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Abstract. Leaf inclination angle (LIA), the angle between leaf surface normal and zenith directions, is a vital trait in radiative 10 

transfer, rainfall interception, evapotranspiration, photosynthesis, and hydrological processes. Due to the difficulty in obtaining 11 

large-scale field measurement data, LIA is typically assumed to follow the spherical leaf distribution or simply considered 12 

constant for different plant types. However, the appropriateness of these simplifications and the global LIA distribution are 13 

still unknown. This study compiled global LIA measurements and generated the first global 500 m mean LIA (MLA) product 14 

by gap-filling the LIA measurement data using a random forest regressor. Different generation strategies were employed for 15 

noncrops and crops. The MLA product was evaluated by validating the nadir leaf projection function (G(0)) derived from the 16 

MLA product with high-resolution reference data. The global MLA is 41.47°±9.55°, and the value increases with latitude. The 17 

MLAs for different vegetation types follow the order of cereal crops (54.65°) > broadleaf crops (52.35°) > deciduous needleleaf 18 

forest (50.05°) > shrubland (49.23°) > evergreen needleleaf forest (47.13°) ≈ grassland (47.12°) > deciduous broadleaf forest 19 

(41.23°) > evergreen broadleaf forest (34.40°). Cross-validation shows that the predicted MLA presents a medium consistency 20 

(r = 0.75, RMSE = 7.15°) with the validation samples for noncrops, whereas crops show relatively lower correspondence (r = 21 

0.48 and 0.60 for broadleaf crops and cereal crops) because of the limited LIA measurements and strong seasonality. The 22 

global G(0) distribution is out of phase with that of the MLA and agrees moderately with the reference data (r = 0.62, RMSE 23 

= 0.15). This study shows that the common spherical and constant LIA assumptions may underestimate the interception of 24 

most vegetation types. The MLA and G(0) products derived in this study would enhance our knowledge about global LIA and 25 

should greatly facilitate remote sensing retrieval and land surface modeling studies. 26 

The global MLA and G(0) products can be accessed at:  27 

Li, S. and Fang, H. 2025, https://doi.org/10.5281/zenodo.12739662.  28 
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1 Introduction 30 

Vegetation regulates terrestrial carbon and water cycles through a series of biophysical processes such as photosynthesis, 31 

respiration, and transpiration (Foley et al., 1996; Chen et al., 2019). These biophysical processes are mainly carried by leaves 32 

and the characterization of leaves within canopies is vital for remote sensing and earth system modeling (Ross, 1975; Lawrence 33 

et al., 2019). Leaf inclination angle (LIA) denotes the inclination of the leaf or needle to the horizontal plane or the angle 34 

between the leaf surface normal and zenith (Wilson, 1960). LIA is a key canopy structural trait that determines radiative 35 

transfer, rainfall interception, evapotranspiration, photosynthesis, and hydrological processes (Sellers, 1985; Ross, 1981; 36 

Mantilla-Perez and Salas Fernandez, 2017; Xiao et al., 2000; Maes and Steppe, 2012). LIA has been used in radiative transfer 37 

modeling (RTM), remote sensing inversion, and land surface modeling (LSM) studies (Tang et al., 2016; Wang and Fang, 38 

2020; Lawrence et al., 2019; Ross, 1975).  39 

At the canopy scale, the probability density of LIA or the fraction of leaf area per unit LIA is expressed as the leaf angle 40 

distribution (LAD) (De Wit, 1965). De Wit (1965) summarized six theoretical LADs, including planophile, erectophile, 41 

extremophile, plagiophile, uniform, and spherical distributions. Specifically, the spherical distribution assumes that the relative 42 

probability density of the LIA is proportional to the area of the corresponding sphere surface element and its mean leaf 43 

inclination angle (MLA) equals 57.3° (MLA = 57.3°) (De Wit, 1965). Furthermore, Ross (1981) defined the inclination index 44 

(ꭓL) to describe the departure of LAD from the spherical distribution. For the planophile distribution, ꭓL = 1; for the erectophile 45 

distribution, ꭓL = -1; and for the spherical distribution, ꭓL =0. In the radiative transfer regime, LIA is generally represented by 46 

the leaf projection function (G(θ)), which is defined as the average projection ratio of unit leaf area in the illumination or 47 

viewing direction θ (Ross, 1981; Nilson, 1971). The spherical distribution is characterized by an isotropic leaf projection 48 

function (G ≡ 0.5) (De Wit, 1965).  49 

In the field, LIA can be measured directly based on the leaf's geometrical structure or using indirect optical methods (Lang, 50 

1973; Ryu et al., 2010; Norman and Campbell, 1989; Weiss and Baret, 2017). Using these methods, several LIA measurements 51 

have been carried out and some LIA datasets were constructed (Kattge et al., 2020; Chianucci et al., 2018; Hinojo-Hinojo and 52 

Goulden, 2020; Pisek and Adamson, 2020). These field methods are usually time-consuming and labor-intensive and are 53 

typically difficult to acquire large-scale LIA (Li et al., 2023). In addition, the existing LIA datasets have not been 54 

comprehensively analyzed. LIA has also been estimated from satellite imagery through empirical relationships or radiative 55 

transfer model inversions (Zou and Mõttus, 2015; Bayat et al., 2018; Goel and Thompson, 1984). Remote sensing methods 56 

are used primarily for crops in local regions, and the generality of these algorithms is limited (Li et al., 2023). Due to the 57 

difficulty in large-scale LIA measurements and estimations, our knowledge about the global LIA remains lacking.  58 

Because our understanding of the global LIA is limited, different LIA simplification strategies have been adopted in various 59 

studies. For example, LIA is typically assumed to follow the spherical distribution (Tang et al., 2016; Zhao et al., 2020; Wang 60 

and Fang, 2020). However, this assumption may decrease the accuracy of radiative transfer modeling, significantly 61 

underestimate the radiation interception (Stadt and Lieffers, 2000), and cause large errors (>50%) in leaf area index (LAI) 62 



3 
 

measurements and inversions (Yan et al., 2021). The spherical LIA assumption may introduce greater error in the nadir 63 

direction than other viewing geometries (Yan et al., 2021), considering the large G variation in this direction (Wilson, 1959). 64 

The lack of global LIA knowledge also limits the retrieval of other vegetation structural parameters(Li et al., 2023). In many 65 

LSMs, LIA is commonly treated as a fixed value for different plant function types (PFT) (Lawrence et al., 2019; Majasalmi 66 

and Bright, 2019). Field LIA measurements have demonstrated that the spherical distribution is not appropriate for forests, 67 

and the PFT-dependent LIA ignores LIA variation within the PFT (Pisek et al., 2013; Yan et al., 2021; Majasalmi and Bright, 68 

2019).  69 

This study aims to generate the first global MLA map from existing LIA field measurements using a data-driven gap-filling 70 

method. This method involves spatial expansion and upscaling of LIA measurements, and a random forest regressor using 71 

input spectral, climate, and PFT data. Based on the global MLA map, we tested whether the spherical LIA assumption is 72 

appropriate at the global scale. The new MLA map was validated by comparing the nadir G (G(0)) derived from the MLA with 73 

high-resolution reference data. Section 2 outlines the materials and methods employed to generate and evaluate the global 74 

MLA. Section 3 presents the global LIA measurements, global MLA and G(0), and evaluation results. Section 4 discusses the 75 

performance of the global MLA and G(0), the usage of the new MLA map, and the limitations of the study. Section 5 presents 76 

the main conclusions. 77 

2 Materials and methods 78 

2.1 LIA measurement data 79 

2.1.1 TRY LIA dataset 80 

TRY is a network of vegetation scientists headed by Future Earth, the Max Planck Institute for Biogeochemistry, and German 81 

Centre for Integrative Biodiversity Research, providing a global database of curated plant traits (the TRY database) 82 

(https://www.trydb.org/TryWeb/Home.php). Since its establishment in 2007, the TRY database has continuously evolved and 83 

has become one of the most widely used vegetation trait databases. The latest V6 version (released on October 13, 2022) 84 

employed in this study contains 15,409,681 trait records covering 305,594 plant taxa (Kattge et al., 2020). In this database, 85 

LIA was recorded as a numerical or categorical variable. After data extraction and checking, 31,043 valid records were used, 86 

which include numerical LIA, locations, and species. Many measurements lack location information, whereas, for some 87 

locations, there are many measurements for individual species. The spatial distribution map appears relatively sparse despite 88 

a large volume of data (Fig. 1). The LIA measurements in South America are mainly from palms while the LIA measurements 89 

of most species are located in the Northern Hemisphere.  90 

https://www.trydb.org/TryWeb/Home.php
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 91 
Figure 1. Locations of global leaf inclination angle measurements collected from TRY and the literature. DBF: deciduous broadleaf forest, 92 
DNF: deciduous needleleaf forest, EBF: evergreen broadleaf forest, ENF: evergreen needleleaf forest, CRO-B: broadleaf crops, CRO-C: 93 
cereal crops, GRA: grassland, SHR: shrubland.  94 

2.1.2 LIA data from the literature 95 

To fully utilize distributed and considerable LIA measurement data in the published literature, several keyword searches (leaf 96 

angle, leaf inclination angle, and leaf tilt angle) were performed in the Web of Science, Google Scholar, Google, and Chinese 97 

documentary databases. The LIA, location, and species information were manually extracted from the literature (Fig. 1). 98 

Several LIA measurements were already included in the TRY database (Chianucci et al., 2018; Pisek and Adamson, 2020). 99 

After aggregating LIA measurements for the same species at the same location, 780 LIA records were accessed from previous 100 

studies (Hinojo-Hinojo and Goulden, 2020; Pisek et al., 2022; Chen et al., 2021). 101 

2.1.3 Manual LIA extraction 102 

Only a few measurements in the northern tundra region were obtained, and the measurements in tropical regions are dominated 103 

by palm trees (Fig. 1). Therefore, LIA data for the northern tundra and tropical regions were extracted from horizontal side-104 

view photographs searched from Google (Fig. S1). ImageJ software (https://imagej.nih.gov/ij/) was used to process the leveled 105 

photographs and derive LIA following the method of Pisek et al. (2011). The TRY species location data (848,919, Fig. S2b) 106 

(Jan 03, 2022) were used to obtain the dominant species information in tropical rainforests and the northern tundra. The species 107 

location points in these two vegetation types were spatially filtered and the frequency of occurrence for each species was 108 

counted. The species with a high frequency of occurrence were selected to measure the LIA. For each species, more than 75 109 

https://imagej.nih.gov/ij/
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leaves perpendicular to the viewing direction were selected and processed based on visual judgment to ensure the stability and 110 

reliability of the MLA (Pisek et al., 2013). In total, the MLA of 104 species was manually derived. 111 

In this study, most LIA measurements are obtained with protractor and level digital photogrammetry, especially for needleleaf 112 

species. Therefore, the distinction between branches and leaves is considered. The diverse LIA records from different sources 113 

were sorted to match the TRY species and to get the PFT based on the TRY Categorical Traits Dataset 2018 (https://www.try-114 

db.org/TryWeb/Data.php#3). LIA measurements from different sources were unified into canopy-level MLA with average 115 

operation by leaf number (see Appendix A). If there were multiple LIA records for the same species, the mean value was 116 

computed for the same location and species. In total, 5,554 LIA records of 1,194 species were collected, covering the growing 117 

season from 2001 to 2022. LIA location replicates per species range from 1 to 330, and most replicates (98 %) are less than 118 

50. Considering the different numbers of records for each species, the LIA data was further aggregated by species.  119 

2.2 Remote sensing data 120 

2.2.1 Ancillary data used for MLA mapping 121 

The ancillary data used for global MLA mapping and analysis are listed in Table 1. Most earth observation data were accessed 122 

and processed in Google Earth Engine (GEE) (https://earthengine.google.com/). The PFT classification system in the MODIS 123 

global 500 m land cover type product (MCD12Q1 C6) was used and mode-aggregated from 2001 to 2022 to match the LIA 124 

measurements (Fig. S3) (Sulla-Menashe et al., 2019). The 2001–2022 Landsat surface reflectance (Level 2, Collection 2, Tier 125 

1) (Crawford et al., 2023), including Landsat 5 (2001–2012), Landsat 7 (2012–2013), and Landsat 8 (2013–2022) was utilized 126 

to generate a global 30 m PFT map (Section 2.3.1), which was subsequently employed for LIA upscaling. Considering the 127 

sensitivity of directional reflectance variation to LIA (Jacquemoud et al., 2009; Li et al., 2023), the 2001–2022 MODIS 128 

bidirectional reflectance distribution function (BRDF) model parameters dataset (MCD43A1 C6.1) (Schaaf and Wang, 2015b) 129 

and nadir BRDF adjusted reflectance dataset (MCD43A4 V6 NBAR) (Schaaf and Wang, 2015a) produced daily using 16 days 130 

of Terra and Aqua MODIS data at 500 m resolution and were utilized as predictive variables. We used MCD43A1 C6.1 and 131 

MCD12Q1 and MCD43A4 C6 for MLA mapping as these data were available on GEE when this study was conducted. Only 132 

minor calibration changes and polarization correction were adopted in the upgrading from Collection 6 to 6.1, while the 133 

MCD12Q1 and MCD43A4 algorithms remain the same 134 

(https://landweb.modaps.eosdis.nasa.gov/data/userguide/MODIS_Land_C61_Changes.pdf). In addition, the multi-year 135 

aggregation of these products (Table 2) further mitigates the version impact. Due to the scarcity of crop LIAs and the lack of 136 

location information for existing crop LIA measurements, fine-resolution (10/30 m) crop-type maps (Table 1) in 2018 were 137 

employed to support crop LIA mapping. Other data include the ERA5-Land reanalysis data, the ALOS digital elevation model 138 

(AW3D30 V3.2), and the 2001–2022 MODIS LAI product (MCD15A2H) (Myneni, 2015). The LAI product was averaged 139 

and aggregated from 2001–2022.  140 

 141 

https://www.try-db.org/TryWeb/Data.php#3
https://www.try-db.org/TryWeb/Data.php#3
https://earthengine.google.com/
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Table 1. Remote sensing data for global MLA mapping. BRDF: bidirectional reflectance distribution function. 142 

Category Data Year  Spatial 
resolution 

Temporal 
resolution 

Reference 

Plant function type MCD12Q1 C6 2001–2022 500 m Yearly (Sulla-Menashe et al., 2019) 
Surface reflectance Landsat collection 2 2001–2022 30 m 16 days (Crawford et al., 2023) 

MCD43A4 V6 NBAR 2001–2022 500 m Daily (Schaaf and Wang, 2015a) 
BRDF MCD43A1 C6.1 2001–2022 500 m Daily (Schaaf and Wang, 2015b) 
Crop type Cropland Data Layers (CDL)  2018 30 m Yearly (Boryan et al., 2011) 

EUCROPMAP 2018 10 m Yearly (D’andrimont et al., 2021) 
AAFC Annual Crop 
Inventory 

2018 30 m Yearly (Fisette et al., 2013) 

Northeast China crop-type 
map 

2018 30 m Yearly (You et al., 2021) 

NESEA-Rice10 2018 10 m Yearly (Han et al., 2021) 
China maize map 2018 30 m Yearly (Shen et al., 2022) 
China winter wheat map 2018 30 m Yearly (Dong et al., 2020) 

Climate ERA5-Land 2001–2022 0.1° Monthly (Muñoz-Sabater et al., 2021) 
Terrain AW3D30 V3.2 — 30 m — (Tadono et al., 2014) 

2.2.2 High-resolution reference data 143 

The high-resolution reference datasets provided by Ground Based Observations for Validation (GBOV, 144 

https://land.copernicus.eu/global/gbov/dataaccessLP/) and DIRECT 2.1 (https://calvalportal.ceos.org/lpv-direct-v2.1) were 145 

used to evaluate the generated global MLA (Fig. 2). These datasets provide high-resolution (20/30 m) LAI, effective LAI 146 

(LAIe), and fractional vegetation cover (FVC, the proportion of the vertical projection area covered by green vegetation 147 

(Gitelson et al., 2002)) data over a 3 km × 3 km area centered on each site generated using empirical relationships between 148 

various vegetation indices and ground measurements (Li et al., 2022; Brown et al., 2020). GBOV has provided continuous 149 

high-resolution reference data since 2013 (Fig. 2).  150 

https://land.copernicus.eu/global/gbov/dataaccessLP/
https://calvalportal.ceos.org/lpv-direct-v2.1
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 151 
Figure 2. Locations of GBOV and DIRECT 2.1 sites used in this study. CRO: Cultivated crops, MF: Mixed forest, PAS: Pasture/hay, WET: 152 
Woody wetlands. See Fig. 1 for other acronyms. The black frame indicates those sites with >5 continuous records. 153 

The global MLA map was indirectly evaluated by comparing the nadir leaf projection function derived from MLA with 154 

reference G(0), because of the lack of high-resolution reference MLA. The high-resolution reference G(0) was derived from 155 

high-resolution LAI, FVC, and clumping index (CI) (=LAIe/LAI) with the Beer-Lambert law (Fig. S4) (Nilson, 1971).  156 

𝑃𝑃(𝜃𝜃) = 𝑒𝑒𝑒𝑒𝑒𝑒−
𝐺𝐺(𝜃𝜃)∗𝐿𝐿𝐿𝐿𝐿𝐿∗𝐶𝐶𝐿𝐿(𝜃𝜃)

𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃)            (1) 157 

Where 𝑃𝑃(𝜃𝜃), 𝐶𝐶𝐶𝐶(𝜃𝜃), and 𝐺𝐺(𝜃𝜃) denote the gap fraction, CI, and G in direction 𝜃𝜃, respectively. Specifically, the gap fraction in 158 

the nadir direction can be expressed by FVC. 159 

𝑃𝑃(0) = 1 − 𝐹𝐹𝐹𝐹𝐶𝐶            (2) 160 

Therefore, the reference G(0) was derived using the following formula. 161 

𝐺𝐺(0)_𝐶𝐶𝐶𝐶(0) = − 𝑙𝑙𝑙𝑙(1−𝐹𝐹𝐹𝐹𝐶𝐶)

𝐶𝐶𝐶𝐶(0)∗𝐿𝐿𝐿𝐿𝐶𝐶
           (3) 162 

By using the whole CI as the nadir CI (CI(0)) in the above equation (Fang et al., 2021; Li et al., 2022), G(0) was calculated as 163 

follows: 164 

𝐺𝐺(0)_𝐶𝐶𝐶𝐶 ≈ − 𝑙𝑙𝑙𝑙(1−𝐹𝐹𝐹𝐹𝐶𝐶)

𝐶𝐶𝐶𝐶∗𝐿𝐿𝐿𝐿𝐶𝐶
           (4) 165 
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2.3 Mapping global LIA 166 

2.3.1 Data preparation 167 

Many studies have treated LIA as a species-specific static trait and ignored within-species variations when LIA measurements 168 

are limited (Pisek et al., 2022; Toda et al., 2022; Raabe et al., 2015). Following the rationale, the spatial coverage of LIA 169 

measurements was expanded, and those records without location information were utilized (section 2.1.1). Under this 170 

assumption, the LIA measurements were expanded through TRY species location data with species name matching. The 171 

species location data comprises trait measurements for common species representing a hundreds-of-square-meter area around 172 

the location. The dominant species was artificially identified by investigators and thus the spatial representativeness is 173 

considered. When a species had multiple LIA observations at different locations, the nearest LIA was assigned to the TRY 174 

species location. Visual inspections were conducted to remove potential TRY location biases, especially for non-vegetated 175 

points such as water bodies and deserts. After spatial expansion, the number of LIAs reached 12,328 and its spatial distribution 176 

became more uniform (Fig. S2c). 177 

In this study, the scale gap between field measurements and satellite remote sensing data was fully considered. The canopy 178 

level MLA measurement is regarded as equal to 30 m-MLA considering its spatial representativeness. To upscale the MLA 179 

measurements from canopy level to the satellite resolution (500 m), a 30 m PFT map was first derived from Landsat reflectance 180 

using a random forest classification method. The random forest was trained at a 500 m scale using the mode-aggregated 181 

MODIS PFT classification map as training samples to generate a 30 m PFT map by hierarchically selecting homogeneous 182 

pixels (with a coefficient of variation in reflectance < 0.2). The classification features were the same as those in the MODIS 183 

classification algorithm (Sulla-Menashe et al., 2019). For a 500 m pixel with multiple PFTs (Fig. 3a), when one PFT had no 184 

MLA measurement, the MLA of the PFT was assigned with the value of its nearest neighbor within 100 km with the same 185 

PFT. This distance setting (100 km) was based on a previous study that derived global maps for various leaf traits from a 186 

limited number of field measurements, remote sensing, and climate data (Moreno-Martínez et al., 2018). In field measurement, 187 

the entire canopy MLA is commonly calculated as the average of all measured leaf LIAs weighted by leaf area (see Appendix 188 

A) (Zou et al., 2014; De Wit, 1965; Yan et al., 2021). Leaves with larger areas have higher weights. Upscaling MLA from 30 189 

m to 500 m follows the same rationale as that from leaf to canopy scale. For a 30 m pixel with a higher LAI, the weight of the 190 

pixel is higher. Therefore, the 500 m MLA was computed as the weighted average of the enhanced vegetation index (EVI2) 191 

assuming a linear relationship between LAI and EVI2 (see Appendix A) (Dong et al., 2019; Alexandridis et al., 2019). 192 

Although previous studies have reported that vegetation index may be nonlinearly correlated to LAI because of the saturation 193 

effect at medium and high LAI conditions, EVI2 is highly resistant to the saturation effect (Gao et al., 2023). The errors caused 194 

by this slight nonlinearity were further analyzed in Section 4.4. 195 

𝑀𝑀𝑀𝑀𝑀𝑀500𝑚𝑚 = ∑𝑀𝑀𝐿𝐿𝐿𝐿30𝑚𝑚×𝐸𝐸𝐸𝐸𝐶𝐶230𝑚𝑚
∑𝐸𝐸𝐸𝐸𝐶𝐶230𝑚𝑚

          (5) 196 
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 197 
Figure 3. Leaf inclination angle (LIA) upscaling (a) and global mean LIA (MLA) mapping (b) strategies. 198 

The 500 m upscaled MLA samples were further refined to select the most representative samples following three criteria: 1) 199 

the coefficient of variation of the 30 m EVI2 in the 500 m pixel is less than 0.2, 2) the vegetation proportion in the 500 m pixel 200 

is greater than 0.8, and 3) the proportion of PFTs represented by the MLA measurements in the 500 m pixel is greater than 0.4. 201 

The final number of samples after refinement is 3,013 with a uniform spatial distribution (Fig. 4). 202 

 203 
Figure 4. Distribution of global mean leaf inclination angle samples after screening. See Fig. 1 for acronyms. 204 
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2.3.2 Global MLA mapping 205 

Different mapping strategies were employed for noncrops and crops (Fig. 3b) considering the small number of valid crop 206 

samples (Fig. 4) and the lack of location information for most crop samples. For noncrops, the upscaled 500 m MLA samples 207 

were used to train a random forest regressor to predict the global MLA from different features (Table 2). All input features 208 

were unified to the 500 m resolution. Therefore, the derived MLA map corresponds to the average MLA at the 500 m scale. 209 

Notably, this study used all MODIS BRDF and spectral reflectance data including low-quality ones that may be contaminated 210 

by clouds. The multi-year aggregation (Table 2) can partly mitigate the influence induced by low-quality observations (Sulla-211 

Menashe et al., 2019). Normalized difference vegetation index (NDVI) was used as the predictive feature because it is strongly 212 

coupled with LIA, especially under low and medium vegetation density conditions (Dong et al., 2019; Zou and Mõttus, 2015). 213 

To reduce computational complexity and potential overfitting, a feature selection process was conducted based on the variable 214 

importance (the sum of the decrease in Gini impurity index over all trees in the forest) computed by the model, and only the 215 

40 most important variables were used in the final prediction. During the training process, the out-of-bag error was minimized 216 

to obtain the optimal hyperparameters. The prediction performance of the random forest regressor was evaluated using a ten-217 

fold cross-validation approach with upscaled MLA samples.  218 

For crops, the measured MLA values were averaged for different crop types as a typical MLA (Table S2). After assigning 219 

typical MLAs for different crops with high-resolution crop maps (Table 1), the high-resolution crop MLA were upscaled to 220 

500 m as training samples (Eq. (5)). Only the samples with a crop area ratio > 80% within a 500 m pixel were selected for 221 

training. The crops were further divided into broadleaf crops and cereal crops and processed with the same procedure used for 222 

noncrops (Fig. 3b). All procedures were conducted on GEE under the WGS-84 geographic coordinate system. 223 

Two quality layers were added to represent the quality of input data and the prediction model. The input data quality was 224 

denoted by the proportion of high-quality BRDF inversions for each pixel. The prediction model quality was represented 225 

qualitatively for each pixel considering whether the MLA was predicted by extrapolating beyond the range of the training 226 

samples. The random forest model is typically regarded as a black-box and its uncertainty is difficult to quantify in the present 227 

study. 228 

 229 
Table 2. Predictive features in global MLA mapping. 230 

Category Features Variables Number 
Spectral Blue, green, red, near-infrared reflectance 10%, 33%, 50%, 67%, 90% quantiles 

and standard deviation 
24 

NDVI 10%, 33%, 50%, 67%, 90% quantiles 
and standard deviation 

6 

BRDF Kernel coefficients of the red band 10%, 33%, 50%, 67%, 90% quantiles 
and standard deviation 

18 

Kernel coefficients of near-infrared band 10%, 33%, 50%, 67%, 90% quantiles 
and standard deviation 

18 

PFT PFT Constant 1 
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Climate Solar downward radiation Mean and standard deviation 2 
Temperature Mean and standard deviation 2 
Precipitation Mean and standard deviation 2 

Terrain Elevation Constant 1 
Slope Constant 1 
Aspect Constant 1 

2.4 Evaluation of global MLA 231 

The global MLA map was indirectly evaluated using the nadir leaf projection function. The global G(0) was derived from the 232 

MLA and evaluated with high-resolution reference (Section 2.2.2) following the upscaling scheme recommended by the Land 233 

Product Validation (LPV) Subgroup of the Committee on Earth Observation Satellites (CEOS) (http://lpvs.gsfc.nasa.gov/).  234 

Assuming a single-parameter ellipsoidal leaf angle distribution (Campbell, 1990; Wang et al., 2007), the parameter ꭓ, the ratio 235 

of the horizontal and vertical axes of an ellipsoid, was first derived from MLA in radians. Compared to other models, the 236 

single-parameter ellipsoidal leaf angle distribution is a relatively more accurate and simpler model and has been used in many 237 

remote sensing studies (Campbell, 1990; Wang et al., 2007; Kuusk, 2001; Verhoef et al., 2007). 238 

𝜒𝜒 = −3 + (𝑀𝑀𝐿𝐿𝐿𝐿
9.65

)−0.6061           (6) 239 

The G(θ) value in the nadir direction (θ=0°) was calculated using an analytical formula (Leblanc and Fournier, 2017).  240 

𝐺𝐺(𝜃𝜃) = �(𝜒𝜒2+𝑡𝑡𝑡𝑡𝑙𝑙2 𝜃𝜃) 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃
𝜒𝜒+1.774(𝜒𝜒+1.182)−0.73          (7) 241 

The MLA product was first upscaled to 3 km through a weighted averaging method using the MODIS LAI to derive G(0) (Eq. 242 

(7)). The reference LAI, FVC, and CI were also upscaled to 3 km through simple averaging to compute the reference G(0) (Eq. 243 

(4)). The MLA-derived G(0) and the reference G(0) were compared at the 3 km × 3 km area around each site. The correlation 244 

coefficient (r), bias, and root mean square error (RMSE) were calculated as the evaluation metrics, as follows: 245 

𝑟𝑟 = �1 − ∑ (𝑦𝑦�𝑖𝑖−𝑦𝑦𝑖𝑖)2
𝑛𝑛
𝑖𝑖=1
∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�)2𝑛𝑛
𝑖𝑖=1

           (8) 246 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 1
𝑙𝑙
∑ (𝑦𝑦� − 𝑦𝑦𝑖𝑖)𝑙𝑙
𝑖𝑖=1            (9) 247 

𝑅𝑅𝑀𝑀𝑅𝑅𝑅𝑅 = �1
𝑙𝑙
∑ (𝑦𝑦� − 𝑦𝑦𝑖𝑖)2𝑙𝑙
𝑖𝑖=1           (10) 248 

where 𝑦𝑦�𝑖𝑖, 𝑦𝑦𝑖𝑖 , and n denote the MLA-derived G(0), reference G(0), and the number of G(0), respectively. 249 
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3 Results 250 

3.1 Global measured LIA values 251 

The species-aggregated LIA was employed in the analysis of global LIA measurements. Fig. 5 shows the distributions of 252 

global measured LIA values for different PFTs. The global measured MLA is 40.74° and generally follows the order of CRO-253 

C > GRA > ENF > CRO-B > EBF > SHR > DNF > DBF (Table 3). Cereal crops exhibit the highest MLA (59.11°), whereas 254 

DBF has the most horizontal leaves (MLA = 34.94°). GRA and EBF show large LIA variations (Std = 20.44° and 17.17°), 255 

whereas CRO-B exhibits a small range. The DNF LIA measurements are only for one species and show very little variation 256 

(Fig. 5). 257 

 258 
Figure 5. Distribution of global mean LIA (MLA) for different plant function types (see Fig. 1 for acronyms). The last shape shows the 259 
global average. Statistics are conducted for each species as represented by points in the figure. 260 

 261 
Table 3. Statistics of leaf inclination angle measured for different plant functional types (PFT). STD is the standard deviation. The inclination 262 
index (ꭓL) is converted from mean leaf inclination angle (MLA) (𝝌𝝌𝑳𝑳 = 𝟐𝟐𝟐𝟐𝒐𝒐𝒐𝒐(𝑀𝑀𝑀𝑀𝑀𝑀) − 𝟏𝟏) (Lawrence et al., 2019). 263 

PFT DBF DNF EBF ENF CRO-B CRO-C GRA SHR Globe 
Number of species 171 1 347 23 32 31 399 190 1194 
Mean(°) 34.94 35.88 39.30 43.69 39.71 59.11 44.13 38.32 40.74 
STD (°) 12.40 0.00 16.11 14.40 8.11 13.28 20.17 13.80 17.12 
ꭓL 0.64 0.62 0.55 0.45 0.54 0.03 0.44 0.57 0.52 
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3.2 The relationships between MLA and other variables 264 

Fig. 6 shows the importance of the top 40 variables in the MLA prediction obtained from the random forest regression model. 265 

The importance of these 40 variables accounts for 78% of the total importance among all 76 variables. Spectral features account 266 

for 30% of the importance, which is higher than that of other features. Among the spectral features, NDVI, near-infrared (NIR) 267 

band, and red band reflectance are most critical for MLA prediction. The importance of BRDF features is comparable to that 268 

of climatic variables (21% vs. 20%), followed by terrain features (7%). Among the BRDF features, the NIR BRDF information 269 

shows a higher contribution than the red band, with importance in the following order: geometrically scattered kernel> isotropic 270 

scattering kernel > volumetric scattering kernel. The importance ranking of the climatic variables follows the order of 271 

precipitation ≈ solar radiation > temperature. In addition, elevation, slope, and aspect significantly impact on the MLA 272 

prediction.  273 



14 
 

 274 
Figure 6. The importance of variables in the mean leaf inclination angle prediction. NIR, Red, Green, and Blue denote the nadir reflectance 275 
in near-infrared, red, green, and blue bands, respectively; geo, iso, and vol represent kernel coefficients of geometric-optical surface 276 
scattering, isotropic scattering, and volumetric scattering, respectively. The suffixes p××, mean, and std represent ××% quantile, mean, and 277 
standard deviation, respectively. 278 
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Fig. 7 illustrates the relationships between the upscaled MLA samples and the 16 most important variables. Overall, MLA 279 

decreases with the increase of NDVI, NIR reflectance, and NIR BRDF kernel parameters, whereas it increases with the 280 

standard deviation of NDVI. MLA is negatively correlated with solar radiation, precipitation, and temperature. Additionally, 281 

MLA increases with increasing the standard deviation of solar radiation (corresponding to mid-to-high latitude regions), while 282 

it decreases with the increase in the standard deviation of precipitation (corresponding to tropical and subtropical regions with 283 

high precipitation). MLA increases slightly with altitude and then decreases.  284 

 285 
Figure 7. Relationships between mean leaf inclination angle (MLA) and different predictive variables. See Fig. 6 for different variables. 286 

3.3 Global MLA and G(0) maps 287 

Fig. 8 shows the spatial distribution of the global 500 m MLA product. Central Asia (grasslands), southern India (cereal crops), 288 

and the central United States (grasslands and cereal crops) show higher MLAs of approximately 60°, whereas the rainforests 289 

and Southeast Asia forests have more horizontal leaves with MLAs of around 30° (Fig. 8 and S2). MLA increases with latitude, 290 

from 32.93 ± 7.03° around the equator (~1.5° N) to 53.48 ± 3.20° in the northern tundra (~76.5° N). Variation in MLA 291 

decreases as latitude increases (Fig. 8). Among different PFTs, cereal crops show the highest MLA (54.65 ± 6.28°), while 292 
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evergreen broadleaf forest has the lowest MLA (34.40 ± 6.42°), and PFTs follow the order: CRO-C > CRO-B > DNF > SHR > 293 

ENF ≈ GRA > DBF > EBF (Table 4). Grassland, broadleaf forest, and evergreen needleleaf forests show larger MLA variations 294 

than other PFTs, whereas deciduous needleleaf forests show minimal variation. The global vegetation MLA is 41.47°, with a 295 

standard deviation of 9.55°, which is comparable to the MLA of DBF (41.23 ± 6.58°) (Fig. 9a and Table 4).  296 

 297 
Figure 8. The global mean leaf inclination angle (MLA) map. The right panel shows the MLA latitudinal mean (solid line) and the standard 298 
deviation values (shaded area) weighted by leaf area index. 299 

Table 4. Statistics of global mean leaf inclination angle (MLA), nadir leaf projection function (G(0)), and inclination index (ꭓL) for different 300 

plant functional types (PFT). STD is the standard deviation. The ꭓL is converted from MLA (𝜒𝜒𝐿𝐿 = 2𝑐𝑐𝑜𝑜𝐵𝐵(𝑀𝑀𝑀𝑀𝑀𝑀) − 1) (Lawrence et al., 301 

2019). 302 

PFT DBF DNF EBF ENF CRO-B CRO-C GRA SHR Globe 
Area proportion(%) 14.02 6.32 15.08 11.42 2.99 6.84 28.45 14.88 100.00 
MLA(°) 41.23  50.05  34.40  47.13  52.35  54.65  47.12  49.23  41.47  
STD of MLA (°) 6.58  3.24  6.42  8.35  6.63  6.28  8.08  5.35  9.55  
G(0) 0.69  0.58  0.76  0.61  0.55  0.52  0.61  0.59  0.68  
STD of G(0) 0.07  0.03  0.06  0.08  0.07  0.08  0.09  0.06  0.11  
ꭓL 0.50  0.28  0.65  0.36  0.22  0.16  0.36  0.31  0.50  
 303 

The global MLA exhibits an asymmetric probability density distribution toward the lower MLA (Fig. 9b). It roughly presents 304 

three peaks, with the highest peak (~51°) containing DNF, ENF, CRO, GRA, and SHR. The moderate peak (~35°) is mainly 305 

composed of EBF and DBF, while the third peak (~58°) is dominated by crops. The MLAs of crops and some grasslands are 306 

close to the MLA of the spherical distribution (57.30°). The global MLA (41.47°) is 15.83° (38%) smaller than the MLA of 307 

the spherical distribution because the vegetation MLA is mostly less than 57.30° (Fig. 9b).  308 



17 
 

 309 
Figure 9. Statistics (a) and probability density distributions (b) of the global mean leaf inclination angle (MLA) for different plant functional 310 
types. The error bars in (a) represent the standard deviation. The black dash line and shade area in (b) indicate the global MLA mean and 311 
standard deviation. The gray dashed line represents the MLA (=57.30°) of spherical leaf angle distribution. The mean, standard deviation, 312 
and probability density values are weighted by leaf area index. See Fig. 1 for the acronyms. 313 

Fig. 10 displays the spatial distribution of global G(0) generated from MLA. Overall, the global G(0) shows an opposite pattern 314 

with the global MLA. The G(0) values in Central Asia (grasslands, Fig. S3), southern India (cereal crops), and the central 315 

United States (grasslands and cereal crops) are relatively lower than those in tropical rainforests, forests in Southeast Asia, and 316 

forests in the eastern United States. G(0) generally decreases slowly with latitude, from 0.78 ± 0.08 at the equator (~1.5° N) 317 

to 0.52 ± 0.04 in the northern tundra (~76.5° N).  318 
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 319 
Figure 10. The global nadir leaf projection function (G(0)) map. The right panel shows the G(0) mean (solid line) and standard deviation 320 
values (shaded area) weighted by leaf area index. 321 

Among different PFTs, EBF has the highest G(0), at approximately 0.76 ± 0.06 (Fig. 11a, Table 4), whereas cereal crops show 322 

the lowest value, at approximately 0.52 ± 0.08. The DBF G(0) is comparable to the global average. The G(0) of broad-leaved 323 

forests is greater than that of other PFTs (Fig. 11a, Table 4). The global G(0) probability density distribution peaks at 0.52–324 

0.65, with an asymmetric distribution (Fig. 11b). The proportion on the right side of the peak is larger than that on the left. The 325 

peak of the global G(0) distribution mainly contains DNF, ENF, CRO, GRA, and SHR. The left side of the peak is mainly 326 

composed of crops, while the right side is dominated by broad-leaved forests and some shrubs. The spherical distribution G(0) 327 

(0.50) is mainly represented by crops and a small amount of grassland, where G(0) also shows a large variation (~0.35). The 328 

spherical distribution G(0) is 0.18 (26%) less than the global average G(0) (0.68), as most vegetation G(0) is greater than 0.50 329 

(Fig. 11b).  330 
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 331 

Figure 11. Statistics (a) and probability density distributions (b) of the global nadir leaf projection function (G(0)) for different plant 332 
functional types. The error bars in (a) represent the standard deviation. The black dash line and shade area in (b) indicate the global G(0) 333 
mean and standard deviation. The gray dashed line represents the G(0) (=0.50) of spherical leaf angle distribution. The mean, standard 334 
deviation, and probability density values are weighted by leaf area index. See Fig. 1 for the acronyms. 335 

Fig. 12 demonstrates the global distributions of the MLA quality indicators. The global mean proportion of high-quality BRDF 336 

inputs is 68.03%. Northern South America and Central Africa have a low proportion of high-quality inputs (20%) because of 337 

cloud contamination (Fig. 12 (a)). Considering the large number of observations for each pixel (7904 from 2001 to 2022), this 338 

percentage (20%) of high-quality observations is sufficient to map MLA. In addition, 80.39% of the global MLA map was 339 

derived within the feature ranges of training samples, and the rest 19.61% were mainly located in high-latitude regions and 340 

Africa. For the latter areas, the MLA map was predicted with extrapolation and caution should be taken when using the map 341 

(Fig. 12 (b)). 342 
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 343 
Figure 12. Global distributions of quality indicators. (a) and (b) denote the proportion of high-quality BRDF inversions, and whether the 344 
prediction is within the ranges of training samples, respectively. 345 

3.4 Evaluation of global MLA 346 

Fig. 13 shows the comparison between the predicted MLA and upscaled MLA samples using the ten-fold cross-validation 347 

method. For noncrops, the predicted MLA is moderately consistent with the upscaled sample MLA (r = 0.75, RMSE = 7.15°), 348 

with 83% of samples having residuals < 10° and 94% of samples having residuals < 15°. For DNF and SHR, the predicted 349 

MLA compresses the variation range of sample MLA (Fig. 13a). For crops, the predicted MLA of CRO-C shows higher 350 

consistency (r = 0.60) than that of CRO-B (r = 0.48). (Fig. 13b and c). 351 
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 352 
Figure 13. Comparisons between predicted MLA and sample MLA for noncrop (a), broadleaf crops (b), and cereal crops (c) (See Fig. 1 for 353 
the acronyms). The error bar in (a) represents the standard deviation. 354 

Fig. 14 compares G(0) derived from the MLA and high-resolution reference data. The MLA-derived G(0) shows moderate 355 

consistency with the reference G(0) (r = 0.62), and 65% of the estimated G(0) residuals are < 0.15, and 84% of the residuals 356 

are < 0.20. The estimated G(0) generally overestimates (bias = 0.11), especially when G(0) is low (< 0.60), mainly for crops, 357 

pasture, woody wetlands, and shrubs, whereas grasslands show better consistency. The estimated G(0) is temporally more 358 

stable than the reference G(0) which is generally greater than 0.50 and displays seasonal variation (horizontally distributed 359 

bars in Fig. 14). 360 
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 361 
Figure 14. Comparisons of G(0) derived from mean leaf inclination angle and high-resolution reference data for different plant functional 362 
types (see Fig. 2 for the acronyms). The error bar represents the standard deviation of reference G(0) at different seasons. 363 

4 Discussion 364 

4.1 Global MLA and G(0) 365 

This study compiled global LIA field measurements and generated the first global 500 m MLA and G(0) maps (Figs. 8 and 366 

10). These maps show the average MLA and G(0) conditions during the growing seasons from 2001 to 2022. Overall, the 367 

global MLA is lowest around the equator and increases with latitude (Figs. 8 and 10). This accords with the MLA latitude 368 

variation derived from model simulations (Huemmrich, 2013). Crops have higher MLA than broadleaf forests whose leaves 369 

are relatively horizontal. The global MLA and G(0) maps enhance our understanding of the global distribution of MLA and 370 

G(0) and should be useful in radiative transfer modeling, remote sensing of vegetation parameters, land surface modeling, and 371 

ecological studies. 372 
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The global MLA shows good consistency with validation samples (Fig. 13) and the statistics of LIA field measurements 373 

(Tables 3 and 4), demonstrating its reliability. The globally derived MLA is 41.47°, which is consistent with the LIA 374 

measurements (40.74°, Tables 3 and 4). However, the derived MLAs of DBF, DNF, CRO-B, and SHR are approximately 10° 375 

greater than the measured MLAs. It is noted that the number and spatial distribution of LIA measurements for these biomes 376 

are limited. For example, the global CRO-B areas are dominated by soybeans with higher LIA (Table S2), and the LIA 377 

measurements for soybeans are limited, which caused the CRO-B MLA in the global map to be greater than that in the 378 

measurement statistics (Tables 3 and 4). The poor crop MLA prediction (Fig. 13b) is mainly caused by a small number of 379 

samples and the strong seasonal variation. It is difficult to consider within-crop LIA variation when typical MLA values are 380 

assigned to different crops.  381 

Due to the lack of high-resolution reference MLA, the global MLA was evaluated through a comparison of the MLA-derived 382 

G(0) with the high-resolution reference G(0) (Fig. 14). This practice was adopted because both MLA and G(0) are closely 383 

related. G(0) is typically calculated from the LIA distribution function based on Nilson’s algorithm (Nilson, 1971). We 384 

calculated G(0) from MLA assuming an ellipsoidal LIA distribution (De Wit, 1965) and found that the calculated G(0) is 385 

highly consistent with the reference G(0) calculated from the Nilson’s algorithm for different theoretical LIA distributions 386 

(Fig. S5). The MLA-calculated G(0) also shows a monotonic decreasing relationship with MLA (Fig. S6).  387 

The result shows medium consistency but MLA-derived G(0) overestimates at low values (< 0.60), especially for CRO, PAS, 388 

SHR, and WET. The overestimation may be partly caused by the underestimation of MLA at high values that is related to the 389 

errors introduced in the sample expansion and upscaling. These errors are mainly caused by a lack of LIA measurements, 390 

vegetation structural complexity, and seasonal variation. In addition, the uncertainties in the reference G(0) may have 391 

contributed to the overestimation. The reference G(0) was derived from the Beer-Lambert law (Eq. (1)) which assumes that 392 

the canopy is a turbid medium. The turbid medium assumption is unrealistic for complex vegetation (Widlowski et al., 2014). 393 

The angular variation of CI and the mixture of branches and leaves in generating high-resolution G(0) can also lead to the 394 

overestimation. Previous studies have shown that CI increases with the view zenith angle (Fang, 2021), which means that the 395 

whole CI > CI(0) and can lead to the underestimation of the reference G(0) (Eq. (3) and (4)). The woody materials may 396 

introduce biases into the reference G(0) as they were not separated in the high-resolution FVC and LAI products. The mixture 397 

of woody materials and leaves may have caused the underestimation of the reference G(0) because trunks usually have higher 398 

inclination angles (Liu et al., 2019). The MODIS LAI product used for LIA upscaling in the G(0) validation (section 2.4) is 399 

known to have issues such as internal inconsistency, backup algorithm accuracy, and spatiotemporal gaps (Kandasamy et al., 400 

2013; Pu et al., 2023; Zhang et al., 2024). In the future, new improved MODIS LAI can be used in the G(0) validation (Pu et 401 

al., 2024; Yan et al., 2024). Compared with the previous G(0) derived from global vegetation biophysical products (Eq. (4)) 402 

(R2 = 0.11, RMSE = 0.53) (Li et al., 2022), the MLA-derived G(0) performs better (r = 0.62, RMSE = 0.15). In addition, the 403 

G(0) data obtained from our study can be used to derive the G(θ) for any arbitrary angle. One method of getting G(θ) is based 404 

on single-parameter ellipsoidal leaf angle distribution (Campbell, 1990) (Eq. (7)). Another method is to make use of both G(0) 405 

and G(57.3°) (≡ 0.5) and derive G(θ) using a simple linear (𝐺𝐺(𝜃𝜃) = 𝐵𝐵 ∙ 𝜃𝜃 + 𝑏𝑏 ) or sinusoidal (𝐺𝐺(𝜃𝜃) = 𝐵𝐵 ∙ 𝐵𝐵𝐵𝐵𝑠𝑠(𝜃𝜃) + 𝑏𝑏 )) 406 
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interpolation method. Since G(θ) varies most significantly in the nadir direction for different MLA (Wilson, 1959), the 407 

uncertainty of G(θ) derived from the global MLA in other directions will be smaller than that of G(0). 408 

4.2 The relationship between MLA and other variables 409 

Analysis of the relationships between MLA and other features in the MLA mapping process reveals that MLA is negatively 410 

correlated with NDVI, NIR reflectance, and NIR BRDF kernel coefficients (Fig. 7). These findings are consistent with other 411 

simulation and experimental studies (Zou and Mõttus, 2015; Liu et al., 2012; Dong et al., 2019; Jacquemoud et al., 1994). 412 

Higher MLA generally means lower canopy interception and higher transmission for high solar altitude and more soil 413 

background can be detected in the nadir direction (Liu et al., 2012). This results in lower (higher) canopy NIR (red) reflectance 414 

because of the generally lower (higher) NIR (red) soil reflectance than that of the leaf components (Siegmund and Menz, 2005) 415 

and negative correlations between MLA and NIR reflectance and NDVI (Liu et al., 2012). The negative relationships between 416 

MLA and radiation, precipitation, and temperature (Fig. 7) are related to the vegetation adaptation mechanism. Under suitable 417 

climate conditions (radiation, precipitation, and temperature), horizontal leaves are formed to absorb more radiation and 418 

increase the photosynthesis rate (Van Zanten et al., 2010; King, 1997). The positive correlation between MLA and the standard 419 

deviation of radiation and temperature (Fig. 7) indicates that the MLA is more vertical in areas with significant seasonal 420 

changes in radiation and temperature (mid to high-latitude areas) because vertical leaves maximize intercepted radiation under 421 

low solar altitudes at mid to high-latitude areas (Huemmrich, 2013).  422 

Plant function type was initially used as a predictive variable (Tables 1 and 2), but relatively low importance was found for 423 

LIA prediction (Fig.6, ranked 47 out of 76). This may be because the biome information is implicitly included in the spectral 424 

features as the former is frequently derived from the latter (Sulla-Menashe et al., 2019). Previous studies have demonstrated 425 

that the LIA variation within PFTs may be larger than that between PFTs. This indicates that the PFT is not a good predictor 426 

(Prentice et al., 2024). To avoid overfitting, only the most important 40 features were used for MLA prediction (Fig. 6). To 427 

explore the regional differences of the variable importance, an analysis was conducted for the tropical (23.5°S-23.5°N), 428 

northern temperate (23.5°N-60°N), northern polar (60°N-90°N), and the southern temperate (23.5°S-60°S) zones. The 40 most 429 

important variables are similar among different regions although minor differences exist (Fig. S7). Among the 40 variables for 430 

tropical, northern temperate, northern polar, and southern temperate zones, 32, 35, 30, and 31 of them, respectively, are the 431 

same as the 40 global variables (Fig. S7). Climate and spectral variables are significant among all regions, whereas BRDF 432 

features are the most important in the southern temperate zone. The 40 most important variables in the global MLA prediction 433 

account for ~ 80% of total importance among different regions, which is similar to that in the global prediction. 434 

4.3 Use of the new MLA map 435 

The spherical LAD assumption has been widely adopted in the literature (Tang et al., 2016; Zhao et al., 2020; Wang and Fang, 436 

2020). This study demonstrates that the spherical assumption is valid only for cereal crops, but not for broadleaf forests (Tables 437 

3 and 4). This finding is consistent with previous local LIA measurements (De Wit, 1965; Pisek et al., 2013; Yan et al., 2021). 438 
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For crops, the spherical assumption may become invalid because of seasonal change and species diversity (Table S2, Figs. 5 439 

and 9). In addition, most (72%) of the reference G(0) values are greater than 0.50 (Fig. S8); in this case, the spherical 440 

distribution would underestimate the radiation and rainfall interception because of the overestimated LIA and underestimated 441 

G(0) for most conditions (Figs. 9 and 11) (Stadt and Lieffers, 2000). In current LSMs, a constant LIA is commonly assigned 442 

for each PFT (Majasalmi and Bright, 2019). For example, the Community Land Model V5 (CLM5) (Table S4) (Lawrence et 443 

al., 2019) uses lower inclination indices and higher LIA values than our results (Tables 3 and 4) and thus may underestimate 444 

canopy interception. The global LIA map generated in this study provides a more reasonable LIA parameterization strategy 445 

for the application communities. 446 

4.4 Limitations and prospects 447 

The limitations of this study mainly relate to the small number of LIA measurements, especially continuous measurements. 448 

First, within-species LIA variations were neglected in the spatial expansion due to limited spatial coverage of existing LIA-449 

measured data (Section 2.3.1). This may introduce some errors, especially for crops. Second, three different sources of LIA 450 

measurements were gathered with different measurement schemes, and uncertainty may arise because of these differences. 451 

The random forest algorithm is robust to these differences because part of the samples and features were randomly selected 452 

and the algorithm ensembled the predictions from multiple decision trees (Svetnik et al., 2003). We manually inspected all 453 

field LIA data and are confident in their data quality. Third, for forests, the contribution of the understory was not considered. 454 

Typically, the understory is characterized by more horizontal leaves, and ignoring the understory may lead to an MLA 455 

overestimation (Utsugi et al., 2006). Nevertheless, a previous study showed that the relative contribution of the understory to 456 

the overall MLA is less than 10% (Li et al., 2022). Finally, only the growing season MLA was calculated, whereas the seasonal 457 

and long-term variations of MLA were not considered due to the lack of continuous LIA measurements.  458 

We assumed a linear LAI-EVI2 relationship (LAI = a*EVI2) to upscale MLA from the canopy to 500 m scale (Section 2.3.1 459 

and Appendix A). Global analysis of MODIS LAI and EVI2 products shows a slight non-linear relationship between them 460 

(Fig. S9). The non-linear relationship was also used to upscale MLA (Eq. A2) in a side experiment, where the derived MLA 461 

was found consistent with the original one (Fig. S10) because of the homogeneity of the 500 m pixel after rigorous sample 462 

screening (section 2.3.1). This demonstrates the suitability of the linear assumption. 463 

In the future, more efficient LIA observation systems should be developed to provide continuous LIA data (Kattenborn et al., 464 

2022). LIA measurements can be integrated into existing ground observation networks, such as the National Ecological 465 

Observatory Network (NEON) (Kao et al., 2012), Integrated Carbon Observation System (ICOS) (Gielen et al., 2018), and 466 

Terrestrial Ecosystem Research Network (TERN) (Karan et al., 2016), to enhance temporal LIA measurements in larger spatial 467 

extent, especially for DNF and crops. Using standard LIA measurement protocols will certainly improve the LIA data 468 

consistency. (Li et al., 2023). In addition, canopy structure parameters are interrelated, and introducing other structure 469 

parameter products, such as LAI, FVC, CI, and canopy height as predictive variables may improve the MLA prediction. 470 

Multiangle reflectance (Jacquemoud et al., 2009; Goel and Thompson, 1984; Jacquemoud et al., 1994) or light detection and 471 
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ranging (Zheng and Moskal, 2012; Bailey and Mahaffee, 2017; Itakura and Hosoi, 2019) are encouraging remote sensing tools 472 

that can help to derive temporally continuous and high-resolution MLA data. 473 

5 Conclusion 474 

This study compiled existing global LIA measurements and generated the first global 500 m MLA and G(0) products by gap-475 

filling the LIA measurement data using a random forest regressor. The mean of global LIA measurements is 40.74° and cereal 476 

crops show the highest MLA (59.11°). The global MLA shows an explicit spatial distribution and the value increases with 477 

latitude. The global MLA is 41.47°±9.55° and follows the order of CRO-C > CRO-B > DNF > SHR > ENF ≈ GRA > DBF > 478 

EBF. The predicted MLA presents a medium consistency (r = 0.75, RMSE = 7.15°) with the validation samples for noncrops. 479 

For crops, the results are relatively poorer (r = 0.48 and 0.60 for broadleaf crops and cereal crops) because of limited LIA 480 

measurements and strong seasonality. The G(0) derived from MLA is moderately consistent with the reference G(0) (r = 0.62).  481 

The MLA and G(0) products obtained in this study would enhance our understanding of global LIA and assist remote sensing 482 

retrieval and land surface modeling studies. These products provide a more realistic parameterization strategy than the 483 

commonly used spherical LAD and PFT-specific MLA assignment. Note the global MLA and G(0) products mainly represent 484 

the typical state during the growing season. These products can be further improved and temporal MLA data can be obtained 485 

through continuous measurements and remote sensing retrieval. 486 
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Appendix A. Upscaling LIA from leaf, canopy to ecosystem scale 502 

From leaf to canopy scale, the entire canopy MLA is commonly calculated as the average of all measured leaf LIAs weighted 503 

by leaf area (Eq. A1) (Zou et al., 2014; De Wit, 1965; Yan et al., 2021). In practice, because of the difficulty in leaf area 504 

measurement, especially for a large number of leaves, the variability of leaf areas within a canopy is often ignored and the 505 

areas of all leaves are assumed similar. In this case, the canopy LIA can be simplified as the average LIA weighted by leaf 506 

number (Eq. A1) (Ryu et al., 2010; Pisek et al., 2011; Chianucci et al., 2018): 507 

𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐𝑡𝑡𝑙𝑙𝑐𝑐𝑐𝑐𝑦𝑦 = ∑ 𝐿𝐿𝐶𝐶𝐿𝐿𝑖𝑖∗𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖
∑ 𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖

= 𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛∗∑ 𝐿𝐿𝐶𝐶𝐿𝐿𝑖𝑖𝑖𝑖
𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛∗𝑁𝑁

= ∑ 𝐿𝐿𝐶𝐶𝐿𝐿𝑖𝑖𝑖𝑖
𝑁𝑁

        (A1) 508 

where 𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐𝑡𝑡𝑙𝑙𝑐𝑐𝑐𝑐𝑦𝑦 is the MLA at canopy scale, i is the ith leaf, LIA is leaf inclination angle, LA is single leaf area, 𝑀𝑀𝑀𝑀𝑚𝑚𝑚𝑚𝑡𝑡𝑙𝑙 is 509 

the mean leaf area by ignoring the variation of leaf area within a canopy, N is number of leaves within a canopy. 510 

From the canopy to 30 m scale, the canopy level MLA is regarded as equal to 30 m-MLA because for MLA measurements, 511 

the dominant species was artificially identified by investigators and the spatial representativeness at the extent of 30 m is 512 

ensured. 513 

From 30 m to 500 m, the 500 m MLA was formulated as the weighted average of 30 m MLA by the leaf area of the 30 m pixel 514 

(Eq. A2), the same as that from the leaf to canopy scale. The leaf area of a 30 m pixel can be deduced from the product of leaf 515 

area index (LAI) and the ground area of a 30 m pixel according to the definition of LAI (the half of green leaf area on the unit 516 

of ground area) (Eq. A2) (Fang et al., 2019).  517 

𝑀𝑀𝑀𝑀𝑀𝑀500 =
∑ 𝑀𝑀𝐿𝐿𝐿𝐿30_𝑗𝑗∗𝐿𝐿𝐿𝐿30_𝑗𝑗𝑗𝑗

∑ 𝐿𝐿𝐿𝐿30_𝑗𝑗𝑗𝑗
=

∑ 𝑀𝑀𝐿𝐿𝐿𝐿30_𝑗𝑗∗𝐿𝐿𝐿𝐿𝐶𝐶30_𝑗𝑗∗𝑆𝑆𝑗𝑗
∑ 𝐿𝐿𝐿𝐿𝐶𝐶30_𝑗𝑗∗𝑆𝑆𝑗𝑗

=
∑ 𝑀𝑀𝐿𝐿𝐿𝐿30_𝑗𝑗∗𝐿𝐿𝐿𝐿𝐶𝐶30_𝑗𝑗𝑗𝑗

∑ 𝐿𝐿𝐿𝐿𝐶𝐶30_𝑗𝑗𝑗𝑗
      (A2) 518 

Where 𝑀𝑀𝑀𝑀𝑀𝑀500 and 𝑀𝑀𝑀𝑀𝑀𝑀30 represent MLA at 500 m and 30 m scales, j is the jth 30 m pixel, 𝑀𝑀𝑀𝑀30_𝑗𝑗 is the total leaf area of a 519 

30 m pixel, 𝑀𝑀𝑀𝑀𝐶𝐶30_𝑗𝑗 is leaf area index (m2/m2) of a 30 m pixel, S is the ground area of a 30 m pixel. 520 

Assuming LAI = a*EVI2+b and b ≈ 0 (as illustrated in Fig. S9), the MLA at 500 m scale can be calculated as: 521 
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𝑀𝑀𝑀𝑀𝑀𝑀500 =
∑ 𝑀𝑀𝐿𝐿𝐿𝐿30_𝑗𝑗∗𝐸𝐸𝐸𝐸𝐶𝐶230_𝑗𝑗𝑗𝑗

∑ 𝐸𝐸𝐸𝐸𝐶𝐶230_𝑗𝑗𝑗𝑗
          (A3) 522 

  523 
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