
Referee #2 1 
 2 
This study compiled global Leaf Inclination Angle (LIA) field measurements and 3 
produced the first global 500 m LIA dataset using machine learning. The dataset was 4 
evaluated with the nadir leaf projection function, comparing it against high-resolution 5 
reference data, and the global LIA patterns across different biomes were further 6 
analyzed. While the study is intriguing and generally well-written, I have significant 7 
concerns regarding the reliability of this static, machine learning-based product, 8 
particularly due to the dynamic nature of LIA at the leaf level, limitations in scaling 9 
field measurements to the canopy and ecosystem level, and the lack of effective input 10 
data at the global scale. My specific concerns are outlined below: 11 
 12 
We thank the referee for the insightful comments which help us to further improve the 13 
manuscript. We fully understand the referee’s concerns and have provided detailed 14 
explanations below. 15 
 16 
1. Dynamic Nature of Leaf-Level LIA: LIA is highly variable within a canopy, even 17 

for a single species. Observing a tree canopy, one can easily notice the variation in 18 
leaf inclination. To minimize self-shading or optimize light capture, sun and shade 19 
leaves on the same plant may have different inclinations. Moreover, LIA can change 20 
throughout the day to track the sun’s movement, across growing seasons, and with 21 
leaf age and developmental stages. Under stress conditions, such as water scarcity 22 
or extreme temperatures, plants may adjust their leaf angles to reduce water loss or 23 
mitigate heat stress by altering turgor pressure. Additionally, variability in LIA is 24 
influenced by branching patterns, stem elongation, and species-specific genetic 25 
traits like phototropism and heliotropism. Given this variability, treating LIA as a 26 
static structural trait oversimplifies its inherently dynamic nature. 27 

 28 
We agree with the referee’s comments about the dynamic nature of leaf LIA. For plant 29 
physiologists, it is well known that LIA is influenced by environmental conditions and 30 
shows temporal variation.  31 
 32 
In this study, LIA is the mean leaf inclination angle (MLA) of all leaves at the canopy 33 
or pixel scale, not for a single leaf. For a site, the LIA of multiple leaves at different 34 
heights and orientations are obtained and averaged to obtain a robust MLA (Chianucci 35 
et al. 2018; Pisek and Adamson 2020). The MLA partly mitigates the impact of height, 36 
sunlit and shaded leaves, branching patterns, stem elongation, and species-specific 37 



genetic traits like phototropism and heliotropism. This kind of mean LIA is desperately 38 
wanted in many remote sensing and land surface modeling studies (Lawrence et al. 39 
2019; Li et al. 2023; Majasalmi and Bright 2019; Tang et al. 2016; Zhao et al. 2020). 40 
In those studies, LIA is commonly assumed constant (spherical distribution, 57.3 41 
degrees) or biome type-specific (assigning a constant value for each biome). Indeed, 42 
these assumptions may not represent the true field measurements (Tables 3 and 4). Our 43 
objective is to provide a more realistic global MLA map for remote sensing and land 44 
surface modeling studies. 45 
 46 
In this study, the LIA seasonal variations were not considered in the global LIA map 47 
because of the lack of seasonal LIA measurements. As a matter of fact, temporal LIA 48 
variations are usually small, except under extreme situations (unusual). For example, 49 
the LIA variations of European beech forest and eucalyptus in different successional 50 
stages are less than 10 degrees (le Maire et al. 2011; Liu et al. 2019; Raabe et al. 2015). 51 
Crops generally show higher LIA variations than non-crops (Biskup et al. 2007; Zhang 52 
et al. 2017). Therefore, many studies have considered LIA as a species-specific static 53 
trait when there are no seasonal field measurements (Pisek et al. 2022; Raabe et al. 2015; 54 
Toda et al. 2022).  55 
 56 
The global LIA map derived in this study is consistent with field measurements (Tables 57 
3 and 4). This is a significant improvement compared to existing static simplifications 58 
(Lawrence et al. 2019; Li et al. 2023; Majasalmi and Bright 2019; Tang et al. 2016; 59 
Zhao et al. 2020). In a forthcoming study, we plan to retrieve LIA from remote sensing 60 
and the temporal LIA variation will be considered. 61 
 62 
Thanks to the referee’s comment, we have revised the manuscript (Line 151). 63 

Many studies have treated LIA as a species-specific static trait and ignored within-64 
species variations when LIA measurements are limited (Pisek et al., 2022; Toda 65 
et al., 2022; Raabe et al., 2015). Following the rationale, the spatial coverage of 66 
LIA measurements was expanded, and those records without location information 67 
were utilized (section 2.1.1). 68 

 69 
2. Upscaling LIA Field Measurements: The LIA field measurements from the TRY 70 

database seem to be primarily site-specific. The method used to upscale these 71 
measurements from the leaf level to the canopy and ecosystem scales is crucial for 72 
modeling accuracy, yet it is unclear in this study. The approach of using a weighted 73 
average of Enhanced Vegetation Index (EVI) to scale LIA from 30 m to 500 m, as 74 



per equation (1), raises concerns. What is the solid physical or physiological 75 
rationale for this upscaling method? Without a clear justification, this approach 76 
appears problematic. 77 

 78 
In field measurement, the entire canopy LIA is calculated as the average of all measured 79 
leaf LIAs weighted by leaf area (de Wit 1965; Zou et al. 2014). Leaves with larger areas 80 
have higher weights. Upscaling LIA from 30 m to 500 m follows the same rationale as 81 
that from leaf to canopy scale. For a 30 m pixel with a higher leaf area index (LAI), the 82 
weight of the pixel is higher. Considering that a linear relationship exists between LAI 83 
and enhanced vegetation index (EVI2) (Alexandridis et al. 2019; Dong et al. 2019), the 84 
LIA was upscaled by EVI2 (Eq. (1)).  85 
 86 
Following the suggestion, we have explained in the manuscript (Line 165).  87 

In field measurement, the entire canopy LIA is calculated as the average of all 88 
measured leaf LIAs weighted by leaf area (Zou et al., 2014; De Wit, 1965). Leaves 89 
with larger areas have higher weights. Upscaling LIA from 30 m to 500 m follows 90 
the same rationale as that from leaf to canopy scale. For a 30 m pixel with a higher 91 
LAI, the weight of the pixel is higher. Therefore, the 500 m MLA was computed as 92 
the weighted average of the enhanced vegetation index (EVI2) considering a linear 93 
relationship between LAI and EVI2 (Dong et al., 2019; Alexandridis et al., 2019).  94 

 95 
3. Coarse Resolution and Low-Signal Inputs in the Model: LIA provides detailed 96 

structural information at the leaf level. When using a machine learning model, how 97 
did the authors ensure that the global model inputs listed in Table 1 accurately 98 
represent such low-signal information (also the variations mentioned in comment 99 
#1) at a coarse spatial resolution, which is significantly larger than the leaf level? 100 
Importantly, the MODIS LAI product does not reliably capture LIA in its algorithm. 101 
Furthermore, as seen in Figure 6, NDVI and precipitation are identified as major 102 
factors controlling LIA. What is the specific basis for this, given that both factors 103 
exhibit strong seasonal dynamics? Overall, I think that current optical remote 104 
sensing systems, such as MODIS and Landsat, lack the capability to capture the 105 
subtle structural signal of LIA, as they were not designed for this purpose. 106 

 107 
We agree with the referee that MODIS and Landsat are not designed for estimating LIA. 108 
 109 
In this study, the MODIS LAI was only used for the upscaling evaluation of G(0) (Line 110 
219). In the MODIS LAI algorithm, a biome-specific static LIA was used as a priori 111 



(Myneni et al. 2002). This biome-specific LIA is very rough and should (and can) be 112 
improved. It is our goal to generate global pixel-scale LIA.  113 
 114 
The correlation between LIA and NDVI or precipitation has been reported in many 115 
simulation and field studies (Dong et al. 2019; Jacquemoud et al. 1994; Liu et al. 2012; 116 
Zou and Mõttus 2015). This has been explained in section 4.2. Higher LIA means lower 117 
radiation interception, more NIR downward radiation, and lower NIR reflectance (Liu 118 
et al. 2012). This results in negative correlations between MLA and NIR reflectance 119 
and vegetation index. The negative correlation between MLA and precipitation relates 120 
to vegetation adaptation. Under suitable climate conditions, horizontal leaves can make 121 
better usage of precipitation and increase the photosynthesis rate (King 1997; van 122 
Zanten et al. 2010). Therefore, in this study, the mean and stand deviation of NDVI and 123 
precipitation time series were selected to predict LIA. The mean NDVI and 124 
precipitation represent the average situation for a specific area and correspond to the 125 
typical global LIA.  126 
 127 
In canopy radiation transfer, canopy structure parameters, including leaf area index, 128 
LIA, and clumping index jointly determine the canopy reflectance (Liang 2005; Ross 129 
1981; Verhoef 1984). Previous studies have shown that multi-angle reflectance is 130 
sensitive to LIA and can be used to derive the latter (Goel and Thompson 1984; 131 
Jacquemoud et al. 1994; Jacquemoud et al. 2009; Li et al. 2023). Since MODIS has 132 
multiangle observations, the multiangle information provided in the BRDF product 133 
(MCD43A1 C6.1) was used here as LIA predictors in this study. In contrast, Landsat 134 
lacks a multiangle view and was rarely used for LIA estimation. 135 
 136 
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