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Abstract. Leaf inclination angle (LIA), the angle between leaf surface normal and zenith directions, is a vital parameter in 10 

radiative transfer, rainfall interception, evapotranspiration, photosynthesis, and hydrological processes. Due to the difficulty 11 

in obtaining large-scale field measurement data, LIA is typically assumed to follow the spherical leaf distribution or simply 12 

considered constant for different plant types. However, the appropriateness of these simplifications and the global LIA 13 

distribution are still unknown. This study compiled global LIA measurements and generated the first global 500 m mean LIA 14 

(MLA) product by gap-filling the LIA measurement data using a random forest regressor. Different generation strategies 15 

were employed for noncrops and crops. The MLA product was evaluated by validating the nadir leaf projection function 16 

(G(0)) derived from the MLA product with high-resolution reference data. The global MLA is 41.47°±9.55°, and the value 17 

increases with latitude. The MLAs for different vegetation types follow the order of cereal crops (54.65°) > broadleaf crops 18 

(52.35°) > deciduous needleleaf forest (50.05°) > shrubland (49.23°) > evergreen needleleaf forest (47.13°) ≈ grassland 19 

(47.12°) > deciduous broadleaf forest (41.23°) > evergreen broadleaf forest (34.40°). Cross-validation shows that the 20 

predicted MLA presents a medium consistency (r = 0.75, RMSE = 7.15°) with the validation samples for noncrops, whereas 21 

crops show relatively lower correspondence (r = 0.48 and 0.60 for broadleaf crops and cereal crops) because of limited LIA 22 

measurements and strong seasonality. The global G(0) distribution is opposite to that of the MLA and agrees moderately 23 

with the reference data (r = 0.62, RMSE = 0.15). This study shows that the common spherical and constant LIA assumptions 24 

may underestimate the intercept capability for most vegetation. The MLA and G(0) products derived in this study would 25 

enhance our knowledge about global LIA and should greatly facilitate remote sensing retrieval and land surface modeling 26 

studies. 27 

The global MLA and G(0) products can be accessed at:  28 

Li, S. and Fang, H. 2024, https://doi.org/10.5281/zenodo.10940673. 29 

 30 
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1 Introduction 31 

Vegetation regulates terrestrial carbon and water cycles through a series of biophysical processes such as photosynthesis, 32 

respiration, and transpiration (Foley et al., 1996; Chen et al., 2019). These biophysical processes are mainly carried by leaves 33 

and the characterization of leaves within canopies is vital for remote sensing and earth system modeling (Ross, 1975; 34 

Lawrence et al., 2019). Leaf inclination angle (LIA) denotes the inclination of the leaf or needle to the horizontal plane or the 35 

angle between the leaf surface normal and zenith (Wilson, 1960). LIA is a key canopy structural trait that determines 36 

radiative transfer, rainfall interception, evapotranspiration, photosynthesis, and hydrological processes (Sellers, 1985; Ross, 37 

1981; Mantilla-Perez and Salas Fernandez, 2017; Xiao et al., 2000; Maes and Steppe, 2012). LIA has been used in radiative 38 

transfer modeling (RTM), remote sensing inversion, and land surface modeling (LSM) studies (Tang et al., 2016; Wang and 39 

Fang, 2020; Lawrence et al., 2019; Ross, 1975).  40 

At the canopy scale, the probability density of LIA or the fraction of leaf area per unit LIA is expressed as the leaf angle 41 

distribution (LAD) (De Wit, 1965). De Wit (1965) summarized six theoretical LADs, including planophile, erectophile, 42 

extremophile, plagiophile, uniform, and spherical distributions. Specifically, the spherical distribution assumes that the 43 

relative probability density of the LIA is proportional to the area of the corresponding sphere surface element and its mean 44 

leaf inclination angle (MLA) equals 57.3° (MLA = 57.3°) (De Wit, 1965). Furthermore, Ross (1981) defined the inclination 45 

index (ꭓL) to describe the departure of LAD from the spherical distribution. For the planophile distribution, ꭓL = 1; for the 46 

erectophile distribution, ꭓL = -1; and for the spherical distribution, ꭓL =0. In the radiative transfer regime, LIA is generally 47 

represented by the leaf projection function (G(θ)), which is defined as the average projection ratio of unit leaf area in the 48 

illumination or viewing direction θ (Ross, 1981; Nilson, 1971). The spherical distribution is characterized by an isotropic 49 

leaf projection function (G ≡ 0.5) (De Wit, 1965).  50 

In the field, LIA can be measured directly based on the leaf's geometrical structure or using indirect optical methods (Lang, 51 

1973; Ryu et al., 2010; Norman and Campbell, 1989; Weiss and Baret, 2017). Using these methods, several LIA 52 

measurements have been carried out and some LIA datasets were constructed (Kattge et al., 2020; Chianucci et al., 2018; 53 

Hinojo-Hinojo and Goulden, 2020; Pisek and Adamson, 2020). These field methods are usually time-consuming and labor-54 

intensive and are typically difficult to acquire large-scale LIA (Li et al., 2023). In addition, the existing LIA datasets have 55 

not been comprehensively analyzed. LIA has also been estimated from satellite imagery through empirical relationships or 56 

radiative transfer model inversions (Zou and Mõttus, 2015; Bayat et al., 2018; Goel and Thompson, 1984). Remote sensing 57 

methods are used primarily for crops in local regions, and the generality of these algorithms is limited (Li et al., 2023). Due 58 

to the difficulty in large-scale LIA measurements and estimations, our knowledge about the global LIA remains lacking.  59 

Because our understanding of the global LIA is limited, different LIA simplification strategies have been adopted in various 60 

studies. For example, LIA is typically assumed to follow the spherical distribution (Tang et al., 2016; Zhao et al., 2020; 61 

Wang and Fang, 2020). However, this assumption may decrease the accuracy of radiative transfer modeling, significantly 62 

underestimate the radiation interception (Stadt and Lieffers, 2000), and cause large errors (>50%) in leaf area index (LAI) 63 
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measurements and inversions (Yan et al., 2021). The spherical LIA assumption may introduce greater error in the nadir 64 

direction than other viewing geometries (Yan et al., 2021), considering the large G variation in this direction (Wilson, 1959). 65 

The lack of global LIA knowledge also limits the retrieval of other vegetation structural parameters(Li et al., 2023). In many 66 

LSMs, LIA is commonly treated as a fixed value for different plant function types (PFT) (Lawrence et al., 2019; Majasalmi 67 

and Bright, 2019). Field LIA measurements have demonstrated that the spherical distribution is not appropriate for forests, 68 

and the PFT-dependent LIA ignores LIA variation within the PFT (Pisek et al., 2013; Yan et al., 2021; Majasalmi and Bright, 69 

2019).  70 

This study aims to generate the first global MLA map from existing LIA field measurements using a data-driven gap-filling 71 

method. This method involves spatial expansion and upscaling of LIA measurements, and a random forest regressor using 72 

input spectral, climate, and PFT data. Based on the global MLA map, we tested whether the spherical LIA assumption is 73 

appropriate at the global scale. The new MLA map was validated by comparing the nadir G (G(0)) derived from the MLA 74 

with high-resolution reference data. Section 2 outlines the materials and methods employed to generate and evaluate the 75 

global MLA. Section 3 presents the global LIA measurements, global MLA and G(0), and evaluation results. Section 4 76 

discusses the performance of the global MLA and G(0), the usage of the new MLA map, and the limitations of the study. 77 

Section 5 presents the main conclusions. 78 

2 Materials and methods 79 

2.1 LIA measurement data 80 

2.1.1 TRY LIA dataset 81 

TRY is a network of vegetation scientists headed by Future Earth, the Max Planck Institute for Biogeochemistry, and 82 

German Centre for Integrative Biodiversity Research, providing a global database of curated plant traits (the TRY database) 83 

(https://www.trydb.org/TryWeb/Home.php). Since its establishment in 2007, the TRY database has continuously evolved 84 

and has become one of the most widely used vegetation trait databases. The latest V6 version (released on October 13, 2022) 85 

employed in this study contains 15,409,681 trait records covering 305,594 plant taxa (Kattge et al., 2020). In this database, 86 

LIA was recorded as a numerical or categorical variable. After data extraction and checking, 31,043 valid records were used, 87 

which include numerical LIA, locations, and species. Many measurements lack location information, whereas, for some 88 

locations, there are many measurements for individual species. The spatial distribution map appears relatively sparse despite 89 

a large volume of data (Fig. 1). The LIA measurements in South America are mainly from palms.  90 
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 91 
Figure 1. The locations of global leaf inclination angle measurements. DBF: deciduous broadleaf forest, DNF: deciduous needleleaf forest, 92 
EBF: evergreen broadleaf forest, ENF: evergreen needleleaf forest, CRO-B: broadleaf crops, CRO-C: cereal crops, GRA: grassland, SHR: 93 
shrubland.  94 

2.1.2 LIA data from the literature 95 

The LIA measurements in published literature were collected via keyword search (leaf angle, leaf inclination angle, and leaf 96 

tilt angle) in the Web of Science, Google Scholar, Google, and Chinese documentary databases. The LIA, location, and 97 

species information were manually extracted from the literature (Fig. 1). Several LIA measurements were already included 98 

in the TRY database (Chianucci et al., 2018; Pisek and Adamson, 2020). After aggregating LIA measurements for the same 99 

species at the same location, 780 LIA records were accessed from previous studies (Hinojo-Hinojo and Goulden, 2020; Pisek 100 

et al., 2022; Chen et al., 2021). 101 

2.1.3 Manual LIA extraction 102 

The majority of existing LIA measurements are located in the mid-latitudes of the Northern Hemisphere. Only a few 103 

measurements in the northern tundra region were obtained, and the measurements in tropical regions are dominated by palm 104 

trees (Fig. 1). Therefore, LIA data for the northern tundra and tropical regions were extracted from horizontal side-view 105 

photographs searched from Google (Fig. S1).  106 

ImageJ software (https://imagej.nih.gov/ij/) was used to process the leveled photographs and derive LIA following the 107 

method of Pisek et al. (2011). The TRY species location data (848,919, Fig. S3b) (Jan 03, 2022) were used to obtain the 108 

dominant species information in tropical rainforests and the northern tundra. For each species, more than 75 leaves 109 

perpendicular to the viewing direction were selected and processed based on visual judgment to ensure the stability and 110 

reliability of the MLA (Pisek et al., 2013). In total, the MLA of 104 species was manually derived. 111 
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In this study, most LIA measurements are obtained with protractor and level digital photogrammetry, especially for 112 

needleleaf species. Therefore, the distinction between branches and leaves is considered. The diverse LIA records from 113 

different sources were sorted to match the TRY species and to get the PFT based on the TRY Categorical Traits Dataset 114 

2018 (https://www.try-db.org/TryWeb/Data.php#3). The MLA was calculated for the LIA records with different forms. If 115 

there were multiple LIA records for the same species, the mean value was computed for the same location and species. In 116 

total, 5,554 LIA records of 1,194 species were collected, covering the growing season from 2001 to 2022. Considering the 117 

different numbers of records for each species, the LIA data was further aggregated by species.  118 

2.2 Remote sensing data 119 

2.2.1 Ancillary data used for MLA mapping 120 

The ancillary data used for global MLA mapping and analysis are listed in Table 1. The PFT classification system in the 121 

MODIS global 500 m land cover type product (MCD12Q1.061) was used and mode-aggregated from 2001 to 2022 to match 122 

the LIA measurements (Fig. S2) (Sulla-Menashe et al., 2019). The 2001–2022 Landsat surface reflectance (Level 2, 123 

Collection 2, Tier 1) (Crawford et al., 2023), including Landsat 5 (2001–2012), Landsat 7 (2012–2013), and Landsat 8 124 

(2013–2022) was utilized to generate a global 30 m PFT map (Section 2.3.1), which was subsequently employed for LIA 125 

upscaling. The 2001–2022 MODIS bidirectional reflectance distribution function (BRDF) model parameters dataset 126 

(MCD43A1 C6.1) (Schaaf and Wang, 2015a) and nadir BRDF adjusted reflectance dataset (MCD43A4 V6 NBAR) (Schaaf 127 

and Wang, 2015b) are produced daily using 16 days of Terra and Aqua MODIS data at 500 m resolution and were utilized as 128 

predictive variables. Due to the scarcity of crop LIAs and the lack of location information for existing crop LIA 129 

measurements, fine-resolution (10/30 m) crop-type maps (Table 1) in 2018 were employed to support crop LIA mapping. 130 

Other data include the ERA5-Land reanalysis data, the ALOS digital elevation model (AW3D30 V3.2), and the 2001–2022 131 

MODIS LAI product (MCD15A2H) (Myneni, 2015). The LAI product was averaged and aggregated from 2001–2022. Most 132 

earth observation data were accessed and processed in Google Earth Engine (GEE) (https://earthengine.google.com/). 133 

 134 
Table 1. Remote sensing data for global MLA mapping. BRDF: bidirectional reflectance distribution function. 135 

Category Data Year  Spatial 
resolution 

Temporal 
resolution 

Reference 

Plant function type MCD12Q1 C6 2001–2022 500 m Yearly (Sulla-Menashe et al., 2019) 
Surface reflectance Landsat collection 2 2001–2022 30 m 16 days (Crawford et al., 2023) 

MCD43A4 V6 NBAR 2001–2022 500 m Daily (Schaaf and Wang, 2015b) 
BRDF MCD43A1 C6.1 2001–2022 500 m Daily (Schaaf and Wang, 2015a) 
Crop type Cropland Data Layers (CDL)  2018 30 m Yearly (Boryan et al., 2011) 

EUCROPMAP 2018 10 m Yearly (D’andrimont et al., 2021) 
AAFC Annual Crop 
Inventory 

2018 30 m Yearly (Fisette et al., 2013) 

Northeast China crop-type 2018 30 m Yearly (You et al., 2021) 
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map 
NESEA-Rice10 2018 10 m Yearly (Han et al., 2021) 
China maize map 2018 30 m Yearly (Shen et al., 2022) 
China winter wheat map 2018 30 m Yearly (Dong et al., 2020) 

Climate ERA5-Land 2001–2022 0.1° Monthly (Muñoz-Sabater et al., 2021) 
Terrain AW3D30 V3.2 — 30 m — (Tadono et al., 2014) 

2.2.2 High-resolution reference data 136 

The high-resolution reference datasets provided by Ground Based Observations for Validation (GBOV, 137 

https://land.copernicus.eu/global/gbov/dataaccessLP/) and DIRECT 2.1 (https://calvalportal.ceos.org/lpv-direct-v2.1) were 138 

used to evaluate the generated global MLA (Fig. 2). These datasets provide high-resolution (20/30 m) LAI, effective LAI 139 

(LAIe), and fractional vegetation cover (FVC) data over a 3 km × 3 km area centered on each site generated using empirical 140 

relationships between various vegetation indices and ground measurements (Li et al., 2022; Brown et al., 2020). GBOV has 141 

provided continuous high-resolution reference data since 2013 (Fig. 2).  142 
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 143 
Figure 2. Locations of GBOV and DIRECT 2.1 sites used in this study (a). (b) and (c) show the sites in North America and Europe, 144 
respectively. CRO: Cultivated crops, MF: Mixed forest, PAS: Pasture/hay, WET: Woody wetlands. See Fig. 1 for other acronyms. The red 145 
frame indicates those sites with >5 continuous records. 146 
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2.3 Mapping global LIA 147 

2.3.1 Data preparation 148 

Assuming equal LIA for the same species (Pisek et al., 2022; Toda et al., 2022; Raabe et al., 2015), the spatial coverage of 149 

LIA measurements was expanded, and those records without location information were utilized. Under this assumption, the 150 

LIA measurements were expanded through TRY species location data with species name matching. When a species had 151 

multiple LIA observations at different locations, the nearest LIA was assigned to the TRY species location. Visual 152 

inspections were conducted to remove potential TRY location biases, especially for non-vegetated points such as water 153 

bodies and deserts. After spatial expansion, the number of LIAs reached 12,328 (Fig. S3c). 154 

In this study, the scale gap between field measurements and satellite remote sensing data was fully considered. To upscale 155 

the LIA measurements to the satellite resolution (500 m), a 30 m PFT map was first derived from Landsat reflectance using a 156 

random forest classification method. The random forest was trained at a 500 m scale using the mode-aggregated MODIS 157 

PFT classification map as training samples to generate a 30 m PFT map by hierarchically selecting homogeneous pixels 158 

(with a coefficient of variation < 0.2). The classification features were the same as those in the MODIS classification 159 

algorithm (Sulla-Menashe et al., 2019). For a 500 m pixel with multiple PFTs (Fig. 3a), when one PFT had no LIA 160 

measurement, the LIA of the PFT was assigned with the value of its nearest neighbor within 100 km with the same PFT. The 161 

500 m MLA was computed as the weighted average of the enhanced vegetation index (EVI2).  162 

𝑀𝑀𝑀𝑀𝑀𝑀500𝑚𝑚 = ∑𝑀𝑀𝑀𝑀𝑀𝑀30𝑚𝑚×𝐸𝐸𝐸𝐸𝐸𝐸230𝑚𝑚
∑𝐸𝐸𝐸𝐸𝐸𝐸230𝑚𝑚

          (1) 163 

 164 
Figure 3. Leaf inclination angle (LIA) upscaling (a) and global mean LIA (MLA) mapping (b) strategies. 165 
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The 500 m upscaled MLA samples were further refined to select the most representative samples following three criteria: 1) 166 

the coefficient of variation of the 30 m EVI2 in the 500 m pixel is less than 0.2, 2) the vegetation proportion in the 500 m 167 

pixel is greater than 0.8, and 3) the proportion of PFTs represented by the MLA measurements in the 500 m pixel is greater 168 

than 0.4. The final number of samples after refinement is 3,013 (Fig. 4). 169 

 170 
Figure 4. Distribution of global mean leaf inclination angle samples after screening. See Fig. 1 for acronyms. 171 

2.3.2 Global MLA mapping 172 

Different mapping strategies were employed for noncrops and crops (Fig. 3b) considering the small number of valid crop 173 

samples (Fig. 4) and the lack of location information for most crop samples. For noncrops, the upscaled 500 m MLA 174 

samples were used to train a random forest regressor to predict the global MLA from different features (Table 2). To reduce 175 

computational complexity and potential overfitting, a feature selection process was conducted based on the variable 176 

importance (the sum of the decrease in Gini impurity index over all trees in the forest) computed by the model, and only the 177 

40 most important variables were used in the final prediction. During the training process, the out-of-bag error was 178 

minimized to obtain the optimal hyperparameters. The prediction performance of the random forest regressor was evaluated 179 

using a ten-fold cross-validation approach.  180 

For crops, the measured MLA values were averaged for different crop types as a typical MLA (Table S2). After assigning 181 

typical MLAs for different crops with high-resolution crop maps (Table 1), the high-resolution crop MLA were upscaled to 182 

500 m as training samples (Eq. (1)). Only the samples with a crop area ratio > 80% within a 500 m pixel were selected for 183 

training. The crops were further divided into broadleaf crops and cereal crops and processed with the same procedure used 184 

for noncrops (Fig. 3b). All procedures were conducted on GEE under the WGS-84 geographic coordinate system. 185 

 186 
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Table 2. Predictive features in global MLA mapping. 187 

Category Features Variables Number 
Spectral Blue, green, red, near-infrared reflectance 10%, 33%, 50%, 67%, 90% quantiles 

and standard deviation 
24 

NDVI 10%, 33%, 50%, 67%, 90% quantiles 
and standard deviation 

6 

BRDF Kernel coefficients of the red band 10%, 33%, 50%, 67%, 90% quantiles 
and standard deviation 

18 

Kernel coefficients of near-infrared band 10%, 33%, 50%, 67%, 90% quantiles 
and standard deviation 

18 

PFT PFT Constant 1 
Climate Solar downward radiation Mean and standard deviation 2 

Temperature Mean and standard deviation 2 
Precipitation Mean and standard deviation 2 

Terrain Elevation Constant 1 
Slope Constant 1 
Aspect Constant 1 

2.4 Evaluation of global MLA 188 

The global MLA map was indirectly evaluated using the leaf projection function, limited by the lack of high-resolution 189 

reference MLA. The global G(0) was derived from the MLA and evaluated with high-resolution reference following the 190 

upscaling scheme recommended by the Land Product Validation (LPV) Subgroup of the Committee on Earth Observation 191 

Satellites (CEOS) (http://lpvs.gsfc.nasa.gov/). The nadir G(0) is important considering that most satellite sensors adopt the 192 

nadir observation geometry.  193 

Assuming a single-parameter ellipsoidal leaf angle distribution (Campbell, 1990), the parameter ꭓ, the ratio of the horizontal 194 

and vertical axes of an ellipsoid, was first derived from MLA. 195 

𝜒𝜒 = −3 + (𝑀𝑀𝑀𝑀𝑀𝑀
9.65

)−0.6061           (2) 196 

The G(θ) value in the nadir direction (θ=0°) was calculated using the following analytical formula.  197 

𝐺𝐺(𝜃𝜃) = �(𝜒𝜒2+𝑡𝑡𝑡𝑡𝑡𝑡2 𝜃𝜃) 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃
𝜒𝜒+1.774(𝜒𝜒+1.182)−0.73          (3) 198 

The reference G(0) was derived from high-resolution LAI, FVC, and clumping index (CI) (=LAIe/LAI) with the Beer-199 

Lambert law (Fig. S4) (Nilson, 1971).  200 

𝑃𝑃(𝜃𝜃) = 𝑒𝑒𝑒𝑒𝑒𝑒−
𝐺𝐺(𝜃𝜃)∗𝐿𝐿𝐿𝐿𝐿𝐿∗𝐶𝐶𝐿𝐿(𝜃𝜃)

𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃)            (4) 201 

Where 𝑃𝑃(𝜃𝜃), 𝐶𝐶𝐶𝐶(𝜃𝜃), and 𝐺𝐺(𝜃𝜃) denote the gap fraction, CI, and G in direction 𝜃𝜃, respectively. Specifically, the gap fraction in 202 

the nadir direction can be expressed by FVC. 203 

𝑃𝑃(0) = 1 − 𝐹𝐹𝐹𝐹𝐶𝐶            (5) 204 
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Therefore, the reference G(0) was derived using the following formula. 205 

𝐺𝐺(0)_𝐶𝐶𝐶𝐶(0) = − 𝑙𝑙𝑡𝑡(1−𝐹𝐹𝐹𝐹𝐶𝐶)

𝐶𝐶𝐸𝐸(0)∗𝑀𝑀𝑀𝑀𝐸𝐸
           (6) 206 

By using the whole CI as the nadir CI (CI(0)) in the above equation (Fang et al., 2021; Li et al., 2022), G(0) was calculated 207 

as follows: 208 

𝐺𝐺(0)_𝐶𝐶𝐶𝐶 ≈ − 𝑙𝑙𝑡𝑡(1−𝐹𝐹𝐹𝐹𝐶𝐶)

𝐶𝐶𝐸𝐸∗𝑀𝑀𝑀𝑀𝐸𝐸
           (7) 209 

The MLA product was first upscaled to 3 km through a weighted averaging method using the MODIS LAI to derive G(0) 210 

(Eq. (3)). The reference LAI, FVC, and CI were also upscaled to 3 km through simple averaging to compute the reference 211 

G(0) (Eq. (7)). The MLA-derived G(0) and the reference G(0) were compared at the 3 km × 3 km area around each site. The 212 

correlation coefficient (r), bias, and root mean square error (RMSE) were calculated as the evaluation metrics, as follows: 213 

𝑟𝑟 = �1 − ∑ (𝑦𝑦�𝑖𝑖−𝑦𝑦𝑖𝑖)2
𝑛𝑛
𝑖𝑖=1
∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�)2𝑛𝑛
𝑖𝑖=1

           (8) 214 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 1
𝑡𝑡
∑ (𝑦𝑦� − 𝑦𝑦𝑖𝑖)𝑡𝑡
𝑖𝑖=1            (9) 215 

𝑅𝑅𝑀𝑀𝑅𝑅𝑅𝑅 = �1
𝑡𝑡
∑ (𝑦𝑦� − 𝑦𝑦𝑖𝑖)2𝑡𝑡
𝑖𝑖=1           (10) 216 

where 𝑦𝑦�𝑖𝑖, 𝑦𝑦𝑖𝑖 , and n denote the MLA-derived G(0), reference G(0), and the number of G(0), respectively. 217 

3 Results 218 

3.1 Global measured LIA values 219 

The species-aggregated LIA was employed in the analysis of global LIA measurements. Fig. 5 shows the distributions of 220 

global measured LIA values for different PFTs. The global measured MLA is 40.74° and generally follows the order of 221 

CRO-C > GRA > ENF > CRO-B > EBF > SHR > DNF > DBF (Table 3). Cereal crops exhibit the highest MLA (59.11°), 222 

whereas DBF has the most horizontal leaves (MLA = 34.94°). GRA and EBF show large LIA variations (Std = 20.44° and 223 

17.17°), whereas CRO-B exhibits a small range. The DNF LIA measurements are only for one species and show very little 224 

variation (Fig. 5). 225 
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 226 
Figure 5. Distribution of global mean LIA (MLA) for different plant function types (see Fig. 1 for acronyms). The last shape shows the 227 
global average. Statistics are conducted for each species as represented by points in the figure. 228 

Table 3. Statistics of leaf inclination angle measured for different plant functional types (PFT). STD is the standard deviation. The 229 
inclination index (ꭓL) is converted from mean leaf inclination angle (MLA) (𝝌𝝌𝑳𝑳 = 𝟐𝟐𝟐𝟐𝒐𝒐𝒐𝒐(𝐌𝐌𝐌𝐌𝐌𝐌) − 𝟏𝟏) (Lawrence et al., 2019). 230 

PFT DBF DNF EBF ENF CRO-B CRO-C GRA SHR Globe 
Number of species 171 1 347 23 32 31 399 190 1194 
Mean(°) 34.94 35.88 39.30 43.69 39.71 59.11 44.13 38.32 40.74 
STD (°) 12.40 0.00 16.11 14.40 8.11 13.28 20.17 13.80 17.12 
ꭓL 0.64 0.62 0.55 0.45 0.54 0.03 0.44 0.57 0.52 

3.2 The relationships between MLA and other variables 231 

Fig. 6 shows the importance of the top 40 variables in the MLA prediction obtained from the random forest regression model. 232 

The importance of these 40 variables accounts for 78% of the total importance among all 76 variables. Spectral features 233 

account for 30% of the importance, which is higher than that of other features. Among the spectral features, NDVI, near-234 

infrared (NIR) band, and red band reflectance are most critical for MLA prediction. The importance of BRDF features is 235 

comparable to that of climatic variables (21% vs. 20%), followed by terrain features (7%). Among the BRDF features, the 236 

NIR BRDF information shows a higher contribution than the red band, with importance in the following order: geometrically 237 

scattered kernel> isotropic scattering kernel > volumetric scattering kernel. The importance ranking of the climatic variables 238 

follows the order of precipitation ≈ solar radiation > temperature. Additionally, elevation shows a considerable impact on the 239 

MLA prediction. 240 
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 241 
Figure 6. The importance of variables in the mean leaf inclination angle prediction. NIR, Red, Green, and Blue denote the nadir 242 
reflectance in near-infrared, red, green, and blue bands, respectively; geo, iso, and vol represent kernel coefficients of geometric-optical 243 
surface scattering, isotropic scattering, and volumetric scattering, respectively. The suffixes p××, mean, and std represent ××% quantile, 244 
mean, and standard deviation, respectively. 245 
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Fig. 7 illustrates the relationships between the upscaled MLA samples and the 16 most important variables. Overall, MLA 246 

decreases with the increase of NDVI, NIR reflectance, and NIR BRDF kernel parameters, whereas it increases with the 247 

standard deviation of NDVI. MLA is negatively correlated with solar radiation, precipitation, and temperature. Additionally, 248 

MLA increases with increasing the standard deviation of solar radiation (corresponding to mid-to-high latitude regions), 249 

while it decreases with the increase in the standard deviation of precipitation (corresponding to tropical and subtropical 250 

regions with high precipitation). MLA increases slightly with elevation. 251 

 252 
Figure 7. Relationships between mean leaf inclination angle (MLA) and different predictive variables. See Fig. 6 for different variables. 253 

3.3 Global MLA and G(0) maps 254 

Fig. 8 shows the spatial distribution of the global 500 m MLA product. Central Asia (grasslands), southern India (cereal 255 

crops), and the central United States (grasslands and cereal crops) show higher MLAs of approximately 60°, whereas the 256 

rainforests and Southeast Asia forests have more horizontal leaves with MLAs of around 30° (Fig. 8 and S2). MLA increases 257 

with latitude, from 32.93 ± 7.03° around the equator (~1.5° N) to 53.48 ± 3.20° in the northern tundra (~76.5° N). Variation 258 

in MLA decreases as latitude increases (Fig. 8). Among different PFTs, cereal crops show the highest MLA (54.65 ± 6.28°), 259 
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while evergreen broadleaf forest has the lowest MLA (34.40 ± 6.42°), and PFTs follow the order: CRO-C > CRO-B > DNF > 260 

SHR > ENF ≈ GRA > DBF > EBF (Table 4). Grassland, broadleaf forest, and evergreen needleleaf forests show larger MLA 261 

variations than other PFTs, whereas deciduous needleleaf forests show minimal variation. The global vegetation MLA is 262 

41.47°, with a standard deviation of 9.55°, which is comparable to the MLA of DBF (41.23 ± 6.58°) (Fig. 9a and Table 4).  263 

 264 
Figure 8. The global mean leaf inclination angle (MLA) map. The right panel shows the MLA latitudinal mean (solid line) and the 265 
standard deviation values (shaded area) weighted by leaf area index. 266 

Table 4. Statistics of global mean leaf inclination angle (MLA), nadir leaf projection function (G(0)), and inclination index (ꭓL) for 267 

different plant functional types (PFT). STD is the standard deviation. The ꭓL is converted from MLA (𝜒𝜒𝑀𝑀 = 2𝑐𝑐𝑜𝑜𝐵𝐵(MLA) − 1) (Lawrence 268 

et al., 2019). 269 

PFT DBF DNF EBF ENF CRO-B CRO-C GRA SHR Globe 
Area proportion(%) 14.02 6.32 15.08 11.42 2.99 6.84 28.45 14.88 100.00 
MLA(°) 41.23  50.05  34.40  47.13  52.35  54.65  47.12  49.23  41.47  
STD of MLA (°) 6.58  3.24  6.42  8.35  6.63  6.28  8.08  5.35  9.55  
G(0) 0.69  0.58  0.76  0.61  0.55  0.52  0.61  0.59  0.68  
STD of G(0) 0.07  0.03  0.06  0.08  0.07  0.08  0.09  0.06  0.11  
ꭓL 0.50  0.28  0.65  0.36  0.22  0.16  0.36  0.31  0.50  
 270 

The global MLA exhibits an asymmetric probability density distribution toward the lower MLA (Fig. 9b). It roughly 271 

presents three peaks, with the highest peak (~51°) containing DNF, ENF, CRO, GRA, and SHR. The moderate peak (~35°) 272 

is mainly composed of EBF and DBF, while the third peak (~58°) is dominated by crops. The MLAs of crops and some 273 

grasslands are close to the MLA of the spherical distribution (57.30°). The global MLA (41.47°) is 15.83° (38%) smaller 274 

than the MLA of the spherical distribution because the vegetation MLA is mostly less than 57.30° (Fig. 9b).  275 
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 276 
Figure 9. Statistics (a) and probability density distributions (b) of the global mean leaf inclination angle (MLA) for different plant 277 
functional types. The error bars in (a) represent the standard deviation. The black dash line and shade area in (b) indicate the global MLA 278 
mean and standard deviation. The gray dashed line represents the MLA (=57.30°) of spherical leaf angle distribution. The mean, standard 279 
deviation, and probability density values are weighted by leaf area index. See Fig. 1 for the acronyms. 280 

Fig. 10 displays the spatial distribution of global G(0) generated from MLA. Overall, the global G(0) shows an opposite 281 

pattern with the global MLA. The G(0) values in Central Asia (grasslands, Fig. S2), southern India (cereal crops), and the 282 

central United States (grasslands and cereal crops) are relatively lower than those in tropical rainforests, forests in Southeast 283 

Asia, and forests in the eastern United States. G(0) generally decreases slowly with latitude, from 0.78 ± 0.08 at the equator 284 

(~1.5° N) to 0.52 ± 0.04 in the northern tundra (~76.5° N).  285 
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 286 
Figure 10. The global nadir leaf projection function (G(0)) map. The right panel shows the G(0) mean (solid line) and standard deviation 287 
values (shaded area) weighted by leaf area index. 288 

Among different PFTs, EBF has the highest G(0), at approximately 0.76 ± 0.06 (Fig. 11a, Table 4), whereas cereal crops 289 

show the lowest value, at approximately 0.52 ± 0.08. The DBF G(0) is comparable to the global average. The G(0) of broad-290 

leaved forests is greater than that of other PFTs (Fig. 11a, Table 4). The global G(0) probability density distribution peaks at 291 

0.52–0.65, with an asymmetric distribution (Fig. 11b). The proportion on the right side of the peak is larger than that on the 292 

left. The peak of the global G(0) distribution mainly contains DNF, ENF, CRO, GRA, and SHR. The left side of the peak is 293 

mainly composed of crops, while the right side is dominated by broad-leaved forests and some shrubs. The spherical 294 

distribution G(0) (0.50) is mainly represented by crops and a small amount of grassland, where G(0) also shows a large 295 

variation (~0.35). The spherical distribution G(0) is 0.18 (26%) less than the global average G(0) (0.68), as most vegetation 296 

G(0) is greater than 0.50 (Fig. 11b).  297 
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 298 

Figure 11. Statistics (a) and probability density distributions (b) of the global nadir leaf projection function (G(0)) for different plant 299 
functional types. The error bars in (a) represent the standard deviation. The black dash line and shade area in (b) indicate the global G(0) 300 
mean and standard deviation. The gray dashed line represents the G(0) (=0.50) of spherical leaf angle distribution. The mean, standard 301 
deviation, and probability density values are weighted by leaf area index. See Fig. 1 for the acronyms. 302 

3.4 Evaluation of global MLA 303 

Fig. 12 shows the comparison between the predicted MLA and upscaled MLA samples using the ten-fold cross-validation 304 

method. For noncrops, the predicted MLA is moderately consistent with the upscaled sample MLA (r = 0.75, RMSE = 305 

7.15°), with 83% of samples having residuals < 10° and 94% of samples having residuals < 15°. For DNF and SHR, the 306 

predicted MLA compresses the variation range of sample MLA (Fig. 12a). For crops, the predicted MLA of CRO-C shows 307 

higher consistency (r = 0.60) than that of CRO-B (r = 0.48). (Fig. 12b and c). 308 
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 309 
Figure 12. Comparisons between predicted MLA and sample MLA for noncrop (a), broadleaf crops (b), and cereal crops (c) (See Fig. 1 310 
for the acronyms). The error bar in (a) represents the standard deviation. 311 

Fig. 13 compares G(0) derived from the MLA and high-resolution reference data. The MLA-derived G(0) shows moderate 312 

consistency with the reference G(0) (r = 0.62), and 65% of the estimated G(0) residuals are < 0.15, and 84% of the residuals 313 

are < 0.20. The estimated G(0) generally overestimates (bias = 0.11), especially when G(0) is low (< 0.60), mainly for crops, 314 

pasture, woody wetlands, and shrubs, whereas grasslands show better consistency. The estimated G(0) is temporally more 315 

stable than the reference G(0) which is generally greater than 0.50 and displays seasonal variation (horizontally distributed 316 

bars in Fig. 13). 317 
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 318 
Figure 13. Comparisons of G(0) derived from mean leaf inclination angle and high-resolution reference data for different plant functional 319 
types (see Fig. 2 for the acronyms). The error bar represents the standard deviation of reference G(0) at different seasons. 320 

4 Discussion 321 

4.1 Global MLA and G(0) 322 

This study compiled global LIA field measurements and generated the first global 500 m MLA and G(0) maps (Figs. 8 and 323 

10). These maps show the average MLA and G(0) conditions during the growing seasons from 2001 to 2022. Overall, the 324 

global MLA is lowest around the equator and increases with latitude (Figs. 8 and 10). This accords with the MLA latitude 325 

variation derived from model simulations (Huemmrich, 2013). Crops have higher MLA than broadleaf forests whose leaves 326 

are relatively horizontal. The global MLA and G(0) maps enhance our understanding of the global distribution of MLA and 327 

G(0) and should be useful in radiative transfer modeling, remote sensing of vegetation parameters, land surface modeling, 328 

and ecological studies. 329 
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The globally derived MLA is 41.47°, which is consistent with the LIA measurements (40.74°, Tables 3 and 4). However, the 330 

derived MLAs of DBF, DNF, CRO-B, and SHR are approximately 10° greater than the measured MLAs. It is noted that the 331 

number and spatial distribution of LIA measurements for these biomes are limited. For example, the global CRO-B areas are 332 

dominated by soybeans with higher LIA (Table S2), and the LIA measurements for soybeans are limited, which caused the 333 

CRO-B MLA in the global map to be greater than that in the measurement statistics (Tables 3 and 4). The poor crop MLA 334 

prediction (Fig. 12b) is mainly caused by a small number of samples and the strong seasonal variation. It is difficult to 335 

consider within-crop LIA variation when typical MLA values are assigned to different crops.  336 

The global MLA was evaluated through a comparison of the MLA-derived G(0) with the high-resolution reference (Fig. 13). 337 

The result shows that MLA-derived G(0) overestimates at low values, especially for CRO, PAS, SHR, and WET. The 338 

overestimation is caused by the underestimation of MLA at high values (Fig. 12), vegetation structural complexity, and 339 

seasonal variation (Fig. 13). In addition, the overestimation can be explained by the CI angular effect and the inability to 340 

distinguish branches and leaves in the generating high-resolution G(0). Previous studies illustrated CI increases with the 341 

view zenith angle (Fang, 2021), which causes whole CI > CI(0) and thus leads to the underestimation of reference G(0) (Eq. 342 

(6) and (7)). The inability to distinguish branches and leaves results in the underestimation of reference G(0) due to the 343 

higher inclination angle of the trunk (Liu et al., 2019). Compared with the previous G(0) derived from global vegetation 344 

biophysical products (Eq. (7)) (R2 = 0.11, RMSE = 0.53) (Li et al., 2022), the MLA-derived G(0) performs better (R2 = 0.38, 345 

RMSE = 0.15). In addition, G(θ) in any direction can be derived from the global MLA (Eq. (3)). Since G(θ) varies most 346 

significantly in the nadir direction for different MLA (Wilson, 1959), the uncertainty of G(θ) derived from the global MLA 347 

in other directions will be smaller than that of G(0). 348 

4.2 The relationship between MLA and other variables 349 

Analysis of the relationships between MLA and other features in the MLA mapping process reveals that MLA is negatively 350 

correlated with NDVI, NIR reflectance, and NIR BRDF kernel coefficients (Fig. 7). These findings are consistent with other 351 

simulation and experimental studies (Zou and Mõttus, 2015; Liu et al., 2012; Dong et al., 2019; Jacquemoud et al., 1994). A 352 

higher MLA canopy is characterized by a lower interception capability, which increases NIR downward radiation and 353 

reduces the NIR multiple scattering within the canopy and the canopy reflectance (Liu et al., 2012). This results in negative 354 

correlations between MLA and NIR reflectance and vegetation index. The negative relationships between MLA and 355 

radiation, precipitation, and temperature (Fig. 7) are related to the vegetation adaptation mechanism. Under suitable climate 356 

conditions, horizontal leaves can enhance light interception and increase the photosynthesis rate (Van Zanten et al., 2010; 357 

King, 1997). The positive correlation between MLA and the standard deviation of radiation and temperature (Fig. 7) 358 

indicates that the MLA is more vertical in areas with significant seasonal changes in radiation and temperature (mid to high-359 

latitude areas) because vertical leaves maximize intercepted radiation under low solar altitudes at mid to high-latitude areas 360 

(Huemmrich, 2013).  361 
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4.3 Use of the new MLA map 362 

The spherical LAD assumption has been widely adopted in the literature (Tang et al., 2016; Zhao et al., 2020; Wang and 363 

Fang, 2020). This study demonstrates that the spherical assumption is valid only for cereal crops, but not for broadleaf 364 

forests (Tables 3 and 4). This finding is consistent with previous local LIA measurements (De Wit, 1965; Pisek et al., 2013; 365 

Yan et al., 2021). For crops, the spherical assumption may even become invalid because of seasonality and species diversity 366 

(Table S2, Figs. 5 and 9). Fig. 13 shows that most of the reference G(0) values are greater than 0.50, while the spherical 367 

distribution would underestimate the interception of radiation and rainfall (Figs. 9 and 11) (Stadt and Lieffers, 2000). In 368 

current LSMs, a constant LIA is commonly assigned for each PFT (Majasalmi and Bright, 2019). For example, the 369 

Community Land Model V5 (CLM5) (Table S4) (Lawrence et al., 2019) uses lower inclination indices and higher LIA 370 

values than our results (Tables 3 and 4) and thus may underestimate canopy interception. The global LIA map generated in 371 

this study provides a more reasonable LIA parameterization strategy for the application communities. 372 

4.4 Limitations and prospects 373 

The limitations of this study relate to the small number of LIA measurements, especially continuous measurements. First, 374 

within-species LIA variations were neglected in the spatial expansion due to limited spatial coverage of existing LIA-375 

measured data (Section 2.3.1). This may introduce some errors, especially for crops. Second, the LIA measurement data 376 

were obtained using different sampling schemes and methods. This inconsistency may influence the results. Third, for 377 

forests, the contribution of the understory was not considered. Typically, the understory is characterized by more horizontal 378 

leaves, and ignoring the understory may lead to an MLA overestimation (Utsugi et al., 2006). Nevertheless, a previous study 379 

showed that the relative contribution of the understory to the overall MLA is less than 10% (Li et al., 2022). Finally, only the 380 

growing season MLA was calculated, whereas the seasonal and long-term variations of MLA were not considered due to the 381 

lack of continuous LIA measurements.  382 

In the future, more efficient LIA observation systems should be developed to provide continuous LIA data (Kattenborn et al., 383 

2022). LIA measurements can be integrated into existing ground observation networks, such as the National Ecological 384 

Observatory Network (NEON) (Kao et al., 2012), Integrated Carbon Observation System (ICOS) (Gielen et al., 2018), and 385 

Terrestrial Ecosystem Research Network (TERN) (Karan et al., 2016), to enhance temporal LIA measurements in larger 386 

spatial extent, especially for DNF and crops. The formulation of standard measurement and data-sharing protocols will 387 

promote data-sharing and utilization (Li et al., 2023). Multiangle reflectance (Jacquemoud et al., 2009; Goel and Thompson, 388 

1984; Jacquemoud et al., 1994) or light detection and ranging (Zheng and Moskal, 2012; Bailey and Mahaffee, 2017; Itakura 389 

and Hosoi, 2019) are encouraging remote sensing tools that can help to derive temporally continuous and high-resolution 390 

MLA data. 391 
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5 Conclusion 392 

This study compiled existing global LIA measurements and generated the first global 500 m MLA and G(0) products by 393 

gap-filling the LIA measurement data using a random forest regressor. The mean of global LIA measurements is 40.74° and 394 

cereal crops show the highest MLA (59.11°). The global MLA shows an explicit spatial distribution and the value increases 395 

with latitude. The global MLA is 41.47°±9.55° and follows the order of CRO-C > CRO-B > DNF > SHR > ENF ≈ GRA > 396 

DBF > EBF. The predicted MLA presents a medium consistency (r = 0.75, RMSE = 7.15°) with the validation samples for 397 

noncrops. For crops, the results are relatively poorer (r = 0.48 and 0.60 for broadleaf crops and cereal crops) because of 398 

limited LIA measurements and strong seasonality. The G(0) derived from MLA is moderately consistent with the reference 399 

G(0) (r = 0.62).  400 

The MLA and G(0) products obtained in this study would enhance our understanding of global LIA and assist remote 401 

sensing retrieval and land surface modeling studies. These products provide a more realistic parameterization strategy than 402 

the commonly used spherical LAD and PFT-specific MLA assignment. Note the global MLA and G(0) products mainly 403 

represent the typical state during the growing season. These products can be further improved and temporal MLA data can 404 

be obtained through continuous measurements and remote sensing retrieval. 405 
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