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Topic editor 1 
 2 
The manuscript presents a novel effort to generate the first global 500m resolution mean 3 
leaf inclination angle (MLA) product, along with associated leaf projection function 4 
data. This work contributes significantly to the field by addressing gaps in phenological 5 
and vegetation structure parameters critical for land surface models and remote sensing 6 
applications. Both reviewers acknowledge the scientific novelty of the study, the 7 
rigorous methodological approach, and its potential to improve vegetation modeling 8 
and remote sensing parameter inversion. 9 
 10 
However, the reviewers raised significant concerns about methodological robustness, 11 
particularly regarding upscaling LIA field measurements, handling coarse-resolution 12 
data, and the selection of predictive features. Reviewer 1 emphasized the need for better 13 
clarification and testing of the upscaling processes and questioned the reliance on 14 
MODIS-based data for capturing LIA signals. Reviewer 2 highlighted the importance 15 
of incorporating additional remote sensing parameters and addressing uncertainties in 16 
the data sources. Furthermore, both reviewers pointed out the need to better validate 17 
the product and address apparent biases, such as overestimation in specific cases. 18 
 19 
While the study provides a strong foundation, addressing these concerns through more 20 
rigorous uncertainty analysis, methodological refinement, and clearer discussion of 21 
data limitations will be necessary for the next revision. The potential to refine global 22 
vegetation models and ecological understanding underscores the importance of this 23 
work, warranting reconsideration after major revisions. 24 
 25 
We thank the topic editor for the recognition and professional processing. We fully 26 
understand the concerns raised by the reviewers and have carefully addressed these 27 
issues in this revision round.  28 
 29 
Some major revisions were made in the revised version: 30 
(1) The concerns regarding the upscaling approach and modeling inputs have been 31 

explained.  32 
(2) The uncertainties in the data sources and upscaling process have been analyzed 33 

(section 4.4). 34 
(3) The necessity of introducing additional remote sensing parameters to MLA 35 

mapping has been analyzed.  36 
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(4) The validity of using G(0) validation to evaluate MLA indirectly has been 37 
demonstrated (section 4.1).  38 

(5) A regional analysis of variable importance has been conducted (section 4.2).  39 
(6) Some other revisions for the manuscript and supplement material have been made.  40 
 41 
Please see the itemized responses below. 42 
  43 
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Anonymous Referee #2  44 
 45 
I agree that Leaf Inclination Angle (LIA) is indeed a critical parameter for global land 46 
surface models, such as Dynamic Global Vegetation Models (DGVM). However, after 47 
reviewing the authors' responses, I find that most of my original comments remain 48 
unaddressed or insufficiently tested. Although this is the first global LIA product, as the 49 
authors claim, potential issues in both the upscaling approach and modeling inputs raise 50 
substantial concerns about its reliability. 51 
 52 
We thank the referee for the recognition and thorough comments that helped us improve 53 
the manuscript. We fully understand the referee’s concerns regarding upscaling 54 
approach and modeling inputs and have provided detailed explanations below. We think 55 
much of the misunderstanding is caused by the different requirements for canopy traits 56 
between the remote sensing and plant physiology communities. 57 
 58 
Regarding my second comment on “Upscaling LIA Field Measurements,” the authors 59 
mentioned that “in field measurements, the entire canopy LIA is calculated as the 60 
average of all measured leaf LIAs weighted by leaf area.” I question why leaf area, 61 
rather than leaf number, is used for this weighting. Given the highly variable nature of 62 
LIA within a canopy and across species and ecosystems (as noted in my first comment), 63 
upscaling LIA measurements from site level to 30m, and subsequently to 500m scales, 64 
is a crucial initial step. Yet, it remains unclear how the authors executed these steps or 65 
assessed the associated uncertainties. Using leaf area rather than leaf number for 66 
weighting raises concerns about the representativeness of the measurements. 67 
 68 
This is an excellent point. In this study, two different weighting methods were used: (1) 69 
from leaf to canopy scale, leaf number was used; and (2) from 30 m to 500 m, leaf area 70 
was used. From leaf to canopy scale, the entire canopy LIA is commonly calculated as 71 
the average of all measured leaf LIAs weighted by leaf area in the remote sensing 72 
community (Zou et al., 2014; De Wit, 1965; Yan et al., 2021). For example, Yan et al. 73 
(2021) stated that the final leaf angle distribution is obtained by weighting the relative 74 
areas with different leaf inclination angles. Leaves with larger areas contribute more to 75 
photosynthesis and have higher weights. In practice, because of the difficulty in leaf 76 
area measurement, especially for a large number of leaves, the variability of leaf areas 77 
within a canopy is often ignored and the areas of all leaves are assumed similar. In this 78 
case, the canopy LIA can be simplified as the average LIA weighted by leaf number 79 
(Ryu et al., 2010; Pisek et al., 2011; Chianucci et al., 2018). Therefore, in this study, 80 
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the canopy LIA measurements were also obtained by weighting leaf LIA with leaf 81 
number.  82 
 83 
The obtained canopy LIA measurement was used to represent the LIA at the 30 m pixel 84 
level considering the representativeness. The LIA upscaling from 30 m to 500 m was 85 
weighted by the 30 m leaf area index (using EVI2 as a proxy). Leaf area index (LAI) is 86 
defined as the half of green leaf area on the unit of ground area and is similar to leaf 87 
number/density to some extent (Fang et al., 2019). High leaf number typically means 88 
high LAI. For a 30 m pixel with a higher LAI, its weight/contribution to the 500 m scale 89 
LIA is also higher (Fig. R1).  90 
 91 

 92 
Fig. R1. Schematic of LIA upscaling from 30 m to 500 m. The green and yellow colors 93 
denote high and low leaf area index, respectively. 94 
 95 
When one plant function type (PFT) within a 500 m pixel has no LIA measurement, the 96 
LIA of the PFT was assigned with the value of its nearest neighbor within 100 km with 97 
the same PFT. This upscaling practice has been used to map global leaf traits (specific 98 
leaf area, leaf dry matter content, leaf nitrogen and phosphorus content per dry mass, 99 
and leaf nitrogen/phosphorus ratio) at 500 m spatial resolution (Moreno-Martínez et al., 100 
2018).  101 
 102 
For my third comment on “Coarse Resolution and Low-Signal Inputs in the Model,” I 103 
feel the authors' response is also lacking. The BRDF product primarily normalizes 104 
surface reflectance by mitigating inconsistencies arising from varying sun and sensor 105 
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angles. With the current 500m resolution, the fine-scale signal of LIA is vulnerable to 106 
interference from surface structures, such as canopy heterogeneity, surface roughness, 107 
height, clustering, branch structures, and terrain. I am skeptical that MODIS’s passive 108 
optical sensor can capture LIA signals effectively (Such signals may be better detected 109 
by radar or lidar data). Additionally, the claim that “Under suitable climate conditions, 110 
horizontal leaves can make better usage of precipitation and increase the photosynthesis 111 
rate” is problematic. Water use efficiency is unlikely to be closely related to leaf angles. 112 
Currently, NDVI is tested as the primary indicator for LIA, yet NDVI primarily reflects 113 
chlorophyll content, which is largely decoupled from information on leaf inclination 114 
angle. 115 
 116 
Our study has used the BRDF model parameters product (MCD43A1 C6.1, 117 
https://lpdaac.usgs.gov/products/mcd43a1v006/) as the predictive variables. 118 
MCD43A1 provides three model weighting parameters for different kernels (isotropic, 119 
volumetric, and geometric), which can be employed to compute the directional 120 
reflectance (Schaaf et al., 2002). We suspect that the referee has mistaken the BRDF 121 
product as the Nadir Bidirectional Reflectance Distribution Function (BRDF)-Adjusted 122 
Reflectance (NBAR) (MCD43A4, https://lpdaac.usgs.gov/products/mcd43a4v006/), 123 
which is derived from MCD43A1 but is normalized to a unified nadir viewing geometry. 124 
It is true that the nadir reflectance is difficult to retrieve LIA, as demonstrated by a 125 
previous study (Bayat et al., 2018). Nonetheless, the directional reflectance variation is 126 
sensitive to LIA (Fig. R2) and has been used to derive LIA from many passive optical 127 
sensors (Jacquemoud et al., 2009; Goel and Thompson, 1984; Jacquemoud et al., 1994; 128 
Li et al., 2023).  129 
 130 

 131 
Fig. R2. Contribution of LIA (%) to the top-of-canopy directional reflectance 132 
(excerpted from Jacquemoud et al. (2009)). The solar zenith angle (31.6°) is indicated 133 
by a star. 134 

https://lpdaac.usgs.gov/products/mcd43a1v006/
https://lpdaac.usgs.gov/products/mcd43a4v006/
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 135 
At 500 m, the multi-angle reflectance information is related to the average canopy LIA 136 
at the same scale. The terrain variables were introduced in the LIA prediction, which 137 
partly mitigates the interference from surface structures. As illustrated in Figs. 6 and 7, 138 
the BRDF parameters at 500 m scale are sensitive to LIA, further indicating the validity 139 
of this practice. In addition, detecting LIA with radar remains in the simulation stage 140 
(Lang and Saleh, 1985) and no practical studies have been reported. Point cloud LiDAR 141 
has been used to measure LIA accurately but is limited to a local scale due to the 142 
limitation of the sensor platform (Zheng and Moskal, 2012; Bailey and Mahaffee, 2017; 143 
Itakura and Hosoi, 2019). Currently, no study has used spaceborne LiDAR to estimate 144 
LIA.  145 
 146 
We agree that the original claim “Under suitable climate conditions, horizontal leaves 147 
can make better usage of precipitation and increase the photosynthesis rate” is not solid. 148 
Under suitable climate conditions (radiation, precipitation, and temperature), the 149 
elements required for photosynthesis are satisfied, and horizontal leaves are formed to 150 
absorb more radiation and increase the photosynthesis rate (Van Zanten et al., 2010; 151 
King, 1997). We have rephrased it as (line 379) 152 

“Under suitable climate conditions (radiation, precipitation, and temperature), 153 
horizontal leaves are formed to absorb more radiation and increase the 154 
photosynthesis rate (Van Zanten et al., 2010; King, 1997)”.  155 

 156 
We agree NDVI is related to chlorophyll content, but only when LAI is high (LAI >= 157 
4) (Fig. R3). When LAI < 4, NDVI is strongly coupled with LIA. Globally, the global 158 
mean LAI is ~1.20 and high LAI (>=4) only occupies a tiny fraction (Fang et al., 2021). 159 
NDVI is frequently used to retrieve canopy structural parameters, such as leaf area 160 
index, and fractional vegetation cover (Carlson and Ripley, 1997; Carlson et al., 1994; 161 
Wang et al., 2005), but was rarely used for the chlorophyll content, which is more 162 
closely related to various chlorophyll indexes formulated by green, red, NIR, and red-163 
edge bands (Dong et al., 2019; Haboudane et al., 2002; Gitelson et al., 2003; Wu et al., 164 
2008). In this study, NDVI is an important contributor to the LIA prediction (Figs. 6 165 
and 7). The correlation between LIA and NDVI has been reported in many simulation 166 
and field studies (Fig. R3) (Zou and Mõttus, 2015; Liu et al., 2012; Dong et al., 2019; 167 
Jacquemoud et al., 1994) and has been explained in section 4.2. Higher LIA means 168 
lower radiation interception, more NIR downward radiation, and lower NIR reflectance 169 
(Liu et al., 2012). This results in a negative correlation between LIA and NDVI. In 170 
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addition, besides NDVI, we have used many other important indicators (including 171 
climate, BRDF, terrain) that are related to LIA to predict MLA. 172 
 173 

 174 
Fig. R3. Contribution of various leaf and canopy properties to the variability of NDVI 175 
(excerpted from Dong et al. (2019)). ALA (average leaf angle) is the LIA in this study.  176 
  177 
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Referee #3 178 
 179 
Leaf inclination angle (LIA) is a crucial feature influencing the physiological activities 180 
of vegetation leaves and an important parameter for modeling vegetation radiative 181 
transfer. However, the global LIA map is very difficult to generate. Based on valuable 182 
and incomplete field measurements and other data sources, this paper generates the first 183 
global 500m resolution mean leaf inclination angle (MLA) and the lowest point leaf 184 
projection function G(0) products by employing nearest-neighbor interpolation, 185 
random forest regression, and other algorithms. It also presents the distribution 186 
characteristics of global LIA in different vegetation functional types (PFTs) and regions, 187 
filling the gaps in related fields. Overall, the study shows highly novelty, with scientific 188 
research methodology and detailed data analysis. The results possess certain application 189 
potentials, particularly in remote sensing parameter inversion and land surface model 190 
application. Nevertheless, there are still improvements to this manuscript. My detailed 191 
comments are as follows: 192 
 193 
We thank the referee for the recognition and insightful comments which significantly 194 
improved the manuscript. We fully understand the referee’s concerns and have provided 195 
detailed explanations and revisions below. 196 
 197 
Major Comments 198 
1. Three different sources of measurements of LIA were used to generate more training 199 

samples for machine learning (ML). However, these three types of samples have 200 
varying confidence and spatial coverage, e.g., TRY data is mainly in South 201 
American. I think this will have an impact on ML training with unequal weights. 202 
More detailed analysis and discussion about the uncertainties and 203 
representativeness of samples are needed. 204 

 205 
We agree these three types of samples (from TRY, literature, and manual extraction) 206 
have varying confidence. We think the predicted LIA is robust to these varying issues 207 
because part of the samples and features are randomly selected in the training process 208 
and the random forest algorithm ensembles the predications from multiple decision 209 
trees (Svetnik et al., 2003). We have manually inspected all field LIA data and made 210 
sure that they are the canopy LIA and field measurements are typically characterized 211 
by high confidence.  212 
 213 
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The LIA measurements in South America are mainly from palms (line 90), while the 214 
LIA measurements of most species are located in the Northern Hemisphere. 215 
Subsequently, the spatial expansion was conducted with the TRY species location 216 
database, which comprises trait measurements for common species representing a 217 
hundreds-of-square-meter area around the location. The dominant species was 218 
artificially identified by investigators and thus the spatial representativeness is 219 
considered. After spatial expansion, the distribution of samples is more uniform (Figs. 220 
4 and S3), and the following rigorous sample screening considering representativeness 221 
further reduces the uncertainty of LIA samples. Therefore, the impact of spatial 222 
distribution is minimized. 223 
 224 
In response to the referee’s comment, we have explained it in the discussion part (lines 225 
406 and 422): 226 

Three different sources of LIA measurements were gathered with different 227 
sampling schemes and methods. The random forest algorithm is robust to these 228 
differences because part of samples and features are randomly selected and the 229 
algorithm ensembles the predications from multiple decision trees (Svetnik et al., 230 
2003). 231 
 232 
Using standard LIA measurement protocols will certainly improve the LIA data 233 
consistency.  234 

 235 
2. MLA should be mainly controlled by plant genes and age, so vegetation biome map 236 

should be the key and first predictive feature for global MLA mapping. And more 237 
RS-based vegetation structure parameters (e.g., FVC, height, LAI, CI…) can be 238 
added in the predictive features. I hope this can be considered in the next version of 239 
this dataset. 240 

 241 
We thank the referee for this point. In fact, the plant function type map (MCD12Q1 C6) 242 
was initially used as a predictive variable (Tables 1 and 2), but relatively low 243 
importance was found for LIA prediction (ranked 47 out of 76). This may be because 244 
the biome information is implicitly included in the spectral features as the former is 245 
frequently derived from the latter (Sulla-Menashe et al., 2019). Previous studies have 246 
demonstrated that the LIA variation within PFT maybe larger than that between PFTs. 247 
This indicate that the biome map is not a good predictor (Prentice et al., 2024). To avoid 248 
overfitting, only the most important 40 features were used for LIA prediction.  249 
 250 
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We thank the referee’s point about using the RS-based vegetation structure parameters 251 
(e.g., FVC, height, LAI, CI…) in the MLA estimation. Similarly, RS-based vegetation 252 
structure parameters (e.g., FVC, height, LAI, CI…) are also closely correlated to 253 
spectral and BRDF features. For example, LAI and FVC are typically derived from 254 
spectral reflectance (Jia et al., 2015; Yan et al., 2022; Fang et al., 2019), and CI satellite 255 
product from BRDF (Wei et al., 2019; Fang, 2021). Previous studies indicate that 256 
canopy height is also related to BRDF (Wang et al., 2011; Cui et al., 2019; Wang and 257 
Ni-Meister, 2019). In addition, these structural parameters (e.g., FVC, height, LAI, 258 
CI…) are related to climate (precipitation, radiation, temperature) and topography 259 
parameters (Zhang et al., 2004; Amiri et al., 2009; Iio et al., 2014), which were already 260 
considered in the MLA mapping. Moreover, too many predictive variables may cause 261 
computation limit. Indeed, as the referee pointed out, these parameters can be 262 
considered in the MLA mapping in the future. 263 
 264 
3. In line 167, you used EV2 as the weight of the pixel instead of LAI. There is no 265 

problem if LAI and EVI2 have a good linear relationship. However, this is not 266 
always true, especially for dense forests. The real relationship between LAI and 267 
EVI2 can be obtained from global statistics and this relationship can be used in Eq. 268 
(1). Or the now available 30m LAI products can be used here instead of EVI2. I 269 
know this will result in large revision work, so I hope this can be considered in the 270 
next version of this dataset. 271 

 272 
Thank the referee for this constructive comment. At the beginning of this work, global 273 
30 m LAI was not available. Currently, global 30 m LAI has a big data size and is 274 
unavailable on Google Earth Engine (GEE), whereas EVI2 is easy to calculate on GEE 275 
for upscaling of a 500 m pixel.  276 
 277 
Following the suggestion, we have attempted to use the real MODIS LAI-EVI2 278 
relationship (Fig. R4) from global statistics to correct the MLA upscaling procedure. 279 
2,000 points for each biome type were randomly sampled and the LAI-EVI2 pairs with 280 
good quality per 8 days for these points were extracted.  281 
 282 
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 283 
Fig. R4. The nonlinear relationship between MODIS LAI and EVI2. 284 
 285 
Subsequently, we have updated the train samples with the fitted nonlinear relationship 286 
and compared the samples to the original samples with EVI2. The updated samples 287 
show high consistency with the original samples (Fig. R5). This may be related to the 288 
rigorous sample screening to keep the homogeneity of a 500 m sample, which reduces 289 
the impact of the LAI-EVI2 nonlinear relationship by limiting LAI variations within 290 
the 500 m pixel. 291 
 292 

 293 
Fig. R5. The comparison between the updated samples using the LAI-EVI2 relationship 294 
and original MLA samples using EVI2. The black dashed and red solid lines represent 295 
1:1 and fitted lines.  296 
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 297 
This issue has been discussed in line 414. 298 
Eq. (1) assumed a linear relationship between LAI and EVI2 in the 500 m upscaling 299 
process. Global analysis of MODIS LAI and EVI2 shows a non-linear relationship 300 
between the two variables (Fig. S8). This non-linear relationship was also used to 301 
upscale MLA, and the derived MLA was found consistent with the original one (Fig. S9) 302 
because of the homogeneity of the 500 m pixel after rigorous sample screening (section 303 
2.3.1). 304 
 305 
4. As recently found, MCD15A2H has some problems such as internal inconsistency, 306 

backup algorithm problem, and spatiotemporal gaps. Better products such as HiQ-307 
LAI and SI (sensor-independent) LAI are also available on GEE and can be used in 308 
this study (Maybe in the next version update and this should be discussed in this 309 
paper). 310 

 311 
We agree with the referee that the MODIS LAI product used for LIA upscaling in the 312 
G(0) validation (section 2.4) have some issues such as internal inconsistency, backup 313 
algorithm accuracy, and spatiotemporal gaps. Because we used the multi-year average 314 
LAI in the G(0) validation, the influence induced by these factors can be partly 315 
mitigated.  316 
 317 
Following the kind suggestion, we have discussed it in line 361. 318 

The MODIS LAI product used for LIA upscaling in the G(0) validation (section 319 
2.4) is known to have issues such as internal inconsistency, backup algorithm 320 
accuracy, and spatiotemporal gaps (Kandasamy et al., 2013; Pu et al., 2023; 321 
Zhang et al., 2024). In the future, new improved MODIS LAI can be used in the 322 
G(0) validation (Pu et al., 2024; Yan et al., 2024). 323 

 324 
5. Fig. 13 shows an obvious overestimation which reduces the credibility of the data. 325 

I think it’s not enough just to explain the possible reasons for these results. Instead, 326 
ways should be found to eliminate this overestimation. A simple empirical 327 
correction may be used here? 328 

 329 
Thanks for the referee’s point. We analyzed the potential factors that caused this 330 
overestimation, including the limited LIA data volume and reference G(0) quality. But 331 
due to the lack of LIA measurement and high-resolution MLA/G(0), it is difficult to 332 
find a good solution. Although some empirical adjustment methods may be used, we 333 
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decide not to do it. We are afraid that it would bring more confusion to readers. Further 334 
improvement of the MLA estimation needs a sufficient amount of LIA measurements. 335 
 336 
It is noted that the predicted MLA shows good consistency with validation samples (Fig. 337 
12) and the statistics of LIA field measurements (Tables 3 and 4). The results 338 
demonstrate the reliability of the predicted MLA. 339 
 340 
6. For PFTs with missing LIA measurements, this article assigns the nearest LIA with 341 

measured values within 100km to the missing region using the nearest-neighbor 342 
interpolation method based on spatial proximity. However, it does not analyze the 343 
errors that can be caused by this interpolation method. In addition, is a spatial extent 344 
of 100km of interpolation too large for image pixels with a resolution of 500m? It 345 
is recommended that the authors cite the relevant literature or perform a quantitative 346 
assessment in this regard. 347 

 348 
Because of the lack of sufficient LIA measurements for some PFTs in certain locations, 349 
the nearest-neighbor LIA assignment has to be employed for the LIA upscaling. The 350 
distance setting (100 km) was based on a previous study (Moreno-Martínez et al., 2018) 351 
which derived global maps for various leaf traits (specific leaf area, leaf dry matter 352 
content, leaf nitrogen and phosphorus content per dry mass, and leaf 353 
nitrogen/phosphorus ratio) from a limited number of field measurement, remote sensing, 354 
and climate data. Moreno-Martínez et al. (2018) tried different distances and selected a 355 
value (100 km) that provided the most stable and reasonable results. We have tried to 356 
use a lower distance (50 km), but the final sample number is reduced by more than 50% 357 
which makes it difficult to map LIA.  358 
 359 
7. Due to the lack of high-resolution MLA data, this paper utilizes the leaf projection 360 

G - function derived from MLA for the indirect assessment of MLA. However, it 361 
does not elaborate on the scientific validity and reliability of this indirect 362 
verification. To what extent can the assessment of the leaf projection function 363 
substitute for the assessment of the MLA data itself? It is recommended that the 364 
authors provide a more in-depth explanation of this part. 365 

 366 
As the referee pointed out, because of the lack of high-resolution MLA data, this paper 367 
utilized the nadir leaf projection function for the indirect assessment of MLA. We think 368 
this method is valid and reliable mainly because MLA and G(0) are closely related. G(0) 369 
is typically calculated from the LIA distribution function based on Nilson’s algorithm 370 
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(Nilson, 1971). Here, we calculated G(0) from MLA assuming an ellipsoidal LIA 371 
distribution (De Wit, 1965). The calculated G(0) is highly consistent with the reference 372 
G(0) calculated from the Nilson’s algorithm for six theoretical LIA distributions (Fig. 373 
R6). The MLA-calculated G(0) shows a monotonic decreasing relationship with MLA 374 
(Fig. R7). Indeed, G(0) is more sensitive to MLA at higher MLA values (Fig. R7).  375 
 376 

 377 
Fig. R6 Comparison of the G(0) calculated from MLA assuming ellipsoidal LIA 378 
distribution (G(0)_ellip) and the reference G(0) (G(0)_ref) calculated form the Nilson’s 379 
algorithm (Nilson, 1971) for six different leaf angle distributions. 380 

 381 

 382 
Fig. R7 Variation of G(0) with MLA assuming an ellipsoidal leaf distribution. 383 
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 384 
In response to the comment, we have explained this in the discussion (line 345). 385 

Due to the lack of high-resolution reference MLA, the global MLA was evaluated 386 
through a comparison of the MLA-derived G(0) with the high-resolution reference 387 
G(0) (Fig. 13). This practice was adopted because both MLA and G(0) are closely 388 
related. G(0) is typically calculated from the LIA distribution function based on 389 
Nilson’s algorithm (Nilson, 1971). We calculated G(0) from MLA assuming an 390 
ellipsoidal LIA distribution (De Wit, 1965) and found that the calculated G(0) is 391 
highly consistent with the reference G(0) calculated from the Nilson’s algorithm 392 
for different theoretical LIA distributions (Fig. S5). The MLA-calculated G(0) also 393 
shows a monotonic decreasing relationship with MLA (Fig. S6).  394 

 395 
8. Although the paper predicts the 40 most important predictor variables for MLA, it 396 

does not evaluate whether the importance of these variables varies among different 397 
regions or plant functional types. Given that the outcome of the study is a global 398 
map, considering the ecological diversity of different regions, the relationship 399 
between MLA and predictor variables such as NDVI, BRDF, and climatic variables 400 
may change. It is recommended that the authors conduct a regional analysis of the 401 
variable importance to explore these potential differences and discuss their 402 
implications for model generalization and ecological interpretation. 403 

 404 
We thank the referee’s suggestion. As the referee may know, similar global mapping 405 
practice have been conducted in many leaf trait mapping studies (Moreno-Martínez et 406 
al., 2018; Zhang et al., 2021; Yang et al., 2021; Boonman et al., 2020). 407 
 408 
Following the referee’s suggestion, we examined the variable importance in different 409 
climate zones: the tropical zone (23.5°S-23.5°N), the northern temperate zone (23.5°N-410 
60°N), the northern polar zone (60°N-90°N), and the southern temperate zone (23.5°S-411 
60°S). The 40 most important variables are similar among different regions although 412 
minor differences exist (Fig. R8). Among the 40 variables for tropical, northern 413 
temperate, northern polar, and southern temperate zones, 32, 35, 30, and 31 of them, 414 
respectively, are the same as the 40 global variables (Fig. R8). Climate and spectral 415 
variables are significant among all regions, while the BRDF features are the most 416 
important in the southern temperate zone. The 40 most important variables in the global 417 
MLA prediction account for ~ 80% of total importance among different regions, which 418 
is similar to that in the global prediction. We also tested >40 variables and found that 419 
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too many variables would increase computational complexity without any accuracy 420 
improvement due to variable redundancy.  421 
 422 
We have discussed it in line 384. 423 

This study predicted global MLA with 40 variables (Fig. 6). To explore the regional 424 
differences of the variable importance, an analysis was conducted for the tropical 425 
(23.5°S-23.5°N), northern temperate (23.5°N-60°N), northern polar (60°N-90°N), 426 
and the southern temperate (23.5°S-60°S) zones. The 40 most important variables 427 
are similar among different regions although minor differences exist (Fig. S7). 428 
Among the 40 variables for tropical, northern temperate, northern polar, and 429 
southern temperate zones, 32, 35, 30, and 31 of them, respectively, are the same 430 
as the 40 global variables (Fig. S7). Climate and spectral variables are significant 431 
among all regions, whereas BRDF features are the most important in the southern 432 
temperate zone. The 40 most important variables in the global MLA prediction 433 
account for ~ 80% of total importance among different regions, which is similar 434 
to that in the global prediction. 435 
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 436 
Fig. R8 The variable importance among different climate zones.  437 
 438 
Minor Comments 439 
1. In Figure 2, some of the legends overlap one another, resulting in a rather unclear 440 

display. It would be advisable to use legends with more distinct contrast. Fig.2b and 441 
2c can be deleted. 442 

 443 
We have updated fill and edge colors with more distinct contrast and deleted Fig. 2b 444 
and c. 445 
 446 
2. Figure 9(a) and Figure 5 are repetitious in terms of illustration form, which appears 447 

somewhat redundant. The information of these two figures can be entirely presented 448 
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in one figure. It is proposed that one of the two figures be replaced by a geographical 449 
map. 450 

 451 
Fig. 5 shows the biome distribution of MLA field measurements, while Fig. 9 (a) is the 452 
biome distribution of the MLA map. Fig. 5 is difficult to be replaced with a geographical 453 
map, because of the lack of locations for several MLA measurements. 454 
 455 
3. The description of the verification of the global MLA map from line 196 to line 200 456 

is somewhat muddled. It would be better to directly clarify why G(0) is used for 457 
verification. 458 

 459 
Thank you for the suggestion. We have revised it (line 195). 460 

The global MLA map was indirectly evaluated using the nadir leaf projection 461 
function, because of the lack of high-resolution reference MLA. G(0) is important 462 
because it is coherent with the satellite nadir observations. The global G(0) was 463 
derived from the MLA and evaluated with high-resolution reference following the 464 
upscaling scheme recommended by the Land Product Validation (LPV) Subgroup 465 
of the Committee on Earth Observation Satellites (CEOS) 466 
(http://lpvs.gsfc.nasa.gov/).  467 
 468 

4. There seems to be a problem with the format of Table 3 between lines 239 and 240. 469 
 470 
Thank you for your reminding. We have checked it and found this problem is caused 471 
by page crossing. The format of Table 3 doesn’t have any problems. 472 
 473 
5. In line 248, only the significant influence of altitude on MLA prediction is 474 

mentioned.  475 
 476 
We have revised it. 477 

In addition, elevation, slope, and aspect significantly impact on the MLA 478 
prediction.  479 
 480 

6. It is recommended to clarify the changes along the altitude. 481 
 482 
Fig. 7 shows the MLA change along the altitude. MLA increases slightly with altitude 483 
and then decreases (line 259).  484 
 485 
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7. In Chapter 3, during the evaluation of the global MLA, a comparison between the 486 
predicted MLA and upscaled MLA samples is shown in Figure 12. However, this 487 
aspect is not presented in the part of the global MLA evaluation in Chapter 2. It is 488 
recommended to add relevant discussion to ensure consistency. 489 

 490 
Thank you for your kindness. We have described this aspect in section 2.3.2 Global 491 
MLA mapping (line 185).  492 

The prediction performance of the random forest regressor was evaluated using a 493 
ten-fold cross-validation approach with upscaled MLA samples.  494 

 495 
  496 
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