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Comments from Reviewer #1:  

Based on the Light Gradient Boosting Machine (LightGBM), this paper constructs a model for 

fusing multi-source data and estimating the long-term (1980-2022) historical daily ground PM 

datasets in India (LongPMInd). This study supplements data for regions in India lacking 

observation sites based on available data, providing data support for future research in areas such 

as air quality, public health, and climate. In light of these considerations, the manuscript could be 

suitable for publication after addressing the following minor comments. 

- We truly appreciate the time and effort you have devoted to carefully evaluating our 

submission and providing us with valuable suggestions for improvement. In the revision, we 

carefully revised the manuscript based on these comments.  

 

Comments: 

L41-51: There are various methods for estimating ground PM5. Based on the analysis of the data 

obtained from these methods, are there differences in the PM2.5 in India? 

- Thanks for the comment. Two main approaches have been used for large-scale and long-

term PM2.5 estimation: scaling methods and statistical methods. Scaling methods use chemical 

transport modeling (CTM) to simulate the association between aerosol optical depth (AOD) and 



PM2., which requires no ground observations. However, the relationship between PM2.5 -AOD is 

spatially and temporally variable and without the constraints of ground observations, this method 

usually has a large uncertainty (Ma et al., 2022). Compared with scaling methods, statistical 

methods based on multivariate data fusion have higher prediction accuracy and have been widely 

used. Statistical models (traditional linear and nonlinear regression and machine learning 

algorithms) estimate PM2.5 concentrations by fitting the relationship between input variables 

(meteorological, emissions, and other relevant variables) and target variables (Wang et al., 2023b; 

Wei et al., 2021a; Ren et al., 2022; Katoch et al., 2023). 

The PM2.5 concentrations in India obtained by different methods differ in terms of accuracy, 

spatial and temporal coverage, and spatial and temporal resolution. Accuracy is the most discussed 

metric. Tree-based machine learning (ML) models typically outperform deep learning approaches 

and traditional machine learning methods such as Lasso, KNN, and SVM in tabular data (e.g., air 

pollutant observation datasets), and thus have been widely developed and used (Grinsztajn et al., 

2022; Sayeed et al., 2022; Wei et al., 2023). Due to the serious non-random missing of AOD 

satellite data, the estimated PM2.5 is spatially and temporally discontinuous. Bai et al. (2024) and 

Wei et al. (2023) filled in the missing AOD based on the tensor flow AOD reconstruction 

algorithm and 4D-spatio-temporal extreme tree algorithm, respectively, to realize the spatial and 

temporal full-coverage prediction of PM2.5. The spatial resolution of the estimated PM2.5 

concentration depends on the resolution of the input data, e.g. ERA5-land provides a product with 

a resolution of 0.1 ° x 0.1 ° and MERRA2 provides a product with a resolution of 0.5 ° x 0.625 °. 

MODIS satellites can provide products with a resolution of up to 1 km. 

Changes in Lines 47-54: “Two main approaches have been used for large-scale and long-

term PM2.5 estimation: scaling methods and statistical methods. Scaling methods use chemical 



transport modeling (CTM) to simulate the association between aerosol optical depth (AOD) and 

PM2., which requires no ground observations. However, the relationship between PM2.5 -AOD is 

spatially and temporally variable and without the constraints of ground observations, this method 

usually has a large uncertainty (Ma et al., 2022). Compared with scaling methods, statistical 

methods based on multivariate data fusion have higher prediction accuracy and have been widely 

used. Statistical models (traditional linear and nonlinear regression and machine learning 

algorithms) estimate PM2.5 concentrations by fitting the relationship between input variables 

(meteorological, emissions, and other relevant variables) and target variables (Wang et al., 2023b; 

Wei et al., 2021a; Ren et al., 2022; Katoch et al., 2023).” 

 

References need to be carefully checked: 

L56-58: References should be cited in the following format: “Wei et al. (2021)”. 

- Thanks for the comment. We have double-checked and revised the formatting of the 

references. 

 

L216: Subscript. 

- Thanks for the comment. We apologize for our carelessness, we have revised and double-

checked the formats. 

 

L298-299: Format of the references. 

- Thanks for the comment. We have changed the format of the references and double-checked 

the manuscript. 

 

There are some missing parts in the References, such as L396 and 435. 



- Thanks for the comment. We have double-checked and added the missing parts of the 

references. 

 

L62-63: What exactly is the insufficient model robustness and implementation capacity? Is it 

caused by a lack of training data or is it a flaw in the model itself? 

- Thanks for the comment. the insufficient model robustness and implementation capacity 

include both training data and model evaluation. On the one hand, observation data are lacking 

and observation sites are unevenly distributed, which is not conducive to model training. On the 

other hand, the cross-validation accuracy of the model does not reflect the accuracy of the 

predictions for unobserved areas and years, due to the differences of data distribution between 

different regions and years. We have added the corresponding statement in the Introduction. 

Changes in Lines 77-79: “However, it is challenging to establish long-term, full-coverage, 

high accuracy, open-source PM data products locally in India due to insufficient observational 

data and lack of model robustness due to variations of data distribution across regions and years” 

 

The article mentions many machine learning methods, but the choice of the LightGBM method 

was rather abrupt, with features such as simple structure, high efficiency and robustness not 

supported by data and literature. 

- Thanks for the comment. The Light Gradient Boosting Machine (LightGBM) is an 

optimized Gradient Boosting Decision Tree (GBDT). It uses Histogram's decision tree algorithm 

along with Gradient-based One-Side Sampling (GOSS), which can save memory and computation 

time (Ke et al., 2017). Our previous study comparing several commonly used machine learning 

models showed that the Light Gradient Boosting Machine (LightGBM) has similar performance to 



the eXtreme Gradient Boosting (XGBoost) model with the highest accuracy, but LightGBM was 

faster and more robust and therefore has the potential to estimate long-term concentrations of PM 

in India. We have added the corresponding statement in the Introduction. 

Changes in Lines 83-89: “The Light Gradient Boosting Machine (LightGBM) is an 

optimized Gradient Boosting Decision Tree (GBDT) (Ke et al., 2017), and has shown superior 

performance in many fields (Wei et al., 2021b; Yan et al., 2021; Sun et al., 2020; Liang et al., 

2020). LightGBM uses Histogram's decision tree algorithm along with Gradient-based One-Side 

Sampling (GOSS), which can save memory and computation time (Ke et al., 2017). Our previous 

study comparing several commonly used machine learning models and found that the LightGBM 

has similar performance to the eXtreme Gradient Boosting (XGBoost) with the highest accuracy, 

but LightGBM was faster and more robust, which has the potential to estimate long-term 

concentrations of PM in India (Wang et al., 2023a).” 

 

L79: Why data larger than 99.99% should be excluded. 

- Thanks for the comment. Extreme values can affect the stability of the model, leading to 

poorer generalization to unseen data, and by trimming these extreme values, the model can be 

more robust. In addition, extreme values may lead to a very uneven distribution of the data, 

making the model more inclined to accommodate extreme values while ignoring most of the 

normal conditions in the dataset, leading to a decrease in model performance. 

In our dataset, the total sample size is about 230,000. the 99% quantile is 483, and there are 

only 23 trees larger than this value, so we think it is reasonable to exclude this value. 

Changes in Lines 99-100: “As extreme values affect model robustness, Observations data 

less than 0.01 % and larger than 99.99 % were excluded.” 

 



Is there any standard for the choice of meteorological factors. For example, why was evaporation 

considered, and why was humidity not used directly. It was mentioned in L92 that features were 

filtered with relative importance, so which features were used for selection before and which 

parameters were filtered out in this step? 

- Thanks for the comment. Feature selection was performed using relative importance, which 

was calculated using the Gain. Features with relative importance less than 0.02 were excluded. 

Humidity was not used because ERA5-land does not provide humidity data, we obtained a lower 

resolution (0.25°) humidity data from ERA5 on pressure levels, but it had a lower importance and 

was therefore not included. In addition, the relative humidity can be calculated by the temperature 

and dewpoint temperature, so we think it is reasonable to exclude the relative humidity. Our 

results show that evaporation has a relatively high importance (7%) and is therefore included. Two 

meteorological variables, relative humidity, and surface albedo, were filtered through feature 

importance in this step. 

Changes in Lines 100-102: “The feature was selected by the relative importance, which was 

calculated by the Gain, and several meteorological factors with high relative importance are 

included (Table 1).” 

 

Figure 1: The panel below should be (b) PM10. 

Figure 2: Missing labels in the second column. 

- Thanks for the comment. We apologize for our carelessness, we modified Figures 1 and 2 

and examined the manuscript carefully. 

 



Table S2: Column names are also capitalized to match the content of the article. 

- Thanks for the comment. We've changed the column names to capitalization to match the 

content of the article. 

 

Figure 5: Numbers in (b) should be kept to two decimal places and axes are adjusted according to 

the range of CVD_IHD to ensure a complete presentation of the data. 

- Thanks for the comment. We've changed the numbers to two decimal places and adjusted 

the axes according to the data range in Figure 5. 

 

L109: The concept of GBD is appearing for the first time and should be labeled with its full name. 

- Thanks for the comment. We have added the full name of GBD, which is ” Global Burden 

of Disease”. 

Changes in Lines 136: “According to the database of Global Burden of Disease Study 

(GBD) in 2019” 

 

L119: Does it mean that people will experience health effects related to PM2.5 when the 

concentration of PM2.5 is in this range? 

- Thanks for the comment. We apologize for the lack of clarity, but this represents the 

minimum exposure level for PM2.5 health risk, below which there is no health risk considered. 

Changes in Lines 148-149: “The minimum-risk exposure level for the health effects of 

PM2.5 are in the range of 2.4 to 5.9 μg m-3.” 

 



L140: “RMSE (35.35 and 60.65 μg m-3) and MAE(21.54 and 40.74 μg m-3)” I don't think they 

can be described as small. 

- Thanks for the comment. We modified the description. The model's prediction accuracy for 

unobserved years decreases slightly compared to out-of-sample CV (R2 decreases by 14% and 

RMSE increases by 20%) due to differences in data distribution among years. 

Changes in Lines 170-172: “The model's prediction accuracy for unobserved years 

decreases slightly compared to out-of-sample CV (R2 decreases by 14% and RMSE increases by 

20%) due to differences in data distribution among years (Fig. S2).” 

 

L241: PM“1”? Was it a mistake? 

- Thanks for the comment. We apologize it was a mistake. Here it should be PM2.5 and PM10. 

Changes in Lines 273-275: “Firstly, machine learning is essentially based on probability 

theory and is influenced by the distribution pattern of the target variable (PM2.5 and PM10)” 

 

The references in the introduction are can be reinforced. For example, the random forest and 

LightGBM are also used to construct PM2.5 and ozone data in China (e.g., Li et al., 2021; Ni et 

al., 2024). 

References: 

Li, H., Yang, Y, Wang, H., Li, B., Wang, P., Li, J., and Liao, H., Constructing a spatiotemporally 

coherent long-term PM2.5 concentration dataset over China during 1980–2019 using a machine 

learning approach, Sci. Total Environ., 765, 144263, 

https://doi.org/10.1016/j.scitotenv.2020.144263, 2021. 



Ni, Y., Yang, Y., Wang, H., Li, H., Li, M., Wang, P., Li, K., and Liao, H., Contrasting changes in 

ozone during 2019–2021 between eastern and the other regions of China attributed to 

anthropogenic emissions and meteorological conditions, Sci. Total Environ., 908, 168272, 

https://doi.org/10.1016/j.scitotenv.2023.168272, 2024. 

- Thanks for the comment. We've reorganized the introduction to include recent relevant 

work. 

Changes in Lines 57-58: “Wei et al. (2021a) and Li et al. (2021) reconstructed long-term 

PM2.5 data records in China by fusing satellite, meteorological, and emission data using a 

spatiotemporal tree-based model. ” 

Changes in Lines 58-60: “Ni et al. (2024) analyzed the contribution of meteorology and 

emissions to O3 in China using chemical transport model (GEOS-Chem) and tree-based model.” 

 

 

Comments from Reviewer #2:  

The authors used a machine learning method to derive long-term PM concentration dataset in 

India to aid in PM-related mortanity estimation. Ground-based validation results demonstrated a 

generally good accuracy of this dataset. The paper can be further improved by addressing the 

following issues. 

- We appreciate the time and effort you have devoted to carefully evaluating our submission 

and providing us with valuable suggestions for improvement. In the revision, we carefully revised 

the manuscript based on these comments.  

 



datasets in the title should be changed as concentrations. 

- Thanks for the comment. We have changed the title “dataset” to “concentrations” 

Changes in Lines 1: “Reconstructing long-term (1980-2022) daily ground particulate matter 

concentrations in India (LongPMInd) ” 

 

 “Accurate PM datasets”, same as above, ‘concentrations’ is better than ‘datasets ‘ 

- Thanks for the comment. We have changed the “dataset” to “concentrations”, and checked 

the manuscript. 

Changes in Lines 40: “Accurate ground PM concentration are prerequisites for evidence-

based policymaking and health impact assessments. ” 

 

There are many regional and global scale PM concentration datasets publicly available in the 

community, e.g., CHAP, TAP, LGHAP v2, the dataset from the Martin’s group, to name a few, the 

authors should also review these works in their literature review. 

Van Donkelaar, A., Hammer, M. S., Bindle, L., Brauer, M., Brook, J. R., Garay, M. J., Hsu, N. C., 

Kalashnikova, O. V., Kahn, R. A., Lee, C., Levy, R. C., Lyapustin, A., Sayer, A. M., & Martin, R. 

V. (2021). Monthly Global Estimates of Fine Particulate Matter and Their Uncertainty. 

Environmental Science and Technology, 55(22), 15287–15300. 

https://doi.org/10.1021/acs.est.1c05309 

- Thanks for the comment. We have reviewed the relevant research in the Introduction, 

mainly including global daily PM concentration datasets recently published, 

GlobalHighAirPollutants (GHAP) (Wei et al., 2023), and LGHAPv2 (Bai et al., 2024), as well as 



global monthly PM2.5 datasets that published before (Van Donkelaar et al., 2021). Both provided 

global-scale daily PM2.5 concentrations. The severity of PM2.5 pollution in India is much higher 

than in Europe and the United States. However, due to the small number of observations recorded, 

the global model can learn limited knowledge of PM2.5 pollution in India during the training 

process. So, the reliability and robustness of global model estimates of PM2.5 concentrations in 

India should be systematically assessed. Building model locally in India can be a useful 

comparison method, which can also complement the biases in global modeling (e.g., focusing 

more on lightly polluted regions such as Europe and the United States). 

Changes in Lines 68-77: “In addition, global-scale daily PM2.5 concentration datasets 

(including India) have recently been developed, including GlobalHighAirPollutants (GHAP) (Wei 

et al., 2023), The Long-term Gap-free High-resolution Air Pollutants concentration dataset version 

2 (LGHAPv2) (Bai et al., 2024). Global monthly PM2.5 datasets have also been developed before 

(Van Donkelaar et al., 2021). These datasets were trained on a global scale and estimated PM2.5 

concentrations for the India region. The severity of PM2.5 pollution in India is much higher than in 

Europe and the United States (Wei et al., 2023). However, due to the small number of observations 

recorded, the global model can learn limited knowledge of PM2.5 pollution in India during the 

training process. So, the reliability and robustness of global model estimates of PM2.5 

concentrations in India should be systematically assessed. Building a model locally in India can be 

a useful comparison method, which can also complement the biases in global modeling (e.g., 

focusing more on lightly polluted regions such as Europe and the United States).” 

 



Table 1: it seems that the authors mainly used aerosol diagnostics from MERRA-2 as the proxy 

variables to derive long-term PM dataset in India. Since no nitrates were provided in the MERRA-

2 aerosol reanalysis, the authors should discuss the potential impacts on the modeling accuracy in 

the manuscript. 

- Thanks for the comment. Indeed, nitrate was not provided in the MERRA-2 aerosol 

reanalysis datasets. Previous studies in India have shown that PM2.5 estimates based on MERRA2 

and empirical formulas suffer from inaccuracies due to issues such as the absence of nitrate, which 

can be improved by tree-based modeling. In addition, the model trained in this study relies heavily 

on ERA5 (64% relative contribution) with a small contribution from MERRA2 (36%). We must 

recognize that although tree-based models can improve PM2.5 estimation accuracy and the 

inclusion of ERA5 meteorological features reduces the model's dependence on MERRA2, model 

accuracy may decrease for areas dominated by nitrate emissions. 

Changes in Lines 309-316: “In addition, before 2000, there was no assimilated satellite data 

for MERRA-2, and nitrate was not provided in the MERRA2 aerosol reanalysis datasets (Buchard 

et al., 2017). These issues may be detrimental to the accuracy of the LongPMInd dataset. Previous 

studies in India have shown that PM2.5 estimates based on MERRA2 and empirical formulas suffer 

from inaccuracies due to issues such as the absence of nitrate, which can be improved by tree-

based modeling (Sayeed et al., 2022). The model trained in this study relies heavily on ERA5 

(64% relative contribution) with a minor contribution from MERRA2 (36 %). Although tree-based 

models can improve PM2.5 estimation accuracy and the inclusion of ERA5 meteorological features 

reduces the model's dependence on MERRA2, model accuracy may decrease for areas dominated 

by nitrate emissions and for years before 2000.” 



 

Line 94: “The meteorological and emission features contributed 64% and 31% to the PM2.5 

prediction.” How should we interpret this result? Why did the emission play a much weak role 

than meteorological conditions in PM2.5 prediciton? Also, what is the reason for the largest 

importance of SP? 

- Thanks for the comment. Relative importance is a metric used to measure the influence of 

features on the model's predictions. It reflects the contribution of each feature to the model's 

predictions. Features with higher relative importance have a greater influence on the model's 

predictions. 

Meteorology is more important than emissions for two main reasons: 

1. Data quality. Compared to MERRA5, which has higher uncertainty and lower spatial 

resolution, ERA5 has higher resolution and accuracy, and the meteorological features can provide 

richer information and contribute more to model training, thus having higher importance. 

2, Number of features. The number of meteorological features is 10, which is more than the 

emission-related features (6). The average importance of each meteorological feature is 6.5% and 

the average importance of each emission feature is 5.2%, which is not a big difference. Thus the 

larger number of meteorological features had a higher cumulative relative importance. 

Surface pressure shows the highest importance. Firstly, surface pressure has an important 

effect on PM2.5 concentration. On the one hand, high-pressure systems can lead to stagnant 

atmospheric conditions, which are not conducive to PM2.5 dispersion. On the other hand, 

atmospheric pressure can indirectly influence PM2.5 concentration by influencing other 

meteorological factors. For example, low-pressure systems accompanied by high humidity could 



affect PM2.5 nucleation, condensation, and coagulation, further leading to higher PM2.5 

concentrations.  

Secondly, the high quality of surface pressure data provides richer information, which in turn 

shows high relative importance. Numerical models can accurately simulate surface pressure 

because it is largely controlled by large-scale atmospheric motions, which are well simulated by 

these numerical models and can be further improved through advanced data assimilation 

techniques. Challenges remain in the simulation of some meteorological factors, such as wind 

speed, which is subject to uncertainty at smaller local scales due to simplified parameterization 

and local surface heterogeneity, etc. 

Changes in Lines 116-121: “Meteorology is more important than emissions. Compared to 

MERRA5, which has higher uncertainty and lower spatial resolution, ERA5 has higher resolution 

and accuracy, and the meteorological features can provide richer information and contribute more 

to model training, thus having higher importance (Muñoz-Sabater et al., 2021; Hersbach et al., 

2020). Besides, more numbers of meteorological features were used to train the model, thus 

contributing more to prediction results. The highest importance of surface pressure can be 

attributed to the important effect to PM2.5 concentration and its high data quality (Chen et al., 

2020; Bauer et al., 2015).” 

 

Section 2.3: the equation should be numbered. How was RR calcualted? The authors provide no 

descriptions about this important factor. 

- Thanks for the comment. Thanks, we have added numbers to the equations. The relative risk 

is a discrete value obtained from GDB2019, which is the relative risk corresponding to each PM2.5 



concentration level. GDB 2019 calculates the aggregated relative risk by quantitative systematic 

overview and estimates PM2.5 concentration data from various sources such as ground 

observation, remote sensing, etc., and then synthesizes the relative risk under different PM2.5 

exposure levels. We have added the appropriate content in Section 2.3. 

Changes in Lines 145-147: “The relative risk is a discrete value obtained from GDB 2019, 

which is the relative risk corresponding to each PM2.5 concentration level. Details about the 

calculation way of relative risk can be found in GBD 2019 (Murray et al., 2020).” 

 

Table 3: as suggested by the results, the prediction model appeared to suffer from signficant 

overfitting, in particular at the year scale. What are possible reasons? 

- Thanks for the comment. The gap between training and testing performance is caused by 

several reasons, including overfitting as well as data and concept drift. In out-of-sample cross-

validation, the training and testing sets were randomly divided, so their distributions are the same, 

and the gap between training and testing should be attributed to model overfitting. In this study, 

there is a small gap between training and testing in the out-of-sample cross-validation (delta 

RMSE is 4 % for PM2.5). So the model showed a low risk of overfitting. However, the data 

distributions were different among years (Fig. S2). In out-of-year validation, the gap between 

training and testing is mainly attributed to the difference in data distribution (data drift) and is 

therefore not an overfitting problem. In addition, the drivers of PM2.5 pollution in India may have 

changed considerably over decades (e.g., changes in the main emission sources), thus resulting in 

a decrease in the accuracy of models trained with data from recent years ( concept drift). We have 

added this section to the discussion. 



Changes in Lines 293-295: “In out-of-year validation, the gap between training and testing 

is mainly attributed to the difference in data distribution among years (data drift). Besides, 

changes in climate and human activities over the decades may affect the relationship among 

emissions, meteorology, and PM concentrations, resulting in extra uncertainty (concept drift).” 

 

Figure 3: the trend should be estimated using piece-wise linear regression. Also, what are possible 

reasons for an abrupt jump in PM concentrations in 2000 and 2015? 

- Thanks for the comment. Thanks, we have performed piecewise linear regression. The data 

were split into three phases 1980-2000, 2000-2018, and 2018-2022 (Figure 3). The PM2.5 

concentrations jump in 2000 can be attributed to the absence of satellite data for MERRA2 before 

2000. The MERRA2 dataset before 2000 could not provide the same level of data quality as in the 

later period, further leading to a systematic bias in the model estimates. There was no significant 

jump of concentration in 2015, are you referring to the turning point in 2018? Here we attributed it 

to the launch of the National Clean Air Program by the Government of India at that time. The 

interventions were clubbed into transport, industry, waste management, domestic, and construction 

activities, road dust, and others. Emissions declined rapidly, and PM2.5 concentrations have shifted 

from an increasing to a decreasing trend in most areas (Figure 4). We have added the 

corresponding discussion. 

Changes in Lines 214-216: “The PM concentrations jumped in 2000, which can be 

attributed to the absence of satellite data for MERRA2 before 2000 (Buchard et al., 2017). The 

MERRA2 dataset before 2000 could not provide the same level of data quality as in the later 

period, further leading to a systematic bias in the model estimates.” 



Changes in Lines 221-224: “The interventions were clubbed into transport, industry, waste 

management, domestic, construction activities, road dust, and others (Ganguly et al., 2020). 

Emissions declined rapidly, and PM2.5 concentrations have declined significantly in the IGP (1.63 

μg m-3 year-1), western India (1.22 μg m-3 year-1), and southern India (0.52 μg m-3 year-1).” 
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