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Abstract. Leaf inclination angle (LIA), the angle between leaf surface normal and zenith directions, is a vital trait in 10 

radiative transfer, rainfall interception, evapotranspiration, photosynthesis, and hydrological processes. Due to the difficulty 11 

in obtaining large-scale field measurement data, LIA is typically assumed to follow the spherical leaf distribution or simply 12 

considered constant for different plant types. However, the appropriateness of these simplifications and the global LIA 13 

distribution are still unknown. This study compiled global LIA measurements and generated the first global 500 m mean LIA 14 

(MLA) product by gap-filling the LIA measurement data using a random forest regressor. Different generation strategies 15 

were employed for noncrops and crops. The MLA product was evaluated by validating the nadir leaf projection function 16 

(G(0)) derived from the MLA product with high-resolution reference data. The global MLA is 41.47°±9.55°, and the value 17 

increases with latitude. The MLAs for different vegetation types follow the order of cereal crops (54.65°) > broadleaf crops 18 

(52.35°) > deciduous needleleaf forest (50.05°) > shrubland (49.23°) > evergreen needleleaf forest (47.13°) ≈ grassland 19 

(47.12°) > deciduous broadleaf forest (41.23°) > evergreen broadleaf forest (34.40°). Cross-validation shows that the 20 

predicted MLA presents a medium consistency (r = 0.75, RMSE = 7.15°) with the validation samples for noncrops, whereas 21 

crops show relatively lower correspondence (r = 0.48 and 0.60 for broadleaf crops and cereal crops) because of limited LIA 22 

measurements and strong seasonality. The global G(0) distribution is opposite to that of the MLA and agrees moderately 23 

with the reference data (r = 0.62, RMSE = 0.15). This study shows that the common spherical and constant LIA assumptions 24 

may underestimate the intercept capability for most vegetation. The MLA and G(0) products derived in this study would 25 

enhance our knowledge about global LIA and should greatly facilitate remote sensing retrieval and land surface modeling 26 

studies. 27 

The global MLA and G(0) products can be accessed at:  28 

Li, S. and Fang, H. 2024, https://doi.org/10.5281/zenodo.10940673. 29 

 30 
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1 Introduction 31 

Vegetation regulates terrestrial carbon and water cycles through a series of biophysical processes such as photosynthesis, 32 

respiration, and transpiration (Foley et al., 1996; Chen et al., 2019). These biophysical processes are mainly carried by leaves 33 

and the characterization of leaves within canopies is vital for remote sensing and earth system modeling (Ross, 1975; 34 

Lawrence et al., 2019). Leaf inclination angle (LIA) denotes the inclination of the leaf or needle to the horizontal plane or the 35 

angle between the leaf surface normal and zenith (Wilson, 1960). LIA is a key canopy structural trait that determines 36 

radiative transfer, rainfall interception, evapotranspiration, photosynthesis, and hydrological processes (Sellers, 1985; Ross, 37 

1981; Mantilla-Perez and Salas Fernandez, 2017; Xiao et al., 2000; Maes and Steppe, 2012). LIA has been used in radiative 38 

transfer modeling (RTM), remote sensing inversion, and land surface modeling (LSM) studies (Tang et al., 2016; Wang and 39 

Fang, 2020; Lawrence et al., 2019; Ross, 1975).  40 

At the canopy scale, the probability density of LIA or the fraction of leaf area per unit LIA is expressed as the leaf angle 41 

distribution (LAD) (De Wit, 1965). De Wit (1965) summarized six theoretical LADs, including planophile, erectophile, 42 

extremophile, plagiophile, uniform, and spherical distributions. Specifically, the spherical distribution assumes that the 43 

relative probability density of the LIA is proportional to the area of the corresponding sphere surface element and its mean 44 

leaf inclination angle (MLA) equals 57.3° (MLA = 57.3°) (De Wit, 1965). Furthermore, Ross (1981) defined the inclination 45 

index (ꭓL) to describe the departure of LAD from the spherical distribution. For the planophile distribution, ꭓL = 1; for the 46 

erectophile distribution, ꭓL = -1; and for the spherical distribution, ꭓL =0. In the radiative transfer regime, LIA is generally 47 

represented by the leaf projection function (G(θ)), which is defined as the average projection ratio of unit leaf area in the 48 

illumination or viewing direction θ (Ross, 1981; Nilson, 1971). The spherical distribution is characterized by an isotropic 49 

leaf projection function (G ≡ 0.5) (De Wit, 1965).  50 

In the field, LIA can be measured directly based on the leaf's geometrical structure or using indirect optical methods (Lang, 51 

1973; Ryu et al., 2010; Norman and Campbell, 1989; Weiss and Baret, 2017). Using these methods, several LIA 52 

measurements have been carried out and some LIA datasets were constructed (Kattge et al., 2020; Chianucci et al., 2018; 53 

Hinojo-Hinojo and Goulden, 2020; Pisek and Adamson, 2020). These field methods are usually time-consuming and labor-54 

intensive and are typically difficult to acquire large-scale LIA (Li et al., 2023). In addition, the existing LIA datasets have 55 

not been comprehensively analyzed. LIA has also been estimated from satellite imagery through empirical relationships or 56 

radiative transfer model inversions (Zou and Mõttus, 2015; Bayat et al., 2018; Goel and Thompson, 1984). Remote sensing 57 

methods are used primarily for crops in local regions, and the generality of these algorithms is limited (Li et al., 2023). Due 58 

to the difficulty in large-scale LIA measurements and estimations, our knowledge about the global LIA remains lacking.  59 

Because our understanding of the global LIA is limited, different LIA simplification strategies have been adopted in various 60 

studies. For example, LIA is typically assumed to follow the spherical distribution (Tang et al., 2016; Zhao et al., 2020; 61 

Wang and Fang, 2020). However, this assumption may decrease the accuracy of radiative transfer modeling, significantly 62 

underestimate the radiation interception (Stadt and Lieffers, 2000), and cause large errors (>50%) in leaf area index (LAI) 63 
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measurements and inversions (Yan et al., 2021). The spherical LIA assumption may introduce greater error in the nadir 64 

direction than other viewing geometries (Yan et al., 2021), considering the large G variation in this direction (Wilson, 1959). 65 

The lack of global LIA knowledge also limits the retrieval of other vegetation structural parameters(Li et al., 2023). In many 66 

LSMs, LIA is commonly treated as a fixed value for different plant function types (PFT) (Lawrence et al., 2019; Majasalmi 67 

and Bright, 2019). Field LIA measurements have demonstrated that the spherical distribution is not appropriate for forests, 68 

and the PFT-dependent LIA ignores LIA variation within the PFT (Pisek et al., 2013; Yan et al., 2021; Majasalmi and Bright, 69 

2019).  70 

This study aims to generate the first global MLA map from existing LIA field measurements using a data-driven gap-filling 71 

method. This method involves spatial expansion and upscaling of LIA measurements, and a random forest regressor using 72 

input spectral, climate, and PFT data. Based on the global MLA map, we tested whether the spherical LIA assumption is 73 

appropriate at the global scale. The new MLA map was validated by comparing the nadir G (G(0)) derived from the MLA 74 

with high-resolution reference data. Section 2 outlines the materials and methods employed to generate and evaluate the 75 

global MLA. Section 3 presents the global LIA measurements, global MLA and G(0), and evaluation results. Section 4 76 

discusses the performance of the global MLA and G(0), the usage of the new MLA map, and the limitations of the study. 77 

Section 5 presents the main conclusions. 78 

2 Materials and methods 79 

2.1 LIA measurement data 80 

2.1.1 TRY LIA dataset 81 

TRY is a network of vegetation scientists headed by Future Earth, the Max Planck Institute for Biogeochemistry, and 82 

German Centre for Integrative Biodiversity Research, providing a global database of curated plant traits (the TRY database) 83 

(https://www.trydb.org/TryWeb/Home.php). Since its establishment in 2007, the TRY database has continuously evolved 84 

and has become one of the most widely used vegetation trait databases. The latest V6 version (released on October 13, 2022) 85 

employed in this study contains 15,409,681 trait records covering 305,594 plant taxa (Kattge et al., 2020). In this database, 86 

LIA was recorded as a numerical or categorical variable. After data extraction and checking, 31,043 valid records were used, 87 

which include numerical LIA, locations, and species. Many measurements lack location information, whereas, for some 88 

locations, there are many measurements for individual species. The spatial distribution map appears relatively sparse despite 89 

a large volume of data (Fig. 1). The LIA measurements in South America are mainly from palms.  90 

https://www.trydb.org/TryWeb/Home.php
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 91 
Figure 1. The locations of global leaf inclination angle measurements. DBF: deciduous broadleaf forest, DNF: deciduous needleleaf forest, 92 
EBF: evergreen broadleaf forest, ENF: evergreen needleleaf forest, CRO-B: broadleaf crops, CRO-C: cereal crops, GRA: grassland, SHR: 93 
shrubland.  94 

2.1.2 LIA data from the literature 95 

The LIA measurements in published literature were collected via keyword search (leaf angle, leaf inclination angle, and leaf 96 

tilt angle) in the Web of Science, Google Scholar, Google, and Chinese documentary databases. The LIA, location, and 97 

species information were manually extracted from the literature (Fig. 1). Several LIA measurements were already included 98 

in the TRY database (Chianucci et al., 2018; Pisek and Adamson, 2020). After aggregating LIA measurements for the same 99 

species at the same location, 780 LIA records were accessed from previous studies (Hinojo-Hinojo and Goulden, 2020; Pisek 100 

et al., 2022; Chen et al., 2021). 101 

2.1.3 Manual LIA extraction 102 

Only a few measurements in the northern tundra region were obtained, and the measurements in tropical regions are 103 

dominated by palm trees (Fig. 1). Therefore, LIA data for the northern tundra and tropical regions were extracted from 104 

horizontal side-view photographs searched from Google (Fig. S1).  105 

ImageJ software (https://imagej.nih.gov/ij/) was used to process the leveled photographs and derive LIA following the 106 

method of Pisek et al. (2011). The TRY species location data (848,919, Fig. S3b) (Jan 03, 2022) were used to obtain the 107 

dominant species information in tropical rainforests and the northern tundra. The species location points in these two 108 

vegetation types were spatially filtered and the frequency of occurrence for each species was counted. The species with a 109 

high frequency of occurrence were selected to measure the LIA. For each species, more than 75 leaves perpendicular to the 110 

https://imagej.nih.gov/ij/
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viewing direction were selected and processed based on visual judgment to ensure the stability and reliability of the MLA 111 

(Pisek et al., 2013). In total, the MLA of 104 species was manually derived. 112 

In this study, most LIA measurements are obtained with protractor and level digital photogrammetry, especially for 113 

needleleaf species. Therefore, the distinction between branches and leaves is considered. The diverse LIA records from 114 

different sources were sorted to match the TRY species and to get the PFT based on the TRY Categorical Traits Dataset 115 

2018 (https://www.try-db.org/TryWeb/Data.php#3). The MLA was calculated for the LIA records with different forms. If 116 

there were multiple LIA records for the same species, the mean value was computed for the same location and species. In 117 

total, 5,554 LIA records of 1,194 species were collected, covering the growing season from 2001 to 2022. LIA location 118 

replicates per species range from 1 to 330, and most replicates (98 %) are less than 50. Considering the different numbers of 119 

records for each species, the LIA data was further aggregated by species.  120 

2.2 Remote sensing data 121 

2.2.1 Ancillary data used for MLA mapping 122 

The ancillary data used for global MLA mapping and analysis are listed in Table 1. The PFT classification system in the 123 

MODIS global 500 m land cover type product (MCD12Q1.061) was used and mode-aggregated from 2001 to 2022 to match 124 

the LIA measurements (Fig. S2) (Sulla-Menashe et al., 2019). The 2001–2022 Landsat surface reflectance (Level 2, 125 

Collection 2, Tier 1) (Crawford et al., 2023), including Landsat 5 (2001–2012), Landsat 7 (2012–2013), and Landsat 8 126 

(2013–2022) was utilized to generate a global 30 m PFT map (Section 2.3.1), which was subsequently employed for LIA 127 

upscaling. The 2001–2022 MODIS bidirectional reflectance distribution function (BRDF) model parameters dataset 128 

(MCD43A1 C6.1) (Schaaf and Wang, 2015b) and nadir BRDF adjusted reflectance dataset (MCD43A4 V6 NBAR) (Schaaf 129 

and Wang, 2015a) are produced daily using 16 days of Terra and Aqua MODIS data at 500 m resolution and were utilized as 130 

predictive variables. Due to the scarcity of crop LIAs and the lack of location information for existing crop LIA 131 

measurements, fine-resolution (10/30 m) crop-type maps (Table 1) in 2018 were employed to support crop LIA mapping. 132 

Other data include the ERA5-Land reanalysis data, the ALOS digital elevation model (AW3D30 V3.2), and the 2001–2022 133 

MODIS LAI product (MCD15A2H) (Myneni, 2015). The LAI product was averaged and aggregated from 2001–2022. Most 134 

earth observation data were accessed and processed in Google Earth Engine (GEE) (https://earthengine.google.com/). 135 

 136 
Table 1. Remote sensing data for global MLA mapping. BRDF: bidirectional reflectance distribution function. 137 

Category Data Year  Spatial 
resolution 

Temporal 
resolution 

Reference 

Plant function type MCD12Q1 C6 2001–2022 500 m Yearly (Sulla-Menashe et al., 2019) 
Surface reflectance Landsat collection 2 2001–2022 30 m 16 days (Crawford et al., 2023) 

MCD43A4 V6 NBAR 2001–2022 500 m Daily (Schaaf and Wang, 2015a) 
BRDF MCD43A1 C6.1 2001–2022 500 m Daily (Schaaf and Wang, 2015b) 
Crop type Cropland Data Layers (CDL)  2018 30 m Yearly (Boryan et al., 2011) 

https://www.try-db.org/TryWeb/Data.php#3
https://earthengine.google.com/
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EUCROPMAP 2018 10 m Yearly (D’andrimont et al., 2021) 
AAFC Annual Crop 
Inventory 

2018 30 m Yearly (Fisette et al., 2013) 

Northeast China crop-type 
map 

2018 30 m Yearly (You et al., 2021) 

NESEA-Rice10 2018 10 m Yearly (Han et al., 2021) 
China maize map 2018 30 m Yearly (Shen et al., 2022) 
China winter wheat map 2018 30 m Yearly (Dong et al., 2020) 

Climate ERA5-Land 2001–2022 0.1° Monthly (Muñoz-Sabater et al., 2021) 
Terrain AW3D30 V3.2 — 30 m — (Tadono et al., 2014) 

2.2.2 High-resolution reference data 138 

The high-resolution reference datasets provided by Ground Based Observations for Validation (GBOV, 139 

https://land.copernicus.eu/global/gbov/dataaccessLP/) and DIRECT 2.1 (https://calvalportal.ceos.org/lpv-direct-v2.1) were 140 

used to evaluate the generated global MLA (Fig. 2). These datasets provide high-resolution (20/30 m) LAI, effective LAI 141 

(LAIe), and fractional vegetation cover (FVC) data over a 3 km × 3 km area centered on each site generated using empirical 142 

relationships between various vegetation indices and ground measurements (Li et al., 2022; Brown et al., 2020). GBOV has 143 

provided continuous high-resolution reference data since 2013 (Fig. 2).  144 

 145 
Figure 2. Locations of GBOV and DIRECT 2.1 sites used in this study. CRO: Cultivated crops, MF: Mixed forest, PAS: Pasture/hay, 146 
WET: Woody wetlands. See Fig. 1 for other acronyms. The black frame indicates those sites with >5 continuous records. 147 

https://land.copernicus.eu/global/gbov/dataaccessLP/
https://calvalportal.ceos.org/lpv-direct-v2.1
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2.3 Mapping global LIA 148 

2.3.1 Data preparation 149 

Many studies have treated LIA as a species-specific static trait and ignored within-species variations when LIA 150 

measurements are limited (Pisek et al., 2022; Toda et al., 2022; Raabe et al., 2015). Following the rationale, the spatial 151 

coverage of LIA measurements was expanded, and those records without location information were utilized (section 2.1.1). 152 

Under this assumption, the LIA measurements were expanded through TRY species location data with species name 153 

matching. When a species had multiple LIA observations at different locations, the nearest LIA was assigned to the TRY 154 

species location. Visual inspections were conducted to remove potential TRY location biases, especially for non-vegetated 155 

points such as water bodies and deserts. After spatial expansion, the number of LIAs reached 12,328 (Fig. S3c). 156 

In this study, the scale gap between field measurements and satellite remote sensing data was fully considered. To upscale 157 

the LIA measurements to the satellite resolution (500 m), a 30 m PFT map was first derived from Landsat reflectance using a 158 

random forest classification method. The random forest was trained at a 500 m scale using the mode-aggregated MODIS 159 

PFT classification map as training samples to generate a 30 m PFT map by hierarchically selecting homogeneous pixels 160 

(with a coefficient of variation in reflectance < 0.2). The classification features were the same as those in the MODIS 161 

classification algorithm (Sulla-Menashe et al., 2019). For a 500 m pixel with multiple PFTs (Fig. 3a), when one PFT had no 162 

LIA measurement, the LIA of the PFT was assigned with the value of its nearest neighbor within 100 km with the same PFT. 163 

In field measurement, the entire canopy LIA is calculated as the average of all measured leaf LIAs weighted by leaf area 164 

(Zou et al., 2014; De Wit, 1965; Yan et al., 2021). Leaves with larger areas have higher weights. Upscaling LIA from 30 m 165 

to 500 m follows the same rationale as that from leaf to canopy scale. For a 30 m pixel with a higher LAI, the weight of the 166 

pixel is higher. Therefore, The 500 m MLA was computed as the weighted average of the enhanced vegetation index (EVI2) 167 

considering a linear relationship between LAI and EVI2 (Dong et al., 2019; Alexandridis et al., 2019).  168 

𝑀𝑀𝑀𝑀𝑀𝑀500𝑚𝑚 = ∑𝑀𝑀𝑀𝑀𝑀𝑀30𝑚𝑚×𝐸𝐸𝐸𝐸𝐸𝐸230𝑚𝑚
∑𝐸𝐸𝐸𝐸𝐸𝐸230𝑚𝑚

          (1) 169 



8 
 

 170 
Figure 3. Leaf inclination angle (LIA) upscaling (a) and global mean LIA (MLA) mapping (b) strategies. 171 

The 500 m upscaled MLA samples were further refined to select the most representative samples following three criteria: 1) 172 

the coefficient of variation of the 30 m EVI2 in the 500 m pixel is less than 0.2, 2) the vegetation proportion in the 500 m 173 

pixel is greater than 0.8, and 3) the proportion of PFTs represented by the MLA measurements in the 500 m pixel is greater 174 

than 0.4. The final number of samples after refinement is 3,013 (Fig. 4). 175 

 176 
Figure 4. Distribution of global mean leaf inclination angle samples after screening. See Fig. 1 for acronyms. 177 
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2.3.2 Global MLA mapping 178 

Different mapping strategies were employed for noncrops and crops (Fig. 3b) considering the small number of valid crop 179 

samples (Fig. 4) and the lack of location information for most crop samples. For noncrops, the upscaled 500 m MLA 180 

samples were used to train a random forest regressor to predict the global MLA from different features (Table 2). To reduce 181 

computational complexity and potential overfitting, a feature selection process was conducted based on the variable 182 

importance (the sum of the decrease in Gini impurity index over all trees in the forest) computed by the model, and only the 183 

40 most important variables were used in the final prediction. During the training process, the out-of-bag error was 184 

minimized to obtain the optimal hyperparameters. The prediction performance of the random forest regressor was evaluated 185 

using a ten-fold cross-validation approach with upscaled MLA samples.  186 

For crops, the measured MLA values were averaged for different crop types as a typical MLA (Table S2). After assigning 187 

typical MLAs for different crops with high-resolution crop maps (Table 1), the high-resolution crop MLA were upscaled to 188 

500 m as training samples (Eq. (1)). Only the samples with a crop area ratio > 80% within a 500 m pixel were selected for 189 

training. The crops were further divided into broadleaf crops and cereal crops and processed with the same procedure used 190 

for noncrops (Fig. 3b). All procedures were conducted on GEE under the WGS-84 geographic coordinate system. 191 

 192 
Table 2. Predictive features in global MLA mapping. 193 

Category Features Variables Number 
Spectral Blue, green, red, near-infrared reflectance 10%, 33%, 50%, 67%, 90% quantiles 

and standard deviation 
24 

NDVI 10%, 33%, 50%, 67%, 90% quantiles 
and standard deviation 

6 

BRDF Kernel coefficients of the red band 10%, 33%, 50%, 67%, 90% quantiles 
and standard deviation 

18 

Kernel coefficients of near-infrared band 10%, 33%, 50%, 67%, 90% quantiles 
and standard deviation 

18 

PFT PFT Constant 1 
Climate Solar downward radiation Mean and standard deviation 2 

Temperature Mean and standard deviation 2 
Precipitation Mean and standard deviation 2 

Terrain Elevation Constant 1 
Slope Constant 1 
Aspect Constant 1 

2.4 Evaluation of global MLA 194 

The global MLA map was indirectly evaluated using the nadir leaf projection function, because of the lack of high-resolution 195 

reference MLA. G(0) is important because it is coherent with the satellite nadir observations. The global G(0) was derived 196 

from the MLA and evaluated with high-resolution reference following the upscaling scheme recommended by the Land 197 

Product Validation (LPV) Subgroup of the Committee on Earth Observation Satellites (CEOS) (http://lpvs.gsfc.nasa.gov/).  198 
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Assuming a single-parameter ellipsoidal leaf angle distribution (Campbell, 1990; Wang et al., 2007), the parameter ꭓ, the 199 

ratio of the horizontal and vertical axes of an ellipsoid, was first derived from MLA in radians. Compared to other models, 200 

the single-parameter ellipsoidal leaf angle distribution is a relatively more accurate and simpler model and has been used in 201 

many remote sensing studies (Campbell, 1990; Wang et al., 2007; Kuusk, 2001; Verhoef et al., 2007). 202 

𝜒𝜒 = −3 + (𝑀𝑀𝑀𝑀𝑀𝑀
9.65

)−0.6061           (2) 203 

The G(θ) value in the nadir direction (θ=0°) was calculated using the following analytical formula.  204 

𝐺𝐺(𝜃𝜃) = �(𝜒𝜒2+𝑡𝑡𝑡𝑡𝑡𝑡2 𝜃𝜃) 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃
𝜒𝜒+1.774(𝜒𝜒+1.182)−0.73          (3) 205 

The reference G(0) was derived from high-resolution LAI, FVC, and clumping index (CI) (=LAIe/LAI) with the Beer-206 

Lambert law (Fig. S4) (Nilson, 1971).  207 

𝑃𝑃(𝜃𝜃) = 𝑒𝑒𝑒𝑒𝑒𝑒−
𝐺𝐺(𝜃𝜃)∗𝐿𝐿𝐿𝐿𝐿𝐿∗𝐶𝐶𝐶𝐶(𝜃𝜃)

𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃)            (4) 208 

Where 𝑃𝑃(𝜃𝜃), 𝐶𝐶𝐶𝐶(𝜃𝜃), and 𝐺𝐺(𝜃𝜃) denote the gap fraction, CI, and G in direction 𝜃𝜃, respectively. Specifically, the gap fraction in 209 

the nadir direction can be expressed by FVC. 210 

𝑃𝑃(0) = 1 − 𝐹𝐹𝐹𝐹𝐹𝐹            (5) 211 

Therefore, the reference G(0) was derived using the following formula. 212 

𝐺𝐺(0)_𝐶𝐶𝐶𝐶(0) = − 𝑙𝑙𝑙𝑙(1−𝐹𝐹𝐹𝐹𝐹𝐹)

𝐶𝐶𝐶𝐶(0)∗𝐿𝐿𝐿𝐿𝐿𝐿
           (6) 213 

By using the whole CI as the nadir CI (CI(0)) in the above equation (Fang et al., 2021; Li et al., 2022), G(0) was calculated 214 

as follows: 215 

𝐺𝐺(0)_𝐶𝐶𝐶𝐶 ≈ − 𝑙𝑙𝑙𝑙(1−𝐹𝐹𝐹𝐹𝐹𝐹)

𝐶𝐶𝐶𝐶∗𝐿𝐿𝐿𝐿𝐿𝐿
           (7) 216 

The MLA product was first upscaled to 3 km through a weighted averaging method using the MODIS LAI to derive G(0) 217 

(Eq. (3)). The reference LAI, FVC, and CI were also upscaled to 3 km through simple averaging to compute the reference 218 

G(0) (Eq. (7)). The MLA-derived G(0) and the reference G(0) were compared at the 3 km × 3 km area around each site. The 219 

correlation coefficient (r), bias, and root mean square error (RMSE) were calculated as the evaluation metrics, as follows: 220 

𝑟𝑟 = �1 − ∑ (𝑦𝑦�𝑖𝑖−𝑦𝑦𝑖𝑖)2
𝑛𝑛
𝑖𝑖=1
∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�)2𝑛𝑛
𝑖𝑖=1

           (8) 221 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 1
𝑛𝑛
∑ (𝑦𝑦� − 𝑦𝑦𝑖𝑖)𝑛𝑛
𝑖𝑖=1            (9) 222 
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𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑛𝑛
∑ (𝑦𝑦� − 𝑦𝑦𝑖𝑖)2𝑛𝑛
𝑖𝑖=1           (10) 223 

where 𝑦𝑦�𝑖𝑖, 𝑦𝑦𝑖𝑖 , and n denote the MLA-derived G(0), reference G(0), and the number of G(0), respectively. 224 

3 Results 225 

3.1 Global measured LIA values 226 

The species-aggregated LIA was employed in the analysis of global LIA measurements. Fig. 5 shows the distributions of 227 

global measured LIA values for different PFTs. The global measured MLA is 40.74° and generally follows the order of 228 

CRO-C > GRA > ENF > CRO-B > EBF > SHR > DNF > DBF (Table 3). Cereal crops exhibit the highest MLA (59.11°), 229 

whereas DBF has the most horizontal leaves (MLA = 34.94°). GRA and EBF show large LIA variations (Std = 20.44° and 230 

17.17°), whereas CRO-B exhibits a small range. The DNF LIA measurements are only for one species and show very little 231 

variation (Fig. 5). 232 

 233 
Figure 5. Distribution of global mean LIA (MLA) for different plant function types (see Fig. 1 for acronyms). The last shape shows the 234 
global average. Statistics are conducted for each species as represented by points in the figure. 235 

 236 
Table 3. Statistics of leaf inclination angle measured for different plant functional types (PFT). STD is the standard deviation. The 237 

inclination index (ꭓL) is converted from mean leaf inclination angle (MLA) (𝝌𝝌𝑳𝑳 = 𝟐𝟐𝟐𝟐𝒐𝒐𝒐𝒐(𝐌𝐌𝐌𝐌𝐌𝐌) − 𝟏𝟏) (Lawrence et al., 2019). 238 

PFT DBF DNF EBF ENF CRO-B CRO-C GRA SHR Globe 
Number of species 171 1 347 23 32 31 399 190 1194 
Mean(°) 34.94 35.88 39.30 43.69 39.71 59.11 44.13 38.32 40.74 
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STD (°) 12.40 0.00 16.11 14.40 8.11 13.28 20.17 13.80 17.12 
ꭓL 0.64 0.62 0.55 0.45 0.54 0.03 0.44 0.57 0.52 

3.2 The relationships between MLA and other variables 239 

Fig. 6 shows the importance of the top 40 variables in the MLA prediction obtained from the random forest regression model. 240 

The importance of these 40 variables accounts for 78% of the total importance among all 76 variables. Spectral features 241 

account for 30% of the importance, which is higher than that of other features. Among the spectral features, NDVI, near-242 

infrared (NIR) band, and red band reflectance are most critical for MLA prediction. The importance of BRDF features is 243 

comparable to that of climatic variables (21% vs. 20%), followed by terrain features (7%). Among the BRDF features, the 244 

NIR BRDF information shows a higher contribution than the red band, with importance in the following order: geometrically 245 

scattered kernel> isotropic scattering kernel > volumetric scattering kernel. The importance ranking of the climatic variables 246 

follows the order of precipitation ≈ solar radiation > temperature. In addition, elevation, slope, and aspect significantly 247 

impact on the MLA prediction.  248 
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 249 
Figure 6. The importance of variables in the mean leaf inclination angle prediction. NIR, Red, Green, and Blue denote the nadir 250 
reflectance in near-infrared, red, green, and blue bands, respectively; geo, iso, and vol represent kernel coefficients of geometric-optical 251 
surface scattering, isotropic scattering, and volumetric scattering, respectively. The suffixes p××, mean, and std represent ××% quantile, 252 
mean, and standard deviation, respectively. 253 
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Fig. 7 illustrates the relationships between the upscaled MLA samples and the 16 most important variables. Overall, MLA 254 

decreases with the increase of NDVI, NIR reflectance, and NIR BRDF kernel parameters, whereas it increases with the 255 

standard deviation of NDVI. MLA is negatively correlated with solar radiation, precipitation, and temperature. Additionally, 256 

MLA increases with increasing the standard deviation of solar radiation (corresponding to mid-to-high latitude regions), 257 

while it decreases with the increase in the standard deviation of precipitation (corresponding to tropical and subtropical 258 

regions with high precipitation). MLA increases slightly with altitude and then decreases.  259 

 260 
Figure 7. Relationships between mean leaf inclination angle (MLA) and different predictive variables. See Fig. 6 for different variables. 261 

3.3 Global MLA and G(0) maps 262 

Fig. 8 shows the spatial distribution of the global 500 m MLA product. Central Asia (grasslands), southern India (cereal 263 

crops), and the central United States (grasslands and cereal crops) show higher MLAs of approximately 60°, whereas the 264 

rainforests and Southeast Asia forests have more horizontal leaves with MLAs of around 30° (Fig. 8 and S2). MLA increases 265 

with latitude, from 32.93 ± 7.03° around the equator (~1.5° N) to 53.48 ± 3.20° in the northern tundra (~76.5° N). Variation 266 

in MLA decreases as latitude increases (Fig. 8). Among different PFTs, cereal crops show the highest MLA (54.65 ± 6.28°), 267 
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while evergreen broadleaf forest has the lowest MLA (34.40 ± 6.42°), and PFTs follow the order: CRO-C > CRO-B > DNF > 268 

SHR > ENF ≈ GRA > DBF > EBF (Table 4). Grassland, broadleaf forest, and evergreen needleleaf forests show larger MLA 269 

variations than other PFTs, whereas deciduous needleleaf forests show minimal variation. The global vegetation MLA is 270 

41.47°, with a standard deviation of 9.55°, which is comparable to the MLA of DBF (41.23 ± 6.58°) (Fig. 9a and Table 4).  271 

 272 
Figure 8. The global mean leaf inclination angle (MLA) map. The right panel shows the MLA latitudinal mean (solid line) and the 273 
standard deviation values (shaded area) weighted by leaf area index. 274 

Table 4. Statistics of global mean leaf inclination angle (MLA), nadir leaf projection function (G(0)), and inclination index (ꭓL) for 275 

different plant functional types (PFT). STD is the standard deviation. The ꭓL is converted from MLA (𝜒𝜒𝐿𝐿 = 2𝑐𝑐𝑜𝑜𝑜𝑜(MLA) − 1) (Lawrence 276 

et al., 2019). 277 

PFT DBF DNF EBF ENF CRO-B CRO-C GRA SHR Globe 
Area proportion(%) 14.02 6.32 15.08 11.42 2.99 6.84 28.45 14.88 100.00 
MLA(°) 41.23  50.05  34.40  47.13  52.35  54.65  47.12  49.23  41.47  
STD of MLA (°) 6.58  3.24  6.42  8.35  6.63  6.28  8.08  5.35  9.55  
G(0) 0.69  0.58  0.76  0.61  0.55  0.52  0.61  0.59  0.68  
STD of G(0) 0.07  0.03  0.06  0.08  0.07  0.08  0.09  0.06  0.11  
ꭓL 0.50  0.28  0.65  0.36  0.22  0.16  0.36  0.31  0.50  
 278 

The global MLA exhibits an asymmetric probability density distribution toward the lower MLA (Fig. 9b). It roughly 279 

presents three peaks, with the highest peak (~51°) containing DNF, ENF, CRO, GRA, and SHR. The moderate peak (~35°) 280 

is mainly composed of EBF and DBF, while the third peak (~58°) is dominated by crops. The MLAs of crops and some 281 

grasslands are close to the MLA of the spherical distribution (57.30°). The global MLA (41.47°) is 15.83° (38%) smaller 282 

than the MLA of the spherical distribution because the vegetation MLA is mostly less than 57.30° (Fig. 9b).  283 
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 284 
Figure 9. Statistics (a) and probability density distributions (b) of the global mean leaf inclination angle (MLA) for different plant 285 
functional types. The error bars in (a) represent the standard deviation. The black dash line and shade area in (b) indicate the global MLA 286 
mean and standard deviation. The gray dashed line represents the MLA (=57.30°) of spherical leaf angle distribution. The mean, standard 287 
deviation, and probability density values are weighted by leaf area index. See Fig. 1 for the acronyms. 288 

Fig. 10 displays the spatial distribution of global G(0) generated from MLA. Overall, the global G(0) shows an opposite 289 

pattern with the global MLA. The G(0) values in Central Asia (grasslands, Fig. S2), southern India (cereal crops), and the 290 

central United States (grasslands and cereal crops) are relatively lower than those in tropical rainforests, forests in Southeast 291 

Asia, and forests in the eastern United States. G(0) generally decreases slowly with latitude, from 0.78 ± 0.08 at the equator 292 

(~1.5° N) to 0.52 ± 0.04 in the northern tundra (~76.5° N).  293 
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 294 
Figure 10. The global nadir leaf projection function (G(0)) map. The right panel shows the G(0) mean (solid line) and standard deviation 295 
values (shaded area) weighted by leaf area index. 296 

Among different PFTs, EBF has the highest G(0), at approximately 0.76 ± 0.06 (Fig. 11a, Table 4), whereas cereal crops 297 

show the lowest value, at approximately 0.52 ± 0.08. The DBF G(0) is comparable to the global average. The G(0) of broad-298 

leaved forests is greater than that of other PFTs (Fig. 11a, Table 4). The global G(0) probability density distribution peaks at 299 

0.52–0.65, with an asymmetric distribution (Fig. 11b). The proportion on the right side of the peak is larger than that on the 300 

left. The peak of the global G(0) distribution mainly contains DNF, ENF, CRO, GRA, and SHR. The left side of the peak is 301 

mainly composed of crops, while the right side is dominated by broad-leaved forests and some shrubs. The spherical 302 

distribution G(0) (0.50) is mainly represented by crops and a small amount of grassland, where G(0) also shows a large 303 

variation (~0.35). The spherical distribution G(0) is 0.18 (26%) less than the global average G(0) (0.68), as most vegetation 304 

G(0) is greater than 0.50 (Fig. 11b).  305 
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 306 

Figure 11. Statistics (a) and probability density distributions (b) of the global nadir leaf projection function (G(0)) for different plant 307 
functional types. The error bars in (a) represent the standard deviation. The black dash line and shade area in (b) indicate the global G(0) 308 
mean and standard deviation. The gray dashed line represents the G(0) (=0.50) of spherical leaf angle distribution. The mean, standard 309 
deviation, and probability density values are weighted by leaf area index. See Fig. 1 for the acronyms. 310 

3.4 Evaluation of global MLA 311 

Fig. 12 shows the comparison between the predicted MLA and upscaled MLA samples using the ten-fold cross-validation 312 

method. For noncrops, the predicted MLA is moderately consistent with the upscaled sample MLA (r = 0.75, RMSE = 313 

7.15°), with 83% of samples having residuals < 10° and 94% of samples having residuals < 15°. For DNF and SHR, the 314 

predicted MLA compresses the variation range of sample MLA (Fig. 12a). For crops, the predicted MLA of CRO-C shows 315 

higher consistency (r = 0.60) than that of CRO-B (r = 0.48). (Fig. 12b and c). 316 
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 317 
Figure 12. Comparisons between predicted MLA and sample MLA for noncrop (a), broadleaf crops (b), and cereal crops (c) (See Fig. 1 318 
for the acronyms). The error bar in (a) represents the standard deviation. 319 

Fig. 13 compares G(0) derived from the MLA and high-resolution reference data. The MLA-derived G(0) shows moderate 320 

consistency with the reference G(0) (r = 0.62), and 65% of the estimated G(0) residuals are < 0.15, and 84% of the residuals 321 

are < 0.20. The estimated G(0) generally overestimates (bias = 0.11), especially when G(0) is low (< 0.60), mainly for crops, 322 

pasture, woody wetlands, and shrubs, whereas grasslands show better consistency. The estimated G(0) is temporally more 323 

stable than the reference G(0) which is generally greater than 0.50 and displays seasonal variation (horizontally distributed 324 

bars in Fig. 13). 325 
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 326 
Figure 13. Comparisons of G(0) derived from mean leaf inclination angle and high-resolution reference data for different plant functional 327 
types (see Fig. 2 for the acronyms). The error bar represents the standard deviation of reference G(0) at different seasons. 328 

4 Discussion 329 

4.1 Global MLA and G(0) 330 

This study compiled global LIA field measurements and generated the first global 500 m MLA and G(0) maps (Figs. 8 and 331 

10). These maps show the average MLA and G(0) conditions during the growing seasons from 2001 to 2022. Overall, the 332 

global MLA is lowest around the equator and increases with latitude (Figs. 8 and 10). This accords with the MLA latitude 333 

variation derived from model simulations (Huemmrich, 2013). Crops have higher MLA than broadleaf forests whose leaves 334 

are relatively horizontal. The global MLA and G(0) maps enhance our understanding of the global distribution of MLA and 335 

G(0) and should be useful in radiative transfer modeling, remote sensing of vegetation parameters, land surface modeling, 336 

and ecological studies. 337 
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The globally derived MLA is 41.47°, which is consistent with the LIA measurements (40.74°, Tables 3 and 4). However, the 338 

derived MLAs of DBF, DNF, CRO-B, and SHR are approximately 10° greater than the measured MLAs. It is noted that the 339 

number and spatial distribution of LIA measurements for these biomes are limited. For example, the global CRO-B areas are 340 

dominated by soybeans with higher LIA (Table S2), and the LIA measurements for soybeans are limited, which caused the 341 

CRO-B MLA in the global map to be greater than that in the measurement statistics (Tables 3 and 4). The poor crop MLA 342 

prediction (Fig. 12b) is mainly caused by a small number of samples and the strong seasonal variation. It is difficult to 343 

consider within-crop LIA variation when typical MLA values are assigned to different crops.  344 

Due to the lack of high-resolution reference MLA, the global MLA was evaluated through a comparison of the MLA-derived 345 

G(0) with the high-resolution reference G(0) (Fig. 13). This practice was adopted because both MLA and G(0) are closely 346 

related. G(0) is typically calculated from the LIA distribution function based on Nilson’s algorithm (Nilson, 1971). We 347 

calculated G(0) from MLA assuming an ellipsoidal LIA distribution (De Wit, 1965) and found that the calculated G(0) is 348 

highly consistent with the reference G(0) calculated from the Nilson’s algorithm for different theoretical LIA distributions 349 

(Fig. S5). The MLA-calculated G(0) also shows a monotonic decreasing relationship with MLA (Fig. S6).  350 

The result shows medium consistency but MLA-derived G(0) overestimates at low values (< 0.60), especially for CRO, PAS, 351 

SHR, and WET. The overestimation may be partly caused by the underestimation of MLA at high values that is related to 352 

the errors introduced in the sample expansion and upscaling. These errors are mainly caused by a lack of LIA measurements, 353 

vegetation structural complexity, and seasonal variation. In addition, the uncertainties in the reference G(0) may have 354 

contributed to the overestimation. The reference G(0) was derived from the Beer-Lambert law (Eq. (4)) which assumes that 355 

the canopy is a turbid medium. The turbid medium assumption is unrealistic for complex vegetation (Widlowski et al., 2014). 356 

The angular variation of CI and the mixture of branches and leaves in generating high-resolution G(0) can also lead to the 357 

overestimation. Previous studies have shown that CI increases with the view zenith angle (Fang, 2021), which means that the 358 

whole CI > CI(0) and can lead to the underestimation of the reference G(0) (Eq. (6) and (7)). The mixture of branches and 359 

leaves may result in the underestimation of the reference G(0) due to the usually higher inclination angle of the trunks (Liu et 360 

al., 2019). The MODIS LAI product used for LIA upscaling in the G(0) validation (section 2.4) is known to have issues such 361 

as internal inconsistency, backup algorithm accuracy, and spatiotemporal gaps (Kandasamy et al., 2013; Pu et al., 2023; 362 

Zhang et al., 2024). In the future, new improved MODIS LAI can be used in the G(0) validation (Pu et al., 2024; Yan et al., 363 

2024). Compared with the previous G(0) derived from global vegetation biophysical products (Eq. (7)) (R2 = 0.11, RMSE = 364 

0.53) (Li et al., 2022), the MLA-derived G(0) performs better (R = 0.62, RMSE = 0.15). In addition, the G(0) data obtained 365 

from our study can be used to derive the G(θ) for any arbitrary angle. One method of getting G(θ) is based on single-366 

parameter ellipsoidal leaf angle distribution (Campbell, 1990) (Eq. (3)). Another method is to make use of both G(0) and 367 

G(57.3° ) (≡ 0.5) and derive G(θ) using a simple linear (𝐺𝐺(𝜃𝜃) = 𝑎𝑎 ∙ 𝜃𝜃 + 𝑏𝑏 ) or sinusoidal (𝐺𝐺(𝜃𝜃) = 𝑎𝑎 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃) + 𝑏𝑏 )) 368 

interpolation method. Since G(θ) varies most significantly in the nadir direction for different MLA (Wilson, 1959), the 369 

uncertainty of G(θ) derived from the global MLA in other directions will be smaller than that of G(0). 370 
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 371 

4.2 The relationship between MLA and other variables 372 

Analysis of the relationships between MLA and other features in the MLA mapping process reveals that MLA is negatively 373 

correlated with NDVI, NIR reflectance, and NIR BRDF kernel coefficients (Fig. 7). These findings are consistent with other 374 

simulation and experimental studies (Zou and Mõttus, 2015; Liu et al., 2012; Dong et al., 2019; Jacquemoud et al., 1994). 375 

Higher LIA means lower radiation interception, more NIR downward radiation, and lower NIR reflectance (Liu et al., 2012). 376 

This results in negative correlations between MLA and NIR reflectance and vegetation index. The negative relationships 377 

between MLA and radiation, precipitation, and temperature (Fig. 7) are related to the vegetation adaptation mechanism. 378 

Under suitable climate conditions (radiation, precipitation, and temperature), horizontal leaves are formed to absorb more 379 

radiation and increase the photosynthesis rate (Van Zanten et al., 2010; King, 1997). The positive correlation between MLA 380 

and the standard deviation of radiation and temperature (Fig. 7) indicates that the MLA is more vertical in areas with 381 

significant seasonal changes in radiation and temperature (mid to high-latitude areas) because vertical leaves maximize 382 

intercepted radiation under low solar altitudes at mid to high-latitude areas (Huemmrich, 2013).  383 

This study predicted global MLA with 40 variables (Fig. 6). To explore the regional differences of the variable importance, 384 

an analysis was conducted for the tropical (23.5°S-23.5°N), northern temperate (23.5°N-60°N), northern polar (60°N-90°N), 385 

and the southern temperate (23.5°S-60°S) zones. The 40 most important variables are similar among different regions 386 

although minor differences exist (Fig. S7). Among the 40 variables for tropical, northern temperate, northern polar, and 387 

southern temperate zones, 32, 35, 30, and 31 of them, respectively, are the same as the 40 global variables (Fig. S7). Climate 388 

and spectral variables are significant among all regions, whereas BRDF features are the most important in the southern 389 

temperate zone. The 40 most important variables in the global MLA prediction account for ~ 80% of total importance among 390 

different regions, which is similar to that in the global prediction. 391 

4.3 Use of the new MLA map 392 

The spherical LAD assumption has been widely adopted in the literature (Tang et al., 2016; Zhao et al., 2020; Wang and 393 

Fang, 2020). This study demonstrates that the spherical assumption is valid only for cereal crops, but not for broadleaf 394 

forests (Tables 3 and 4). This finding is consistent with previous local LIA measurements (De Wit, 1965; Pisek et al., 2013; 395 

Yan et al., 2021). For crops, the spherical assumption may even become invalid because of seasonality and species diversity 396 

(Table S2, Figs. 5 and 9). Fig. 13 shows that most of the reference G(0) values are greater than 0.50, while the spherical 397 

distribution would underestimate the interception of radiation and rainfall (Figs. 9 and 11) (Stadt and Lieffers, 2000). In 398 

current LSMs, a constant LIA is commonly assigned for each PFT (Majasalmi and Bright, 2019). For example, the 399 

Community Land Model V5 (CLM5) (Table S4) (Lawrence et al., 2019) uses lower inclination indices and higher LIA 400 

values than our results (Tables 3 and 4) and thus may underestimate canopy interception. The global LIA map generated in 401 

this study provides a more reasonable LIA parameterization strategy for the application communities. 402 
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4.4 Limitations and prospects 403 

The limitations of this study mainly relate to the small number of LIA measurements, especially continuous measurements. 404 

First, within-species LIA variations were neglected in the spatial expansion due to limited spatial coverage of existing LIA-405 

measured data (Section 2.3.1). This may introduce some errors, especially for crops. Second, three different sources of LIA 406 

measurements were gathered with different sampling schemes and methods. The random forest algorithm is robust to these 407 

differences because part of samples and features are randomly selected and the algorithm ensembles the predications from 408 

multiple decision trees (Svetnik et al., 2003). Third, for forests, the contribution of the understory was not considered. 409 

Typically, the understory is characterized by more horizontal leaves, and ignoring the understory may lead to an MLA 410 

overestimation (Utsugi et al., 2006). Nevertheless, a previous study showed that the relative contribution of the understory to 411 

the overall MLA is less than 10% (Li et al., 2022). Finally, only the growing season MLA was calculated, whereas the 412 

seasonal and long-term variations of MLA were not considered due to the lack of continuous LIA measurements.  413 

Eq. (1) assumed a linear relationship between LAI and EVI2 in the 500 m upscaling process. Global analysis of MODIS LAI 414 

and EVI2 shows a non-linear relationship between the two variables (Fig. S8). This non-linear relationship was also used to 415 

upscale MLA, and the derived MLA was found consistent with the original one (Fig. S9) because of the homogeneity of the 416 

500 m pixel after rigorous sample screening (section 2.3.1). 417 

In the future, more efficient LIA observation systems should be developed to provide continuous LIA data (Kattenborn et al., 418 

2022). LIA measurements can be integrated into existing ground observation networks, such as the National Ecological 419 

Observatory Network (NEON) (Kao et al., 2012), Integrated Carbon Observation System (ICOS) (Gielen et al., 2018), and 420 

Terrestrial Ecosystem Research Network (TERN) (Karan et al., 2016), to enhance temporal LIA measurements in larger 421 

spatial extent, especially for DNF and crops. Using standard LIA measurement protocols will certainly improve the LIA data 422 

consistency (Li et al., 2023). Multiangle reflectance (Jacquemoud et al., 2009; Goel and Thompson, 1984; Jacquemoud et al., 423 

1994) or light detection and ranging (Zheng and Moskal, 2012; Bailey and Mahaffee, 2017; Itakura and Hosoi, 2019) are 424 

encouraging remote sensing tools that can help to derive temporally continuous and high-resolution MLA data. 425 

5 Conclusion 426 

This study compiled existing global LIA measurements and generated the first global 500 m MLA and G(0) products by 427 

gap-filling the LIA measurement data using a random forest regressor. The mean of global LIA measurements is 40.74° and 428 

cereal crops show the highest MLA (59.11°). The global MLA shows an explicit spatial distribution and the value increases 429 

with latitude. The global MLA is 41.47°±9.55° and follows the order of CRO-C > CRO-B > DNF > SHR > ENF ≈ GRA > 430 

DBF > EBF. The predicted MLA presents a medium consistency (r = 0.75, RMSE = 7.15°) with the validation samples for 431 

noncrops. For crops, the results are relatively poorer (r = 0.48 and 0.60 for broadleaf crops and cereal crops) because of 432 

limited LIA measurements and strong seasonality. The G(0) derived from MLA is moderately consistent with the reference 433 

G(0) (r = 0.62).  434 
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The MLA and G(0) products obtained in this study would enhance our understanding of global LIA and assist remote 435 

sensing retrieval and land surface modeling studies. These products provide a more realistic parameterization strategy than 436 

the commonly used spherical LAD and PFT-specific MLA assignment. Note the global MLA and G(0) products mainly 437 

represent the typical state during the growing season. These products can be further improved and temporal MLA data can 438 

be obtained through continuous measurements and remote sensing retrieval. 439 

Data availability 440 

The global MLA and G(0) products are available in: Li, S. and Fang, H. 2024, https://doi.org/10.5281/zenodo.10940673. (Li 441 

and Fang, 2024). The related code can be accessed at https://code.earthengine.google.com/?accept_repo=users/SiJia/MTA.  442 

Author contributions 443 

HF and SL conceptualized this work. SL compiled global LIA measurements, generated global products, and curated the 444 

datasets. SL and HF wrote the manuscript. HF was responsible for funding and supervision. 445 

Competing interests 446 

The contact author has declared that none of the authors has any competing interests. 447 

Acknowledgements 448 

The authors are grateful to TRY and many other researchers for sharing the LIA measurement data. Jens Kattge at the Max 449 

Planck Institute for Biogeochemistry and Dongliang Cheng at Fujian Normal University provided the TRY species location 450 

data and LIA measurements in China's subtropical regions, respectively. 451 

 452 

Financial support 453 

This work was mainly supported by the National Natural Science Foundation of China (42171358). 454 

References 455 

Alexandridis, T. K., Ovakoglou, G., and Clevers, J. G. P. W.: Relationship between MODIS EVI and LAI across time and 456 

space, Geocarto International, 35, 1385-1399, 10.1080/10106049.2019.1573928, 2019. 457 

https://doi.org/10.5281/zenodo.10940673
https://code.earthengine.google.com/?accept_repo=users/SiJia/MTA


25 
 

Bailey, B. N. and Mahaffee, W. F.: Rapid measurement of the three-dimensional distribution of leaf orientation and the leaf 458 

angle probability density function using terrestrial LiDAR scanning, Remote Sens. Environ., 194, 63-76, 459 

10.1016/j.rse.2017.03.011, 2017. 460 

Bayat, B., van der Tol, C., and Verhoef, W.: Integrating satellite optical and thermal infrared observations for improving 461 

daily ecosystem functioning estimations during a drought episode, Remote Sens. Environ., 209, 375-394, 462 

10.1016/j.rse.2018.02.027, 2018. 463 

Boryan, C., Yang, Z., Mueller, R., and Craig, M.: Monitoring US agriculture: the US department of agriculture, national 464 

agricultural statistics service, cropland data layer program, Geocarto International, 26, 341-358, 2011. 465 

Brown, L. A., Meier, C., Morris, H., Pastor-Guzman, J., Bai, G., Lerebourg, C., Gobron, N., Lanconelli, C., Clerici, M., and 466 

Dash, J.: Evaluation of global leaf area index and fraction of absorbed photosynthetically active radiation products over 467 

North America using Copernicus Ground Based Observations for Validation data, Remote Sens. Environ., 247, 468 

10.1016/j.rse.2020.111935, 2020. 469 

Campbell, G.: Derivation of an angle density function for canopies with ellipsoidal leaf angle distributions, Agricultural and 470 

forest meteorology, 49, 173-176, 1990. 471 

Chen, J. M., Ju, W., Ciais, P., Viovy, N., Liu, R., Liu, Y., and Lu, X.: Vegetation structural change since 1981 significantly 472 

enhanced the terrestrial carbon sink, Nat Commun, 10, 4259, 10.1038/s41467-019-12257-8, 2019. 473 

Chen, X., Zhong, Q.-L., Lyu, M., Wang, M., Hu, D., Sun, J., and Cheng, D.: Trade-off relationship between light 474 

interception and leaf water shedding at different canopy positions of 73 broad-leaved trees of Yangji Mountain in Jiangxi 475 

Province, China, SCIENTIA SINICA Vitae, 51, 91-101, 10.1360/SSV-2020-0218, 2021. 476 

Chianucci, F., Pisek, J., Raabe, K., Marchino, L., Ferrara, C., and Corona, P.: A dataset of leaf inclination angles for 477 

temperate and boreal broadleaf woody species, Annals of Forest Science, 75, 50-50, 10.1007/s13595-018-0730-x, 2018. 478 

Crawford, C. J., Roy, D. P., Arab, S., Barnes, C., Vermote, E., Hulley, G., Gerace, A., Choate, M., Engebretson, C., 479 

Micijevic, E., Schmidt, G., Anderson, C., Anderson, M., Bouchard, M., Cook, B., Dittmeier, R., Howard, D., Jenkerson, C., 480 

Kim, M., Kleyians, T., Maiersperger, T., Mueller, C., Neigh, C., Owen, L., Page, B., Pahlevan, N., Rengarajan, R., Roger, J.-481 

C., Sayler, K., Scaramuzza, P., Skakun, S., Yan, L., Zhang, H. K., Zhu, Z., and Zahn, S.: The 50-year Landsat collection 2 482 

archive, Science of Remote Sensing, 8, 100103, https://doi.org/10.1016/j.srs.2023.100103, 2023. 483 

d’Andrimont, R., Verhegghen, A., Lemoine, G., Kempeneers, P., Meroni, M., and van der Velde, M.: From parcel to 484 

continental scale – A first European crop type map based on Sentinel-1 and LUCAS Copernicus in-situ observations, 485 

Remote Sens. Environ., 266, 112708, https://doi.org/10.1016/j.rse.2021.112708, 2021. 486 

de Wit, C. T.: Photosynthesis of leaf canopies, Pudoc, 1965. 487 

Dong, J., fu, y., wang, j., Tian, H., Fu, S., Niu, Z., Han, W., Zheng, Y., Huang, J., and Yuan, W.: 30m winter wheat 488 

distribution map of China for four years (2016-2019), 10.6084/m9.figshare.12003990.v2,  2020. 489 

https://doi.org/10.1016/j.srs.2023.100103
https://doi.org/10.1016/j.rse.2021.112708


26 
 

Dong, T., Liu, J., Shang, J., Qian, B., Ma, B., Kovacs, J. M., Walters, D., Jiao, X., Geng, X., and Shi, Y.: Assessment of red-490 

edge vegetation indices for crop leaf area index estimation, Remote Sens. Environ., 222, 133-143, 10.1016/j.rse.2018.12.032, 491 

2019. 492 

Fang, H.: Canopy clumping index (CI): A review of methods, characteristics, and applications, Agricultural and Forest 493 

Meteorology, 303, 108374, https://doi.org/10.1016/j.agrformet.2021.108374, 2021. 494 

Fang, H., Li, S., Zhang, Y., Wei, S., and Wang, Y.: New insights of global vegetation structural properties through an 495 

analysis of canopy clumping index, fractional vegetation cover, and leaf area index, Science of Remote Sensing, 100027, 496 

https://doi.org/10.1016/j.srs.2021.100027, 2021. 497 

Fisette, T., Rollin, P., Aly, Z., Campbell, L., Daneshfar, B., Filyer, P., Smith, A., Davidson, A., Shang, J., and Jarvis, I.: 498 

AAFC annual crop inventory, 2013 Second International Conference on Agro-Geoinformatics (Agro-Geoinformatics), 270-499 

274,  500 

Foley, J. A., Prentice, I. C., Ramankutty, N., Levis, S., Pollard, D., Sitch, S., and Haxeltine, A.: An integrated biosphere 501 

model of land surface processes, terrestrial carbon balance, and vegetation dynamics, Global biogeochemical cycles, 10, 502 

603-628, 1996. 503 

Gielen, B., Acosta, M., Altimir, N., Buchmann, N., Cescatti, A., Ceschia, E., Fleck, S., Hörtnagl, L., Klumpp, K., Kolari, P., 504 

Lohila, A., Loustau, D., Marańon-Jimenez, S., Manise, T., Matteucci, G., Merbold, L., Metzger, C., Moureaux, C., 505 

Montagnani, L., Nilsson, M. B., Osborne, B., Papale, D., Pavelka, M., Saunders, M., Simioni, G., Soudani, K., Sonnentag, 506 

O., Tallec, T., Tuittila, E.-S., Peichl, M., Pokorny, R., Vincke, C., and Wohlfahrt, G.: Ancillary vegetation measurements at 507 

ICOS ecosystem stations, International Agrophysics, 32, 645-664, 10.1515/intag-2017-0048, 2018. 508 

Goel, N. S. and Thompson, R. L.: Inversion of vegetation canopy reflectance models for estimating agronomic variables. V. 509 

Estimation of leaf area index and average leaf angle using measured canopy reflectances, Remote Sens. Environ., 16, 69-85, 510 

10.1016/0034-4257(84)90028-2, 1984. 511 

Han, J., Zhang, Z., Luo, Y., Cao, J., Zhang, L., Cheng, F., Zhuang, H., Zhang, J., and Tao, F.: NESEA-Rice10: high-512 

resolution annual paddy rice maps for Northeast and Southeast Asia from 2017 to 2019, Earth System Science Data, 13, 513 

5969-5986, 10.5194/essd-13-5969-2021, 2021. 514 

Hinojo-Hinojo, C. and Goulden, M.: A compilation of canopy leaf inclination angle measurements across plant species and 515 

biome types, 10.7280/D1T97H, 2020. 516 

Huemmrich, K. F.: Simulations of Seasonal and Latitudinal Variations in Leaf Inclination Angle Distribution: Implications 517 

for Remote Sensing, Advances in Remote Sensing, 02, 93-101, 10.4236/ars.2013.22013, 2013. 518 

Itakura, K. and Hosoi, F.: Estimation of Leaf Inclination Angle in Three-Dimensional Plant Images Obtained from Lidar, 519 

Remote Sensing, 11, 10.3390/rs11030344, 2019. 520 

Jacquemoud, S., Flasse, S., Verdebout, J., and Schmuck, G.: Comparison of Several Optimization Methods To Extract 521 

Canopy Biophysical Parameters - Application To Caesar Data, 291-298, 1994. 522 

https://doi.org/10.1016/j.agrformet.2021.108374
https://doi.org/10.1016/j.srs.2021.100027


27 
 

Jacquemoud, S., Verhoef, W., Baret, F., Bacour, C., Zarco-Tejada, P. J., Asner, G. P., François, C., and Ustin, S. L.: 523 

PROSPECT+SAIL models: A review of use for vegetation characterization, Remote Sens. Environ., 113, S56-S66, 524 

10.1016/j.rse.2008.01.026, 2009. 525 

Kandasamy, S., Baret, F., Verger, A., Neveux, P., and Weiss, M.: A comparison of methods for smoothing and gap filling 526 

time series of remote sensing observations–application to MODIS LAI products, Biogeosciences, 10, 4055-4071, 2013. 527 

Kao, R. H., Gibson, C. M., Gallery, R. E., Meier, C. L., Barnett, D. T., Docherty, K. M., Blevins, K. K., Travers, P. D., 528 

Azuaje, E., Springer, Y. P., Thibault, K. M., McKenzie, V. J., Keller, M., Alves, L. F., Hinckley, E.-L. S., Parnell, J., and 529 

Schimel, D.: NEON terrestrial field observations: designing continental-scale, standardized sampling, Ecosphere, 3, art115, 530 

10.1890/es12-00196.1, 2012. 531 

Karan, M., Liddell, M., Prober, S. M., Arndt, S., Beringer, J., Boer, M., Cleverly, J., Eamus, D., Grace, P., Van Gorsel, E., 532 

Hero, J. M., Hutley, L., Macfarlane, C., Metcalfe, D., Meyer, W., Pendall, E., Sebastian, A., and Wardlaw, T.: The 533 

Australian SuperSite Network: A continental, long-term terrestrial ecosystem observatory, Sci. Total Environ., 568, 1263-534 

1274, 10.1016/j.scitotenv.2016.05.170, 2016. 535 

Kattenborn, T., Richter, R., Guimarães‐Steinicke, C., Feilhauer, H., and Wirth, C.: AngleCam: Predicting the temporal 536 

variation of leaf angle distributions from image series with deep learning, Methods in Ecology and Evolution, 13, 2531-2545, 537 

10.1111/2041-210x.13968, 2022. 538 

Kattge, J., Bonisch, G., Diaz, S., Lavorel, S., and Prentice, I. C.: TRY plant trait database - enhanced coverage and open 539 

access, Glob Chang Biol, 26, 119-188, 10.1111/gcb.14904, 2020. 540 

King, D. A.: The Functional Significance of Leaf Angle in Eucalyptus, Aust. J. Bot., 45, 619-639, 541 

https://doi.org/10.1071/BT96063, 1997. 542 

Kuusk, A.: A two-layer canopy reflectance model, Journal of Quantitative Spectroscopy and Radiative Transfer, 71, 1-9, 543 

https://doi.org/10.1016/S0022-4073(01)00007-3, 2001. 544 

Lang, A. R. G.: Leaf orientation of a cotton plant, Agricultural Meteorology, 11, 37-51, 10.1016/0002-1571(73)90049-6, 545 

1973. 546 

Lawrence, D. M., Fisher, R. A., Koven, C. D., Oleson, K. W., Swenson, S. C., Bonan, G., Collier, N., Ghimire, B., Van 547 

Kampenhout, L., and Kennedy, D.: The Community Land Model version 5: Description of new features, benchmarking, and 548 

impact of forcing uncertainty, Journal of Advances in Modeling Earth Systems, 11, 4245-4287, 2019. 549 

Li, S. and Fang, H.: Global Leaf Inclination Angle (LIA) and Nadir Leaf Projection Function (G(0)) Products, Zenodo 550 

[dataset], 10.5281/zenodo.10940673, 2024. 551 

Li, S., Fang, H., and Zhang, Y.: Determination of the Leaf Inclination Angle (LIA) through Field and Remote Sensing 552 

Methods: Current Status and Future Prospects, Remote Sensing, 15, 946, 2023. 553 

Li, S., Fang, H., Zhang, Y., and Wang, Y.: Comprehensive evaluation of global CI, FVC, and LAI products and their 554 

relationships using high-resolution reference data, Science of Remote Sensing, 6, 10.1016/j.srs.2022.100066, 2022. 555 

https://doi.org/10.1071/BT96063
https://doi.org/10.1016/S0022-4073(01)00007-3


28 
 

Liu, J., Pattey, E., and Jégo, G.: Assessment of vegetation indices for regional crop green LAI estimation from Landsat 556 

images over multiple growing seasons, Remote Sens. Environ., 123, 347-358, 10.1016/j.rse.2012.04.002, 2012. 557 

Liu, J., Wang, T., Skidmore, A. K., Jones, S., Heurich, M., Beudert, B., and Premier, J.: Comparison of terrestrial LiDAR 558 

and digital hemispherical photography for estimating leaf angle distribution in European broadleaf beech forests, ISPRS 559 

Journal of Photogrammetry and Remote Sensing, 158, 76-89, 10.1016/j.isprsjprs.2019.09.015, 2019. 560 

Maes, W. and Steppe, K.: Estimating evapotranspiration and drought stress with ground-based thermal remote sensing in 561 

agriculture: a review, J. Exp. Bot., 63, 4671-4712, 2012. 562 

Majasalmi, T. and Bright, R. M.: Evaluation of leaf-level optical properties employed in land surface models – example with 563 

CLM 5.0, Geoscientific Model Development Discussions, 1-24, 2019. 564 

Mantilla-Perez, M. B. and Salas Fernandez, M. G.: Differential manipulation of leaf angle throughout the canopy: current 565 

status and prospects, J. Exp. Bot., 68, 5699-5717, 2017. 566 

Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., 567 

Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., 568 

and Thépaut, J.-N.: ERA5-Land: a state-of-the-art global reanalysis dataset for land applications, Earth System Science Data, 569 

13, 4349-4383, 10.5194/essd-13-4349-2021, 2021. 570 

Myneni, R., Knyazikhin, Y., Park, T.: MCD15A2H MODIS/Terra+Aqua Leaf Area Index/FPAR 8-day L4 Global 500m SIN 571 

Grid V006 [dataset], http://doi.org/10.5067/MODIS/MCD15A2H.006, 2015. 572 

Nilson, T.: A theoretical analysis of the frequency of gaps in plant stands, Agricultural Meteorology, 8, 25-38, 1971. 573 

Norman, J. M. and Campbell, G. S.: Canopy structure, in: Plant Physiological Ecology: Field methods and instrumentation, 574 

edited by: Pearcy, R. W., Ehleringer, J. R., Mooney, H. A., and Rundel, P. W., Springer Netherlands, Dordrecht, 301-325, 575 

10.1007/978-94-009-2221-1_14, 1989. 576 

Pisek, J. and Adamson, K.: Dataset of leaf inclination angles for 71 different Eucalyptus species, Data Brief, 33, 106391, 577 

10.1016/j.dib.2020.106391, 2020. 578 

Pisek, J., Ryu, Y., and Alikas, K.: Estimating leaf inclination and G-function from leveled digital camera photography in 579 

broadleaf canopies, Trees, 25, 919-924, 10.1007/s00468-011-0566-6, 2011. 580 

Pisek, J., Sonnentag, O., Richardson, A. D., and Mõttus, M.: Is the spherical leaf inclination angle distribution a valid 581 

assumption for temperate and boreal broadleaf tree species?, Agricultural and Forest Meteorology, 169, 186-194, 582 

10.1016/j.agrformet.2012.10.011, 2013. 583 

Pisek, J., Diaz-Pines, E., Matteucci, G., Noe, S., and Rebmann, C.: On the leaf inclination angle distribution as a plant trait 584 

for the most abundant broadleaf tree species in Europe, Agricultural and Forest Meteorology, 323, 585 

10.1016/j.agrformet.2022.109030, 2022. 586 

Pu, J., Yan, K., Roy, S., Zhu, Z., Rautiainen, M., Knyazikhin, Y., and Myneni, R. B.: Sensor-independent LAI/FPAR CDR: 587 

reconstructing a global sensor-independent climate data record of MODIS and VIIRS LAI/FPAR from 2000 to 2022, Earth 588 

System Science Data, 16, 15-34, 10.5194/essd-16-15-2024, 2024. 589 

http://doi.org/10.5067/MODIS/MCD15A2H.006


29 
 

Pu, J., Yan, K., Gao, S., Zhang, Y., Park, T., Sun, X., Weiss, M., Knyazikhin, Y., and Myneni, R. B.: Improving the MODIS 590 

LAI compositing using prior time-series information, Remote Sens. Environ., 287, 10.1016/j.rse.2023.113493, 2023. 591 

Raabe, K., Pisek, J., Sonnentag, O., and Annuk, K.: Variations of leaf inclination angle distribution with height over the 592 

growing season and light exposure for eight broadleaf tree species, Agricultural and Forest Meteorology, 214-215, 2-11, 593 

10.1016/j.agrformet.2015.07.008, 2015. 594 

Ross, J.: Radiative transfer in plant communities, Vegetation and the Atmosphere, 13-55, 1975. 595 

Ross, J.: The radiation regime and architecture of plant stands,  3, Springer Science & Business Media1981. 596 

Ryu, Y., Sonnentag, O., Nilson, T., Vargas, R., Kobayashi, H., Wenk, R., and Baldocchi, D. D.: How to quantify tree leaf 597 

area index in an open savanna ecosystem: A multi-instrument and multi-model approach, Agricultural and Forest 598 

Meteorology, 150, 63-76, 10.1016/j.agrformet.2009.08.007, 2010. 599 

Schaaf, C. and Wang, Z.: MCD43A4 MODIS/Terra+Aqua BRDF/Albedo Nadir BRDF Adjusted Ref Daily L3 Global - 600 

500m V006, NASA EOSDIS Land Processes Distributed Active Archive Center [dataset], 601 

https://doi.org/10.5067/MODIS/MCD43A4.006, 2015a. 602 

Schaaf, C. and Wang, Z.: MCD43A1 MODIS/Terra+Aqua BRDF/Albedo Model Parameters Daily L3 Global - 500m V006, 603 

NASA EOSDIS Land Processes Distributed Active Archive Center [dataset], 604 

https://doi.org/10.5067/MODIS/MCD43A1.006, 2015b. 605 

Sellers, P. J.: Canopy reflectance, photosynthesis and transpiration, International Journal of Remote Sensing, 6, 1335-1372, 606 

10.1080/01431168508948283, 1985. 607 

Shen, R., Dong, J., Yuan, W., Han, W., Ye, T., and Zhao, W.: A 30-m Resolution Distribution Map of Maize for China 608 

Based on Landsat and Sentinel Images, Journal of Remote Sensing, 2022, doi:10.34133/2022/9846712, 2022. 609 

Stadt, K. J. and Lieffers, V. J.: MIXLIGHT: a flexible light transmission model for mixed-species forest stands, Agricultural 610 

and Forest Meteorology, 102, 235-252, 2000. 611 

Sulla-Menashe, D., Gray, J. M., Abercrombie, S. P., and Friedl, M. A.: Hierarchical mapping of annual global land cover 612 

2001 to present: The MODIS Collection 6 Land Cover product, Remote Sens. Environ., 222, 183-194, 613 

10.1016/j.rse.2018.12.013, 2019. 614 

Svetnik, V., Liaw, A., Tong, C., Culberson, J. C., Sheridan, R. P., and Feuston, B. P.: Random forest: a classification and 615 

regression tool for compound classification and QSAR modeling, Journal of chemical information and computer sciences, 43, 616 

1947-1958, 2003. 617 

Tadono, T., Ishida, H., Oda, F., Naito, S., Minakawa, K., and Iwamoto, H.: Precise global DEM generation by ALOS 618 

PRISM, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2, 71-76, 2014. 619 

Tang, H., Ganguly, S., Zhang, G., Hofton, M. A., Nelson, R. F., and Dubayah, R.: Characterizing leaf area index (LAI) and 620 

vertical foliage profile (VFP) over the United States, Biogeosciences, 13, 239-252, 10.5194/bg-13-239-2016, 2016. 621 

https://doi.org/10.5067/MODIS/MCD43A4.006
https://doi.org/10.5067/MODIS/MCD43A1.006


30 
 

Toda, M., Ishihara, M. I., Doi, K., and Hara, T.: Determination of species-specific leaf angle distribution and plant area 622 

index in a cool-temperate mixed forest from UAV and upward-pointing digital photography, Agricultural and Forest 623 

Meteorology, 325, 10.1016/j.agrformet.2022.109151, 2022. 624 

Utsugi, H., Araki, M., Kawasaki, T., and Ishizuka, M.: Vertical distributions of leaf area and inclination angle, and their 625 

relationship in a 46-year-old Chamaecyparis obtusa stand, For. Ecol. Manage., 225, 104-112, 626 

https://doi.org/10.1016/j.foreco.2005.12.028, 2006. 627 

van Zanten, M., Pons, T. L., Janssen, J. A. M., Voesenek, L. A. C. J., and Peeters, A. J. M.: On the Relevance and Control of 628 

Leaf Angle, Crit. Rev. Plant Sci., 29, 300-316, 10.1080/07352689.2010.502086, 2010. 629 

Verhoef, W., Jia, L., Xiao, Q., and Su, Z.: Unified Optical-Thermal Four-Stream Radiative Transfer Theory for 630 

Homogeneous Vegetation Canopies, IEEE Transactions on Geoscience and Remote Sensing, 45, 1808-1822, 631 

10.1109/TGRS.2007.895844, 2007. 632 

Wang, W. M., Li, Z. L., and Su, H. B.: Comparison of leaf angle distribution functions: Effects on extinction coefficient and 633 

fraction of sunlit foliage, Agricultural and Forest Meteorology, 143, 106-122, 10.1016/j.agrformet.2006.12.003, 2007. 634 

Wang, Y. and Fang, H.: Estimation of LAI with the LiDAR Technology: A Review, Remote Sensing, 12, 635 

10.3390/rs12203457, 2020. 636 

Weiss, M. and Baret, F.: CAN-EYE V6.4.91 User Manual, https://www6.paca.inrae.fr/can-637 

eye/Documentation/Documentation,  2017. 638 

Widlowski, J.-L., Côté, J.-F., and Béland, M.: Abstract tree crowns in 3D radiative transfer models: Impact on simulated 639 

open-canopy reflectances, Remote Sens. Environ., 142, 155-175, 10.1016/j.rse.2013.11.016, 2014. 640 

Wilson, J.: Inclined point quadrats, New Phytol., 59, 1-7, 10.1111/j.1469-8137.1960.tb06195.x, 1960. 641 

Wilson, J. W.: Analysis of the spatial distribution of foliage by two-dimensional point quadrats, New Phytol., 58, 92-99, 642 

https://doi.org/10.1111/j.1469-8137.1959.tb05340.x, 1959. 643 

Xiao, Q., McPherson, E. G., Ustin, S. L., and Grismer, M. E.: A new approach to modeling tree rainfall interception, Journal 644 

of Geophysical Research: Atmospheres, 105, 29173-29188, 2000. 645 

Yan, G., Jiang, H., Luo, J., Mu, X., Li, F., Qi, J., Hu, R., Xie, D., and Zhou, G.: Quantitative Evaluation of Leaf Inclination 646 

Angle Distribution on Leaf Area Index Retrieval of Coniferous Canopies, Journal of Remote Sensing, 2021, 1-15, 647 

10.34133/2021/2708904, 2021. 648 

Yan, K., Wang, J., Peng, R., Yang, K., Chen, X., Yin, G., Dong, J., Weiss, M., Pu, J., and Myneni, R. B.: HiQ-LAI: a high-649 

quality reprocessed MODIS leaf area index dataset with better spatiotemporal consistency from 2000 to 2022, Earth System 650 

Science Data, 16, 1601-1622, 10.5194/essd-16-1601-2024, 2024. 651 

You, N., Dong, J., Huang, J., Du, G., Zhang, G., He, Y., Yang, T., Di, Y., and Xiao, X.: The 10-m crop type maps in 652 

Northeast China during 2017-2019, Sci Data, 8, 41, 10.1038/s41597-021-00827-9, 2021. 653 

https://doi.org/10.1016/j.foreco.2005.12.028
https://www6.paca.inrae.fr/can-eye/Documentation/Documentation
https://www6.paca.inrae.fr/can-eye/Documentation/Documentation
https://doi.org/10.1111/j.1469-8137.1959.tb05340.x


31 
 

Zhang, X., Yan, K., Liu, J., Yang, K., Pu, J., Yan, G., Heiskanen, J., Zhu, P., Knyazikhin, Y., and Myneni, R. B.: An Insight 654 

Into the Internal Consistency of MODIS Global Leaf Area Index Products, IEEE Transactions on Geoscience and Remote 655 

Sensing, 62, 1-16, 10.1109/tgrs.2024.3434366, 2024. 656 

Zhao, J., Li, J., Liu, Q., Xu, B., Yu, W., Lin, S., and Hu, Z.: Estimating fractional vegetation cover from leaf area index and 657 

clumping index based on the gap probability theory, International Journal of Applied Earth Observation and Geoinformation, 658 

90, 102-112, 10.1016/j.jag.2020.102112, 2020. 659 

Zheng, G. and Moskal, L. M.: Leaf orientation retrieval from terrestrial laser scanning (TLS) data, IEEE Transactions on 660 

Geoscience and Remote Sensing, 50, 3970-3979, 10.1109/TGRS.2012.2188533, 2012. 661 

Zou, X. and Mõttus, M.: Retrieving crop leaf tilt angle from imaging spectroscopy data, Agricultural and Forest Meteorology, 662 

205, 73-82, 10.1016/j.agrformet.2015.02.016, 2015. 663 

Zou, X., Mõttus, M., Tammeorg, P., Torres, C. L., Takala, T., Pisek, J., Mäkelä, P., Stoddard, F. L., and Pellikka, P.: 664 

Photographic measurement of leaf angles in field crops, Agricultural and Forest Meteorology, 184, 137-146, 665 

10.1016/j.agrformet.2013.09.010, 2014. 666 

 667 

 668 


	1 Introduction
	2 Materials and methods
	2.1 LIA measurement data
	2.1.1 TRY LIA dataset
	2.1.2 LIA data from the literature
	2.1.3 Manual LIA extraction

	2.2 Remote sensing data
	2.2.1 Ancillary data used for MLA mapping
	2.2.2 High-resolution reference data

	2.3 Mapping global LIA
	2.3.1 Data preparation
	2.3.2 Global MLA mapping

	2.4 Evaluation of global MLA

	3 Results
	3.1 Global measured LIA values
	3.2 The relationships between MLA and other variables
	3.3 Global MLA and G(0) maps
	3.4 Evaluation of global MLA

	4 Discussion
	4.1 Global MLA and G(0)
	4.2 The relationship between MLA and other variables
	4.3 Use of the new MLA map
	4.4 Limitations and prospects

	5 Conclusion
	Data availability
	Author contributions
	Competing interests
	Acknowledgements
	Financial support
	References

