shows a gap between train and test scores with the risk of overfitting. In addition, global-scale daily PM2.5 concentration 

datasets (including India) have recently been developed, including GlobalHighAirPollutants (GHAP) (Wei et al., 2023), The 

Long-term Gap-free High-resolution Air Pollutants concentration dataset version 2 (LGHAPv2) (Bai et al., 2024). Global 70 

monthly PM2.5 datasets have also been developed before (Van Donkelaar et al., 2021). These datasets were trained on a global 

scale and estimated PM2.5 concentrations for the India region. The severity of PM2.5 pollution in India is much higher than in 

Europe and the United States (Wei et al., 2023). However, due to the small number of observations recorded, the global model 

can learn limited knowledge of PM2.5 pollution in India during the training process. So, the reliability and robustness of global 

model estimates of PM2.5 concentrations in India should be systematically assessed. Building a model locally in India can be 75 

a useful comparison method, which can also complement the biases in global modeling (e.g., focusing more on lightly polluted 

regions such as Europe and the United States). However, it is challenging to establish long-term, full-coverage, high-accuracy, 

open-source PM data products locally in India due to insufficient observational data and lack of model robustness due to 

variations of data distribution across regions and years (Kumar et al., 2023; Dey et al., 2020). 

To improve performance, previous models usually have high complexity, such as numerous trees and leaf nodes (Zhang et al., 80 

2021; Huang et al., 2021). This practice raises the requirement of computational resources and is prone to overfitting, leading 

to a large gap between the performance of the training and testing(Zhang et al., 2021; Jabbar and Khan, 2015; Ying, 2019). 

Therefore, it is necessary to minimize model complexity to avoid overfitting. The Light Gradient Boosting Machine 

(LightGBM) is an optimized Gradient Boosting Decision Tree (GBDT) (Ke et al., 2017a), and has shown superior performance 

in many fields (Wei et al., 2021b; Yan et al., 2021; Sun et al., 2020; Liang et al., 2020). LightGBM uses Histogram's decision 85 

tree algorithm along with Gradient-based One-Side Sampling (GOSS), which can save memory and computation time (Ke et 

al., 2017a). Our previous study comparing several commonly used machine learning models found that the LightGBM has 

similar performance to the eXtreme Gradient Boosting (XGBoost) with the highest accuracy, but LightGBM was faster and 

more robust, which has the potential to estimate long-term concentrations of PM in India (Wang et al., 2023b). 

In this work, a simple structured, efficient, and robust model based on LightGBM was developed to estimate PM concentration. 90 

Three cross-validation methods and separate test datasets were designed to evaluate model performance. Long-term (1980-

2022) and open-source datasets with a spatial resolution of 10 km of PM2.5 and PM10 in India were then generated, and the 

mortalities due to PM2.5-induced diseases were also estimated. The concentration datasets could help with pollution formation 

analysis, assessment of PM health risks, and air quality management in India.  
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2 Materials and methods 95 

2.1 Data sources 

Table 1 shows the multisource datasets used in this study. Ground observations of PM2.5 and PM10 during 2018-2022 in India 

were collected from the CPCB air quality monitoring network (www.cpcb.nic.in). The location of monitoring sites is shown 

in Fig. S1. As extreme values affect model robustness, Observations data less than 0.01 % and larger than 99.99 % were 

excluded. The fifth generation ECMWF atmospheric reanalysis datasets ERA5-Land in 1980-2022 were collected. The 100 

feature was selected by the relative importance, which was calculated by the Gain, and several meteorological factors with 

high relative importance are included (Table 1). Datasets of Modern-Era Retrospective analysis for Research and Applications, 

Version 2 (MERRA-2) in 1980-2022 were also collected, including aerosol optical depth and aerosol components and 

precursors (black carbon, organic carbon, sulfate, dust, and SO2). 

Table 1: Summary of the ERA5, MERRA2, and ground observation data used in this study. 105 

Type Variable Description Spatial Resolution Temporal Resolution 

ERA5 SSRD Surface solar radiation 0.1° × 0.1° Hourly 

 BLH Boundary layer height 0.25°× 0.25° Hourly 

 EVAP Evaporation 0.1°× 0.1° Hourly 

 TEMP2 2m air temperature 0.1°× 0.1° Hourly 

 DEWP2 2m dewpoint temperature 0.1°× 0.1° Hourly 

 SP Surface pressure 0.1°× 0.1° Hourly 

 TPREC Total precipitation 0.1°× 0.1° Hourly 

 TCLOUD Total cloud cover 0.25°× 0.25° Hourly 

 UWIND10 10m u component of wind 0.1°× 0.1° Hourly 

 VWIND10 10m v component of wind 0.1°× 0.1° Hourly 

MERRA2 BCSMASS Black carbon surface mass concentration 0.5 °× 0.625 ° Hourly 

 OCSMASS Organic carbon surface mass concentration 0.5 °× 0.625 ° Hourly 

 DUSMASS25 Dust– PM2.5 surface mass concentration 0.5 °× 0.625 ° Hourly 

 DUSMASS Dust surface mass concentration 0.5 °× 0.625 ° Hourly 

 SO2SSMASS Sulfur dioxide surface mass concentration 0.5 °× 0.625 ° Hourly 

 SO4SMASS Sulfate surface mass concentration 0.5 °× 0.625 ° Hourly 

 TOTEXTTAU Total aerosol extinction [550 nm] 0.5 °× 0.625 ° Hourly 

Observation PM2.5, PM10 Particulate matter Point Hourly 
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2.2 Model building 

In this study, LightGBM (Ke et al., 2017b), an efficient Gradient Boosting Decision Tree (GBDT), was used to estimate PM2.5 

and PM10, which has been proven to be accurate, fast, and robust in our previous studies (Wang et al., 2023b; Wang et al., 

2023c). Grid search cross-validation (CV) method was used to select the optimal hyperparameters. An algorithm for 

hyperparameter selection (SI: Algorithm 1) was designed to ensure the model's generalization ability. Loop to increase the 110 

model complexity (e.g., number of trees), ending the loop and returning the hyperparameters when the model predicted RMSE 

does not decrease significantly (< 0.01) or the difference between training and predicted RMSE does not increase significantly 

(< 0.05). Features were selected based on their relative importance. Ten meteorological features, six emission-related features, 

and total aerosol extinction were used to train the LightGBM and estimate PM concentrations (Fig. 1). The meteorological and 

emission features contributed 64% and 31% to the PM2.5 prediction. 115 

Meteorology is more important than emissions. Compared to MERRA5, which has higher uncertainty and lower spatial 

resolution, ERA5 has higher resolution and accuracy, and the meteorological features can provide richer information and 

contribute more in model training, thus having higher importance (Muñoz-Sabater et al., 2021; Hersbach et al., 2020). Besides, 

more numbers of meteorological features were used to train the model, thus contributing more to prediction results. The highest 

importance of surface pressure can be attributed to the important effect to PM2.5 concentration and its high data quality (Chen 120 

et al., 2020; Bauer et al., 2015). 

Three independent CV methods and three metrics (coefficient of determination: R2, root mean square error: RMSE, and mean 

absolute error: MAE) were designed to evaluate the model's spatiotemporal predictive power. The first is out-of-sample CV, 

where the dataset is randomly divided into 10 subsets, one of which is taken in turn for testing, and the remaining 9 subsets 

are used for training, which is repeated 10 times and averaged. The second is out-of-site CV, which is similar to the out-of-125 

sample CV, but the dataset is randomly divided by site. This method can measure the model's spatial predictive power. The 

third method is interannual out-of-year CV, which sequentially takes one year of data for testing and the rest for training. This 

approach can measure the model’s predictive power for the years with no observations. Besides, observations in January-June 

2023 were used as a separate test set, and these data were not involved in any of the training and hyperparameter selection 

processes. 130 
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Figure 1: Relative importance and correlation coefficient for the PM2.5 and PM10 estimates models. Description of the features is 

shown in Table 1. 

2.3 Mortality estimation. 135 

According to the database of Global Burden of Disease Study (GBD) in 2019 (Murray et al., 2020; Vos et al., 2020), annual 

average concentrations were used to assess long-term exposure to PM2.5, and premature deaths were assessed using the 

following equation: 

𝑀𝑦,𝑖,𝑗 =
𝑅𝑅𝑗(𝐶𝑦,𝑖)−1

𝑅𝑅𝑗(𝐶𝑦,𝑖)
× 𝑃𝑦,𝑖 × 𝐼𝑦,𝑗                                                                                  (1) 

Where, My, i represents the mortality attributable to cause j due to long-term PM2.5 exposure in year y in region i. RR(Cy, i) 140 

represents the relative risk of cause j for year y in region i. Py, i represents the population j in year y in region i, and Iy represents 

the baseline mortality in year y. 

PM2.5 exposure-related deaths due to ischemic heart disease (CVD_IHD), chronic stroke (CVD_stroke), obstructive pulmonary 

disease (RESP_COPD), lung cancer (NEO_LUNG), lower respiratory infections (LRI), and diabetes mellitus type II (T2_DM) 

were estimated. The gridded population data was obtained from the WorldPop datasets (https://www.worldpop.org). The 145 

relative risk is a discrete value obtained from GDB 2019, which is the relative risk corresponding to each PM2.5 concentration 
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level. Details about the calculation way of relative risk can be found in GBD 2019 (Murray et al., 2020). Annual baseline 

mortality (2000-2019) and risk of cause-specific deaths at different PM2.5 levels were obtained from GBD 2019. The minimum-

risk exposure level for the health effects of PM2.5 is in the range of 2.4 to 5.9 μg m-3. 

3 Results 150 

3.1 Long-term India PM2.5 dataset 

Applying the trained LightGBM model to the large input dataset constructed for the years 1980 - 2022, the long-term high-

quality daily PM2.5 and PM10 products of India (LongPMInd) are reconstructed. Table 2 summarizes the basic information 

about the dataset, the data is provided in NetCDF format with a spatial resolution of 10 km. LongPMInd dataset to the best of 

our knowledge is the first open-source, longest term (i.e. 1980-2022) and relatively high accuracy dataset covering the entire 155 

India. The daily, monthly, and yearly PM2.5 and PM10 datasets are publicly available at 

https://doi.org/10.5281/zenodo.10073944 (Wang et al., 2023a). 

Table 2: Summary of the LongPMInd dataset 

Data description LongPMInd dataset 

Data type Gridded 

File format NetCDF 

Specie PM2.5, PM10 

Spatial reference WGS 84 

Horizontal resolution 0.1° × 0.1° (≈ 10 km × 10 km) 

Horizontal coverage India, [60° E, 100° E], [5.0° N, 40.0° N] 

Temporal resolution Daily, monthly, and yearly 

Temporal coverage 1980-2022 

3.2 Model performance 

Table 3 shows the training and testing results of out-of-sample CV, out-of-site CV, and out-of-year CV for daily PM2.5 and 160 

PM10. Overall, the model shows good accuracy with out-of-sample CV R2 of 0.77, 0.76, and RMSE of 29.57, 51.63 μg m-3 for 

daily PM2.5 and PM10. Monthly predictions show better performance with out-of-sample CV R2 of 0.87, 0.86, and RMSE of 

17.65, 31.26 μg m-3 for monthly PM2.5 and PM10. More importantly, out-of-sample CV results of training and testing showed 

small accuracy gaps with RMSE and MAE of 1.06 (4 %) and 0.51 (3 %) μg m-3 for PM2.5, and 1.52 (3 %) and 0.9 (3 %) μg m-

3 for PM10 reflecting good generalization ability. Out-of-site CV measures the model's predictive ability for unobserved areas. 165 

The spatially validated R2 and RMSE for PM2.5 and PM10 were 0.70, 0.65, and 31.73, 51.37 μg m-3, respectively, indicating 

the model’s ability to fill the unobserved areas accurately. The small performance gap between out-of-site CV training and 



8 

 

testing also reflects good spatial generalization ability. Observations before 2018 are limited due to the number and quality of 

sites. Out-of-year CV was used to evaluate LightGBM prediction performance, which was conducted by sequentially taking 

one-year data for testing and the rest for training. The model's prediction accuracy for unobserved years decreases slightly 170 

compared to out-of-sample CV (R2 decreases by 14% and RMSE increases by 20%) due to differences in data distribution 

among years (Fig. S2). Notably, most predictions are consistent with observations, with most data samples evenly distributed 

around the 1：1 line (Fig. S3), but with the underestimation for high PM levels and overestimation for low PM levels 

(slopes:0.75 and 0.74, intercepts: 16.45 and 35.79 μg m-3 for daily PM2.5 and PM10 predictions). Monthly predictions show 

better agreement with observations with slopes of 0.84 and 0.82, and intercepts of 10.26 and 23.53 μg m-3 for monthly PM2.5 175 

and PM10. The under- and over-estimation indicate the potential unreliability of model predictions for extreme pollution and 

extreme clean days. This can be attributed to the small proportion of data records for extreme pollution and clean days. 

Observations from January to June in 2023 were used for testing, which were not involved in any training or hyperparameter 

selecting processes (Fig S4 and Table S1). Six representative regions were selected for the analysis including Delhi and Uttar 

Pradesh (IGP region), Gujarat (Western India region), Madhya Pradesh (Central India region), West Bengal (Eastern India 180 

region), and Andhra Pradesh (Southern India region). The model shows accurate prediction ability with RMSE of 33.58 and 

64.25 μg m-3 for PM2.5 and PM10 respectively in India. The model can capture the decreasing trend of PM concentration from 

January to June in different regions of India but with some biases, e.g., overestimation of PM2.5 in Uttar Pradesh on 8 January; 

and underestimation of haze pollution in Gujarat on 19 February. The large RMSE of PM2.5 prediction in Uttar Pradesh (32.72 

μg m-3) could be attributed to the complexity of pollution causes in the region as well as insufficient observation data. The 185 

small RMSE (8.34 μg m-3) of PM2.5 prediction in Andhra Pradesh can be related to the light haze pollution and small fluctuation 

of PM2.5 concentration. 

Table 3: Training and testing results of out-of-sample CV, out-of-site CV, and out-of-year CV for daily PM2.5 and PM10 (2018-2022). 

RSME and MAE unit: μg m-3. 

Spec Type 
R2 RMSE (μg m-3) MAE (μg m-3) 

Test Train Test Train Test Train 

PM2.5 out-of-sample 0.77 0.79 29.57 28.51 18.76 18.25 

 out-of-site 0.70 0.79 31.73 27.90 20.32 17.78 

 out-of-year 0.66 0.79 35.35 27.61 21.54 17.61 

PM10 out-of-sample 0.76 0.77 51.63 50.11 35.42 34.52 

 out-of-site 0.65 0.77 57.37 49.42 39.92 33.94 

 out-of-year 0.66 0.78 60.65 49.06 40.74 33.72 

 190 

3.3 Spatial and temporal trends 

First, spatial patterns of PM2.5 and PM10 are analyzed (Fig. S5 and S6). The Indo-Gangetic Plain (IGP) and western arid regions 

show high levels of PM2.5 and PM10, especially for years after 2000. Low PM concentrations were observed in south India. 
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The high terrain in the north and south IGP is unfavorable for pollutant dispersion. Intense human activities in IGP (population > 

700 million) emit large amounts of primary PM and gas pollutants (SO2 and nitrogen oxide) coupled with unfavorable 195 

dispersion conditions leading to severe PM pollution (Dey et al., 2020; Maheshwarkar et al., 2022). Both PM2.5 and PM10 

concentrations show north-to-south (high-to-low) distribution, consistent with population distribution and corresponding 

anthropogenic emissions (Upadhyay et al., 2020; Dey et al., 2020). 

Figure 2 shows the spatial patterns of seasonal PM2.5 and PM10 anomalies. The highest PM levels occurred in winter, especially 

in IGP (positive anomaly > 20 μg m-3 relative to the annual mean during 1980-2022). This enhancement is related to additional 200 

anthropogenic emissions (from space and water heating of households especially in cold places like IGP ) and stable 

meteorological conditions (low boundary layer height and low wind speed) (Pandey et al., 2014; Tiwari et al., 2013). During 

the pre-monsoon (March-April-May), favorable meteorological conditions (increased boundary layer height due to increased 

temperature and wind speeds) reduce PM2.5 concentrations in the IGP area(Dey et al., 2020). During the monsoon season (June 

to September), rainfall enhances PM deposition, resulting in a substantial reduction of PM concentrations. With the end of the 205 

monsoon (post-monsoon, October and November), less rainfall, lower temperatures, extensive open biomass burning (for 

heating), and reduced boundary layer heights exacerbate PM pollution(Nagpure et al., 2015; Kumari et al., 2021). 

 

Figure 2: Spatial patterns of seasonal PM2.5 and PM10 anomalies (the difference between seasonal mean and annual mean) in India 

during 1980-2022. 210 

The long-term trends of aerosols in India can be better examined given the advantage of long temporal coverage of the 

LongPMInd dataset. The monthly PM2.5 and PM10 anomalies from 1980 to 2022 in India and typical regions were first 

calculated (Fig. 3 and Fig. S7). PM concentrations slowly increased in India (0.19 μg m-3 year-1) before 2000, the IGP and 

eastern India increased by 0.43 and 0.26 μg m-3 year-1, respectively. The PM concentrations jumped in 2000, which can be 
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attributed to the absence of satellite data for MERRA2 before 2000 (Buchard et al., 2017). The MERRA2 dataset before 2000 215 

could not provide the same level of data quality as in the later period, further leading to a systematic bias in the model estimates. 

With accelerated industrialization, anthropogenic emissions of primary particulate matter (PPM) and precursors of secondary 

aerosols (e.g., SO2, NO, and NH3) have increased since 2000 (Pandey et al., 2014; Nagpure et al., 2015), leading to significant 

increases of PM concentrations in most regions (p<0.05), except for western India (Fig. 4 and Fig. S8). PM2.5 increased by 

0.50 and 0.46 μg m-3 per year in the IGP and eastern India during 2000-2017. In early 2018, the Indian government launched 220 

the National Clean Air Program (NCAP). The interventions were clubbed into transport, industry, waste management, 

domestic, and construction activities, road dust, and others (Ganguly et al., 2020). Emissions declined rapidly, and PM2.5 

concentrations have declined significantly in the IGP (1.63 μg m-3 year-1), western India (1.22 μg m-3 year-1), and southern 

India (0.52 μg m-3 year-1). However, PM concentrations in east-central India showed an increasing trend (Fig. 4), which may 

be related to emissions from mining activities and related industries and thermal power plants (Upadhyay et al., 2020). 225 

 

Figure 3: Time series of monthly PM2.5 anomaly from 1980 to 2022 in India and typical regions. The colored straight lines are the 

linear regression trend (μg m-3 year-1) for different periods in China, and * represent the significance of the trends (*mean p < 0.05 

and ** mean p < 0.01). 
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 230 

Figure 4: Spatial patterns of annual changes for PM2.5 and PM10 (μg m-3 year-1) during different periods (1980-1999, 2000-2017, and 

2018-2022). 

3.4 Health burden analysis 

The health burden of PM2.5 was estimated from 2000-2019 following the rapid increase in PM2.5 concentrations after 2000. 

Using GBD 2019, premature deaths attributed to PM2.5 exposure were calculated for six diseases, including ischemic heart 235 

disease (CVD_IHD), chronic stroke (CVD_stroke), obstructive pulmonary disease (RESP_COPD), lung cancer 

(NEO_LUNG), lower respiratory infections (LRI), and diabetes mellitus type 2 (T2_DM) (Murray et al., 2020; Vos et al., 

2020). 

Figure 5 shows the changes of annual average PM2.5 concentrations and corresponding attributed deaths, and Table S2 shows 

the uncertainties. PM2.5 concentrations showed a fluctuating upward trend with a continuous increase of attributable premature 240 

mortality, from 0.73 (95 % Confidence Interval (CI): 0.65-0.80) million in 2000 to 1.22 (95 % CI: 1.03-1.41) million in 2019, 

with CVD_IHD, CVD_stroke, RESP_COPD, NEO_LUNG, LRI, and T2_DM caused an annual average of 0.35, 0.21, 0.21, 

0.02, 0.12, 0.04 million premature mortality, respectively. PM2.5-attributable deaths were counted by region (Fig. 5). The IGP 

had the highest attributable premature deaths, increasing from 0.36 million in 2000 to 0.60 million in 2019, due to high 

population density coupled with severe haze pollution (Dey et al., 2020; Pandey et al., 2021). 245 
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To reduce premature deaths from PM2.5 exposure, policies to mitigate PM2.5 pollution should be implemented. In addition, 

appropriate health advice and enhanced medical facilities to reduce baseline mortality are also important to reduce the health 

burden (Maji et al., 2023). India has experienced rapid urbanization and large-scale population migration, which introduces 

uncertainty in health risk estimates for PM2.5 (Shi et al., 2020). Country-level baseline disease rates were used, so regional 

differences were not accounted for due to lack of data, which could introduce some error. In addition, uncertainties in relative 250 

risk, population, and PM2.5 concentrations may also introduce errors in health risk estimates. 

 

Figure 5: Annual mortalities due to PM2.5-induced diseases in India during 2000-2019, including ischemic heart disease (CVD_IHD), 

chronic stroke (CVD_stroke), obstructive pulmonary disease (RESP_COPD), lung cancer (NEO_LUNG), lower respiratory 

infections (LRI), and diabetes mellitus type 2 (T2_DM). Subfigures b and c show statistical results for causes and regions. 255 
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3.5 Model complexity 

Model complexity can be measured by the number of parameters the model has. As model complexity increases, the model is 

more capable to learn complex patterns in the data, but at the same time, it may lead to overfitting and inaccurate predictions 

of new and unseen data (Hu et al., 2021). The impact of the complexity of the tree-based LightGBM model on the performance 

of training and testing is analyzed. The number of trees (n_estimators) was used as a complexity proxy and the other 260 

hyperparameters were kept consistent. All three cross-validation results show that the increase of model complexity improves 

the model’s fitting ability, increasing R2 and decreasing RMSE. However, the increase in complexity did not improve the 

model's predictive performance. With n_estimators increasing from 100 to 1000, there was no significant change in R2 for the 

out-of-site and out-of-year CV (-0.01 - 0.01), and the RMSE for the out-of-year CV on the contrary increased by 0.53. Out-

of-sample CV showed an improvement in R2 but with limited reduction in RMSE (-2.45). So, using only out-of-sample CV to 265 

select hyperparameters and evaluate the model is limiting, and out-of-site and out-of-year CV allows a more objective 

evaluation of the model's generalization ability. 

 



14 

 

Figure 6: Three CV results of model complexity test for PM2.5 estimation. The n_estimators is the number of trees, representing the 

complexity of LightGBM. Δ is the difference between the metrics with n_estimators = 1000 and n_estimators = 100. Units of RMSE 270 
and MAE are μg m-3. 

3.6 Uncertainties 

Uncertainty in this study comes from two main sources: the machine learning model and the dataset used. Firstly, machine 

learning is essentially based on probability theory and is influenced by the distribution pattern of the target variable (PM2.5 and 

PM10) (Yang et al., 2021b; Breiman, 2001). Due to the low frequency of extreme pollution scenarios, the model suffers from 275 

the problem of smoothing predictions, i.e. underestimating high pollution scenarios (Wei et al., 2021a; Yu et al., 2023; Geng 

et al., 2021). In addition, machine learning has limitations in describing atmospheric physical and chemical processes, and it 

is difficult to fit complex, logistically long processes, such as secondary aerosol generation (Stirnberg et al., 2021; Li et al., 

2023). Attempts have been made to incorporate physical constraints into neural networks to improve interpretability, but this 

approach is limited to spatially continuous two-dimensional data (Geiss et al., 2022). Other studies have shown that chemical 280 

reaction processes can be described by neural networks, but it is still a challenge to efficiently couple them with CTMs (Huang 

et al., 2022; Huang and Seinfeld, 2022). 

The second aspect is the uncertainties caused by the datasets. First, the label (observations) and corresponding features 

(MERRA2 and ERA5) have a long-tailed distribution with few high pollution records, so there is an issue of imbalance 

regression (Yang et al., 2021a). The model was trained with a bias towards denser observations, leading to the underestimation 285 

of high pollution scenarios. For the problem of imbalanced regression, there are currently main data-based solutions and model-

based solutions (Ren et al., 2022a). Data-based solutions require acquiring more data or changing the data distribution by 

resampling. Model-based solutions increase the weighting of fewer samples (high pollution scenarios) by modifying the loss 

function. Both methods can improve the accuracy of fewer samples, but they are not suitable for the task of this study because 

the distribution of the data was altered. Therefore, more observations should be collected in the future to increase observations 290 

recorded for high pollution scenarios and mitigate the problem of imbalanced regression. In addition, observational data can 

only be collected for recent years (2018-2022), which may lead to uncertainties when inference PM concentrations for 

historical years. In out-of-year validation, the gap between training and testing is mainly attributed to the difference in data 

distribution among years (data drift, Fig. S2). Besides, changes in climate and human activities over the decades may affect 

the relationship among emissions, meteorology, and PM concentrations, resulting in extra uncertainty (concept drift). 295 

Secondly, the uncertainty of the input feature sets (ERA5 and MERRA2) also affects the estimation results. The uncertainty 

of ERA5, a widely used meteorological reanalysis dataset, has been systematically analyzed. ERA5 has good accuracy for 

most meteorological factors, exceeding other reanalysis data (Muñoz-Sabater et al., 2021; Hersbach et al., 2020). With MODIS 

data as a reference, the global mean surface temperature of ERA5-Land shows lower uncertainty (Muñoz-Sabater et al., 2021). 

For precipitation, ERA5 shows 77% correlation with monthly mean Global Precipitation Climatology Project (GPCP) data 300 

(Hersbach et al., 2020). Compared to the pre-assimilation data, ERA5-land provides an improved fit to tropospheric winds and 

humidity (Hersbach et al., 2020).  
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MERRA2 is a global air pollution reanalysis dataset, published and maintained by NASA, which has been widely used for PM 

pollution studies in the Indian region, and its reliability has been extensively analyzed (Gueymard and Yang, 2020; Navinya 

et al., 2020; Buchard et al., 2017). For MERRA2-AOD, evaluation using AERONET observations showed that MERRA-2 305 

outperformed the Copernicus Atmosphere Monitoring Service (CAMS) in most regions (Gueymard and Yang, 2020). Kumar 

et al. (2023) predicted ground-level PM2.5 concentrations in India using only MERRA2 and machine learning methods, proving 

the reliability of MERRA2 data.  

In addition, before 2000, there was no assimilated satellite data for MERRA-2, and nitrate was not provided in the MERRA2 

aerosol reanalysis datasets (Buchard et al., 2017). These issues may be detrimental to the accuracy of the LongPMInd dataset. 310 

Previous studies in India have shown that PM2.5 estimates based on MERRA2 and empirical formulas suffer from inaccuracies 

due to issues such as the absence of nitrate, which can be improved by tree-based modeling (Sayeed et al., 2022). The model 

trained in this study relies heavily on ERA5 (64% relative contribution) with a minor contribution from MERRA2 (36 %). 

Although tree-based models can improve PM2.5 estimation accuracy and the inclusion of ERA5 meteorological features reduces 

the model's dependence on MERRA2, model accuracy may decrease for areas dominated by nitrate emissions and for years 315 

before 2000. 

Data availability 
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