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Abstract. Tropical cyclones (TCs) are powerful weather systems that can cause extreme disasters. The International Best 10 

Track Archive for Climate Stewardship (IBTrACS) dataset has been used extensively to estimate TC climatology. However, 11 

it has low data coverage, lacking intensity and outer size data for more than half of all recorded storms, and is therefore 12 

insufficient as a reference for researchers and decision makers. To fill this data gap, we reconstructed a long-term TC dataset 13 

by integrating IBTrACS and European Centre for Medium-Range Weather Forecasts Reanalysis 5 (ERA5) data. This new 14 

dataset covers the period 1959–2022, with 3 h temporal resolution. Compared to the IBTrACS dataset, it contains 15 

approximately 3–4 times more data points per characteristic. We established machine learning models to estimate the 16 

maximum sustained wind speed (𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚) and radius to maximum wind speed (𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚) in six basins for which TCs were generated 17 

using ERA5-derived 10 m azimuthal median azimuthal wind profiles as input, with 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚  and 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 data from the IBTrACS 18 

dataset used as training data. An empirical wind–pressure relationship and six wind profile models were employed to estimate 19 

the minimum central pressure (𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚) and outer size of the TCs, respectively. Overall, this high-resolution TC reconstruction 20 

dataset demonstrated global consistency with observations, exhibiting mean biases of <1% for 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 and 3% for 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 and 21 

𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 in almost all basins. The new dataset is publicly available from https://doi.org/10.5281/zenodo.12740372 (Xu et al., 22 

2024) and significantly advances our understanding of TC climatology, thereby facilitating risk assessments and defenses 23 

against TC-related disasters.  24 
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1. Introduction 25 

Tropical cyclones (TCs) are formidable weather systems accompanied by gale winds, torrential rainstorms, significant waves, 26 

and devastating storm surges, which cause extensive damage in affected regions (Gray, 1968). During the past two decades, 27 

TCs have resulted in an average annual economic loss of 29 billion dollars, affecting more than 22 million individuals (Guha-28 

Sapir, 2017; Geiger et al., 2018). Given the considerable scale and frequency of TC-related disasters, a comprehensive 29 

understanding of TC climatology is essential for effective risk assessment, emergency planning, and community resilience 30 

enhancement. 31 

TCs are typically characterized according to their intensity, size, location, and translation speed (Weber et al., 2014). 32 

Many studies have reported increasing TC intensity at both the basin and global scales under global warming (e.g., Webster et 33 

al., 2006; Gualdi et al., 2008; Wu et al., 2022). Vincent et al. (2014) detected a 30% increase in high-intensity TCs at the global 34 

scale. Mei and Xie (2016) demonstrated a significant correlation between TC intensification and increasing sea surface 35 

temperatures (SSTs) in East and Southeast Asia. In addition, significant increasing trends in TC intensity have been observed 36 

in the Atlantic basin over the past few decades (Walsh et al., 2016). However, assessments of the response of TC intensity to 37 

climate change are subject to uncertainty, partly due to the challenging and costly process of collecting observation data (Gualdi 38 

et al., 2008; Knutson et al., 2019). Furthermore, the movement of TCs may be significantly influenced by their size (Liu and 39 

Chan, 1999), further contributing to their destructive potential (Xu et al., 2020). Similarly, a significant increase in TC size 40 

was reported to be proportional to surface latent heat flux under warmer air and ocean temperatures (Hill and Lackmann, 2009; 41 

Radu et al., 2014). Xu et al. (2020) demonstrated that TC size increases with ocean warming, based on idealized experiments. 42 

Sun et al. (2013, 2014) discovered that TC size increases significantly as SST increases through a modeling analysis. However, 43 

the conclusions of these case studies are necessarily limited, and the relationships between TC size and climatology factors 44 

remain unclear due to the lack of historical records (Xu et al., 2020). 45 

The International Best Track Archive for Climate Stewardship (IBTrACS) dataset is one of the most commonly used 46 

sources for TC data; it contains location, intensity, and size data for all known tropical and subtropical cyclones at a resolution 47 
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of 3 h (Knapp et al., 2010). In this dataset, maximum sustained wind speed (𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚) and minimum central pressure (𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚) are 48 

used to quantify TC intensity (Simpson, 1974; Chavas et al., 2017; Casas et al., 2023). Among the several metrics that have 49 

been defined to measure TC size, one of the most widely recognized is the radius to maximum wind speed (𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚, Chavas et 50 

al., 2015; Ren et al., 2022). Radial distances from the cyclone center to locations where sustained wind speeds of 34, 50 and 51 

64 knots (~17, 26, and 33 m/s) are observed on surface, i.e., 𝑅𝑅34, 𝑅𝑅50, and 𝑅𝑅64, are also used to estimate TC size (Pérez-52 

Alarcón et al., 2023). However, reliable TC size and intensity estimates are available only from 1988 onwards (Demuth et al., 53 

2006), and post-storm analyses of wind radii, including 𝑅𝑅34, 𝑅𝑅50, and 𝑅𝑅64, did not commence until 2004 (Gori et al., 2023). 54 

Furthermore, more than half of all recorded storms lack intensity and size data, often with only location data provided even 55 

during periods when post-storm analyses were conducted. Thus, constructing a TC climatology is an arduous task due to low 56 

data coverage. 57 

Machine learning has been widely used to reconstruct TC datasets. Yang et al. (2022) divided hurricane wind fields into 58 

symmetric and asymmetric components, and proposed a downscaling model based on the XGBoost software library to 59 

reconstruct TC structure; however, 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚  and 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚  were the model input variables. Zhuo and Tan (2023) applied deep 60 

learning algorithms to estimate reliable TC sizes over the western North Pacific during 1981–2017, based on a homogeneous 61 

satellite database. Li et al. (2024) proposed a transfer learning-based generative adversarial network framework to derive TC 62 

wind fields from synthetic aperture radar images. Eusebi et al. (2024) demonstrated that a physics-informed neural network 63 

can produce accurate reconstructions of TC wind and pressure fields by assimilating observations in a computationally efficient 64 

manner. Nevertheless, the datasets used in these studies were generally limited to several cases or specific regions of interest, 65 

and some are not publicly available. 66 

By contrast, reanalysis datasets such as the fifth-generation European Centre for Medium-Range Weather Forecasts 67 

(ECMWF) Reanalysis 5 (ERA5) dataset (Hersbach et al., 2020), the 55-year Japanese Reanalysis (Kobayashi et al., 2015), and 68 

US National Centers for Environmental Prediction and National Centre for Atmospheric Research Reanalysis products (Kistler 69 

et al., 2001), which combine past observations and model results through data assimilation, have unique advantages in terms 70 
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of data availability and spatiotemporal coverage. Previous studies have suggested that ERA5 products are among the most 71 

promising reanalysis data sources in terms of representing TC outer size and structure, due to their relatively fine horizontal 72 

grid spacing (Bian et al., 2021; Pérez-Alarcón et al., 2023; Dulac et al., 2024). The reconstruction of TC proxies using ERA5 73 

data has been demonstrated to be a viable approach (Yeasmin et al., 2023). Nevertheless, due to horizontal resolution limits 74 

and conservative physics parameterizations, reanalysis products have exhibited large underestimation and overestimation of 75 

TC 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 values, respectively (Hatsushika et al., 2006; Schenkel and Hart, 2012). Thus, despite the substantial 76 

body of research reconstructing the outer sizes and proxies of TCs using ERA5 data (Bian et al., 2021; Gori et al., 2023; Pérez-77 

Alarcón et al., 2023), studies based on its relatively accurate TC intensity data are lacking. 78 

In this study, we exploited the advantages of the IBTrACS and ERA5 datasets to generate a new TC dataset containing 79 

all characteristics of TCs. Given the high degree of accuracy demonstrated by the ERA5 data in capturing TC structures, we 80 

employed ERA5-derived azimuthal median azimuthal wind profiles in conjunction with a machine learning model to reduce 81 

the bias observed in the 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 of TCs between the ERA5 and IBTrACS datasets. In addition, we modeled six TC 82 

radial wind profiles to compute 𝑅𝑅34, 𝑅𝑅50, and 𝑅𝑅64. The resulting long-term TC reconstruction dataset covering the period 83 

1959–2022 is anticipated to facilitate future TC climatology research. The generated dataset is approximately 3–4 times larger 84 

than the IBTrACS dataset in terms of the number of records per characteristic. 85 

In the subsequent sections, we describe the IBTrACS and ERA5 datasets and the methodology used to create the novel 86 

TC reconstruction dataset. The findings are reported and discussed in comparison with IBTrACS data according to a 87 

comprehensive set of statistical metrics. Finally, we consider the potential applications of the reconstructed TC dataset. 88 

2. Data 89 

2.1 IBTrACS data 90 

Data on TC tracks, intensity, and size were obtained from the IBTrACS (version 4r01, which is a unified dataset containing 91 

track estimates for all TC basins with a 3 h temporal resolution, based on data produced by tropical warning centers. As the 92 

TC 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 data from all main TC basins were accessible from U.S. agencies, we employed these data and excluded the irregular 93 
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time steps. All TC events in all basins were used, except for those over the South Atlantic, where TC generation is insufficient. 94 

A comprehensive overview of the recorded TC characteristics is presented in Table 1. The IBTrACS dataset encompasses a 95 

total of 7,552 TCs on a global scale, spanning the period 1959–2022, corresponding to 423,296 individual time points. However, 96 

only 125,477 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚, 142,430 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 , and 94,415 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 values were recorded. TC tracks and 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 data extracted from the 97 

IBTrACS dataset are presented in Fig. 1. 98 

 99 
Figure 1: Overview of the tracks and 10-m maximum wind speeds of tropical cyclones in IBTrACS dataset. Grey lines represent the 100 
unrecorded wind speeds. 101 

Table 1: Basic information on the number of recorded tropical cyclone characteristics from 1959 to 2022 recorded in IBTrACS. 102 

Basin Time point 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 𝑅𝑅34 𝑅𝑅50 𝑅𝑅64 

Western Pacific 152362 26604 61018 28715 19340 10641 7149 

North Atlantic 55679 28310 21409 18161 14961 7630 4212 

North Indian 24101 5481 5476 4281 2354 1029 614 

South Indian 86790 23935 24468 16367 10697 5108 2977 

South Pacific 45189 12322 12467 7169 4827 2577 1521 

Eastern Pacific 59175 28825 17592 19722 12283 6482 3986 

Global 423296 125477 142430 94415 64462 33467 20459 

 103 
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2.2 ERA5 data 104 

ERA5 is the latest ECMWF reanalysis, following a decade of developments in model physics, core dynamics, and data 105 

assimilation (Hersbach et al., 2020). We utilized the main ERA5 dataset for the period 1959–2022 to estimate the track, 106 

intensity, and size of each TC. The spatial resolution of the ERA5 dataset is 0.25° × 0.25°, with a temporal resolution of 3 h, 107 

aligning with that of the IBTrACS dataset. Pre-1959 ERA5 back-extension data were not adopted, as some TCs in these data 108 

exhibited unrealistically high levels of tension (Bell, 2021). Notably, despite the higher uncertainty associated with TC 109 

intensity data derived from ERA5 for the pre-satellite time period (1959–1978), comparisons of TC intensity pre- and post-110 

1979 revealed similar climatological distributions for both TC groups in all basins (Fig. S1). We employed 10 m surface 111 

meridional and latitudinal wind speeds to obtain 10 m azimuthal–mean azimuthal wind profiles for TCs. The sea level pressure 112 

(SLP) was utilized to provide environmental pressure data for computing the TC central pressure. Parameters including the 113 

SLP; relative vorticity at 700, 850, and 925 hPa; and geopotential height at 700 and 850 hPa were derived from the ERA5 data 114 

to identify TC centers. 115 

3. Methodology 116 

3.1 TC center identification and azimuthal wind profile estimation  117 

TC centers in the ERA5 data were identified based on the method of Schenkel (2017). The position of each TC within the 118 

reanalysis grid was initially ascertained utilizing the IBTrACS position as a first guess. To remove uncertainties associated 119 

with TC centers in the reanalysis data, the centroid of six reanalysis variables (SLP; relative vorticity at 700, 850, and 925 hPa; 120 

and geopotential height at 700 and 850 hPa) was averaged over the grid near the first guess position to adjust the position of 121 

the estimated reanalysis TC center.  122 

Azimuthal wind profiles based on the ERA5 data were estimated as described by Chavas and Vigh (2014). First, estimated 123 

environment wind fields, which were calculated as 0.55 of the TC translation vectors rotated 20° counterclockwise (Lin and 124 

Chavas, 2012) were subtracted from the meridional and latitudinal wind speeds. TC translation vectors were determined 125 

according to the TC positions at the next and current time points in the IBTrACS data. Next, the 10 m surface meridional and 126 
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latitudinal wind fields were interpolated to a TC-centered polar coordinate. In contrast to the method of Chavas and Vigh, we 127 

did not exclude grid points over land to obtain the TC intensity after landfall. Then, the parameter 𝒳𝒳, defined as the normalized 128 

average magnitude of all vectors from the TC center to each grid point included at a specified radius (Chavas and Vigh, 2014) 129 

was employed to remove asymmetrical radial bins by excluding radial bins with 𝒳𝒳 > 0.5. Finally, the TC 10 m azimuthal–130 

mean azimuthal wind profiles were calculated as changes in wind speed with distance from the TC center, with grid points 131 

spaced at 10 km intervals. The ERA5-derived TC 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 (𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 _𝐸𝐸𝐸𝐸𝐸𝐸5) and 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 (𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 _𝐸𝐸𝐸𝐸𝐸𝐸5) were obtained from the wind 132 

profiles. 133 

3.2 Machine learning model for reconstructing TC 𝐕𝐕𝐦𝐦𝐦𝐦𝐦𝐦 and 𝐑𝐑𝐦𝐦𝐦𝐦𝐦𝐦 from ERA5 data 134 

As shown in Fig. 2, there were discernible biases in all six TC basins between the ERA5- and IBTrACS-derived 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚  and 135 

𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 values. The biases of 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 were less dependent on the basin, suggesting the systematic underestimation of 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚  by 136 

the ERA5 data. In contrast, biases were more pronounced for larger 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 values, with underestimation detected for wind 137 

speeds exceeding 20 and 30 m/s for Saffir–Simpson categories 1–2 and 3–5, respectively, in all six basins. Notably, this bias 138 

even exceeded 40 m/s for Saffir–Simpson categories 3–5 in the East Pacific basin. In addition, ERA5-derived results 139 

overestimated 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 by >15 km in all basins, and by >80 km in the West Pacific basin. The large biases produced by ERA5 140 

motivated us to establish a new TC dataset that is more consistent with observations.  141 

Previous studies have indicated that despite the modesty of ERA5-derived TC intensity data, the ERA5 dataset accurately 142 

depicts TC structural alterations (Bian et al., 2021). Therefore, we used the TC 10 m azimuthal–mean azimuthal wind speed 143 

at radial distances from 0 to 1000 km, at 10 km intervals, as a parameter to estimate 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 in each basin. The parameters also 144 

included the TC translation speed, given that the IBTrACS 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚  data (𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚_𝐼𝐼𝐼𝐼) represent a combination of the environmental 145 

and TC wind fields. After testing several machine learning models, including an artificial neural network, convolutional neural 146 

network, support vector regressor, multilayer perceptron regression, and random forest (RF) algorithms, we found that RF 147 

provided the most robust predictions. Therefore, an RF regressor was developed to predict reconstructed 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 (𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚_𝑅𝑅𝑅𝑅), as 148 

follows: 149 
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𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚_𝑅𝑅𝑅𝑅 = 𝑅𝑅𝑅𝑅(𝑉𝑉0,𝑉𝑉10,𝑉𝑉20, . . . ,𝑉𝑉1000,𝑉𝑉𝑇𝑇𝑇𝑇)                                                          (1) 150 

where RF and 𝑉𝑉𝑇𝑇𝑇𝑇 are the RF regressor and TC translation speed, respectively, and 𝑉𝑉0,𝑉𝑉10,𝑉𝑉20, . . . ,𝑉𝑉1000 refer to the 10 m 151 

azimuthal–mean azimuthal wind speeds at radial distances from 0 to 1000 km. 152 

 153 
Figure 2: Bar charts for comparing the mean value of the 10-m maximum wind speeds and the radii to maximum winds. Each of 154 
the colors indicates a different basin. Solid and dashed bars represent IBTrACS and ERA5-derived data. 155 

Similarly, variation in radial distance with azimuthal wind speed was used to estimate 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 in the six basins. After 156 

testing several machine learning models, the RF regressor was utilized to predict the reconstructed 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚  (𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚_𝑅𝑅𝑅𝑅 ), as 157 

follows: 158 

𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚_𝑅𝑅𝑅𝑅 = 𝑅𝑅𝑅𝑅(𝑅𝑅0,𝑅𝑅0.01,𝑅𝑅0.02, . . . ,𝑅𝑅1)                                                             (2) 159 

where 𝑅𝑅0,𝑅𝑅0.01,𝑅𝑅0.02, . . . ,𝑅𝑅1 represent the radial distances at which normalized wind speeds range from 0 to 1, at an interval 160 

of 0.01. In the RF models, hyperparameters including the maximum tree depth, minimum leaf samples, minimum sample splits, 161 

and maximum leaf nodes were determined by randomized searches. The dataset, made up of the input array and learning target, 162 

was randomly divided into two subsets, with 75% allocated for training and the remaining 25% for validation, following the 163 

methods of previous studies (e.g., Breiman, 2001; Guo et al., 2024). Training data for the entire period (1959–2022) were 164 
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incorporated into the model training process. Model performance was evaluated using a comprehensive set of statistical metrics, 165 

including mean error, mean absolute error, root mean square error (RMSE), and correlation coefficients. 166 

3.3 Empirical wind speed–pressure relationship for determining 𝐏𝐏𝐦𝐦𝐦𝐦𝐦𝐦 167 

The conversion between 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 at a given time point during a TC was modeled using the empirical wind–pressure 168 

relationship (Atkinson and Holliday, 1977; Harper, 2002), as follows: 169 

𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑎𝑎(𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚)𝑏𝑏                                                                        (3) 170 

where 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒 is the environmental pressure obtained from the mean SLP for the TC center location 1–10 days earlier based on 171 

the ERA5 data, following the method of Bloemendaal et al. (2020); 𝑎𝑎 and 𝑏𝑏 were estimated in each basin using a nonlinear 172 

least squares approach, based on 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚  and the corresponding 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 of the IBTrACS dataset. 𝑉𝑉max _𝑅𝑅𝑅𝑅 was input into the 173 

fitted Eq. (3) to obtain the reconstructed 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 (𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚_𝑅𝑅𝑅𝑅). 174 

3.4 TC radial wind profile models for computing 𝐑𝐑𝟑𝟑𝟑𝟑, 𝐑𝐑𝟓𝟓𝟓𝟓, and 𝐑𝐑𝟔𝟔𝟔𝟔 175 

Previous studies have developed TC radial wind profile models for estimating TC structures (e.g., Pérez-Alarcón et al., 2021). 176 

After obtaining the reconstructed 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚  and 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 , six widely used wind field models (Holland, 1980; DeMaria, 1987; 177 

Willoughby et al., 2006; Emanuel and Rotunno, 2011; Frisius and Scgönemann, 2013; Chavas et al., 2015), were used to 178 

estimate the reconstructed TC 𝑅𝑅34, 𝑅𝑅50, and 𝑅𝑅64 (𝑅𝑅34_𝑅𝑅𝑅𝑅 , 𝑅𝑅50_𝑅𝑅𝑅𝑅 , and 𝑅𝑅64_𝑅𝑅𝑅𝑅). 179 

The wind profile model proposed by Holland (1980) was formulated as follows: 180 

𝑉𝑉(𝑟𝑟) = 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚��
𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚
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𝑏𝑏
𝑒𝑒1−�

𝑟𝑟
𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚

�
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                                                               (4) 181 

where 𝑉𝑉 is the wind speed at distance 𝑟𝑟 from the TC center, and 𝑏𝑏 = 2, according to Kowaleski and Evans (2016). 182 

The model developed by DeMaria (1987) was formulated as follows: 183 

𝑉𝑉(𝑟𝑟) = 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 �
𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚
𝑟𝑟
� 𝑒𝑒

1
𝑐𝑐−

1
𝑐𝑐�

𝑟𝑟
𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚

�
c

𝑑𝑑                                                                   (5) 184 

where c = 0.63 and d = 1, following Kowaleski and Evans (2016). 185 

The model proposed by Willoughby et al. (2006; hereinafter, W06) was formulated as follows: 186 
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𝑉𝑉(𝑟𝑟) =

⎩
⎪
⎨

⎪
⎧ 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 �

𝑟𝑟
𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚

�
𝑛𝑛

, 0 ≤ 𝑟𝑟 ≤ 𝑅𝑅1
𝑉𝑉𝑖𝑖(1 − 𝑤𝑤) + 𝑉𝑉0𝑤𝑤,   𝑅𝑅1 ≤ 𝑟𝑟 ≤ 𝑅𝑅2 

𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒
−𝑟𝑟−𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚

𝑋𝑋1 ,      𝑅𝑅2 ≤ 𝑟𝑟

                                                         (6) 187 

where 𝑉𝑉𝑖𝑖 and 𝑉𝑉0 are the tangential wind components in the eye and beyond the transition zone, respectively, and 𝑤𝑤, 𝑋𝑋1, and 188 

n are the weight function, exponential decay length in the outer vortex, and power law exponent within the eye, respectively. 189 

The model proposed by Emanuel and Rotunno (2011) was formulated as follows: 190 

𝑉𝑉(𝑟𝑟) = 2𝑟𝑟(𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚+0.5𝑓𝑓𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚
2 )

𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚
2 +𝑟𝑟2

− 𝑓𝑓𝑓𝑓
2

                                                                (7) 191 

where 𝑓𝑓 is the Coriolis parameter. 192 

The model developed by Frisius and Scgönemann (2013) was formulated as follows: 193 

𝑉𝑉(𝑟𝑟) = 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚
𝑟𝑟

𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚
�

2(𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚
𝑟𝑟 )2

2−(𝐶𝐶𝐻𝐻𝐶𝐶𝑑𝑑
)[1−( 𝑟𝑟

𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚
)2]
�

1
2−

𝐶𝐶𝐻𝐻
𝐶𝐶𝑑𝑑
− 𝑓𝑓𝑓𝑓

2
                                                       (8) 194 

where 𝐶𝐶𝐻𝐻 and 𝐶𝐶𝐷𝐷 are the surface enthalpy transfer and drag coefficients, respectively, and 𝐶𝐶𝐻𝐻
𝐶𝐶𝑑𝑑

 = 1, according to Frisius and 195 

Scgönemann (2013). 196 

The model proposed by Chavas et al. (2015; hereinafter, CLE15) was formulated as follows: 197 

(𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑀𝑀𝑚𝑚

)
2−

𝐶𝐶𝑘𝑘
𝐶𝐶𝑑𝑑 =

2( 𝑟𝑟
𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚

)2

2−(
𝐶𝐶𝑘𝑘
𝐶𝐶𝑑𝑑

)+(
𝐶𝐶𝑘𝑘
𝐶𝐶𝑑𝑑

)( 𝑟𝑟
𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚

)2
                                                                  (9) 198 

𝜕𝜕𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝜕𝜕𝑟𝑟

= 𝐶𝐶𝑑𝑑(𝑟𝑟𝑟𝑟)2

0.001(𝑟𝑟𝑜𝑜
2−𝑟𝑟2)

   199 

where 𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 , 𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 , and 𝑀𝑀𝑚𝑚 are the angular moment of the inner and outer wind regimes and at 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚, respectively; and 200 

𝐶𝐶𝑘𝑘 and 𝐶𝐶𝑑𝑑 are the exchange surface enthalpy and momentum coefficients, respectively. 201 

The performance of each profile model was evaluated by comparing 𝑅𝑅34, 𝑅𝑅50, and 𝑅𝑅64 estimates with those recorded 202 

in the IBTrACS dataset. The optimal model was selected to generate reconstructed 𝑅𝑅34, 𝑅𝑅50, and 𝑅𝑅64, as described in detail 203 

in Section 4.  204 

3.5 Flowchart for optimal wind profile model selection 205 

After identifying the TC center, we used an RF approach to estimate 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 based on the ERA5-derived TC 10 m 206 

azimuthal–mean azimuthal wind profiles. Next, the parameters of the empirical wind–pressure relationship were estimated, 207 
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and TC 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 values were computed. Finally, the TC 𝑅𝑅34, 𝑅𝑅50, and 𝑅𝑅64 were derived by selecting the optimal wind profile 208 

model from among the six widely used models. The overall methodology is illustrated in Fig. 3.  209 

 210 
Figure 3: Flowchart with the tropical cyclone center identification and wind profiles extracted from ERA5 (Step 1; in purple), the 211 
10-m maximum wind speeds and radii to maximum winds estimated by random forest model (Step 2; in red), the minimum central 212 
pressure estimated by empirical wind-pressure relationship (Step 3; in green), and the out size estimated by wind profile models 213 
(Step 4; in grey). 214 

4. Results and Discussion 215 

The accuracy of the 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 _𝑅𝑅𝑅𝑅  model results was evaluated according to various statistical metrics based on the testing datasets 216 

(Fig. 4), as prescribed by Breiman (2001). The 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 _𝑅𝑅𝑅𝑅  data were strongly correlated with observations, with correlation 217 

coefficients exceeding 0.98 for all six basins. The RMSE values for the West Pacific, North Atlantic, North and South Indian 218 

Ocean, and South and East Pacific basins were 2.60, 4.09, 1.33, 3.25, 3.73, and 5.05 m/s, respectively. Compared to 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 _𝐸𝐸𝐸𝐸𝐸𝐸5, 219 
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the reconstruction provided a reduction in the mean absolute bias of over 10 m/s in most basins, with a further reduction of 220 

19.62 m/s in the East Pacific basin, as described in detail in Table 2. The model was more effective at reducing biases between 221 

ERA5-derived results and observations for larger 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚  values. Furthermore, given the high influence of ENSO on TC 222 

intensity (Chu, 2024), the accuracy of 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚_𝑅𝑅𝑅𝑅 was evaluated for moderate to strong El Niño and La Niña years (Fig. S2 and 223 

S3). A high degree of correlation coefficients (>0.97) and low RMSE values (<5m/s) were observed between 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚_𝑅𝑅𝑅𝑅  and 224 

𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚  in all six basins during ENSO years. These metrics clearly demonstrate the superior accuracy of 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 _𝑅𝑅𝑅𝑅  and its 225 

reduced bias compared to 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 _𝐸𝐸𝐸𝐸𝐸𝐸5.  226 

 227 
Figure 4: Comparison between value-averaged maximum wind speeds (𝑽𝑽𝒎𝒎𝒎𝒎𝒎𝒎) from ERA5-derived and reconstructed (ERA5 + 228 
Random forest) data and IBTrACS maximum wind speeds for tropical cyclones in (a) Western Pacific, (b) North Atlantic, (c) North 229 
Indian, (d) South Indian, (e) South Pacific and (f) Eastern Pacific basins. Grey lines represent the error bar, given as one standard 230 
deviation from the mean. The values with sample sizes less than 30 in IBTrACS were excluded. 231 
  232 
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Table 2: Basic information on evaluation indices for 𝑽𝑽𝒎𝒎𝒎𝒎𝒎𝒎. ME, mean errors; MAE, mean of the absolute bias; RMSE, root mean 233 
square error; CE, correlation coefficients. 234 

 ME (m/s) MAE (m/s) RMSE (m/s) CE 

GlobalERA5 16.73 16.80 21.70 0.92 

GlobalReconstructed 2.82 2.83 4.34 0.99 

WPERA5 18.93 18.93 20.54 0.97 

WPReconstructed 0.56 1.63 2.60 0.98 

NA ERA5 21.03 21.03 24.46 0.98 

NAReconstructed 2.38 2.82 4.09 0.99 

NIERA5 7.74 7.74 8.96 0.98 

NIReconstructed -0.25 1.11 1.33 0.99 

SIERA5 12.39 12.41 15.61 0.93 

SIReconstructed 0.71 2.17 3.25 0.98 

SPERA5 13.71 13.73 16.67 0.96 

SPReconstructed 1.19 2.70 3.73 0.99 

EPERA5 23.09 23.09 26.86 0.97 

EPReconstructed 2.36 3.47 5.05 0.99 

We similarly evaluated the accuracy of 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 _𝑅𝑅𝑅𝑅  for the six basins based on the testing datasets (Fig. 5). Correlation 235 

coefficients between 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 _𝑅𝑅𝑅𝑅  and 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚  recorded in IBTrACS (𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚_𝐼𝐼𝐼𝐼 ) exceeded 0.9, indicating strong correlation 236 

between the reconstructed results and observations. Moreover, the RMSEs for the West Pacific, North Atlantic, North and 237 

South Indian Ocean, and South and East Pacific basins were 20.80, 31.47 10.48, 16.51, 15.11, and 24.75 km, respectively. 238 

Importantly, 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 _𝐸𝐸𝐸𝐸𝐸𝐸5  exhibited a large deviation from observations, exceeding 300 km at very low 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚_𝐼𝐼𝐼𝐼  values. 239 

Therefore, for clarity, the 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 _𝐸𝐸𝐸𝐸𝐸𝐸5 data are not shown with the reconstructed TC results in Fig. 5. The mean absolute bias 240 

exhibited a reduction of 39.57 km on a global scale, with a further reduction of over 59.37 km in the South Indian Ocean basin, 241 

as described in detail in Table 3. Although the 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 _𝑅𝑅𝑅𝑅  data slightly overestimated observations at low 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚_𝐼𝐼𝐼𝐼 values and 242 

underestimated observations at high 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚_𝐼𝐼𝐼𝐼 values, they greatly reduced biases compared to the 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 _𝐸𝐸𝐸𝐸𝐸𝐸5 data, and thus 243 

produced superior predictions for all six basins. 244 
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 245 

Figure 5. Similar to Figure 4, but for radii to maximum winds (𝑹𝑹𝒎𝒎𝒎𝒎𝒎𝒎). 246 

Table 3: Similar to Table 2, but for 𝑹𝑹𝒎𝒎𝒎𝒎𝒎𝒎. 247 
 ME (km) MAE (km) RMSE (km) CE 

GlobalERA5 -41.64 15.92 67.66 0.44 

GlobalReconstructed 1.37 55.49 22.19 0.94 

WPERA5 -56.43 58.31 69.86 0.75 

WPReconstructed 1.32 14.93 20.80 0.93 

NA ERA5 -7.79 54.25 64.59 0.37 

NAReconstructed 4.05 21.44 31.47 0.96 

NIERA5 -28.95 29.39 33.75 0.96 

NIReconstructed -2.30 9.65 10.48 0.96 

SIERA5 -73.40 73.48 88.39 0.74 

SIReconstructed -1.50 14.11 16.51 0.96 

SPERA5 -52.42 52.99 61.95 0.90 

SPReconstructed -3.21 12.09 15.11 0.91 

EPERA5 -24.31 47.83 56.59 -0.02 

EPReconstructed 6.91 18.83 24.75 0.93 

 248 

  249 
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𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚_𝑅𝑅𝑅𝑅  was computed based on an empirical wind–pressure relationship. 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚_𝐼𝐼𝐼𝐼  and the corresponding 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚  250 

recorded in IBTrACS (𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚_𝐼𝐼𝐼𝐼) were also employed in the reconstruction, and 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒 was obtained from the ERA5 dataset, 251 

following the method of Bloemendaal et al. (2020). Related parameters were estimated through nonlinear fitting; the results 252 

are shown in Fig. 6. For the West Pacific, North Atlantic, North and South Indian Ocean, and South and East Pacific basins, 253 

we used a values of 0.118, 0.051, 0.259, 0.184, 0.325, and 0.073 and b values of 1.67, 1.692, 1.402, 1.507, 1.371, and 1.651, 254 

respectively, in Eq. (3).  255 

 256 
Figure 6: Similar to Figure 4, but for non-linear regression analyses between value-averaged IBTrACS maximum wind 257 
speeds and sea level pressure difference (SLPD). 258 

The mean and standard deviation values of various TC characteristics based on the testing datasets are plotted in Fig. 7 259 

to compare the overall performance of the model in reconstructing TCs. Mean biases in 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚  and 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚  between the 260 

reconstructed TC and IBTrACS datasets were both <3% in most basins, providing compelling evidence that the predictions 261 

were in good agreement with observations. In contrast to those over the sea, the reconstructed landfall TC 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 262 

data were overestimated and underestimated in most basins, respectively, likely due to the decay of TC wind speeds after 263 
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landfall, which is not considered in the RF-based models. Despite these differences, biases remained within 5% in most basins, 264 

indicating that the reconstructed landfall TC characteristics were closely aligned with those in the IBTrACS dataset. 265 

 266 
Figure 7: Bar charts for comparing the mean value of the different tropical cyclone characteristics. Each of the colors indicates a 267 
different basin. Solid and dashed bars represent IBTrACS and reconstructed tropical cyclone data. 268 

After obtaining the reconstructed TC intensity dataset, six widely used models were used to estimate 𝑅𝑅34_𝑅𝑅𝑅𝑅 , 𝑅𝑅50_𝑅𝑅𝑅𝑅 , and 269 

𝑅𝑅64_𝑅𝑅𝑅𝑅 . We conducted a comparative analysis of the model-derived results and observations to determine which radial wind 270 

profile estimate more closely approximated the TC outer radius, based on various statistical metrics (Table S1–S6). The W06 271 

model results exhibited strong correlation, low RMSE, and low absolute mean error for all basins except the North Atlantic, 272 

whereas the CLE15 model performed better for 𝑅𝑅34_𝑅𝑅𝑅𝑅  in the North Atlantic basin. Therefore, we used W06 to forecast 273 

𝑅𝑅34_𝑅𝑅𝑅𝑅 , 𝑅𝑅50_𝑅𝑅𝑅𝑅 , and 𝑅𝑅64_𝑅𝑅𝑅𝑅  for the West Pacific, North and South Indian Ocean, and South and East Pacific basins, whereas 274 

for the North Atlantic basin, we used CLE15 to predict 𝑅𝑅34_𝑅𝑅𝑅𝑅  and W06 to predict 𝑅𝑅50_𝑅𝑅𝑅𝑅  and 𝑅𝑅64_𝑅𝑅𝑅𝑅 . The correlation 275 

coefficients were >0.75 for three outer size metrics in most basins (Table 4). 276 

 277 
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Table 4: Similar to Table 2, but for 𝑹𝑹𝟑𝟑𝟑𝟑, 𝑹𝑹𝟓𝟓𝟓𝟓 and 𝑹𝑹𝟔𝟔𝟔𝟔. 278 
 Optimal profile ME (km) MAE (km) RMSE (km) CE 

WP R34 W06 -24.79  46.75  64.54  0.89  

WP R50 W06 -14.60  26.00  33.27  0.82  

WP R64 W06 -14.14  18.28  22.71  0.78  

NA R34 CLE15 -25.19  53.00  78.77  0.87  

NA R50 W06 -11.58  32.71  57.39  0.84  

NA R64 W06 2.67  18.52  30.37  0.87  

NI R34 W06 -23.19  31.19  41.59  0.74  

NI R50 W06 -14.66  20.49  25.69  0.63  

NI R64 W06 -11.63  16.62  21.17  0.62  

SI R34 W06 3.57  45.71  56.68  0.74  

SI R50 W06 14.35  29.69  36.18  0.46  

SI R64 W06 9.68  18.54  21.57  0.43  

SP R34 W06 -5.00  33.51  46.25  0.83  

SP R50 W06 11.75  21.53  27.25  0.77  

SP R64 W06 12.75  15.60  18.56  0.77  

EP R34 W06 32.25  44.43  51.31  0.81  

EP R50 W06 27.19  31.77  36.61  0.68  

EP R64 W06 18.74  21.66  25.24  0.51  

The ERA5 dataset was used to derive parameters characterizing TC intensity and size in creating the TC reconstruction 279 

dataset. Then these parameters were subjected to a machine learning algorithm to produce more accurate data. Notably, the 280 

TC intensity and size reconstructions developed in this study may be influenced by limitations and uncertainties inherent to 281 

the IBTrACS and ERA5 datasets. The RF models were unable to differentiate between landfall and offshore TCs due to the 282 

limited data available concerning landfall TCs in the IBTrACS dataset, which resulted in higher 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚  and lower 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 values 283 

for landfall TCs. Additionally, 𝑅𝑅34, 𝑅𝑅50 and 𝑅𝑅64 were estimated using wind profile models rather than RF models due to 284 

the paucity of relevant data, which resulted in a lower level of accuracy than for these TC characteristics. Moreover, there was 285 

some dependency between the reconstructed and IBTrACS-derived 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚  values, likely due to the insufficient spatial 286 

resolution of the ERA5 dataset. Besides, TC positions in the IBTrACS data exhibited some degree of inaccuracy during the 287 

pre-satellite time period. Notwithstanding these limitations, the TC reconstruction dataset exhibited a markedly high degree of 288 

accuracy and extensive spatiotemporal coverage. Basic information on the reconstructed TC data is presented in Table 5. 289 

 290 
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Table 5: Basic information on the number of recorded tropical cyclone characteristics from 1959 to 2022 recorded in 291 
reconstructed data. 292 

Basin 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 𝑅𝑅34 𝑅𝑅50 𝑅𝑅64 

Western Pacific 152208 152208 152208 127668 39659 24302 

North Atlantic  55608 55608 55608 31829 19106 11719 

North Indian  24047 24047 24047 4614 1840 1039 

South Indian 86606 86606 86606 35768 18500 10395 

South Pacific  45112 45112 45112 23312 10547 5454 

Eastern Pacific  59112 59112 59112 33772 19214 13026 

Global 422693 422693 422693 256963 108866 65935 

5. Data and Code availability 293 

All data have been published in the form of CSV files, and are made publicly available through Zenodo repository with the 294 

address: https://doi.org/10.5281/zenodo.12740372 (Xu et al., 2024). ERA5 data can be publicly accessible at 295 

https://doi.org/10.24381/cds.bd0915c6 (Hersbach et al., 2023a) and https://doi.org/10.24381/cds.adbb2d47 (Hersbach et al., 296 

2023b). IBTrACS data is accessible at https://doi.org/10.25921/82ty-9e16 (Gahtan et al., 2024). The processing codes can be 297 

made available upon request to the corresponding author. This study provides a detailed description of the TC size and intensity 298 

reconstruction dataset, which includes the maximum sustained wind speed, the radius to maximum wind speed, the minimum 299 

central pressure and the radii to locations with sustained wind speeds of 34, 50, and 64 knots during 1959–2022. 300 

6. Conclusion  301 

The considerable number of unrecorded TC characteristics in the IBTrACS dataset and large biases inherent in the ERA5 302 

dataset prompted us to generate a long-term TC reconstruction dataset. We constructed the dataset by integrating TC 303 

characteristics from the IBTrACS and ERA5 datasets using RF-based models, an empirical wind–pressure relationship, and 304 

six wind profiles for the period 1959–2022. The TC reconstruction dataset is approximately 3–4 times larger than the IBTrACS 305 

dataset in terms of data points per characteristic, with much higher data accuracy than shown for ERA5-derived results.  306 

Six TC characteristics were examined to evaluate the reconstructed dataset. A comparison of maximum sustained wind 307 

speeds between the IBTrACS and reconstructed TC datasets revealed that the latter underestimated observation data by 308 

approximately 2.82 m/s, which is a considerably smaller bias than that shown by the ERA5 dataset (16.73 m/s) on a global 309 
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scale. For the radius to maximum wind speed (𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚), the mean error and RMSE decreased markedly, from −41.64 and 67.66 310 

km (IBTrACS 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚  – ERA5 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 ) to 1.37 and 22.19 km (IBTrACS 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚  – reconstructed 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 ), respectively. In 311 

addition, the correlation coefficient for 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 between the IBTrACS and ERA5 datasets was 0.44, which increased to 0.94 312 

between the IBTrACS and TC reconstruction datasets. The mean bias in minimum central pressure between the IBTrACS and 313 

reconstructed TC datasets was <3% in most basins. Six wind profile models were used to compute the radii to locations with 314 

sustained wind speeds of 34, 50, and 64 knots (𝑅𝑅34, 𝑅𝑅50, and 𝑅𝑅64), and the selected wind profile models (CLE15 for 𝑅𝑅34 in 315 

the North Atlantic, W06 for others) showed good estimates for TC outer sizes, with correlation coefficients > 0.75 for three 316 

outer size metrics in most basins. Overall, the TC reconstruction dataset agreed closely with the IBTrACS data in terms of TC 317 

intensity and size. 318 

In conclusion, the TC reconstruction dataset may prove invaluable for advancing our understanding of TC climatology, 319 

thereby facilitating risk assessments and defenses against TC-related disasters. The future availability of reanalysis data with 320 

finer spatial resolution and longer temporal coverage, such as the in-progress ERA6, will facilitate the creation of more accurate 321 

TC reconstructions with longer time spans using the methods presented in this study.  322 
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