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Abstract. In-situ measurements of ocean temperature and salinity are critical to ocean-related 9 

studies but are limited in space and time. Satellite retrievals provide high-resolution, globally-10 

covered sea surface temperature (SST), salinity (SSS) and cannot directly measure the subsurface 11 

information., and height (SSH), but are limited to the ocean surface and cannot directly measure 12 

the subsurface information. Here we design a physics-informed algorithm that can reconstruct the 13 

vertical distributions of upper ocean temperature and salinity based purely on satellite observations. 14 

The algorithm stresses the tight ocean surface-subsurface coupling and the co-variability of ocean 15 

temperature and salinity. It is firstly tested with climate model simulations and then validated with 16 

actual observations by Argo floats, moored buoys and multiple ocean reanalysis datasets. The 17 

resultant satellite-based upper ocean temperature and salinity dataset has a global coverage, a high 18 

spatial resolution, and resolves ocean thermohaline structure from surface to 400 m. This dataset 19 

complements existing ocean subsurface products as an independent satellite-based observational 20 

dataset. The success of our reconstruction algorithm highlights a pressing need to maintain and 21 

advance the satellite observations of SST, SSS, and SSH. The reconstructed ocean temperature 22 

and salinity dataset can be accessed at https://doi.org/10.5281/zenodo.13145129 (Liu, 2024) and 23 

be used by researchers to study mesoscale ocean phenomena, assess the ocean heat content in 24 

various sea areas and etc. 25 

 26 

1 Introduction 27 
            Ocean temperature and salinity data are of immense importance for diverse climatic, 28 

environmental, ecological, and resource-related studies (Hughes et al., 2003; Cullum et al., 2016). 29 

The availability of high-resolution gridded ocean temperature and salinity data, covering the entire 30 

global ocean, thus holds the utmost significance for ocean and climate research (Abraham et al., 31 

https://doi.org/10.5194/essd-2024-334
Preprint. Discussion started: 22 August 2024
c© Author(s) 2024. CC BY 4.0 License.



 

 2 

2013; Wunsch, 2015; Liang et al., 2021; Ponte et al., 2021). Before 2000, temperature and salinity 32 

data are primarily provided by ship-based profilers, e.g., Conductivity, Temperature, and Depth 33 

(CTD) or Expendable Bathythermograph (XBT), along major trade routes or scientific research 34 

vessels in target ocean regions. These ship-based measurements are sparce in space and time 35 

(Bagnell and DeVries, 2021), and sometimes only include the measurements of temperature, but 36 

not salinity (Zhang et al., 2023). Moored buoys (e.g., the TAO array) provide continuous in-situ 37 

measurements of temperature and salinity, but are only available at given sites and limited in space. 38 

Since 1999, the Argo program has been in operation, boosting a global network of approximately 39 

4000 profiling buoys to date (Roemmich et al., 2019). It has the capability of long-term, automatic, 40 

real-time, and continuous acquisition of large-scale and deep data, and can provide ocean 41 

temperature and salinity from the surface to 2000 m (Riser et al., 2016; Wong et al., 2020). 42 

However, the irregular spatial distribution of Argo floats results in considerable uncertainties in 43 

temperature and salinity values, particularly in regions with low float density such as high latitudes 44 

and coastal areas (Roemmich et al., 2019). It will therefore be valuable to have an independent 45 

observational dataset to cross validate with other Argo-based products, especially when the latter 46 

diverge (Liu et al., 2022; Wong et al., 2023). 47 

            In recent decades, satellite-based ocean observations have been widely used (Loew et al., 48 

2017; Vinogradova et al., 2019; Boutin et al., 2021; Fournier and Lee, 2021). Compared to Argo 49 

in-situ observations, satellite remote sensing data offers some advantages, including large-area 50 

synchronous measurement, high resolution, rapid acquisition speed, short update cycles, and 51 

abundant information (Boutin et al., 2021). However, satellite retrieved observations are limited 52 

to ocean surface properties such as temperature, salinity, and sea level, but not ocean subsurface 53 

temperature or salinity. This motivates us to explore whether it is possible to develop an algorithm 54 

capable of reconstructing ocean subsurface temperature and salinity using satellite observations. 55 

In the past, some attempts have been made to reconstruct subsurface temperature and salinity using 56 

diverse data sources, such as CTD data (Maes, 1999; Maes and Behringer, 2000), Argo data 57 

(Hosoda et al., 2008; Zhou et al., 2023), satellite data (Meng et al., 2021; Tian et al., 2022), or a 58 

combination of these (Guinehut et al., 2012; Stendardo et al., 2016). The methods employed can 59 

be categorized into two main groups. For traditional statistical methods, statistical relationships 60 

between surface and subsurface properties are firstly identified at the locations with available 61 

observations, and then subsurface ocean fields are reconstructed based on these correlations (Maes 62 
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and Behringer, 2000; Fujii and Kamachi, 2003; Wang et al., 2012; Tang et al., 2022). These 63 

approaches typically do not incorporate satellite-observed surface salinity, which is critical to 64 

subsurface reconstruction as will be shown later, and have only been tested in selected ocean 65 

regions. Recently, machine learning-based methods have been proposed to reconstruct the ocean 66 

subsurface fields with satellite observations (Meng et al., 2021; Tian et al., 2022; Zhang et al., 67 

2023). Although these advanced approaches have the capability to autonomously learn and 68 

generate fitting parameters without physics-based simplified assumptions, their complexity makes 69 

it elusive to provide coherent explanations for certain phenomena seen in the reconstructed data as 70 

part of the “black-box” constraint (Manucharyan et al., 2019; Tian et al., 2022).  71 

            In this study, we aim to develop a novel statistical approach to reconstruct ocean subsurface 72 

temperature and salinity fields using sea surface properties. Our algorithm is informed by three 73 

key ocean properties or assumptions. First, ocean temperature (T) and salinity (S) co-vary as they 74 

are simultaneously influenced by, for example, oceanic advection, warming-induced rainfall 75 

increase, etc (Troccoli and Haines, 1999; Kido et al., 2021). Second, ocean subsurface T and S 76 

variations are closely associated with ocean surface properties. Third, local vertical-temporal 77 

variations of ocean temperature and salinity can be decomposed into a set of orthogonal 78 

components. For each ocean grid, we firstly perform joint EOF analysis to 𝑇(𝑧, 𝑡)	and S(𝑧, 𝑡)	and 79 

identify a set of EOFs, 𝐸𝑂𝐹_𝑇!(𝑍) and 𝐸𝑂𝐹_𝑆!(𝑍), together with a principle component, 𝑃𝐶!(𝑡). 80 

We then regress 𝑆𝑆𝐻(𝑡) onto 𝑃𝐶!(𝑡) to obtain the associated 𝐸𝑂𝐹_𝑆𝑆𝐻!. With these known EOFs, 81 

the only information needed to reconstruct 𝑇(z) and 𝑆(z) is the principle component in front of 82 

each set of joint EOFs. To determine those coefficients, SST, SSS, and SSH will be used to 83 

minimize the joint cost function. Given the usage of three independent surface constraints, we will 84 

use the first three EOFs, which explains about 90% of the T-S variances on average (Fig. S1 in 85 

Supplement), to avoid an underdetermined system. Accordingly, we propose the algorithm as is 86 

illustrated in Fig. 1 (also see Data and Methods). The example in the flowchart is for the grid 87 

located at 8.5°S, 150.5°W in January 2016, at the peak of a strong El Nino event, with the total 88 

explained variance of the first three EOFs at this gird reaching nearly 90%. 89 
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 90 
Figure 1. Flowchart of the algorithm proposed to reconstruct subsurface temperature and salinity with satellite 91 
observations. Argo profiles at 8.5°S, 150.5°W in January 2016 are shown as an example for the purpose of illustration. 92 
The black curves correspond to the first three T-S joint EOF modes at this ocean grid. The first row is EOF_T and the 93 
second row is EOF_S. The explained variances of the first three EOFs are 64.0%, 14.6% and 9.0%, respectively. The 94 
actual temperature and salinity profiles (red curves) do not look alike any of the EOFs (black curves), and our 95 
algorithm is able to accurately capture them based purely on the ocean surface information (cf. blue and red curves). 96 

 97 

2 Data and Methods 98 

2.1 Satellite-based observational datasets  99 

            Multiple satellite-based observational datasets are used. The sea surface temperature (SST) 100 

is from the National Oceanic and Atmospheric Administration (NOAA) 0.25° Daily Optimum 101 

Interpolation Sea Surface Temperature (OISST) version 2.1 (Huang et al., 2021), covering the 102 

period from September 1, 1981 to present. The sea surface salinity (SSS) is from Multi-Mission 103 

Optimally Interpolated Sea Surface Salinity (OISSS) Global Monthly Dataset V1 (Melnichenko et 104 

https://doi.org/10.5194/essd-2024-334
Preprint. Discussion started: 22 August 2024
c© Author(s) 2024. CC BY 4.0 License.



 

 5 

al., 2021). It has a 0.25° spatial and monthly temporal grid, covering the period from September 1, 105 

2011 to December 31, 2020. This dataset uses three satellite missions: the Aquarius/SAC-D, Soil 106 

Moisture Active Passive (SMAP) and Soil Moisture and Ocean Salinity (SMOS). The sea surface 107 

height (SSH) is from MEaSUREs Gridded Sea Surface Height Anomalies Version 2205 (Fournier 108 

et al., 2022). It has a 0.17° spatial and 5-day temporal grid, covering the period from October 1, 109 

1992 to December 31, 2022. This dataset is derived from the along-track SSHA data of 110 

TOPEX/Poseidon, Jason-1, Jason-2, Jason-3, Jason-CS (Sentinel-6). 111 

 112 

2.2 In-situ observational datasets  113 

            In addition to the satellite-based datasets, in-situ measurements of ocean subsurface 114 

temperature and salinity, archived by the Argo floats (Gaillard et al., 2016) will be used. The Argo 115 

dataset used in this study has a 0.5° spatial and monthly temporal grid, covering the period from 116 

January 1, 2002 to December 31, 2020. This dataset is interpolated on 187 standard depth levels 117 

between 0-2000 m depth. 118 

 119 

2.3 Ocean assimilation products 120 

            For comparison, monthly temperature and salinity from four ocean assimilation datasets 121 

are used in this study, including ORAS5, SODA3, IAP, and ECCO4r4 as introduced below. (1) 122 

The European Centre for Medium-Range Weather Forecasts (ECMWF) Ocean Reanalysis System 123 

5 (ORAS5) (Zuo et al., 2019) is a global ocean and sea ice reanalysis monthly dataset that 124 

assimilated various observational data in an ocean model at a resolution of 0.25° × 0.25° and has 125 

75 layers from 0.5 m at the top to 5902 m at the bottom. (2) The Simple Ocean Data Assimilation 126 

project version 3 (SODA3) (Carton et al., 2018), created by the University of Maryland, is 127 

constructed upon the Modular Ocean Model v5 ocean component of the Geophysical Fluid 128 

Dynamics Laboratory CM2.5 coupled model. It has an enhanced horizontal resolution of 0.25°, 129 

with 50 layers spanning from 5 m to 5395 m. (3) The Institute of Atmospheric Physics ocean data 130 

(IAP) (Cheng et al., 2017) provides global ocean coverage at a horizontal resolution of 1° × 1° 131 

across 41 vertical levels spanning from 1 to 2000 m. This dataset integrates in situ salinity profiles 132 

with coupled model simulations to generate an objective analysis using the ensemble optimal 133 

interpolation approach. (4) NASA’s Estimating the Circulation and Climate of the Ocean project 134 

version 4, Release 4 (ECCO4r4) (ECCO Consortium et al., 2021), which is based on the 135 
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Massachusetts Institute of Technology general circulation model (MITgcm) with a prognostic 136 

dynamic and thermodynamic sea ice model. It has 50 vertical levels spanning from 5 m to 5906 m 137 

and a horizontal resolution of 0.5° × 0.5°. 138 

 139 

2.4 TAO/TRITON Moored Buoys array dataset 140 

            In-situ buoy measurements of temperature and salinity are used for further validation. The 141 

Tropical Atmosphere Ocean (TAO)/TRIangle Trans Ocean buoy Network (TRITON) array 142 

(TAO/TRITON) (Hayes et al., 1991) were built in the 1980s-1990s and provides since then 143 

continuously temperature and salinity measurements at a fixed location with high temporal 144 

resolution but a low vertical resolution (~20 m, covering 1 m to 200 m in most sites). It spans the 145 

tropical Pacific Ocean from 95°W in the eastern Pacific to 137°E in the western Pacific between 146 

9°N and 8°S. In this study, we analyze temperature and salinity data from a single site, chosen for 147 

its complete time period coverage (2012-2020), selected from a limited number of sites that have 148 

a sufficiently long record for validation.         149 



2.5 Community Earth System Model2 (CESM2) outputs 151 

            To evaluate the performance of the statistical model in this study, we use a list of output 152 

variables (SST, SSS, SSH, ocean subsurface temperature and salinity) for CESM2 historical run 153 

(Danabasoglu et al., 2020) to verify. We use the monthly data from ‘r1i1p1f1’ member with a 154 

nominal resolution of 100 km spatial and monthly temporal grid, covering from January 1, 1850 155 

to December 31, 2014. This dataset is interpolated on 60 standard depth levels between 0-2000 m 156 

depth. 157 

 158 

2.6 The reconstruction algorithm 159 

            Previous study found that the climatological temperature and salinity data had a close 160 

relationship (Stommel, 1947), known as the temperature-salinity (T-S) relationship, but this 161 

relationship undergoes variations over time and across different oceans. Maes and Behringer (2000) 162 

estimated the salinity profiles using the T-S relationship combined with the empirical orthogonal 163 

functions (EOFs) method via a weighted least squares procedure. While this approach attained a 164 

certain level of success within particular oceanic regions, it is unable to produce a high-resolution 165 

global dataset with CTD datasets that are limited in space. Besides, their methodology relies on 166 
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both surface and subsurface data for reconstructing subsurface salinity, indicating limited 167 

applicability. Informed by these studies, in this study, we develop a statistical approach for 168 

reconstructing the subsurface temperature and salinity using high-resolution satellite ocean surface 169 

observations (Fig. 1). 170 

            First, the vertical EOFs of the combined subsurface T and S variability are used to present 171 

their vertical structures (Maes, 1999; Maes and Behringer, 2000). For each gird, we can define the 172 

vector:  173 

X=[𝑇(1)/𝜎"($), 𝑇(2)/𝜎"($), ⋯ , 𝑇(𝑁)/𝜎"($), 𝑆(1)/𝜎&($), 𝑆(2)/𝜎&($), ⋯ , 𝑆(𝑁)/𝜎&($)]	     (1) 174 

where N is a constant corresponding the index when depth=400m. 𝑇$, ⋯ , 𝑇' , 𝑆$, ⋯ , 𝑆' is defined 175 

as the departure from the climatology. To jointly account for the temperature and salinity 176 

variabilities, we normalize them by their own standard deviation at the surface layer. After 177 

performing the joint EOF analysis, we obtain several eigenmodes with real eigenvalues that are 178 

orthogonal to each other. Next, we regress the subsurface temperature and salinity anomalies onto 179 

each normalized eigenvector to obtain the distinct EOF modes of T (called EOF_T) and S (called 180 

EOF_S), respectively. We can further derive 𝐸𝑂𝐹_𝑆𝑆𝐻! by regressing the satellite-observed SSH 181 

onto the normalized eigenvector of the 𝑖th mode found in the T-S joint EOF analysis. It is important 182 

to note that the joint EOF analysis described above only needs to be done once with the existing 183 

data, and will then be used for all future reconstructions. In other words, subsurface reconstructions 184 

will only need new satellite observations of ocean surface properties and the previously computed, 185 

unchanged EOF basis from the joint EOF analysis. 186 

            To do the subsurface reconstruction, we assume the variations in the subsurface 187 

temperature and salinity anomalies can be expressed as a set of T-S joint EOFs by a linear 188 

combination of the dominant modes:   189 

𝑇()*(𝑘) = ∑ 𝐶!𝐸𝑂𝐹_𝑇!(𝑘)+
!,$ , 𝑆()*(𝑘) = 	∑ 𝐶!𝐸𝑂𝐹_𝑆!+

!,$ (𝑘)              (2) 190 

where 𝑘 represents vertical levels from surface down to 400 m, n is the number of vertical modes. 191 

𝐶!  is the coefficient of each mode. To clarify, 𝐸𝑂𝐹_𝑇!(𝑘)and 𝐸𝑂𝐹_𝑆!(𝑘)are the joint EOFs 192 

calculated from monthly subsurface temperature and salinity anomalies. 𝑇()*(𝑘) and 𝑆()*(𝑘) are 193 

the vertical profiles of temperature and salinity anomalies to be reconstructed. 194 

            After these EOFs are computed, the only information needed to reconstruct 𝑇()*(𝑘) and 195 

𝑆()*(𝑘) are the values of 𝐶!’s at each month. To determine those coefficients, SST, SSS, and SSH 196 

will be employed to minimize the (joint) cost function below: 197 
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𝐽 = 𝑤&&"[∑ 𝐶!𝐸𝑂𝐹_𝑇!(1) −+
!,$ 𝑆𝑆𝑇-./]0/𝜎&&"0 +𝑤&&&[∑ 𝐶!𝐸𝑂𝐹_𝑆!(1) −+

!,$ 𝑆𝑆𝑆-./]0/𝜎&&&0 + 198 

𝑤&&1[∑ 𝐶!𝐸𝑂𝐹_𝑆𝑆𝐻! −+
!,$ 𝑆𝑆𝐻-./]0/𝜎&&10                                           (3) 199 

𝜎&&" , 𝜎&&&  and 𝜎&&1  represent the standard deviation of SST, SSS and SSH respectively. 200 

𝑤&&",	𝑤&&& and 𝑤&&1 are constants which need to be given appropriate values. Notably, while SSH 201 

is linked to SSS and SST, our research finds that the introduction of SSH enhances the 202 

reconstruction performance. This cost function is a linear combination of the least-square 203 

difference between the actual surface and reconstructed surface variables. 204 

            To determine the three weighting parameters (𝑤𝑆𝑆𝑇, 𝑤𝑆𝑆𝑆 and 𝑤𝑆𝑆𝐻) above that yield the 205 

best performance, we use the following formula. 206 

𝐽2 = ∑ ∑ [𝑇()*(𝑘, 𝑡) − 𝑇-./(𝑘, 𝑡)]0'
3,$

4
2,$ /𝜎"($)0 + ∑ ∑ [𝑆()*(𝑘, 𝑡) − 𝑆-./(𝑘, 𝑡)]0'

3,$
4
2,$ /𝜎&($)0 	  (4) 207 

where 𝑡 represents the time and M is the total number of all months. For each set of subjective 208 

weighting parameters (𝑤𝑆𝑆𝑇, 𝑤𝑆𝑆𝑆 and 𝑤𝑆𝑆H), we calculate the corresponding 𝐽2 . Next, these values 209 

are used in Eq. (4) to compute the cumulative errors in temperature and salinity across all 210 

subsurface layers throughout the entire time period. This process helps identify the optimal 211 

weighting parameters for minimizing these errors. Globally averaged, the relative magnitude of 212 

the three weighting parameters (𝑤𝑆𝑆𝑇, 𝑤𝑆𝑆𝑆 and 𝑤𝑆𝑆𝐻) is about 1:1.6:1.1. It highlights the fact that 213 

the information of sea surface salinity is critical to the performance of subsurface reconstruction. 214 

When 𝑤𝑆𝑆𝑇, 𝑤𝑆𝑆𝑆 and 𝑤𝑆𝑆H are determined, we can incorporate them into Eq. (3) and solve for 215 

Ci’s. With these values, we could reconstruct 𝑇()*(𝑘) and 𝑆()*(𝑘). It is worth noting that 𝑤𝑆𝑆𝑇, 216 

𝑤𝑆𝑆𝑆 and 𝑤𝑆𝑆H do not change with time but are fixed constants and that Ci’s may change by time. 217 

In this approach, we limit our consideration to the first three EOFs when solving for Ci’s, as there 218 

are only three input quantities (SST, SSS and SSH).  219 

            The joint EOF may differ by space, motivating us to apply the aforementioned procedures 220 

separately to obtain distinct coefficients for each ocean grid. When the Ci of each grid point is 221 

determined, we use the EOFs of each grid to reconstruct temperature and salinity anomalies 222 

individually. When conducting EOF analysis, we do not differentiate the anomaly fields among 223 

different seasons. Instead, we perform EOF analysis on the entire time period to ensure a 224 

sufficiently long-time dimension for the data.                                                         225 

            The reconstruction algorithm has been firstly trained using the 165-year (1850-2014) data 226 

from the CESM2 historical runs to evaluate its performance. Climate model simulations like 227 
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CESM2 have self-consistent surface and subsurface variables. The reconstruction results with the 228 

values of 𝑤𝑆𝑆𝑇, 𝑤𝑆𝑆𝑆 and 𝑤𝑆𝑆H from the entire simulation period (1850-2014) are presented in the 229 

main text, and these results do not change much when a shorter period is used. For observations, 230 

the requirement for satellite and in-situ measurements lead to a short overlapping period of 2012-231 

2020. We will train the statistical model in a certain period (i.e., 2012-2019) and validate with the 232 

rest (i.e., 2020), with a total of 9 rounds of training and verification being performed. Based on our 233 

sensitivity test, the results remain almost the same as the case with the entire period of 2012-2020 234 

being used for training. 235 

 236 

3 Results 237 

3.1 Testing the performance of the algorithm with climate model output 238 

            Before being applied to observations, our reconstruction algorithm is firstly tested with a 239 

165-year (1850-2014) historical simulation of a climate model, CESM2, that has self-consistent 240 

surface and subsurface variables. As an example, we first compare the spatial distribution of the 241 

CESM2 actual values and reconstructions for January 1860 at the peak of a strong El Niño. Our 242 

algorithm successfully reconstructs upper ocean temperature and salinity anomalies in the world 243 

ocean, including the tropical eastern Pacific warming, the western Pacific freshening, and the 244 

concurrent temperature and salinity changes in the world ocean (Fig. 2). Some mismatches are 245 

discussed below. For example, temperature mismatches are found around the Southern Ocean and 246 

the maritime continent, and salinity mismatches are found near the Maritime Continent and the 247 

Somali Basin. Since our study only uses the first three EOFs, this approach may result in errors 248 

particularly in regions where the dominant modes are not readily apparent or their contributions 249 

are limited (Troccoli and Haines 1999; Kido et al. 2021). 250 

 251 
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 252 
Figure 2. Comparisons of the global spatial distribution of CESM2 actual (left column) and reconstructed (right 253 
column) ocean subsurface temperature (a, b) and salinity (c, d) anomalies for the average of 1-100 m in January 1860. 254 
The black boxes in (a) and (c) correspond to the tropical western Pacific region (140!𝐸 − 180!, 5!𝑆 − 5!𝑁) used for 255 
Fig. 3 and 4. 256 

 257 

We next use the equatorial western Pacific (black boxes in Fig. 2a and c), which has 258 

abundant subsurface temperature variations with little surface signature, as an example to further 259 

illustrate the performance of our algorithm. Figure 3 shows the Time-Depth Hovmöller plots of 260 

the monthly CESM2 actual and reconstructed values in the tropical western Pacific region, 261 

spanning from 2010 to 2014. The reconstruction accurately captures the vertical structure of both 262 

temperature and salinity variations for the entire period. The annual average time series of the 263 

CESM2 actual data also consistently aligns well with the reconstructions across various depths in 264 

the tropical western Pacific region (Fig. 4), spanning from 1850 to 2014. In general, the 265 

mismatches between actual and reconstructed temperature and salinity, particularly below 100 m, 266 

can result from that only 3 EOFs are used in our algorithm or that subsurface salinity and 267 

temperature variations do not always pertain surface signals. Despite these limitations, our 268 

reconstruction algorithm can reasonably reproduce the spatial, vertical, and temporal 269 

characteristics of temperature and salinity variations in CESM2.  270 
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 271 
Figure 3. Comparisons of the Time-Depth Hovmöller plots of CESM2 actual (left column) and reconstructed (right 272 
column) ocean subsurface temperature (a, b) and salinity (c, d) anomalies over the tropical western Pacific region 273 
(140!𝐸 − 180!, 5!𝑆 − 5!𝑁) during 2010-2014. 274 

 275 
Figure 4. Comparisons of the time series of CESM2 actual (red line) and reconstructed (blue line) contrast time series 276 
for ocean subsurface temperature (left column) and salinity (right column) anomalies at 10 m (a, b), 100 m (c, d) and 277 
250 m (e, f) depths for the tropical western Pacific region (140!𝐸 − 180!, 5!𝑆 − 5!𝑁) during 1850-2014. 278 
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3.2 Satellite-based ocean subsurface temperature and salinity reconstruction 279 

            The success of our algorithm in reconstructing the CESM2 subsurface fields leads us to 280 

further apply it to observations (see Data and Methods for detailed data description). At each ocean 281 

grid, historical Argo in-situ data are used to obtain the T-S joint EOFs, done once for all, and 282 

satellite measurements of SST, SSS, and SSH are then used as surface constraints to reconstruct 283 

the subsurface fields. Firstly, we assess the global pattern of our reconstructed fields averaged 284 

within the upper 100 m for January 2016 at the peak of an extreme El Niño as an example (Fig. 5). 285 

Using other time snapshots will yield similar conclusions. The large-scale pattern of the 286 

reconstructed temperature field closely match those of Argo in-situ data: including a considerable 287 

warming in the tropical eastern Pacific, a cooling in the tropical western Pacific, and a weak 288 

warming in the tropical Indian Ocean. The main features in the salinity field has also been well 289 

reproduced, including a negative anomaly in the tropical central-eastern Pacific, a positive 290 

anomaly in the tropical western Pacific, and a negative anomaly tropical eastern Indian Ocean. It 291 

is worth noting that the two El Niño events in Fig. 2 and 5 exhibit different spatial structures of 292 

temperature/salinity anomalies, particularly in the western Pacific region, which highlights that the 293 

reconstruction can well capture the diversity of El Niño events. Overall, the reconstructed and the 294 

original Argo fields for January 2016 have a global spatial correlation of 0.88 (Fig. 5a-c) for 295 

temperature and 0.86 for salinity (Fig. 5d-f) at a 2°x2° spatial resolution. If a finer resolution (e.g., 296 

0.25°x0.25°) is used, the spatial correlations will slightly drop, but the reconstructed fields now 297 

contain fine-scale features that are absent in Argo datasets (Fig. S2 in Supplement) because of the 298 

usage of high-resolution satellite observations.  299 
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 300 
Figure 5. Comparisons on the global spatial distribution of Argo in-situ (left column) and reconstructed (middle 301 
column) ocean subsurface temperature (a, b) and salinity (d, e) anomalies for the average of 1-100 m in January 2016. 302 
Scatter plots (right column) of Argo in-situ versus reconstructed temperature anomalies (c) and salinity anomalies (f) 303 
for all the global grids in January 2016. The correlation r between Argo in-situ data and reconstruction is shown in the 304 
left-upper side of each panel. Both Argo in-situ and reconstructed datasets are interpolated to a 2o x 2o resolution in 305 
this figure, and the high-resolution version is shown in Fig. S2 in Supplement. 306 

 307 

            To further assess our algorithm, we select three representative ocean regions that have 308 

distinctive vertical structures of T-S variations, including the equatorial western Pacific, the 309 

equatorial eastern Pacific and the North Pacific Blob region (Fig. 6). In the equatorial eastern 310 

Pacific, its temperature variability peaks at 70 m and has a considerable surface signature as 311 

manifested by El Niño. The equatorial western Pacific has large subsurface ocean heat content 312 

variations, critical for El Niño preconditioning, but its surface temperature variability is rather 313 

weak. For both regions, salinity variability peaks at the surface, decays with depth, and increases 314 

again until reaching another local peak (Maes, 1999), and such intricate vertical structures 315 

presumably pose a challenge in reconstructing subsurface salinity. In the North Pacific Blob region, 316 

both temperature and salinity variabilities stay roughly uniform in the upper 100 m and decrease 317 

with depth below that. Meanwhile, these results indicate the significant differences in temperature 318 

and salinity changes across various ocean regions, highlighting the necessity of evaluating the 319 

performance of the reconstruction algorithm in diverse ocean regions. 320 
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 321 
Figure 6. The vertical profile of the standard deviation in annual average temperature (a, b, c) and salinity (d, e, f) 322 
anomalies across the three regions tropical western Pacific ( 140!𝐸 − 180!, 5!𝑆 − 5!𝑁), tropical eastern Pacific 323 
( 130!𝑊− 95!𝑊,5!𝑆 − 5!𝑁), and North Pacific Blob region (150!𝑊− 130!𝑊,35!𝑁 − 48!𝑁).  324 

 325 

            The Time-Depth Hovmöller plots of the Argo in-situ data are compared with reconstructed 326 

temperature and salinity anomalies in the aforementioned three regions (Fig. 7 and 8). For the 327 

equatorial western Pacific, strong subsurface temperature anomalies can be reconstructed even 328 

when surface temperature anomalies almost vanish, and the double peaks of the same sign in the 329 

vertical structure of salinity anomalies can also be well captured. For the equatorial eastern Pacific, 330 

surface and subsurface temperature anomalies tend to show the same sign, while salinity anomalies 331 

exhibit a vertical dipole structure, both successfully captured by our reconstruction. For the North 332 

Pacific Blob region, the two-year marine heatwave event in 2014-15 and its downward propagation 333 

can be reconstructed, but the salinity reconstruction seems to be less satisfactory.  334 
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 335 
Figure 7. Comparisons of the Time-Depth Hovmöller plots for Argo in-situ (left column) and reconstructed (right 336 
column) ocean subsurface temperature anomalies over the three regions, including tropical western Pacific (a, b), 337 
tropical eastern Pacific (c, d) and North Pacific Blob (e, f), during 2012-2020. 338 

 339 
Figure 8. Same as Figure 7, but for salinity. 340 
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To have a closer assessment, we also directly compare the time series for the Argo in-situ 341 

and the reconstructed temperature and salinity anomalies at various depths within the three regions 342 

(Fig. 9 and 10). The reconstructed temperature and salinity at various depths in both tropical 343 

western Pacific and the tropical eastern Pacific are generally consistent with Argo. Interestingly, 344 

there is some disagreement between the reconstructed and the Argo salinity anomalies in the 345 

tropical western Pacific at 120 m, even worse than 250 m,  which may indicate the surface-346 

subsurface decoupling around this depth. In general, there is less agreement between 347 

reconstruction and Argo in the North Pacific Blob region than the tropical Pacific, which may 348 

imply a stronger surface-subsurface coupling for the latter. Follow-up work is needed to 349 

understand the regional and vertical differences in the performance of the reconstruction algorithm. 350 

 351 
Figure 9. Comparisons of the time series of Argo in-situ (red line) and reconstructed (blue line) contrast time series 352 
for ocean subsurface monthly temperature anomalies at 20 m (a, b, c), 120 m (d, e, f) and 250 m (g, h, i) depths over 353 
these three regions during 2012-2020. 354 
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 355 
Figure 10. Same as Figure 9, but for salinity. 356 
 357 

3.3 Overall assessment against the Argo dataset 358 

            A global assessment on the overall performance of our algorithm in space and time is 359 

provided. The spatial correlation coefficient between the Argo and the reconstructed fields (2°x2° 360 

ocean grids in total), as is done in Fig. 5c and f, is repeatedly computed for each month and for 361 

each vertical level (Fig. 11a and b). The highest correlations are found near the surface, as one 362 

would expect from the surface constraints being provided. Statistically significant correlations are 363 

found at all depths for both temperature and salinity (p<10-5). Particularly high correlation 364 

coefficients are identified for 2015-16 as dominated by the large signals from the extreme El Niño. 365 

Similarly, but now at each ocean grid, the Argo-reconstruction correlation coefficient is computed 366 

for all months and all levels (Fig. 11c and d). Statistically significant correlations are identified for 367 

99.9% global oceans excluding the ice-covered area (p<10-5), implying that our algorithm can well 368 

capture both the vertical structure and the temporal evolution of temperature and salinity anomalies. 369 

The highest correlations are found over the tropical Pacific, the North Pacific, and the tropical 370 

Indian Ocean, which may suggest a strong surface-subsurface coupling over these regions, and the 371 

detailed mechanisms causing such spatial structure need further investigations. Meanwhile, this 372 
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could also be attributed to the higher consistency between satellite and Argo data in tropical 373 

regions (Lee 2018). 374 

 375 
Figure 11. (a-d) Correlation coefficient between Argo in situ datasets and reconstructions (left column: temperature, 376 
right column: salinity) associated with the global map (top row) and depth (0-400 m with a 10 m interval)-time (from 377 
January 2012 to December 2020) Hovmöller for each grid point (bottom row). Both Argo in-situ and reconstructed 378 
datasets are interpolated to a 2o x 2o spatial resolution in this figure. 379 

 380 

Figure 12 shows the root-mean-squared-error (RMSE) between the Argo and the 381 

reconstructed fields (2°x2° ocean grids in total). Unlike the correlation coefficient, the temperature 382 

and salinity reconstruction errors reach the largest at the depths of 50-100 meters and are smaller 383 

near the surface or below 200 m. The relatively small RMSE results from the strong agreement 384 

between satellite observations and Argo at the surface (Du and Zhang, 2015) and the weaker 385 

temperature and salinity variabilities in general below 200 m. In terms of spatial distribution, the 386 

RMSEs of temperature and salinity tend to be larger over the deep tropics, where it is warm and 387 

rainy, and over the Kuroshio and Gulf stream, where it is dominated by ocean fronts and storm 388 

tracks. Overall, the RMSE between the Argo and the reconstruction fields exhibits considerable 389 

variations in space and time, and is generally comparable on a global scale compared to some other 390 

machine learning-based algorithms  (Tian et al., 2022). 391 
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 392 
Figure 12. Same as Figure 11, but for the root-mean-squared-error (RMSE). 393 

 394 

3.4 Evaluation against in-situ buoy measurements 395 

            Next, we regard the in-situ buoy measurements of subsurface temperature and salinity from 396 

TAO/ TRITON as true observations and compare them with our reconstruction together with other 397 

existing ocean subsurface datasets. We present the results for the site at 8° N, 137° E, where most 398 

temporally complete measurements are available in Fig. 13 for the purpose of illustration and show 399 

the results for another few sites that have reasonably long subsurface records in Fig. S3-S6 in 400 

Supplement. Overall, our reconstruction agrees well with the in-situ buoy measurements for both 401 

temperature and salinity and at various depths (Fig. 13), and it falls within the spread across other 402 

existing datasets. In some cases, our reconstruction clearly outperforms other subsurface datasets. 403 

For example, in early 2016, in-situ buoy measurements recorded a sharp increase in both 404 

temperature and salinity at 150 m. This feature is accurately captured by our reconstruction, but 405 

not by other products. A detailed inter-data comparison and investigations on the cause of data 406 

disagreement need to be done routinely in future studies. 407 
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 408 
Figure 13. Comparisons between TAO/TRITON, our reconstruction, and other subsurface datasets at the site of 8o N, 409 
137o E for the depths at 25 m (a, b), 75 m (c, d) and 150 m (e, f). The TAO/ TRITON time series is represented by the 410 
red curve, the reconstructed time series by the blue curve, and the average of Argo in-situ data and four assimilation 411 
data (ORAS5, SODA3, ECCO4r4, IAP) is depicted by the black curve. The gray shading curve denotes one standard 412 
deviation across the Argo, ORAS5, SODA3, ECCO4r4, and IAP datasets (see Data and Methods). 413 

 414 

4 Discussion and outlook 415 

            In this study, our novel reconstruction algorithm provides a promising tool to develop a 416 

satellite-based dataset for ocean subsurface temperature and salinity that has a global coverage and 417 

a high spatial resolution. This algorithm achieves the reconstruction of subsurface ocean 418 

temperature and salinity anomalies solely based on surface data with satisfactory accuracy in 419 

comparison to actual observed values. Specifically, we first used CESM2 historical data to validate 420 

the accuracy of this algorithm as CESM2 model has self-consistent surface and subsurface 421 

variables. The reconstruction of CESM2 subsurface fields shows an impressive agreement  in its 422 

spatial distribution, temporal variability, and long-term change compared to CESM2 actual values. 423 
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After being verified by CESM2, we applied the algorithm to observations. The reconstructed 424 

temperature and salinity fields generally match those from the Argo in-situ observations in their 425 

large-scale patterns, vertical structures, and interannual variations. Interestingly, the algorithm 426 

yields satisfactory results even at deep subsurface levels (e.g., 200-400 m) where the signals are 427 

weak. Also, the reconstruction seems to be even better for salinity than for temperature. 428 

Furthermore, our reconstruction exhibits enhanced performance in the tropical oceans, and the 429 

reconstruction skill gradually diminishes with increasing depth as one would expect from the 430 

surface constraints of our algorithm. Finally, a comparison with temperature and salinity data from 431 

a TAO/TRITON site reveals that our reconstruction generally resides in the spread across major 432 

ocean assimilation or reanalysis products and can sometimes capture short-term and local 433 

variability that other products fail to capture. These results suggest that our reconstructed 434 

temperature and salinity fields can be readily used to complement the existing ocean subsurface 435 

products as an independent, satellite-based observational dataset. For example, we can use this 436 

dataset to assess the ocean heat content in various ocean regions. Besides, the usage of satellite 437 

observations presents a unique advantage of our reconstruction dataset that can achieve high 438 

spatio-temporal resolutions for studies on mesoscale ocean phenomena. To make such 439 

reconstructions possible, there is an urgent need to maintain continuous observations of satellite 440 

observations on ocean properties like SST, SSS, and SSH as emphasized here. 441 

 Limitations and challenges do exist for our proposed approach. Firstly, the reconstruction 442 

is less satisfactory in certain ocean regions, for example, the tropical Atlantic where ocean surface 443 

temperature and salinity barely covary (Kido et al., 2021). More generally, the potential error 444 

associated with our reconstruction can also come from other sources, including the imperfection 445 

of the algorithm (e.g., usage of 3 EOF modes) and the inherent errors of satellite datasets (Boutin 446 

et al., 2016; Yan et al., 2021). These challenges point to the need of improving the algorithm and 447 

minimizing the satellite observational error in future studies. Secondly, in comparison to machine 448 

learning methods, our approach falls short in reconstructing the deep ocean fields below 500 m 449 

(Tian et al., 2022). Nevertheless, our joint EOF-based algorithm is more interpretable as opposed 450 

to machine learning, allowing for a deeper understanding on the physics of temperature and salinity 451 

co-variability and the surface-subsurface coupling. Follow-up work along this line is currently 452 

underway. It is important to emphasize that in-situ measurements (e.g., Argo floats, CTD, moored 453 
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buoys) remain necessary to provide independent subsurface observations, especially in the deep 454 

ocean. 455 
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