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Abstract. Tropical cyclones (TCs) are powerful weather systems that can cause extreme disasters. The International Best 10 

Track Archive for Climate Stewardship (IBTrACS) dataset provides the widely used data to estimate TC climatology. However, 11 

it has low data coverage, lacking intensity and outer size data for more than half of all recorded storms, and is therefore 12 

insufficient as a reference for researchers and decision makers. To fill this data gap, we reconstruct a long-term TC dataset by 13 

integrating IBTrACS and European Centre for Medium-Range Weather Forecasts Reanalysis 5 (ERA5) data. This 14 

reconstructed dataset covers the period 1959–2022, with 3 h temporal resolution. Compared to the IBTrACS dataset, it contains 15 

approximately 3–4 times more data points per characteristic. We establish machine learning models to estimate the maximum 16 

sustained wind speed (𝑉𝑚𝑎𝑥) and radius of maximum wind (𝑅𝑚𝑎𝑥) in six basins for which TCs are generated, using ERA5-17 

derived 10 m azimuthal mean azimuthal wind profiles as input, with 𝑉𝑚𝑎𝑥  and 𝑅𝑚𝑎𝑥 data from the IBTrACS dataset used as 18 

learning target data. Furthermore, we employ an empirical wind–pressure relationship and six wind profile models to estimate 19 

the minimum central pressure (𝑃𝑚𝑖𝑛) and outer size of the TCs, respectively. Overall, this high-resolution TC reconstruction 20 

dataset demonstrates global consistency with observations, exhibiting mean biases of <1% for 𝑉𝑚𝑎𝑥  and 3% for 𝑅𝑚𝑎𝑥 and 21 

𝑃𝑚𝑖𝑛 in almost all basins. The dataset is publicly available from https://doi.org/10.5281/zenodo.13919874 (Xu et al., 2024) 22 

and substantially advances our understanding of TC climatology, thereby facilitating risk assessments and defenses against 23 

TC-related disasters.  24 
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1. Introduction 25 

Tropical cyclones (TCs) are powerful weather systems accompanied by gale winds, heavy rainstorms, substantial waves, and 26 

severe storm surges, which cause extensive damage in affected regions (Gray, 1968). During the 2003-2022 period, the global 27 

average of TCs is 104 annually, resulting in estimated annual economic losses of 95.6 billion US dollars and affecting more 28 

than 3.2 million individuals (CRED, 2023; Geiger et al., 2018). Given the considerable scale and frequency of TC-related 29 

disasters, a comprehensive understanding of TC climatology is essential for effective risk assessment, emergency planning, 30 

and community resilience enhancement. 31 

TCs are typically characterized according to their intensity, size, location, and translation speed (Weber et al., 2014). 32 

Many studies have reported increasing TC intensity at both the basin and global scales under global warming (e.g., Webster et 33 

al., 2006; Gualdi et al., 2008; Wu et al., 2022). Vincent et al. (2014) detects a 30% increase in high-intensity TCs at the global 34 

scale. Mei and Xie (2016) demonstrate a significant correlation between TC intensification and increasing sea surface 35 

temperatures (SSTs) in East and Southeast Asia. In addition, Walsh et al. (2016) observes significant increasing trends in TC 36 

intensity in the Atlantic basin over the past few decades. However, assessments of the response of TC intensity to climate 37 

change are subject to uncertainty, partly due to the challenging and costly process of collecting observational data (Gualdi et 38 

al., 2008; Knutson et al., 2019). Furthermore, the size of TCs may significantly influence their movement (Liu and Chan, 39 

1999), further contributing to their destructive potential (Xu et al., 2020). Similarly, a significant increase in TC size is 40 

proportional to surface latent heat flux under warmer air and ocean temperatures (Hill and Lackmann, 2009; Radu et al., 2014). 41 

Xu et al. (2020) demonstrates that TC size increases with ocean warming, based on idealized experiments. Sun et al. (2013, 42 

2014) discovers that TC size increases significantly as SST increases through a modeling analysis. However, the conclusions 43 

of these case studies are necessarily limited, and the relationships between TC size and climatology factors remain unclear due 44 

to the lack of historical records (Xu et al., 2020). 45 

The International Best Track Archive for Climate Stewardship (IBTrACS) dataset is one of the most commonly used 46 

sources for TC data; it contains location, intensity, and size data for all known tropical and subtropical cyclones at a resolution 47 



of 3 h (Knapp et al., 2010).This dataset utilizes maximum sustained wind speed (𝑉𝑚𝑎𝑥) and minimum central pressure (𝑃𝑚𝑖𝑛) 48 

to quantify TC intensity (Simpson, 1974; Chavas et al., 2017; Casas et al., 2023). Among the several metrics that are defined 49 

to measure TC size, one of the most widely recognized is the radius of maximum wind (𝑅𝑚𝑎𝑥, Chavas et al., 2015; Ren et al., 50 

2022). Radial distances from the cyclone center to locations where sustained wind speeds of 34, 50 and 64 knots (~17, 26, and 51 

33 m/s) are observed near the surface, i.e., 𝑅34, 𝑅50, and 𝑅64, are also widely used metrics to estimate TC size (Pérez-Alarcón 52 

et al., 2021). However, reliable TC size and intensity estimates are available only from 1988 onwards (Demuth et al., 2006), 53 

and post-storm analyses of wind radii, including 𝑅34, 𝑅50, and 𝑅64, have only commenced since 2004 (Gori et al., 2023). 54 

Furthermore, more than half of all recorded storms lack intensity and size data, often with only location data provided even 55 

during periods when post-storm analyses are conducted. Thus, constructing a TC climatology is an arduous task due to low 56 

data coverage. 57 

Previous researches have extensively used machine learning to reconstruct TC datasets. Yang et al. (2022) divides 58 

hurricane wind fields into symmetric and asymmetric components, and proposes a downscaling model based on the XGBoost 59 

software library to reconstruct TC structure; however, 𝑉𝑚𝑎𝑥  and 𝑅𝑚𝑎𝑥 are the model input variables. Zhuo and Tan (2023) 60 

applies deep learning algorithms to estimate reliable TC sizes over the western North Pacific during 1981–2017, based on a 61 

homogeneous satellite database. Li et al. (2024) proposes a transfer learning-based generative adversarial network framework 62 

to derive TC wind fields from synthetic aperture radar images. Eusebi et al. (2024) demonstrates that a physics-informed neural 63 

network can produce accurate reconstructions of TC wind and pressure fields by assimilating observations in a computationally 64 

efficient manner. Nevertheless, the datasets used in these studies are generally limited to several cases or specific regions of 65 

interest, and some are not publicly available. 66 

By contrast, reanalysis datasets such as the fifth-generation European Centre for Medium-Range Weather Forecasts 67 

(ECMWF) Reanalysis 5 (ERA5) dataset (Hersbach et al., 2020), the 55-year Japanese Reanalysis (Kobayashi et al., 2015), and 68 

US National Centers for Environmental Prediction and National Centre for Atmospheric Research Reanalysis products (Kistler 69 

et al., 2001), which combine past observations and model results through data assimilation, have unique advantages in terms 70 



of data availability and spatiotemporal coverage. Schenkel et al. (2017) evaluates whether reanalysis dataset can be used to 71 

derive a long-term TC size dataset utilizing QuikSCAT data. Zick and Matyas (2016) explore the impact of satellite-derived 72 

precipitation over ocean on TC in the North American Regional Reanalysis. Gori et al. (2023) uses ERA5 reanalysis data to 73 

estimate the TC outer size, and wind model to estimate the radius of maximum wind. Thompson et al. (2024) constructs a 74 

tropical cyclone (TC) size dataset using the NCEP/NCAR Reanalysis I dataset for landfalling TCs along the United States 75 

coastline from 1948 to 2022. Previous studies have suggested that ERA5 products are among the most promising reanalysis 76 

data sources in terms of representing TC outer size and structure, due to their relatively fine horizontal grid spacing (Bian et 77 

al., 2021; Pérez-Alarcón et al., 2021; Dulac et al., 2024). Yeasmin et al. (2023) demonstrates that the reconstruction of TC 78 

proxies using ERA5 is a viable approach. Nevertheless, due to horizontal resolution limits and conservative physics 79 

parameterizations, reanalysis products have exhibited large underestimation and overestimation of TC 𝑉𝑚𝑎𝑥  and 𝑅𝑚𝑎𝑥 80 

values, respectively (Hatsushika et al., 2006; Schenkel and Hart, 2012). Thus, despite the substantial body of research 81 

reconstructing the outer sizes and proxies of TCs using ERA5 data (Bian et al., 2021; Gori et al., 2023; Pérez-Alarcón et al., 82 

2021), studies that have employed it to derive relatively accurate TC intensity data are lacking. 83 

In this study, we exploit the advantages of the IBTrACS and ERA5 datasets to generate a reconstructed TC dataset 84 

containing all characteristics of TCs. Given the high degree of accuracy demonstrated by the ERA5 data in capturing TC 85 

structures, we employ ERA5-derived azimuthal mean azimuthal wind profiles in conjunction with a machine learning model 86 

to reduce the bias observed in the 𝑉𝑚𝑎𝑥 and 𝑅𝑚𝑎𝑥 of TCs between the ERA5 and IBTrACS datasets. In addition, we model 87 

six TC radial wind profiles to compute 𝑅34, 𝑅50, and 𝑅64. The resulting long-term TC reconstruction dataset covering the 88 

period 1959–2022 is anticipated to facilitate future TC climatology research. The generated dataset is approximately 3–4 times 89 

larger than the IBTrACS dataset in terms of the number of records per characteristic. 90 

In the subsequent sections, we describe the IBTrACS and ERA5 datasets and the methodology used to create the novel 91 

TC reconstruction dataset. We report and discuss the findings in comparison with IBTrACS data according to a comprehensive 92 

set of statistical metrics. Finally, we consider the potential applications of the reconstructed TC dataset. 93 



2. Data 94 

2.1 IBTrACS data 95 

We obtain data on TC tracks, intensity, and size from the IBTrACS (version 4r01 in netCDF format), which is a unified dataset 96 

containing track estimates for all TC basins with a 3 h temporal resolution, based on data produced by tropical warning centers. 97 

As the TC 𝑅𝑚𝑎𝑥 data from all main TC basins are accessible from U.S. agencies (the National Oceanic and Atmospheric 98 

Administration’s National Hurricane Center for the North Atlantic and east Pacific and the military’s Joint Typhoon Warning 99 

Center for the remainder of the globe), we employ these data and exclude the irregular time steps. We use all TC events in all 100 

basins, except for those over the South Atlantic, where TC generation is insufficient. A comprehensive overview of the 101 

recorded TC characteristics is presented in Table 1. The IBTrACS dataset encompasses a total of 7,552 TCs on a global scale, 102 

spanning the period 1959–2022, corresponding to 423,296 individual time points. However, IBTrACS dataset only records 103 

125,477 𝑉𝑚𝑎𝑥 , 142,430 𝑃𝑚𝑖𝑛 , and 94,415 𝑅𝑚𝑎𝑥 values. TC tracks and 𝑉𝑚𝑎𝑥  data extracted from the IBTrACS dataset are 104 

presented in Fig. 1. 105 

 106 

Figure 1: Overview of the tracks and 10-m maximum wind speeds of tropical cyclones in IBTrACS dataset. Grey lines represent the 107 

unrecorded wind speeds. 108 

  109 



Table 1: Basic information on the number of recorded tropical cyclone characteristics from 1959 to 2022 recorded in IBTrACS. 110 

Basin Time point 𝑉𝑚𝑎𝑥 𝑃𝑚𝑖𝑛 𝑅𝑚𝑎𝑥 𝑅34 𝑅50 𝑅64 

Western Pacific 152362 26604 61018 28715 19340 10641 7149 

North Atlantic 55679 28310 21409 18161 14961 7630 4212 

North Indian 24101 5481 5476 4281 2354 1029 614 

South Indian 86790 23935 24468 16367 10697 5108 2977 

South Pacific 45189 12322 12467 7169 4827 2577 1521 

Eastern Pacific 59175 28825 17592 19722 12283 6482 3986 

Global 423296 125477 142430 94415 64462 33467 20459 

2.2 ERA5 data 111 

ERA5 is the latest ECMWF reanalysis, following a decade of developments in model physics, core dynamics, and data 112 

assimilation (Hersbach et al., 2020). We utilize the main ERA5 dataset for the period 1959–2022 to estimate the track, intensity, 113 

and size of each TC. The spatial resolution of the ERA5 dataset is 0.25° × 0.25°, with a temporal resolution of 3 h, aligning 114 

with that of the IBTrACS dataset. We exclude pre-1959 ERA5 back-extension data, as some TCs in these data exhibit 115 

unrealistically high levels of tension (Bell, 2021). Notably, despite the higher uncertainty associated with TC intensity data 116 

derived from ERA5 for the pre-satellite time period (1959–1978), comparisons of TC intensity pre- and post-1979 reveal 117 

similar climatological distributions for both TC groups in all basins (Fig. S1). We employ 10 m surface meridional and 118 

latitudinal wind speeds to obtain 10 m azimuthal–mean azimuthal wind profiles for TCs. We utilize the sea level pressure 119 

(SLP) to provide environmental pressure data for computing the TC central pressure. We derive the parameters including the 120 

SLP; relative vorticity at 700, 850, and 925 hPa; and geopotential height at 700 and 850 hPa from the ERA5 data to identify 121 

TC centers. 122 

3. Methodology 123 

3.1 TC center identification and azimuthal wind profile estimation  124 

We identify TC centers in the ERA5 data, based on the method of Schenkel et al. (2017). We initially ascertain the position of 125 

each TC within the reanalysis grid utilizing the IBTrACS position as a first guess. To remove uncertainties associated with TC 126 



centers in the reanalysis data, we obtain the centers of six reanalysis variables (SLP; relative vorticity at 700, 850, and 925 127 

hPa; and geopotential height at 700 and 850 hPa) by calculating the centroids of positive relative vorticity values and negative 128 

other variables values over the grid near the first guess position (±2° ) using Python. Subsequently, we average the centers to 129 

adjust the position of the estimated reanalysis TC center.  130 

We estimate azimuthal wind profiles based on the ERA5 data, as described by Chavas and Vigh (2014). First, we subtract 131 

estimated environment wind fields, which are calculated as 0.55 of the TC translation vectors rotated 20° counterclockwise 132 

(Lin and Chavas, 2012) from the meridional and latitudinal wind speeds. We determine TC translation vectors according to 133 

the TC positions at the next and current time points in the IBTrACS data. Next, we interpolate the 10 m surface meridional 134 

and latitudinal wind fields to a TC-centered polar coordinate. In contrast to the method of Chavas and Vigh, we do not exclude 135 

grid points over land to obtain the TC intensity after landfall. Then, we employ the parameter 𝒳, defined as the normalized 136 

average magnitude of all vectors from the TC center to each grid point included at a specified radius (Chavas and Vigh, 2014) 137 

to remove asymmetrical radial bins by excluding radial bins with 𝒳 > 0.5. Finally, we calculate the TC 10 m azimuthal–mean 138 

azimuthal wind profiles as changes in wind speed with distance from the TC center, with grid points spaced at 10 km intervals. 139 

We obtain the ERA5-derived TC 𝑉𝑚𝑎𝑥 (𝑉𝑚𝑎𝑥 _𝐸𝑅𝐴5) and 𝑅𝑚𝑎𝑥 (𝑅𝑚𝑎𝑥 _𝐸𝑅𝐴5) from the wind profiles. 140 

3.2 Machine learning model for reconstructing TC 𝑽𝒎𝒂𝒙 and 𝑹𝒎𝒂𝒙 from ERA5 data 141 

As shown in Fig. 2, there are discernible biases in all six TC basins between the ERA5- and IBTrACS-derived 𝑉𝑚𝑎𝑥 and 142 

𝑅𝑚𝑎𝑥 values. The biases of 𝑉𝑚𝑎𝑥 are less dependent on the basin, suggesting the systematic underestimation of 𝑉𝑚𝑎𝑥 by the 143 

ERA5 data, partly due to the lower 𝑃𝑚𝑖𝑛  and the underestimation of the TC wind-pressure relation described in ERA5 144 

(Magnusson et al., 2021). Moreover, convective-scale processes substantially influence 𝑉𝑚𝑎𝑥 , which cannot be adequately 145 

represented in global models, leading to an inherent tendency for underestimation. To further demonstrate the performance of 146 

ERA5-derived data, we select the Saffir-Simpson categories as the uniform scale for all the basins, and analyze the differences 147 

between ERA5-derived and observed data across various wind speed ranges, following the methods in previous researches 148 

(Wright, 2019; Bloemendaal et al., 2022; Mo et al., 2023). In contrast, biases are more pronounced for larger 𝑉𝑚𝑎𝑥 values, 149 



with underestimation detected for wind speeds exceeding 20 and 30 m/s for Saffir–Simpson categories 1–2 and 3–5, 150 

respectively, in all six basins. Notably, this bias even exceeds 40 m/s for Saffir–Simpson categories 3–5 in the East Pacific 151 

basin. In addition, ERA5-derived results overestimate 𝑅𝑚𝑎𝑥 by >15 km in all basins, and by >80 km in the West Pacific (WP) 152 

basin. The large biases produced by ERA5 motivate us to establish a reconstructed TC dataset that is more consistent with 153 

observations.  154 

 155 

Figure 2: Bar charts for comparing the mean value of the 10-m maximum wind speeds and the radii to maximum winds. Each of 156 

the colors indicates a different basin. Solid and dashed bars represent IBTrACS and ERA5-derived data. 157 

Despite the discrepancy in TC intensity, Bian et al. (2021) demonstrates that ERA-5 accurately depicts TC structural 158 

alterations. Therefore, we use the TC 10 m azimuthal–mean azimuthal wind speed at radial distances from 0 to 1000 km, at 10 159 

km intervals, as a parameter to estimate 𝑉𝑚𝑎𝑥  in each basin. The parameters also include the TC translation speed, given that 160 

the IBTrACS 𝑉𝑚𝑎𝑥 data (𝑉𝑚𝑎𝑥_𝐼𝐵) represent a combination of the environmental and TC wind fields. We optimize the machine 161 

learning models by Randomized Search Cross-Validation with mean square error as the loss function using Python. The models 162 

include a random forest (RF) algorithm, artificial neural network (ANN), convolutional neural network, support vector 163 

regressor, and multivariate linear regression (Table 2). In the above-mentioned models, we incorporate data for the entire 164 

period (1959–2022) into the model training process. We randomly divide the dataset, made up of the input array and learning 165 

target, into two subsets, with 75% allocated for training and the remaining 25% for testing, following the methods of previous 166 



studies (e.g., Breiman, 2001; Guo et al., 2024). For a detailed account of the hyperparameter selections for each model, please 167 

refer to the Text S1 in supplementary materials. We find that RF provided the most robust predictions, as evidenced by higher 168 

correlations and smaller root mean square error (RMSE) values in most basins. Accordingly, we develop an RF regressor to 169 

predict reconstructed 𝑉𝑚𝑎𝑥  (𝑉𝑚𝑎𝑥_𝑅𝐶), as follows: 170 

𝑉𝑚𝑎𝑥_𝑅𝐶 = 𝑅𝐹(𝑉0, 𝑉10, 𝑉20, . . . , 𝑉1000, 𝑉𝑇𝑆)                                                          (1) 171 

where RF and 𝑉𝑇𝑆 are the RF regressor and TC translation speed, respectively, and 𝑉0, 𝑉10, 𝑉20, . . . , 𝑉1000 refer to the 10 m 172 

azimuthal mean azimuthal wind speeds at radial distances from 0 to 1000 km. To further assess the accuracy of the RF model, 173 

we define the error rate of the RF on the training data as the absolute relative errors between the predicted and observed 𝑉𝑚𝑎𝑥, 174 

normalized by the observations. The error rates are 0.11, 0.16, 0.09, 0.19, 0.16 and 0.20 for the WP, North Atlantic (NA), 175 

North Indian (NI), South Indian (SI), South Pacific (SP) Eastern Pacific (EP) and basins, respectively. 176 

Table 2. Basic information on the comparison of the different model-derived with observed 𝑽𝒎𝒂𝒙 in Western Pacific (WP), North 177 

Atlantic (NA), North Indian (NI), South Indian (SI) South Pacific (SP) and Eastern Pacific (EP). CE, correlation coefficients; RMSE, 178 

root mean square error. RF, random forecast; ANN, artificial neural network; CNN, convolutional neural network; SVR, support 179 

vector regressor; MLR, multivariate linear regression. 180 

 WP NA NI SP SI EP 

RFCE 0.98 0.99 0.99 0.99 0.98 0.99 

ANNCE  0.98 0.99 0.99 0.98 0.99 0.97 

CNNCE 0.97 0.99 0.98 0.97 0.98 0.97 

SVRCE 0.99 0.99 0.98 0.99 0.99 0.99 

MLRCE 0.97 0.98 0.98 0.97 0.97 0.96 

RFRMSE (m/s) 2.60 4.09 1.33 3.73 3.25 5.05 

ANNRMSE (m/s) 5.09 5.31 1.65 3.87 4.37 10.05 

CNNRMSE (m/s) 5.92 8.39 2.43 7.18 7.30 11.2 

SVRRMSE (m/s) 3.99 6.70 2.18 4.87 5.03 9.08 

MLRRMSE (m/s) 7.33 9.34 2.28 7.42 7.45 12.49 

Similarly, we use variation in radial distance with azimuthal wind speed to estimate 𝑅𝑚𝑎𝑥 in the six basins. We also test 181 

several machine learning models (Table 3). Although the ANN-derived 𝑅𝑚𝑎𝑥 exhibit stronger correlations with observations, 182 

the RMSE values of 𝑅𝑚𝑎𝑥 derived by RF with observations are considerably smaller than that derived by other models. 183 

Therefore, we also utilize the RF regressor to predict the reconstructed 𝑅𝑚𝑎𝑥 (𝑅𝑚𝑎𝑥_𝑅𝐶), as follows: 184 

𝑅𝑚𝑎𝑥_𝑅𝐶 = 𝑅𝐹(𝑅0, 𝑅0.01, 𝑅0.02, . . . , 𝑅1)                                                             (2) 185 



where 𝑅0, 𝑅0.01, 𝑅0.02, . . . , 𝑅1 represent the radial distances at which normalized wind speeds range from 0 to 1, at an interval 186 

of 0.01. In the RF models, the error rates are 0.19, 0.23, 0.14, 0.19, 0.15 and 0.23 for the WP, NA, NI, SI, SP and EP basins, 187 

respectively. We further evaluate model performance by comparing the model-derived and observed 𝑉𝑚𝑎𝑥 and 𝑅𝑚𝑎𝑥 on the 188 

testing dataset in Section 4, using a comprehensive set of statistical metrics, including mean error, mean absolute error (MAE), 189 

RMSE, and Pearson correlation coefficients. We evaluate the statistical significance of Pearson correlation coefficients through 190 

the application of a t-test. 191 

Table 3. Similar to Table 2, but for 𝑹𝒎𝒂𝒙. 192 

 WP NA NI SP SI EP 

RFCE 0.93 0.96 0.96 0.91 0.96 0.93 

ANNCE  0.96 0.97 0.93 0.97 0.96 0.94 

CNNCE 0.95 0.96 0.95 0.97 0.94 0.96 

SVRCE 0.06 0.21 0.26 0.25 0.01 0.07 

MLRCE 0.90 0.93 0.98 0.98 0.96 0.84 

RFRMSE (km) 20.80 31.47 10.48 15.11 16.51 24.75 

ANNRMSE (km) 31.96 46.74 16.62 21.06 23.22 41.14 

CNNRMSE (km) 34.93 52.89 22.04 20.97 25.69 44.07 

SVRRMSE (km) 43.53 72.43 28.26 29.05 30.99 51.15 

MLRRMSE (km) 37.65 57.82 21.93 23.35 27.22 44.16 

3.3 Empirical wind speed–pressure relationship for determining 𝑷𝒎𝒊𝒏 193 

We model the conversion between 𝑉𝑚𝑎𝑥 and 𝑃𝑚𝑖𝑛  at a given time point during a TC using the empirical wind–pressure 194 

relationship (Atkinson and Holliday, 1977; Harper, 2002), as follows: 195 

𝑉𝑚𝑎𝑥 = 𝑎(𝑃𝑒𝑛𝑣 − 𝑃𝑚𝑖𝑛)
𝑏                                                                        (3) 196 

where 𝑃𝑒𝑛𝑣  is the environmental pressure obtained from the mean SLP for the TC center location 1–10 days earlier based on 197 

the ERA5 data, following the method of Bloemendaal et al. (2020); we estimate 𝑎 and 𝑏 in each basin using a nonlinear 198 

least squares approach, based on 𝑉𝑚𝑎𝑥  and the corresponding 𝑃𝑚𝑖𝑛 of the IBTrACS dataset. 𝑉max _𝑅𝐶 is input into the fitted 199 

Eq. (3) to obtain the reconstructed 𝑃𝑚𝑖𝑛 (𝑃𝑚𝑖𝑛_𝑅𝐶). 200 

  201 



3.4 TC radial wind profile models for computing 𝑹𝟑𝟒, 𝑹𝟓𝟎, and 𝑹𝟔𝟒 202 

Previous studies have developed TC radial wind profile models for estimating TC structures (e.g., Pérez-Alarcón et al., 2021). 203 

After obtaining the reconstructed 𝑉𝑚𝑎𝑥 and 𝑅𝑚𝑎𝑥, we utilize six widely used wind field models (Holland, 1980; DeMaria, 204 

1987; Willoughby et al., 2006; Emanuel and Rotunno, 2011; Frisius and Scgönemann, 2013; Chavas et al., 2015) to estimate 205 

the reconstructed TC 𝑅34, 𝑅50, and 𝑅64 (𝑅34_𝑅𝐶 , 𝑅50_𝑅𝐶 , and 𝑅64_𝑅𝐶). For a detailed description of the wind profile models, 206 

please refer to the Text S2 in supplementary materials. 207 

We evaluate the performance of each profile model by comparing 𝑅34, 𝑅50, and 𝑅64 estimates with those recorded in 208 

the IBTrACS dataset. Subsequently, we select the optimal model to generate reconstructed 𝑅34, 𝑅50, and 𝑅64, as described 209 

in detail in Section 4.  210 

3.5 Flowchart for optimal wind profile model selection 211 

After identifying the TC center, we use an RF approach to estimate 𝑉𝑚𝑎𝑥  and 𝑅𝑚𝑎𝑥 based on the ERA5-derived TC 10 m 212 

azimuthal mean azimuthal wind profiles. We evaluate model performance by comparing the model-derived and observed 𝑉𝑚𝑎𝑥 213 

and 𝑅𝑚𝑎𝑥 on the testing dataset, using a comprehensive set of statistical metrics. Next, we estimate the parameters of the 214 

empirical wind–pressure relationship, and compute TC 𝑃𝑚𝑖𝑛  values. Finally, we derive the TC 𝑅34 , 𝑅50 , and 𝑅64  by 215 

selecting the optimal wind profile model from among the six widely used models. The overall methodology is illustrated in 216 

Fig. 3. 217 



 218 

Figure 3: Flowchart with the tropical cyclone center identification and wind profiles extracted from ERA5 (Step 1; in purple), the 219 

10-m maximum wind speeds and radii to maximum winds estimated by random forest model (Step 2; in red), the minimum central 220 

pressure estimated by empirical wind-pressure relationship (Step 3; in green), and the out size estimated by wind profile models 221 

(Step 4; in grey). 222 

4. Results and Discussion 223 

We evaluate the accuracy of the 𝑉𝑚𝑎𝑥 _𝑅𝐶  model results according to various statistical metrics based on the testing datasets 224 

(Fig. 4), as prescribed by Breiman (2001). The 𝑉𝑚𝑎𝑥 _𝑅𝐶  data are strongly correlated with observations, with correlation 225 

coefficients exceeding 0.98 for all six basins. The RMSE values for the WP, NA, NI, SI, SP and EP basins are 2.60, 4.09, 1.33, 226 

3.25, 3.73, and 5.05 m/s, respectively. Compared to 𝑉𝑚𝑎𝑥 _𝐸𝑅𝐴5, the reconstruction provides a reduction in the MAE of over 227 

10 m/s in most basins, with a further reduction of 19.62 m/s in the East Pacific basin, as described in detail in Table 4. The 228 

model is more effective at reducing biases between ERA5-derived results and observations for larger 𝑉𝑚𝑎𝑥  values. 229 

Furthermore, given the high influence of ENSO on TC intensity (Chu, 2024), we evaluate the accuracy of 𝑉𝑚𝑎𝑥_𝑅𝐶  for 230 

moderate to strong El Niño and La Niña years (Fig. S2 and S3). We also observe a high degree of correlation coefficients 231 



(>0.97) and low RMSE values (<5m/s) between 𝑉𝑚𝑎𝑥_𝑅𝐶  and 𝑉𝑚𝑎𝑥  in all six basins during ENSO years. These metrics 232 

demonstrate the better accuracy of 𝑉𝑚𝑎𝑥 _𝑅𝐶  and its reduced bias compared to 𝑉𝑚𝑎𝑥 _𝐸𝑅𝐴5.  233 

 234 

Figure 4: Comparison between value-averaged maximum wind speeds (𝑽𝒎𝒂𝒙) from ERA5-derived and reconstructed (ERA5 + 235 

Random forest) data and IBTrACS maximum wind speeds for tropical cyclones in (a) Western Pacific, (b) North Atlantic, (c) North 236 

Indian, (d) South Indian, (e) South Pacific and (f) Eastern Pacific basins. Grey lines represent the error bar, given as one standard 237 

deviation from the mean. The values with sample sizes less than 30 in IBTrACS are excluded. 238 

Table 4: Basic information on the comparison of the ERA5-derived and reconstructed with observed 𝑽𝒎𝒂𝒙. ME, mean errors; 239 

MAE, mean absolute error; RMSE, root mean square error; CE, correlation coefficients. 240 

 ME (m/s) MAE (m/s) RMSE (m/s) CE 

GlobalERA5 16.73 16.80 21.70 0.92 

GlobalReconstructed 2.82 2.83 4.34 0.99 

WPERA5 18.93 18.93 20.54 0.97 

WPReconstructed 0.56 1.63 2.60 0.98 

NA ERA5 21.03 21.03 24.46 0.98 

NAReconstructed 2.38 2.82 4.09 0.99 

NIERA5 7.74 7.74 8.96 0.98 

NIReconstructed -0.25 1.11 1.33 0.99 

SIERA5 12.39 12.41 15.61 0.93 

SIReconstructed 0.71 2.17 3.25 0.98 

SPERA5 13.71 13.73 16.67 0.96 

SPReconstructed 1.19 2.70 3.73 0.99 

EPERA5 23.09 23.09 26.86 0.97 

EPReconstructed 2.36 3.47 5.05 0.99 



We similarly evaluate the accuracy of 𝑅𝑚𝑎𝑥 _𝑅𝐶  for the six basins based on the testing datasets (Fig. 5). Correlation 241 

coefficients between 𝑅𝑚𝑎𝑥 _𝑅𝐶  and 𝑅𝑚𝑎𝑥 recorded in IBTrACS (𝑅𝑚𝑎𝑥_𝐼𝐵) exceed 0.9, indicating strong correlation between 242 

the reconstructed results and observations. Moreover, the RMSEs for the WP, NA, NI, SI, SP and EP basins are 20.80, 31.47 243 

10.48, 16.51, 15.11, and 24.75 km, respectively. Importantly, 𝑅𝑚𝑎𝑥 _𝐸𝑅𝐴5  exhibits a large deviation from observations, 244 

exceeding 300 km at very low 𝑅𝑚𝑎𝑥_𝐼𝐵  values. Therefore, for clarity, the 𝑅𝑚𝑎𝑥 _𝐸𝑅𝐴5  data are not shown with the 245 

reconstructed TC results in Fig. 5. The MAE exhibits a reduction of 39.57 km on a global scale, with a further reduction of 246 

over 59.37 km in the SI basin, as described in detail in Table 5. It is noteworthy that the error bars are larger for the NA and 247 

EP basins in comparison to the other basins. This may be attributed to the low correlations between 𝑅𝑚𝑎𝑥 in IBTrACS and 248 

in ERA5 (NA: 0.37; EP: -0.02). Although the 𝑅𝑚𝑎𝑥 _𝑅𝐶  data slightly overestimate observations at low 𝑅𝑚𝑎𝑥_𝐼𝐵 values and 249 

underestimated observations at high 𝑅𝑚𝑎𝑥_𝐼𝐵 values, they greatly reduce biases compared to the 𝑅𝑚𝑎𝑥 _𝐸𝑅𝐴5 data, and thus 250 

produced better predictions for all six basins.  251 

 252 

Figure 5. Similar to Figure 4, but for radii to maximum winds (𝑹𝒎𝒂𝒙). 253 

  254 



Table 5: Similar to Table 4, but for 𝑹𝒎𝒂𝒙. 255 

 ME (km) MAE (km) RMSE (km) CE 

GlobalERA5 -41.64 55.49 67.66 0.44 

GlobalReconstructed 1.37 15.92 22.19 0.94 

WPERA5 -56.43 58.31 69.86 0.75 

WPReconstructed 1.32 14.93 20.80 0.93 

NA ERA5 -7.79 54.25 64.59 0.37 

NAReconstructed 4.05 21.44 31.47 0.96 

NIERA5 -28.95 29.39 33.75 0.96 

NIReconstructed -2.30 9.65 10.48 0.96 

SIERA5 -73.40 73.48 88.39 0.74 

SIReconstructed -1.50 14.11 16.51 0.96 

SPERA5 -52.42 52.99 61.95 0.90 

SPReconstructed -3.21 12.09 15.11 0.91 

EPERA5 -24.31 47.83 56.59 -0.02 

EPReconstructed 6.91 18.83 24.75 0.93 

We compute 𝑃𝑚𝑖𝑛_𝑅𝐶  based on an empirical wind–pressure relationship. We employ 𝑉𝑚𝑎𝑥_𝐼𝐵 and the corresponding 256 

𝑃𝑚𝑖𝑛 recorded in IBTrACS (𝑃𝑚𝑖𝑛_𝐼𝐵) in the reconstruction, and we obtain 𝑃𝑒𝑛𝑣  from the ERA5 dataset, following the method 257 

of Bloemendaal et al. (2020). We estimate related parameters through nonlinear fitting; the results are shown in Fig. 6. For the 258 

WP, NA, NI, SI, SP and EP basins, we use a values of 0.118, 0.051, 0.259, 0.184, 0.325, and 0.073 and b values of 1.67, 1.692, 259 

1.402, 1.507, 1.371, and 1.651, respectively, in Eq. (3).  260 

 261 

Figure 6: Similar to Figure 4, but for non-linear regression analyses between value-averaged IBTrACS maximum wind 262 

speeds and the difference between environmental pressure and typical cyclone minimum central pressure (SLPD). 263 



The mean and standard deviation values of various TC characteristics based on the testing datasets are plotted in Fig. 7 264 

to compare the overall performance of the model in reconstructing TCs. Mean biases in 𝑅𝑚𝑎𝑥  and 𝑃𝑚𝑖𝑛  between the 265 

reconstructed TC and IBTrACS datasets are both <3% in most basins, providing compelling evidence that the predictions are 266 

in good agreement with observations. In contrast to those over the sea, the reconstructed dataset overestimate and underestimate 267 

landfall TC 𝑉𝑚𝑎𝑥  and 𝑅𝑚𝑎𝑥 in most basins, respectively, likely due to the decay of TC wind speeds after landfall, which is 268 

not considered in the RF-based models. Despite these differences, biases remain within 5% in most basins, indicating that the 269 

reconstructed landfall TC characteristics are closely aligned with those in the IBTrACS dataset. 270 

 271 

Figure 7: Bar charts for comparing the mean value of the different tropical cyclone characteristics. Each of the colors indicates a 272 

different basin. Solid and dashed bars represent IBTrACS and reconstructed tropical cyclone data, respectively. 273 

After obtaining the reconstructed TC intensity dataset, we use six widely used models to estimate 𝑅34_𝑅𝐶 , 𝑅50_𝑅𝐶 , and 274 

𝑅64_𝑅𝐶 . We conduct a comparative analysis of the model-derived results and observations to determine which radial wind 275 

profile estimate more closely approximated the TC outer radius, based on various statistical metrics (Table S1–S6). In the WP 276 

basin, the W06 model demonstrates the strongest correlation (𝑅34: 0.89, 𝑅50: 0.82, 𝑅64: 0.78), achieving the lowest RMSE 277 



and MAE. In NA basin, the CLE15 model outperforms others for 𝑅34, with a correlation coefficient of 0.87, RMSE of 78.77 278 

km, and MAE of 53 km, whereas the W06 model performs better for 𝑅50 and 𝑅64. For the NI and SI basins, all models 279 

except W06 show poor correlation with observations, some even exhibiting negative correlations. In the SP and EP basins, 280 

W06 substantially surpasses other models in terms of correlation coefficient. Although other models produce slightly smaller 281 

RMSE and MAE values for 𝑅64 in the EP basin compared to W06, their correlation coefficients, which are < 0.2, justify our 282 

choice of W06. Consequently, we select W06 to forecast 𝑅34_𝑅𝐶 , 𝑅50_𝑅𝐶 , and 𝑅64_𝑅𝐶  for the WP, NI, SI, SP and EP basins, 283 

whereas for the NA basin, we use CLE15 to predict 𝑅34_𝑅𝐶  and W06 to predict 𝑅50_𝑅𝐶  and 𝑅64_𝑅𝐶 . The correlation 284 

coefficients are >0.75 for three outer size metrics in most basins (Table 6). 285 

Table 6. Basic information on the comparison of the reconstructed data with the observational data for 𝑹𝟑𝟒, 𝑹𝟓𝟎 and 𝑹𝟔𝟒. ME, 286 

mean errors; MAE, mean absolute error; RMSE, root mean square error; CE, correlation coefficients. H80, D87, W06, E11, F13 287 

and CLE15 refer to the wind field models proposed by Holland (1980), DeMaria (1987), Willoughby et al. (2006), Emanuel and 288 

Rotunno (2011), Frisius and Scgönemann (2013) and Chavas et al. (2015) 289 

 Optimal profile ME (km) MAE (km) RMSE (km) CE 

WP R34 W06 -24.79  46.75  64.54  0.89  

WP R50 W06 -14.60  26.00  33.27  0.82  

WP R64 W06 -14.14  18.28  22.71  0.78  

NA R34 CLE15 -25.19  53.00  78.77  0.87  

NA R50 W06 -11.58  32.71  57.39  0.84  

NA R64 W06 2.67  18.52  30.37  0.87  

NI R34 W06 -23.19  31.19  41.59  0.74  

NI R50 W06 -14.66  20.49  25.69  0.63  

NI R64 W06 -11.63  16.62  21.17  0.62  

SI R34 W06 3.57  45.71  56.68  0.74  

SI R50 W06 14.35  29.69  36.18  0.46  

SI R64 W06 9.68  18.54  21.57  0.43  

SP R34 W06 -5.00  33.51  46.25  0.83  

SP R50 W06 11.75  21.53  27.25  0.77  

SP R64 W06 12.75  15.60  18.56  0.77  

EP R34 W06 32.25  44.43  51.31  0.81  

EP R50 W06 27.19  31.77  36.61  0.68  

EP R64 W06 18.74  21.66  25.24  0.51  

We use the ERA5 dataset to derive parameters characterizing TC intensity and size in creating the TC reconstruction 290 

dataset. Then, we subject these parameters to a machine learning algorithm to produce more accurate data. Notably, we 291 

acknowledge that the TC intensity and size reconstructions developed in this study may be influenced by the limitations and 292 



uncertainties inherent in the IBTrACS and ERA5 datasets. The RF models are unable to differentiate between landfall and 293 

offshore TCs due to the limited data available concerning landfall TCs in the IBTrACS dataset, which results in higher 𝑉𝑚𝑎𝑥 294 

and lower 𝑅𝑚𝑎𝑥 values for landfall TCs. When employing this dataset for the purpose of examining the characteristics and 295 

impacts of TCs during their landfall, it is possible to overestimate their intensity while underestimating the scope of their 296 

influence. Additionally, we estimate 𝑅34, 𝑅50 and 𝑅64 using wind profile models rather than RF models due to the paucity 297 

of relevant data, which results in a lower level of accuracy than for these TC characteristics. Moreover, there is some 298 

dependency between the reconstructed and IBTrACS-derived 𝑅𝑚𝑎𝑥 values, likely due to the insufficient spatial resolution of 299 

the ERA5 dataset. Finally, TC positions in the IBTrACS data exhibit some degree of inaccuracy during the pre-satellite time 300 

period. Therefore, when assessing the impacts of TCs using this dataset, e.g., TC risk assessment, it is crucial to validate the 301 

results through observations from meteorological stations, buoys, and other relevant methods. Notwithstanding these 302 

limitations, the TC reconstruction dataset exhibits a markedly high degree of accuracy and extensive spatiotemporal coverage. 303 

Basic information on the reconstructed TC data is presented in Table 7. 304 

Table 7: Basic information on the number of recorded tropical cyclone characteristics from 1959 to 2022 recorded in 305 

reconstructed data. 306 

Basin 𝑉𝑚𝑎𝑥 𝑃𝑚𝑖𝑛 𝑅𝑚𝑎𝑥 𝑅34 𝑅50 𝑅64 

Western Pacific 152208 152208 152208 127668 39659 24302 

North Atlantic  55608 55608 55608 31829 19106 11719 

North Indian  24047 24047 24047 4614 1840 1039 

South Indian 86606 86606 86606 35768 18500 10395 

South Pacific  45112 45112 45112 23312 10547 5454 

Eastern Pacific  59112 59112 59112 33772 19214 13026 

Global 422693 422693 422693 256963 108866 65935 

5. Data and Code availability 307 

All data have been published in the form of CSV files, and are made publicly available through Zenodo repository with the 308 

address: https://doi.org/10.5281/zenodo.13919874 (Xu et al., 2024). ERA5 data can be publicly accessible at 309 

https://doi.org/10.24381/cds.bd0915c6 (Hersbach et al., 2023a) and https://doi.org/10.24381/cds.adbb2d47 (Hersbach et al., 310 

2023b). IBTrACS data is accessible at https://doi.org/10.25921/82ty-9e16 (Gahtan et al., 2024). The processing codes can be 311 

https://doi.org/10.5281/zenodo.12740372
https://doi.org/10.24381/cds.bd0915c6
https://doi.org/10.24381/cds.adbb2d47


made available upon request to the corresponding author. This study provides a detailed description of the TC size and intensity 312 

reconstruction dataset, which includes the maximum sustained wind speed, the radius of maximum wind, the minimum central 313 

pressure and the radii to locations with sustained wind speeds of 34, 50, and 64 knots during 1959–2022. 314 

6. Conclusion  315 

The considerable number of unrecorded TC characteristics in the IBTrACS dataset and large biases inherent in the ERA5 316 

dataset prompt us to generate a long-term TC reconstruction dataset. We construct the dataset by integrating TC characteristics 317 

from the IBTrACS and ERA5 datasets using RF-based models, an empirical wind–pressure relationship, and six wind profiles 318 

for the period 1959–2022. The TC reconstruction dataset is approximately 3–4 times larger than the IBTrACS dataset in terms 319 

of data points per characteristic, with much higher data accuracy than shown for ERA5-derived results.  320 

We examine six TC characteristics to evaluate the reconstructed dataset. A comparison of maximum sustained wind 321 

speeds between the IBTrACS and reconstructed TC datasets reveals that the latter underestimated observational data by 322 

approximately 2.82 m/s, which is a considerably smaller bias than that shown by the ERA5 dataset (16.73 m/s) on a global 323 

scale. For the radius of maximum wind (𝑅𝑚𝑎𝑥), the mean error and RMSE decrease markedly, from −41.64 and 67.66 km 324 

(IBTrACS 𝑅𝑚𝑎𝑥 – ERA5 𝑅𝑚𝑎𝑥) to 1.37 and 22.19 km (IBTrACS 𝑅𝑚𝑎𝑥 – reconstructed 𝑅𝑚𝑎𝑥), respectively. In addition, 325 

the correlation coefficient for 𝑅𝑚𝑎𝑥 between the IBTrACS and ERA5 datasets is 0.44, which increased to 0.94 between the 326 

IBTrACS and TC reconstruction datasets. The mean bias in minimum central pressure between the IBTrACS and reconstructed 327 

TC datasets is <3% in most basins. We use six wind profile models to compute the radii to locations with sustained wind 328 

speeds of 34, 50, and 64 knots (𝑅34, 𝑅50, and 𝑅64), and the selected wind profile models (CLE15 for 𝑅34 in the North 329 

Atlantic, W06 for others) show good estimates for TC outer sizes, with correlation coefficients > 0.75 for three outer size 330 

metrics in most basins. Overall, the TC reconstruction dataset agrees closely with the IBTrACS data in terms of TC intensity 331 

and size. 332 

In conclusion, the TC reconstruction dataset may prove invaluable for advancing our understanding of TC climatology, 333 

thereby facilitating risk assessments and defenses against TC-related disasters. The future availability of reanalysis data with 334 



finer spatial resolution and longer temporal coverage, such as the in-progress ERA6, will facilitate the creation of more accurate 335 

TC reconstructions with longer time spans using the methods presented in this study.  336 
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