
Referee #1 1 
 2 
This manuscript describes an effort to make a global reference map of leaf inclination 3 
angle by combining leaf angle observations (from the TRY database and extracted from 4 
images) with ancillary data (including plant functional/crop types, reflectance, BRDF, 5 
climate, topography) and a random forest approach. Results are compared to other 6 
available data related to leaf angle distributions from the GBOV and DIRECT databases. 7 
 8 
The clearly written manuscript provides a compelling justification for why consistent 9 
global leaf angle data would be widely useful. The authors note the challenge of sparse 10 
leaf angle observations, and while they have devised some creative ways to expand 11 
those observations to train the random forest model, some elements of the methods and 12 
evaluation have the potential to create consequential bias. 13 
 14 
We thank the referee for the recognition and insightful comments that help us improve 15 
the manuscript. We have noted the biases in Fig. 13 and discussed their causes in section 16 
4.1 (Line 346-359).  17 

Due to the lack of high-resolution reference MLA, the global MLA was evaluated 18 
through a comparison of the MLA-derived G(0) with the high-resolution reference 19 
G(0) (Fig. 13). The result shows medium consistency but MLA-derived G(0) 20 
overestimates at low values (< 0.60), especially for CRO, PAS, SHR, and WET. 21 
The overestimation may be partly caused by the underestimation of MLA at high 22 
values that is related to the errors introduced in the sample expansion and 23 
upscaling. These errors are mainly caused by a lack of LIA measurements, 24 
vegetation structural complexity, and seasonal variation. In addition, the 25 
uncertainties in the reference G(0) may have contributed to the overestimation. 26 
The reference G(0) was derived from the Beer-Lambert law (Eq. (4)) which 27 
assumes that the canopy is a turbid medium. The turbid medium assumption is 28 
unrealistic for complex vegetation (Widlowski et al., 2014). The angular variation 29 
of CI and the mixture of branches and leaves in generating high-resolution G(0) 30 
can also lead to the overestimation. Previous studies have shown that CI increases 31 
with the view zenith angle (Fang 2021), which means that the whole CI > CI(0) 32 
and can lead to the underestimation of the reference G(0) (Eq. (6) and (7)). The 33 
mixture of branches and leaves may result in the underestimation of the reference 34 
G(0) due to the usually higher inclination angle of the trunks (Liu et al. 2019b). 35 
Compared with the previous G(0) derived from global vegetation biophysical 36 
products (Eq. (7)) (R2 = 0.11, RMSE = 0.53) (Li et al. 2022), the MLA-derived 37 



G(0) performs better (R2 = 0.38, RMSE = 0.15). 38 
 39 
In addition, Since G(θ) varies most significantly in the nadir direction for different 40 
MLA (Wilson 1959), the uncertainty of G(θ) derived from the global MLA in other 41 
directions is smaller than that of G(0). 42 
 43 
Specific comments: 44 
 45 
1. The method from Pisek et al. (2011) to derive leaf angle from images requires that 46 
images are leveled. It’s not possible to know whether images taken from Google are 47 
leveled, and whether images systematically describe distribution within a plant, and this 48 
can create bias in the dataset. 49 
 50 
The referee is correct that the canopy pictures taken from Google do not contain the 51 
level information directly. In this study, the level state of the canopy images was 52 
determined from the background information, such as the ground level and plant stems. 53 
For each species, more than 75 leaves from different images were collected (Line 110), 54 
reducing the uncertainties from non-leveled photography.  55 
 56 
2. The TRY database was used to determine dominant species in an area to select 57 
species for manual classification from images. No details were given about how this 58 
was done, but datasets from TRY were not designed for this purpose and may not be 59 
representative. 60 
 61 
Thanks to the referee’s reminder, we have added more details regarding the species 62 
selection procedure to the manuscript (Line 108). 63 

The TRY species location data (848,919, Fig. S3b) (Jan 03, 2022) were used to 64 
obtain the dominant species information in tropical rainforests and the northern 65 
tundra. The species location points in these two vegetation types were spatially 66 
filtered and the frequency of occurrence for each species was counted. The species 67 
with a high frequency of occurrence were selected to measure the LIA. 68 
 69 

Most species distribution databases, e.g., the Global Biodiversity Information Facility 70 
(GBIF) (Yesson et al. 2007), only consider the appearance of species but not their 71 
spatial representativeness. The TRY species location database consists of trait 72 
measurements for common species which represent a hundreds-of-square-meters area 73 
around the location. The dominant species was artificially identified by investigators 74 



and the spatial representativeness is vital for following LIA upscaling. Therefore, the 75 
TRY species location database was utilized after throughout consideration. 76 
 77 
3. Leaf angle can be highly variable within a species, depending on factors like leaf 78 
age, plant water status, and canopy position. The manuscript does not report 79 
distributions of replicates per species, and given the large expansion of spatial coverage 80 
from TRY data locations (where leaf angles were not directly observed) it’s possible 81 
that training data may not be representative of their species. 82 
 83 
We agree with the referee about the leaf angle variation from a plant physiological 84 
perspective. It is understood that LIA is influenced by the environment and varies 85 
within a species.  86 
 87 
In this study, LIA is the mean leaf inclination angle (MLA) of all leaves at the canopy 88 
or pixel scale, not for a single leaf. For a site, the LIA of multiple leaves at different 89 
heights and orientations are obtained and averaged to obtain a robust MLA (Chianucci 90 
et al. 2018; Pisek and Adamson 2020). The MLA partly mitigates the impact of canopy 91 
position, sunlit and shaded leaves, branching patterns, stem elongation, and species-92 
specific genetic traits like phototropism and heliotropism. This kind of mean LIA is 93 
desperately wanted in many remote sensing and land surface modeling studies 94 
(Lawrence et al. 2019; Li et al. 2023; Majasalmi and Bright 2019; Tang et al. 2016; 95 
Zhao et al. 2020). In those studies, LIA is commonly assumed constant (spherical 96 
distribution, 57.3 degrees) or biome type-specific (assigning a constant value for each 97 
biome). Indeed, these assumptions may not represent the true field measurements 98 
(Tables 3 and 4). Our objective is to provide a more realistic global MLA map for 99 
remote sensing and land surface modeling studies. 100 
 101 
In this study, the LIA seasonal variations were not considered in the global LIA map 102 
because of the lack of seasonal LIA measurements. As a matter of fact, temporal LIA 103 
variations are usually small, except under extreme situations (unusual). For example, 104 
the LIA variations of European beech forest and eucalyptus in different successional 105 
stages are less than 10 degrees (le Maire et al. 2011; Liu et al. 2019; Raabe et al. 2015). 106 
Crops generally show higher LIA variations than non-crops (Biskup et al. 2007; Zhang 107 
et al. 2017). Therefore, many studies have considered LIA as a species-specific static 108 
trait when there are no seasonal field measurements (Pisek et al. 2022; Raabe et al. 2015; 109 
Toda et al. 2022).  110 
 111 



The global LIA map derived in this study is consistent with field measurements (Tables 112 
3 and 4). This is a significant improvement compared to existing static simplifications 113 
(Lawrence et al. 2019; Li et al. 2023; Majasalmi and Bright 2019; Tang et al. 2016; 114 
Zhao et al. 2020). In a forthcoming study, we plan to retrieve LIA from remote sensing 115 
and the temporal LIA variation will be considered. 116 
 117 
Thanks to the referee’s comment, we have revised the manuscript (Line 151). 118 

Many studies have treated LIA as a species-specific static trait and ignored within-119 
species variations when LIA measurements are limited (Pisek et al., 2022; Toda 120 
et al., 2022; Raabe et al., 2015). Following the rationale, the spatial coverage of 121 
LIA measurements was expanded, and those records without location information 122 
were utilized (section 2.1.1). 123 

 124 
In addition, we counted the number of locations for different species and found the LIA 125 
replicates per species range from 1 to 330, and most replicates (98%) are less than 50. 126 
We added this information to the manuscript (Line 118).  127 
 128 
4. Some of the products used for upscaling and evaluation themselves depend on 129 
assumptions about leaf angle, including MODIS LAI which was used to upscale the 130 
mean leaf angle data produced here to compare to GBOV and DIRECT data. I expect 131 
that GBOV and DIRECT LAI products also depend on leaf angle assumptions (as 132 
almost all methods of estimating LAI do). 133 
 134 
In the MODIS LAI algorithm, a biome-specific static LIA was used as a priori (Myneni 135 
et al. 2002). The LIA is partly considered in the LAI retrieval algorithm and the MODIS 136 
LAI has been widely validated and shows good consistency (Brown et al. 2020; Yan et 137 
al. 2021). Therefore, it was used to upscale LIA in the evaluation procedure.  138 
 139 
In GBOV and DIRECT, the high-resolution reference LAI is estimated by the empirical 140 
relationship between reflectance and LAI measurements. The LAI measurements were 141 
obtained with the Miller method (Eq. (1)) which does not require any leaf angluar 142 
information (https://gbov.land.copernicus.eu/products/).  143 

𝐿𝐿𝐿𝐿𝐿𝐿 = 2∑ −𝑙𝑙𝑙𝑙 𝑃𝑃(𝜃𝜃𝚤𝚤)�����������𝑛𝑛
𝑖𝑖=1 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃𝑖𝑖) 𝑐𝑐𝑠𝑠𝑙𝑙(𝜃𝜃𝑖𝑖)𝑑𝑑𝜃𝜃𝑖𝑖         (1) 144 

Where 𝑃𝑃(𝜃𝜃𝑖𝑖) is the gap fraction value in viewing zenith ring 𝑠𝑠. Therefore, the GBOV 145 
and DIRECT data do not dependent on leaf angle assumptions. 146 

https://gbov.land.copernicus.eu/products/


 147 
Technical comments: 148 
 149 
1. Line 10: I recommend “trait” instead of “parameter” here when discussing ecological 150 
processes. 151 
 152 
We have revised it. 153 
 154 
2. Line 103: I was confused by the statement “The majority of existing LIA 155 
measurements are located in the mid-latitudes of the Northern Hemisphere.” Because 156 
Figure 1 looks like a huge amount of data are in the American tropics? 157 
 158 
Two different versions of TRY data (V5 and V6) were used and the V6 data provide a 159 
large amount of LIA measurements in the Southern Hemisphere. The original sentence 160 
was deleted.  161 
 162 
3. Line 159: Coefficient of variation in reflectance or something else? 163 
 164 
Yes, it represents the coefficient of variation in reflectance. We have revised it in the 165 
manuscript. 166 
 167 
4. Line 194: The single-parameter ellipsoidal leaf angle distribution seems like a big 168 
assumption. Where there are data to test this, does it seem reasonable? 169 
 170 
Compared to other leaf angle distribution models, the single-parameter ellipsoidal leaf 171 
angle distribution is a relatively more accurate and simpler model and has been used in 172 
many remote sensing studies (Campbell 1990; Kuusk 2001; Verhoef et al. 2007; Wang 173 
et al. 2007). Therefore, the single-parameter ellipsoidal leaf angle distribution was also 174 
used in this study and its parameter ꭓ, the ratio of the horizontal and vertical axes of an 175 
ellipsoid, was first derived from MLA. We have rephrased the original sentence (Line 176 
201). 177 

Assuming a single-parameter ellipsoidal leaf angle distribution (Campbell, 1990), 178 
the parameter ꭓ, the ratio of the horizontal and vertical axes of an ellipsoid, was 179 
first derived from MLA. Compared to other models, the single-parameter 180 
ellipsoidal leaf angle distribution is a relatively more accurate and simpler model 181 
and has been used in many remote sensing studies (Kuusk 2001; Verhoef et al. 182 
2007; Wang et al. 2007). 183 



 184 
5. Figure 12: Are the distinct peaks in the reference data for different crops in panels b 185 
and c? 186 
 187 
The distinct peaks in the reference sample data are caused by the MLA assignment 188 
manner and the homogeneity of cropland. The crop MLA samples were generated by 189 
assigning typical MLAs (Table S2) for different crops with high-resolution crop maps, 190 
followed by the upscaling (section 2.3.2 Line 188). In the upscaling, the homogeneity 191 
of cropland may result in low sample diversity and distinct peaks. 192 
 193 
We have clarified it in Lines 180 and 188. 194 

Different mapping strategies were employed for noncrops and crops (Fig. 3b) 195 
considering the small number of valid crop samples (Fig. 4) and the lack of 196 
location information for most crop samples. 197 
For crops, the measured MLA values were averaged for different crop types as a 198 
typical MLA (Table S2). After assigning typical MLAs for different crops with 199 
high-resolution crop maps (Table 1), the high-resolution crop MLA were upscaled 200 
to 500 m as training samples (Eq. (1)). 201 

 202 
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Referee #2 1 
 2 
This study compiled global Leaf Inclination Angle (LIA) field measurements and 3 
produced the first global 500 m LIA dataset using machine learning. The dataset was 4 
evaluated with the nadir leaf projection function, comparing it against high-resolution 5 
reference data, and the global LIA patterns across different biomes were further 6 
analyzed. While the study is intriguing and generally well-written, I have significant 7 
concerns regarding the reliability of this static, machine learning-based product, 8 
particularly due to the dynamic nature of LIA at the leaf level, limitations in scaling 9 
field measurements to the canopy and ecosystem level, and the lack of effective input 10 
data at the global scale. My specific concerns are outlined below: 11 
 12 
We thank the referee for the insightful comments which help us to further improve the 13 
manuscript. We fully understand the referee’s concerns and have provided detailed 14 
explanations below. 15 
 16 
1. Dynamic Nature of Leaf-Level LIA: LIA is highly variable within a canopy, even 17 

for a single species. Observing a tree canopy, one can easily notice the variation in 18 
leaf inclination. To minimize self-shading or optimize light capture, sun and shade 19 
leaves on the same plant may have different inclinations. Moreover, LIA can change 20 
throughout the day to track the sun’s movement, across growing seasons, and with 21 
leaf age and developmental stages. Under stress conditions, such as water scarcity 22 
or extreme temperatures, plants may adjust their leaf angles to reduce water loss or 23 
mitigate heat stress by altering turgor pressure. Additionally, variability in LIA is 24 
influenced by branching patterns, stem elongation, and species-specific genetic 25 
traits like phototropism and heliotropism. Given this variability, treating LIA as a 26 
static structural trait oversimplifies its inherently dynamic nature. 27 

 28 
We agree with the referee’s comments about the dynamic nature of leaf LIA. For plant 29 
physiologists, it is well known that LIA is influenced by environmental conditions and 30 
shows temporal variation.  31 
 32 
In this study, LIA is the mean leaf inclination angle (MLA) of all leaves at the canopy 33 
or pixel scale, not for a single leaf. For a site, the LIA of multiple leaves at different 34 
heights and orientations are obtained and averaged to obtain a robust MLA (Chianucci 35 
et al. 2018; Pisek and Adamson 2020). The MLA partly mitigates the impact of height, 36 
sunlit and shaded leaves, branching patterns, stem elongation, and species-specific 37 



genetic traits like phototropism and heliotropism. This kind of mean LIA is desperately 38 
wanted in many remote sensing and land surface modeling studies (Lawrence et al. 39 
2019; Li et al. 2023; Majasalmi and Bright 2019; Tang et al. 2016; Zhao et al. 2020). 40 
In those studies, LIA is commonly assumed constant (spherical distribution, 57.3 41 
degrees) or biome type-specific (assigning a constant value for each biome). Indeed, 42 
these assumptions may not represent the true field measurements (Tables 3 and 4). Our 43 
objective is to provide a more realistic global MLA map for remote sensing and land 44 
surface modeling studies. 45 
 46 
In this study, the LIA seasonal variations were not considered in the global LIA map 47 
because of the lack of seasonal LIA measurements. As a matter of fact, temporal LIA 48 
variations are usually small, except under extreme situations (unusual). For example, 49 
the LIA variations of European beech forest and eucalyptus in different successional 50 
stages are less than 10 degrees (le Maire et al. 2011; Liu et al. 2019; Raabe et al. 2015). 51 
Crops generally show higher LIA variations than non-crops (Biskup et al. 2007; Zhang 52 
et al. 2017). Therefore, many studies have considered LIA as a species-specific static 53 
trait when there are no seasonal field measurements (Pisek et al. 2022; Raabe et al. 2015; 54 
Toda et al. 2022).  55 
 56 
The global LIA map derived in this study is consistent with field measurements (Tables 57 
3 and 4). This is a significant improvement compared to existing static simplifications 58 
(Lawrence et al. 2019; Li et al. 2023; Majasalmi and Bright 2019; Tang et al. 2016; 59 
Zhao et al. 2020). In a forthcoming study, we plan to retrieve LIA from remote sensing 60 
and the temporal LIA variation will be considered. 61 
 62 
Thanks to the referee’s comment, we have revised the manuscript (Line 151). 63 

Many studies have treated LIA as a species-specific static trait and ignored within-64 
species variations when LIA measurements are limited (Pisek et al., 2022; Toda 65 
et al., 2022; Raabe et al., 2015). Following the rationale, the spatial coverage of 66 
LIA measurements was expanded, and those records without location information 67 
were utilized (section 2.1.1). 68 

 69 
2. Upscaling LIA Field Measurements: The LIA field measurements from the TRY 70 

database seem to be primarily site-specific. The method used to upscale these 71 
measurements from the leaf level to the canopy and ecosystem scales is crucial for 72 
modeling accuracy, yet it is unclear in this study. The approach of using a weighted 73 
average of Enhanced Vegetation Index (EVI) to scale LIA from 30 m to 500 m, as 74 



per equation (1), raises concerns. What is the solid physical or physiological 75 
rationale for this upscaling method? Without a clear justification, this approach 76 
appears problematic. 77 

 78 
In field measurement, the entire canopy LIA is calculated as the average of all measured 79 
leaf LIAs weighted by leaf area (de Wit 1965; Zou et al. 2014). Leaves with larger areas 80 
have higher weights. Upscaling LIA from 30 m to 500 m follows the same rationale as 81 
that from leaf to canopy scale. For a 30 m pixel with a higher leaf area index (LAI), the 82 
weight of the pixel is higher. Considering that a linear relationship exists between LAI 83 
and enhanced vegetation index (EVI2) (Alexandridis et al. 2019; Dong et al. 2019), the 84 
LIA was upscaled by EVI2 (Eq. (1)).  85 
 86 
Following the suggestion, we have explained in the manuscript (Line 165).  87 

In field measurement, the entire canopy LIA is calculated as the average of all 88 
measured leaf LIAs weighted by leaf area (Zou et al., 2014; De Wit, 1965). Leaves 89 
with larger areas have higher weights. Upscaling LIA from 30 m to 500 m follows 90 
the same rationale as that from leaf to canopy scale. For a 30 m pixel with a higher 91 
LAI, the weight of the pixel is higher. Therefore, the 500 m MLA was computed as 92 
the weighted average of the enhanced vegetation index (EVI2) considering a linear 93 
relationship between LAI and EVI2 (Dong et al., 2019; Alexandridis et al., 2019).  94 

 95 
3. Coarse Resolution and Low-Signal Inputs in the Model: LIA provides detailed 96 

structural information at the leaf level. When using a machine learning model, how 97 
did the authors ensure that the global model inputs listed in Table 1 accurately 98 
represent such low-signal information (also the variations mentioned in comment 99 
#1) at a coarse spatial resolution, which is significantly larger than the leaf level? 100 
Importantly, the MODIS LAI product does not reliably capture LIA in its algorithm. 101 
Furthermore, as seen in Figure 6, NDVI and precipitation are identified as major 102 
factors controlling LIA. What is the specific basis for this, given that both factors 103 
exhibit strong seasonal dynamics? Overall, I think that current optical remote 104 
sensing systems, such as MODIS and Landsat, lack the capability to capture the 105 
subtle structural signal of LIA, as they were not designed for this purpose. 106 

 107 
We agree with the referee that MODIS and Landsat are not designed for estimating LIA. 108 
 109 
In this study, the MODIS LAI was only used for the upscaling evaluation of G(0) (Line 110 
219). In the MODIS LAI algorithm, a biome-specific static LIA was used as a priori 111 



(Myneni et al. 2002). This biome-specific LIA is very rough and should (and can) be 112 
improved. It is our goal to generate global pixel-scale LIA.  113 
 114 
The correlation between LIA and NDVI or precipitation has been reported in many 115 
simulation and field studies (Dong et al. 2019; Jacquemoud et al. 1994; Liu et al. 2012; 116 
Zou and Mõttus 2015). This has been explained in section 4.2. Higher LIA means lower 117 
radiation interception, more NIR downward radiation, and lower NIR reflectance (Liu 118 
et al. 2012). This results in negative correlations between MLA and NIR reflectance 119 
and vegetation index. The negative correlation between MLA and precipitation relates 120 
to vegetation adaptation. Under suitable climate conditions, horizontal leaves can make 121 
better usage of precipitation and increase the photosynthesis rate (King 1997; van 122 
Zanten et al. 2010). Therefore, in this study, the mean and stand deviation of NDVI and 123 
precipitation time series were selected to predict LIA. The mean NDVI and 124 
precipitation represent the average situation for a specific area and correspond to the 125 
typical global LIA.  126 
 127 
In canopy radiation transfer, canopy structure parameters, including leaf area index, 128 
LIA, and clumping index jointly determine the canopy reflectance (Liang 2005; Ross 129 
1981; Verhoef 1984). Previous studies have shown that multi-angle reflectance is 130 
sensitive to LIA and can be used to derive the latter (Goel and Thompson 1984; 131 
Jacquemoud et al. 1994; Jacquemoud et al. 2009; Li et al. 2023). Since MODIS has 132 
multiangle observations, the multiangle information provided in the BRDF product 133 
(MCD43A1 C6.1) was used here as LIA predictors in this study. In contrast, Landsat 134 
lacks a multiangle view and was rarely used for LIA estimation. 135 
 136 
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