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Topic editor 1 
 2 
Public justification (visible to the public if the article is accepted and published): 3 
The manuscript presents a novel approach to estimating global Mean Leaf Inclination 4 
Angle (MLA) using satellite-derived vegetation indices and machine learning. Both 5 
reviewers acknowledge the improvements made in response to their initial comments, 6 
with many concerns adequately addressed. However, several key issues remain 7 
unresolved, warranting further revision. Reviewer 1 highlights the need for a clearer 8 
justification of the choice of EVI over other vegetation indices such as NDVI, 9 
particularly in light of recent research on vegetation index error propagation and 10 
saturation effects. Additionally, a more detailed explanation of the nonlinear LAI-EVI 11 
relationship and its saturation phenomenon is necessary. Reviewer 2 raises significant 12 
concerns regarding the upscaling methodology, particularly the transition from leaf-13 
level LIA to ecosystem-scale MLA, emphasizing the need for a more rigorous 14 
discussion of assumptions and uncertainties. Furthermore, greater integration of 15 
responses into the manuscript, clarification of MODIS product versions, and a 16 
dedicated uncertainty assessment layer would strengthen the study's credibility. Given 17 
these remaining concerns, another major revision is necessary to ensure the robustness 18 
and transparency of the methodology, as well as to enhance the interpretability and 19 
applicability of the global MLA dataset. 20 
 21 
We thank the topic editor for the recognition and professional processing. We fully 22 
understand the concerns raised by the reviewers and have carefully addressed these 23 
issues in this revision round.  24 
 25 
Some major revisions were made in the revised version: 26 
(1) The reasons for the choice of EVI2 and explanations of the nonlinear LAI-EVI2 27 

relationship have been further elaborated in the main text.  28 
(2) The full process of upscaling methodology has been reorganized rigorously to 29 

enhance clarity and its assumptions and uncertainty have been discussed. 30 
(3) The uncertainty assessment layers have been added from the perspectives of inputs 31 

and the prediction model. 32 
(4) The comments regarding MODIS products, NDVI, and GEDI LiDAR have been 33 

addressed. 34 
(5) The responses to reviewers have been greatly integrated into the manuscript. 35 
(6) The data DOI has been updated because of the data upgrade. 36 

  37 
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Anonymous Referee #2  38 
 39 
After reviewing the authors’ responses, I find that two of my original comments have 40 
been adequately addressed. However, one critical concern regarding the upscaling 41 
approach remains insufficiently addressed, and the resultant LIA at the ecosystem or 42 
grid scale is still rather confusing. Additionally, the authors’ major responses are not 43 
clearly reflected or integrated into the revised manuscript. Below are my specific 44 
comments: 45 
 46 
We thank the referee for the insightful comments which significantly improved the 47 
manuscript. We fully understand the referee’s concerns and have provided detailed 48 
explanations and revisions below. In addition, the previous major responses to your 49 
comments regarding Upscaling LIA Field Measurements and Coarse Resolution and 50 
Low-Signal Inputs in the Model have been integrated into the revised manuscript 51 
(Sections 2.2.1, 2.3.1, and 2.3.2).  52 
 53 
1). Upscaling LIA from the leaf level to the canopy or larger ecosystem scales is 54 
inherently challenging. Although the authors provide some clarification, their initial 55 
upscaling step remains overly simplistic, making it difficult to grasp what the 56 
“ecosystem-level LIA” truly represents. Traditionally, LIA at the canopy scale can be 57 
defined as the average LIA of each leaf (Eq. 1). However, because counting individual 58 
leaves (N) is often impractical, the authors employ a leaf-area-weighted approach for 59 
MLA. If I understand right, this equation can be defined by Eqs. 2 & 3. 60 
 61 

𝑀𝑀𝑀𝑀𝑀𝑀 = ∑ 𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖
𝑁𝑁

   (1) 62 

𝑀𝑀𝑀𝑀𝑀𝑀 =
∑ 𝐿𝐿𝐿𝐿𝐿𝐿𝑗𝑗∗𝐿𝐿𝐿𝐿𝑗𝑗𝑗𝑗

𝑁𝑁∗𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
=

∑ 𝐿𝐿𝐿𝐿𝐿𝐿𝑗𝑗∗𝐿𝐿𝐿𝐿𝑗𝑗𝑗𝑗

𝐿𝐿𝐿𝐿𝐿𝐿∗𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
   (2) 63 

𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑁𝑁 ∗ 𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚/𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐸𝐸𝐸𝐸𝐸𝐸2 ∗ 𝑎𝑎 + 𝑏𝑏   (3) 64 
 65 
Where MLA is mean inclination angle, j is the jth leaf, LIA is leaf inclination angle, N 66 
is number of leaves within a canopy, LA is single leaf area, LAI is the ecosystem-level 67 
standard leaf area index (m2/m2), canopy_size is the projected area onto the ground for 68 
a specific canopy; a and b are the linear coefficients between EVI2 and LAI (if the 69 
linear relationship holds true). 70 
 71 



3 
 

Eqs. (2) and (3) theoretically support the upscaling of LIA from the leaf to the canopy 72 
level, and by extension from the canopy to 30 m and from 30 m to 500 m. However, 73 
the authors used a simplified form of Eq (1) in the manuscript to upscale from 30m to 74 
500m. It is hard to persuade me this equation is equivalent to the Eqs (2-3) mentioned 75 
above, especially given the existence of the interception of b and missing variable of 76 
leaf number. 77 
 78 
In addition, the authors did not mention the details of upscaling from the canopy to 30m. 79 
As a result, the MLA on the 500m derived here and further used to training the model 80 
is difficult to interpret, which is apparently different from the LIA at the leaf level. I 81 
encourage the authors to more rigorously evaluate their upscaling methodology, 82 
discussing the assumptions and uncertainties introduced at each scale and from different 83 
data sources. 84 
 85 
Thank the referee for this thorough comment. We have reorganized the upscaling 86 
process rigorously to enhance clarity.  87 
 88 
From leaf to canopy scale, the entire canopy MLA is commonly calculated as the 89 
average of all measured leaf LIAs weighted by leaf area in the remote sensing 90 
community (Eq. R1) (Zou et al., 2014; De Wit, 1965; Yan et al., 2021). In practice, 91 
because of the difficulty in leaf area measurement, especially for a large number of 92 
leaves, the variability of leaf areas within a canopy is often ignored and the areas of all 93 
leaves are assumed similar. In this case, the canopy LIA can be simplified as the average 94 
LIA weighted by leaf number (Eq. R1) (Ryu et al., 2010; Pisek et al., 2011; Chianucci 95 
et al., 2018): 96 
 97 

𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = ∑ 𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖∗𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖
∑ 𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖

= 𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚∗∑ 𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖
𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚∗𝑁𝑁

= ∑ 𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖
𝑁𝑁

       (R1) 98 

 99 
where 𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the MLA at canopy scale, i is the ith leaf, LIA is leaf inclination 100 
angle, LA is single leaf area, 𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is the mean leaf area by ignoring the variation 101 
of leaf area within a canopy, N is number of leaves within a canopy. 102 
 103 
From the canopy to 30 m scale, the canopy level MLA is regarded as equal to 30 m-104 
MLA because for MLA measurements, the dominant species was artificially identified 105 
by investigators, and the spatial representativeness at the extent of 30 m is ensured. This 106 
practice has been used in previous studies to derive global maps for various leaf traits 107 
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(specific leaf area, leaf dry matter content, leaf nitrogen and phosphorus content per dry 108 
mass, and leaf nitrogen/phosphorus ratio) from TRY leaf trait measurements, remote 109 
sensing, and climate data (Moreno-Martínez et al., 2018). 110 
 111 
From 30 m to 500 m, the 500 m MLA was formulated as the weighted average of 30 m 112 
MLA by the leaf area of the 30 m pixel (Eq. R2), the same as that from the leaf to 113 
canopy scale. The leaf area of a 30 m pixel can be deduced from the product of leaf area 114 
index (LAI) and the ground area (not the projected area onto the ground for a specific 115 
canopy) of a 30 m pixel according to the definition of LAI (the half of green leaf area 116 
on the unit of ground area) (Eq. R2) (Fang et al., 2019).  117 
 118 

𝑀𝑀𝑀𝑀𝑀𝑀500 =
∑ 𝑀𝑀𝑀𝑀𝑀𝑀30_𝑗𝑗∗𝐿𝐿𝐿𝐿30_𝑗𝑗𝑗𝑗

∑ 𝐿𝐿𝐿𝐿30_𝑗𝑗𝑗𝑗
=

∑ 𝑀𝑀𝑀𝑀𝑀𝑀30_𝑗𝑗∗𝐿𝐿𝐿𝐿𝐿𝐿30_𝑗𝑗∗𝑆𝑆𝑗𝑗

∑ 𝐿𝐿𝐿𝐿𝐿𝐿30_𝑗𝑗∗𝑆𝑆𝑗𝑗
=

∑ 𝑀𝑀𝑀𝑀𝑀𝑀30_𝑗𝑗∗𝐿𝐿𝐿𝐿𝐿𝐿30_𝑗𝑗𝑗𝑗

∑ 𝐿𝐿𝐿𝐿𝐿𝐿30_𝑗𝑗𝑗𝑗
   (R2) 119 

 120 
Where 𝑀𝑀𝑀𝑀𝑀𝑀500 and 𝑀𝑀𝑀𝑀𝑀𝑀30 represent MLA at 500 m and 30 m scales, j is the jth 30 121 
m pixel, 𝐿𝐿𝐿𝐿30_𝑗𝑗   is the total leaf area of a 30 m pixel, 𝐿𝐿𝐿𝐿𝐿𝐿30_𝑗𝑗   is leaf area index 122 
(m2/m2) of a 30 m pixel, S is the ground area of a 30 m pixel. 123 
 124 
Assuming LAI=a*EVI2+b and b ≈ 0 (as illustrated in Fig. R1), the MLA at 500 m scale 125 
can be calculated as  126 
 127 

𝑀𝑀𝑀𝑀𝑀𝑀500 =
∑ 𝑀𝑀𝑀𝑀𝑀𝑀30_𝑗𝑗∗𝐸𝐸𝐸𝐸𝐸𝐸230_𝑗𝑗𝑗𝑗

∑ 𝐸𝐸𝐸𝐸𝐸𝐸230_𝑗𝑗𝑗𝑗
            (R3) 128 

 129 
The linear relationship between LAI and EVI2 is an important assumption in the MLA 130 
upscaling. We have attempted to use the real MODIS LAI-EVI2 relationship (Fig. R1) 131 
from global statistics to correct the MLA upscaling procedure. 2,000 points for each 132 
biome type were randomly sampled and the LAI-EVI2 pairs with good quality per 8 133 
days for these points were extracted. The LAI-EVI2 relationship is nearly linear and 134 
the intercept is close to 0 (Fig. R1).  135 
 136 
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 137 

Fig. R1. The nonlinear relationship between MODIS LAI and EVI2. 138 
 139 
Subsequently, we have updated the MLA training samples with the fitted nonlinear 140 
relationship (Fig. R1, Eq. R2) and compared the samples to the original samples based 141 
on the linear assumption (Eq. R3). The updated samples show high consistency with 142 
the original samples (Fig. R2). This may be related to the rigorous sample screening to 143 
keep the homogeneity of a 500 m sample, which reduces the impact of the LAI-EVI2 144 
nonlinear relationship by limiting LAI variations within the 500 m pixel. Therefore, the 145 
LAI-EVI2 linear assumption is reasonable. 146 
 147 

 148 
Fig. R2. The comparison between the updated samples using the LAI-EVI2 relationship 149 
and original MLA samples using EVI2. The black dashed and red solid lines represent 150 
1:1 and fitted lines.  151 
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 152 
In addition, we agree that uncertainty may arise due to the different data sources (from 153 
TRY, literature, and manual extraction). We think the predicted MLA is robust to these 154 
differences because part of the samples and features are randomly selected in the 155 
training process and the random forest algorithm ensembles the predictions from 156 
multiple decision trees (Svetnik et al., 2003). We have manually inspected all field LIA 157 
data and are confident in their data quality. 158 
 159 
Following the comments, we have added a detailed description regarding LIA upscaling 160 
in Appendix A and have discussed the uncertainty of the LAI-EVI2 linear relationship 161 
assumption in Section 4.4. The uncertainty raised by different data sources has been 162 
discussed in Section 4.4. 163 

Section 4.4 LAI-EVI2 linear relationship assumption 164 
We assumed a linear LAI-EVI2 relationship (LAI = a*EVI2) to upscale MLA from 165 
the canopy to 500 m scale (Section 2.3.1 and Appendix A). Global analysis of 166 
MODIS LAI and EVI2 products shows a slight non-linear relationship between 167 
them (Fig. S8). The non-linear relationship was also used to upscale MLA (Eq. A2) 168 
in a side experiment, where the derived MLA was found consistent with the 169 
original one (Fig. S9) because of the homogeneity of the 500 m pixel after rigorous 170 
sample screening (section 2.3.1). This demonstrates the suitability of the linear 171 
assumption. 172 
 173 
Section 4.4 Different Data Sources 174 
Second, three different sources of LIA measurements were gathered with different 175 
measurement schemes, and uncertainty may arise because of these differences. 176 
The random forest algorithm is robust to these differences because part of the 177 
samples and features were randomly selected and the algorithm ensembled the 178 
predictions from multiple decision trees (Svetnik et al., 2003). We manually 179 
inspected all field LIA data and are confident in their data quality. 180 

 181 
2). The authors argued that “higher LIA means lower radiation interception, more NIR 182 
downward radiation, and lower NIR reflectance”, thus negatively correlated with NDVI. 183 
However, a higher LIA could also reduce red reflectance, potentially complicating how  184 
NDVI encapsulates leaf angle information. Moreover, as NDVI is designed as a 185 
normalized index, one might expect it to diminish the effects of incidence angles in 186 
BRDF data (MCD43A1). Considering the global availability of GEDI lidar (with a 25 187 
m footprint) and its known sensitivity to canopy structure (e.g., height), it would be 188 



7 
 

worthwhile to test whether GEDI can provide stronger signals of LIA than optical-only 189 
approaches. Such an investigation could bolster the validation or derivation of the first 190 
global MLA map.  191 
 192 
We thank the referee for these comments. High LIA results in low NIR reflectance 193 
because more NIR downward radiation reaches the soil background and the NIR 194 
reflectance of soil is lower than that of vegetation (Fig. R3). In terms of red reflectance, 195 
high LIA means more red radiation penetrates the canopy and the red reflectance of soil 196 
is higher than that of vegetation because of the strong leaf absorption in this wavelength 197 
(Fig. R3), causing high red reflectance. Therefore, high LIA causes low NDVI 198 
according to its definition ((NIR-Red)/(NIR+Red)). We have rephrased the original 199 
sentence in Section 4.2: 200 

Higher MLA means lower radiation interception, more NIR and red downward 201 
radiations reach the soil background. This causes lower NIR and higher red 202 
reflectance because the soil background typically has lower (higher) reflectance 203 
for NIR (red) (Siegmund and Menz, 2005). This results in negative correlations 204 
between MLA and NIR reflectance and NDVI (Liu et al., 2012).  205 

 206 

 207 
Fig. R3 The typical spectral reflectance curves of soil, vegetation, and water. (adapted 208 
from (Siegmund and Menz, 2005). 209 
 210 
This study used the nadir reflectance product (MCD43A4) corresponding to local solar 211 
noon to calculate NDVI; therefore, the solar-viewing geometry of NDVI is consistent. 212 
The consistent geometry and the normalization characteristic of NDVI diminish the 213 
angular variation but ensure consistency. In addition, NDVI negatively correlates to 214 
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LIA as stated above, and contains vegetation type and vegetation cover information, 215 
which was combined with BRDF and other features to improve MLA mapping.  216 
 217 
GEDI LiDAR is indeed a powerful sensor to detect canopy structures, such as tree 218 
height, fractional vegetation cover, and LAI profile (Tang et al., 2016; Dubayah et al., 219 
2020). Estimating MLA from GEDI LiDAR is an interesting and challenging topic, and 220 
no related studies have been reported due to the difficulty in decoupling MLA from LAI 221 
by the GEDI LiDAR waveform data. In the GEDI LAI retrieval algorithm, MLA is a 222 
key input and is assumed as constant (57.3°) due to the lack of MLA information (Tang 223 
et al., 2016). The MLA map generated in this study can be used to improve this issue. 224 
 225 
3). In Table 1, MCD12Q1 and MCD43A4 are listed as Collection 6, while other MODIS 226 
products are Collection 6.1. The discrepancy in MODIS versions needs clarification. 227 
Furthermore, MODIS BRDF (MCD43) and surface reflectance products can be 228 
contaminated by clouds, especially in tropical regions. The manuscript should explicitly 229 
describe how these cloud gaps or low-quality observations were handled to ensure their 230 
usage in the subsequent modeling.  231 
 232 
The MCD12Q1 C6 and MCD43A4 V6 were employed in this study (Table 1) because 233 
the Collection 6.1 versions were unavailable on the Google Earth Engine when 234 
conducting the MLA mapping. The official document indicates that only minor 235 
reprocessing including calibration change and polarization correction was adopted in 236 
the upgrading from Collection 6 to 6.1, while the MCD12Q1 and MCD43A4 algorithms 237 
remain unchanged 238 
(https://landweb.modaps.eosdis.nasa.gov/data/userguide/MODIS_Land_C61_Change239 
s.pdf). Previous validation studies with ground truth references have demonstrated that 240 
the improvement from C6 to C6.1 (aerosol products, land surface temperature products) 241 
is very small (△R2 < 0.02), and the accuracy may even decrease (Che et al., 2019; Bilal 242 
et al., 2018; Zhao et al., 2024; Huang et al., 2024). MCD12Q1 and MCD43A4 C6 were 243 
already used by numerous studies (Giglio et al., 2018; Rodrigues et al., 2019; Zeng et 244 
al., 2022; Wang et al., 2018). The multi-year aggregation of these products (Table 2) 245 
further reduces the impact of the slight difference between these two versions. 246 
Therefore, we think that the version difference will not make a significant impact on 247 
MLA mapping. Following the comment, We have added these explanations to Section 248 
2.2.1. 249 

We used MCD43A1 C6.1 and MCD12Q1 and MCD43A4 C6 for MLA mapping as 250 
these data were available on GEE when this study was conducted. Only minor 251 

https://landweb.modaps.eosdis.nasa.gov/data/userguide/MODIS_Land_C61_Changes.pdf
https://landweb.modaps.eosdis.nasa.gov/data/userguide/MODIS_Land_C61_Changes.pdf
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calibration changes and polarization correction were adopted in the upgrading 252 
from Collection 6 to 6.1, while the MCD12Q1 and MCD43A4 algorithms remain 253 
the same 254 
(https://landweb.modaps.eosdis.nasa.gov/data/userguide/MODIS_Land_C61_Ch255 
anges.pdf). In addition, the multi-year aggregation of these products (Table 2) 256 
further mitigates the version impact.  257 

 258 
We agree with the referee that MODIS BRDF (MCD43A1) and surface reflectance 259 
products (MCD43A4) used for MLA mapping (section 2.3.2) may be contaminated by 260 
clouds, especially in tropical regions. MODIS BRDF is produced daily using multi-date, 261 
cloud-cleared, atmospherically corrected input data measured over neighboring 16-day 262 
periods (https://lpdaac.usgs.gov/products/mcd43a1v061/). When there is not enough 263 
observation to derive BRDF robustly because of the cloud contamination, a backup 264 
algorithm is employed which uses prior BRDF shapes and adjusts them with limited 265 
observations. This study used all observations including low-quality backup BRDF 266 
inversions. This practice has been adopted in global clumping index mapping with 267 
BRDF products and a corresponding quality indicator has been provided (Wei et al., 268 
2019). Because we utilized the multi-year aggregation (10%, 33%, 50%, 67%, 90% 269 
quantiles, and standard deviation, Table 2) of BRDF and surface reflectance in the MLA 270 
mapping, the influence induced by low-quality inversions can be partly mitigated 271 
(Sulla-Menashe et al., 2019). In response to the comment, we have added these 272 
explanations to section 2.3.2. 273 

This study used all MODIS BRDF and spectral reflectance data including low-274 
quality ones that may be contaminated by clouds. The multi-year aggregation 275 
(Table 2) can partly mitigate the influence induced by low-quality observations 276 
(Sulla-Menashe et al., 2019). 277 
 278 

In addition, we have added a quality layer regarding the proportion of high-quality 279 
BRDF inversions (see reply to comment #4 below).  280 
 281 
4). As the first global MLA product, it would be valuable to include an uncertainty 282 
assessment layer. This might account for the uncertainties stemming from (1) the 283 
upscaling approach, (2) the machine learning model, and (3) data inputs. Presenting an 284 
explicit uncertainty layer would markedly improve the credibility and potential 285 
applications of this novel dataset.  286 
 287 

https://lpdaac.usgs.gov/products/mcd43a1v061/
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We thank the referee for the recognition and excellent suggestion! We have 288 
reconsidered the uncertainty sources of MLA mapping, including the upscaling 289 
approach, data inputs, and machine learning model. The upscaling approach mainly 290 
influences the uncertainty of training samples which is difficult to quantify for each 291 
pixel. The rigorous sample screening after the upscaling process ensures the sample 292 
representativeness (section 2.3.1) and reduces the uncertainty raised by the upscaling 293 
process. The random forest algorithm is also robust to the remained sample uncertainty 294 
as mentioned above.  295 
 296 
Regarding model inputs, BRDF and BRDF-adjusted surface reflectance products are 297 
important for MLA mapping (Fig. 6), and the same qualitative quality layer indicating 298 
whether full BRDF inversions are provided for these products. This study used all 299 
observations including low-quality backup BRDF inversions as stated above. Therefore, 300 
we have added a quantitative quality layer to represent the proportion of high-quality 301 
BRDF inversions for each pixel.  302 
 303 
In terms of the prediction model, the machine learning model is typically regarded as a 304 
black box, and evaluating the uncertainty for the random forest algorithm is difficult 305 
under the current technological background. The random forest algorithm is accurate 306 
enough for the predictions fall into the feature space ranges of training samples. For the 307 
predictions out of the range of sample features, extrapolation is necessary and the 308 
uncertainty is higher. Therefore, the prediction model quality was expressed 309 
qualitatively for each pixel considering whether the MLA is predicted by extrapolating 310 
beyond the range of the training samples. 311 
 312 
Fig. R4 shows the quality layers regarding inputs and prediction model. The global 313 
mean proportion of high-quality BRDF inputs is 68.03%. Northern South America and 314 
Central Africa have a low proportion of high-quality inputs (20%) due to cloud 315 
contamination (Fig. R4 (a)). Considering the large number of observations for each 316 
pixel (7904 from 2001 to 2022), this percentage (20%) of high-quality observations is 317 
sufficient to map MLA. In addition, 80.39% of the global MLA map was derived within 318 
the feature ranges of training samples, and the rest 19.61% were mainly located in high-319 
latitude regions and Africa. For the latter areas, the MLA map was predicted with 320 
extrapolation and caution should be taken when using the map (Fig. R4 (b)).  321 
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 322 

Fig. R4 Global distributions of quality indicators. (a) and (b) denote the proportion of 323 
high-quality BRDF inversions, and whether the prediction is within the ranges of 324 
training samples, respectively. 325 
 326 
In response to the comment, we have added the contents regarding quality layers to 327 
Sections 2.3.2 and 3.3. In addition, the data products released on Zenodo have been 328 
updated (https://doi.org/10.5281/zenodo.12739662). 329 

Section 2.3.2 330 
Two quality layers were added to represent the quality of input data and the 331 
prediction model. The input data quality was denoted by the proportion of high-332 
quality BRDF inversions for each pixel. The prediction model quality was 333 
represented qualitatively for each pixel considering whether the MLA was 334 
predicted by extrapolating beyond the range of the training samples. The random 335 

https://doi.org/10.5281/zenodo.10940673
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forest model is typically regarded as a black-box and its uncertainty is difficult to 336 
quantify in the present study. 337 
 338 
Section 3.3 339 
Fig. 12 demonstrates the global distributions of the MLA quality indicators. The 340 
global mean proportion of high-quality BRDF inputs is 68.03%. Northern South 341 
America and Central Africa have a low proportion of high-quality inputs (20%) 342 
because of cloud contamination (Fig. 12 (a)). Considering the large number of 343 
observations for each pixel (7904 from 2001 to 2022), this percentage (20%) of 344 
high-quality observations is sufficient to map MLA. In addition, 80.39% of the 345 
global MLA map was derived within the feature ranges of training samples, and 346 
the rest 19.61% were mainly located in high-latitude regions and Africa. For the 347 
latter areas, the MLA map was predicted with extrapolation and caution should 348 
be taken when using the map (Fig. 12 (b)).  349 

  350 
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Anonymous referee #3 351 
 352 
Thanks to the authors for the meticulous revisions. My key concerns have been 353 
addressed in this revised manuscript. I have one new suggestion. Although the authors 354 
have conducted experiments to prove that the nonlinear relationship between LAI (Leaf 355 
Area Index) and EVI (Enhanced Vegetation Index) has little impact on the results, I 356 
suggest that the reasons for the nonlinearity of LAI-EVI, especially the saturation 357 
phenomenon, should be elaborated in the text. In addition, why not use other vegetation 358 
indices such as NDVI (Normalized Difference Vegetation Index)? Since many papers 359 
on the error propagation of vegetation indices, the evaluation of saturation phenomena, 360 
and the relationships between vegetation indices and LAI and LCC (Leaf Chlorophyll 361 
Content) have been published recently, it is recommended that the author explain why 362 
EVI was chosen by citing such papers. Meanwhile, I suggest that the author incorporate 363 
more of the responses to the reviewers into the main body of the paper. 364 
 365 
We thank the referee for the recognition and suggestion. The slight nonlinearity 366 
between LAI and EVI2 is induced by the saturation effect at medium and high LAI 367 
conditions where the reflectance in near-infrared and red wavelength is stable (Gao et 368 
al., 2023).  369 
 370 
In this study, EVI2 was used instead of other vegetation indices. Unlike NDVI, EVI2 371 
is highly resistant to the saturation effect (Gao et al., 2023) and also shows a near-linear 372 
correlation with LAI (Dong et al., 2019; Alexandridis et al., 2019). 373 
 374 
Following the suggestion, we have added these explanations to Section 2.3.1. 375 

Therefore, the 500 m MLA was computed as the weighted average of the enhanced 376 
vegetation index (EVI2) assuming a linear relationship between LAI and EVI2 377 
(Dong et al., 2019; Alexandridis et al., 2019). Although previous studies have 378 
reported that vegetation index may be nonlinearly correlated to LAI because of 379 
the saturation effect at medium and high LAI conditions, EVI2 is highly resistant 380 
to the saturation effect (Gao et al., 2023). The errors caused by this slight 381 
nonlinearity were further analyzed in Section 4.4. 382 

 383 
In addition, we have incorporated more of the responses to the reviewers into the main 384 
body of the paper in the revised version. Specifically, the responses regarding the spatial 385 
distribution and representativeness of samples (Section 2.3.1), the importance of biome 386 
map in MLA prediction (Section 4.2), the introduction of RS-based vegetation structure 387 
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parameters as predictive variables (Section 4.4), and the choice of distance threshold 388 
(Section 2.3.1) have been further integrated. 389 
  390 
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