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et-al;Glacier monitoring has evolved fast since its beginning in the late 19th century, with in situ and remotely sensed

techniques allowing to observe detailed changes in area, elevation, volume and mass at first only for single glaciers and recently

entire regions and the world (Zemp et al., 2015a; Thomson et al., 2021; Berthier et al., 2023). On the one hand, in-situ

glaciological observations provide extremely valuable information on the annual-to-seasonal temporal variability of glacier

changes, reflecting the impact of atmospheric conditions which can be correlated over several hundred kilometers (@strem and

Brugman, 1991; Oerlemans, 2001; Kaser et al., 2003; Cogley et al., 2011; Braithwaite and Hughes, 2020; Fernandez and

Somos-Valenzuela, 2022). At present, and thanks to the coordination of the World Glacier Monitoring Service (WGMS) and

its global network of contributors, glaciological in-situ observations exist in nearly all glacierized regions of the Randolph

Glacier Inventory (RGI, Pfeffer et al., 2014; RGI Consortium, 2017). Most glaciers have been continuously monitored for

periods longer than 10 years, with some of the earliest observations reaching back until the early 20th century. While

irreplaceable, one major limitation of the glaciological method lies in the logistical hurdles of maintaining continuous field

campaigns. At present in-situ observations are limited to approximately 500 glaciers worldwide, representing less than 0.2%

of the world’s glaciers (WGMS, 2024). Secondly, it is challenging to represent the complex mass balance pattern with

individual in-situ point measurements such that potential sampling biases can accumulate in time when interpolating to glacier

wide estimates. For this reason, glaciological observations often require reanalysis and calibration with glacier elevation

change rates obtained from high-resolution geodetic surveys (Thibert et al., 2008; Thibert and Vincent, 2009; Zemp et al.,
2013).

The geodetic or digital elevation model (DEM) differencing method is powerful at providing glacier elevation change

observations with high accuracy over large glacierized areas and long periods of time (multi-annual to decadal, Cogley et al.
2011). DEM differencing was initially applied to individual glaciers with DEMs derived from maps (Joerg and Zemp, 2014)
and aerial photographs (Finsterwalder, 1954; Thibert et al., 2008; Papasodoro et al., 2015; Belart et al., 2019), but has now

evolved to include data from airborne Lidar (Echelmeyer et al., 1996; Abermann et al., 2010) spaceborne altimetry (Jakob

and Gourmelen, 2023; Menounos et al., 2024) and satellite derived DEMs from multiple sensors (Toutin, 2001; Berthier et al.,
2023). Recent advances in post-processing techniques (Rolstad et al., 2009; Nuth and Kéadb, 2011; McNabb et al., 2019;

Hugonnet et al., 2022), supercomputing capabilities and automated processing pipelines (Shean et al., 2016; Girod et al., 2017;
Rupnik et al., 2017) have further enhanced this methodology enabling its application over entire mountain ranges(Brun et al.,

3
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2017; Braun et al., 2019; Dussaillant et al., 2019; Shean et al., 2020) and recently. globally (Hugonnet et al., 2021). The major

limitations of the geodetic method lie firstly on the relatively short period since corresponding spaceborne sensors operate (in

general after 2000), sensor related issues (e.g., radar signal penetration into snow and ice) and, importantly, on the inability to

capture the annual variability of glacier mass changes due to a low signal-to-noise ratio of the elevation changes and the high

uncertainties of the volume-to-mass conversion for periods shorter than five years (Huss, 2013).

Glacier change observations using glaciological measurements and the geodetic method therefore complement each other by
providing different types of information. Zemp et al.

+(2019) was the first study to combine the

annual variability from the glaciological observations with the long-term trends of the geodetic method, to estimate annual

mass changes for all 19 RGI glacier regions from 1976-2016. Their global estimate was hampered by the limited geodetic

observational sample available at the time of the study (only 9% of Earth’s glaciers by number) resulting in high uncertainties.

The Hugonnet ctal. (2021) —combines-the-temporalvariability-of the slaciological-observations-with-the-fong—term-trends-of
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global assessment now fills this observational gap by leveraging the repeated acquisitions and global coverage of the Advanced

Spaceborne and Thermal Emission and Reflection (ASTER) satellite optical stereo images (Raup et al., 2000). Their

assessment provides individual glacier elevation change rates for nearly all glaciers worldwide (97.4% of RGI inventoried

glacier area) from 2000 to 2019.

In this study, we provide a global observation-based assessment of annually resolved glacier mass changes at a glacier-specific

level, feasible thanks to the now almost complete coverage with glacier elevation change observations in the latest version of
the Fluctuations of Glaciers (FoG) database (WGMS, 2024). To achieve this we use glaciological observations from

approximately 500 glaciers (0.2% of the world's glaciers) starting between 1915 and 1976 and glacier-wide geodetic

observations from approximately 207.000 glaciers (96% of the world's glaciers covering a 96% of world's glaciated surface)

starting in the 1940s (Table 1 and Fig. 1). The DEM differencing observations used here include the multiple local and regional

satellite and airborne geodetic glacier change assessments for 30.000 (14%) glaciers plus the 20-year estimates from Hugonnet

etal. (2021) available for 205.000 (95%) glaciers in the FoG database. Building upon the methodological foundations laid out

in Zemp et al. (2019, 2020), we further develop the approach to spatially interpolate the glaciological annual field observations

and calibrate them to the long-term trends derived from satellite and airborne geodetic data elevation change observations. The

time series are calculated separately for each of the world’s glaciers using geostatistical modelling and then aggregated to

regional and global estimates of annual glacier mass changes. Our results include glacier mass changes with annual temporal
resolution for each individual glacier in the RGI (with starting date between the hydrological years 1915-1976 (see methods)

5
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depending on the RGI region), and a global observation-based assessment of annual glacier mass changes since the

hydrological year 1976, made available as a global gridded product.

2. Data and Methods
2.1 Input Datasets
2.1.1. Glacier inventories

We use the digital glacier outlines from the Randolph Glacier Inventory 6.0 (RGI Consortium, 2017) to spatially locate glaciers,«
measureattribute their area and distributeassign the FeGin situ mass balance observations esnto individual glaciers. This
globally-complete-inventory-of glacieroutlines-RGI version 6.0 represents their-area-as-it-wasglacier areas near the beginning
ofthe 21% century. RGEversionVersion 6.0 has been preferred to the smrestmore recent version 7.0 for two reasons: first, because
FeoG glacier elevation change observations are available only for version 6.0 and second, for comparison with previous
observation based global assessments. also using this version. RGI outlines are available through the RGI enline-portal (DOI:
10.7265/N5-RGI-60) and the Global Land Ice Measurements from Space initiative, an initiative from the early 2000s to
improve glacier inventories using satellite data (GLIMS, DOI: 10.7265/N5V98602). Due to the high number of incorrectly

mapped glaciers in the RGI 6.0 Caucasus and Middle East region (region 12), the Hugonnet et al. (2021) geodetic observations
were calculated using the latest GLIMS outlines available (Tielidze and Wheate, 2018). The fermerlatter inventory is also used
in this study for consistency. For the Greenland Periphery (region 5), we did-notineludeexcluded, glaciers strongly connected

to the ice sheet (RGI 6.0 connectivity level 2):) similarly to Hugonnet et al. (2021).,To spatially constrain glaciers within the
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world’s climatic regions, we use the 19 first-order glacier regions as defined by the al-Terrestri
(GTFN-G;2047HRGI and, illustrated in Fig. 1. Glacier regions are implemented directly in the RGI dataset and are accessible
via the same DOI. The location of the glacier and region outlines used-in-this-study-js represented in Fig. 1. The full regional

hypsometric coverage is illustrated in grey bars in Fig. 1.

2.1.2 Glacier elevation and mass change observations “

We use the glacier-wide annual mass change observations from the glaciological method and multiannual trends of elevation

changes derived from the geodetic method as available from the latest update of the Fluctuations of Glaciers database (FoG).
These glacier change observations are collected by the WGMS in annual calls-for-data through a worldwide network of
national correspondents and principal investigators. After integration of the new, homogenized and corrected observations, a

new FoG database version is released. Individual glaciers with available observations are identified in the FoG database with

a_ WGMS-Id. Updated versions of the FoG database can be accessed via the WGMS online portal
(https://wgms.ch/data_databaseversions/). Results presented here use version WGMS (2024) accessible through:
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https://doi.org/10.5904/wgms-fog-2024-01. The, almost complete observational coverage of the latest FoG database version
WGMS, (2024),is depicted in Fig. +-with-th detie-sampl rirg-96% ot at-the-world'sglaciersthreu:

hypsemetry-1, with the geodetic sample covering 206.554 glaciers or 96% of the world's glaciers covering the glacier’s entire

elevation range. More specifically in this study we use local and regional satellite and airborne glacier-wide DEM differencing

observations available for 29.529 glaciers (14% of the world's glaciers) plus the 20-year estimates from Hugonnet et al. (2021)

available for 205.120 (95%) glaciers in the FoG database (only glacier-wide estimates from Hugonnet et al. (2021) calculated

from elevation change grids covering more than 50% of the glacier area where ingested into the FoG). The key characteristics

of glacier mass and elevation change observations are summarized in Table 1. For more details on the specific input data,
auxiliary data, retrieval algorithms and uncertainty estimation of the independent FoG glacier elevation and mass change
observations please refer to {W-GMS;2624).WGMS (2024). More details on the glaciological method can be found in @strem
and Brugman (1991), Kaser et al. (2003) and Zemp et al. (2043204532013, 2015). For the geodetic method and its error

sources see WMO (2023) and about measuring glacier mass changes from space, see Berthier et al. (2023).

Table 1: Key characteristics of glacier elevation and mass change observations used in this study as available from the
Fluctuations of Glaciers database (WGMS 2024)

Glacier elevation change Glacier mass change
dh
Symbol i B
Y! dt glac
Method Geodetic method, i.e. DEM differencing Glaciological method
Platform In-situ, airborne, spaceborne In-situ
Spatial resolution Glacier-wide average from DEMs of meter Glacier-wide average from
P to decameterdeca-meter pixel size interpolated point measurements

Worldwide (268(~207,000 glaciers), 96%)

. : - H 0,
Spatial coverage covering 2 96% of world's glaciated area Worldwide ¢(~500 glaciers). 0.2%)

Temporal resolution Multi-annual to decadal Seasonal to annual
StartF 5 (stz sinee eatly 20%
Temporal coverage Homeleaig;j\t/:t d‘;tcrse ion) i enfrom 1915-1976 (start
p g vary oy reg dates vary by region) until present
until present
Unit meter (m a’) meter water equivalent (m w.e-). a”')
Required uncertainty* 2 m decade’! 0.2 mw.e. a’
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Figure 1:1: Spatial and hypsometric coverage of glaciological and geodetic observations for each of the 19 first-order regions. Glacier< Formatted: Font: Not Bold

hypsometry from RGI 6.0 (grey) is overlaid (and almost hidden) with glacier hypsometry of the geodetic elevation changes (Geo, blue) and
215  the glaciological (Glac, red) samples used-in-this-study-available from the FoG database WGMS (2024), Values for the glacier area and
total number (N) of glaciers are given for each region together with the respective percentage area covered, the number of observed and
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To prepare the data for the main processing, glacier-wide records with available mass and elevation change observations

o JC G A )

identified by a WGMS-Id are selected from the FoG database and related to their corresponding RGI outline identifier (RGIId)
225 using a WGMS-Id-to-RGHd link-up table. We exclude geodetic records with survey periods shorter than five years in view of
their large uncertainty for the densityvolume-to-mass change conversion (Huss, 2013). For simplicity, throughout this work
hydrological years are represented as the last year of the hydrological cycle (e.g. 1976) starting on the 1% October to 30™
September in the Northern Hemisphere, and from 1% April of the previous year (e.g. 1975) to 31% March of the year (e.g. 1976)
in the Southern Hemisphere. For the Low Latitudes region, we assume the hydrological year to be equal to the calendar year

230 from 1% January to 31% December.

Our processing algorithm is summarized in feurthree key steps represented-in-(Fig. 2:). First, focusing on a specific glacier in
the RGI-6.0 inventory-(Fig-—2a);, we estimate the detrended temporal variability of annual mass change for the glacier, referred
here as the glacier mean annual mass-balance anomaly, by—extracting—it-fromusing the interannual variability of nearby
235 glaciological time series (Fig. 2b2a). Secondly, we calibrate the mean annual mass-balance anomaly to the long-term trends
from the geodetic sample available for the respective glacier (Fig. 2¢2b). Third, we integrate all these calibrated time series
into a single, area-weighted average, producing a data-fused annual mass change time series unique for every individual glacier

(Fig. 2d20).
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2.2.1 Computing the mean annual mass-balance anomaly from the neighberingneighbouring glaciological ebservation
sampleobservations

Direct annual glaciological observations B, are reported to the FoG database with their relative uncertainties o in meters

water equivalent (m w.e.) as:

In-the, cases where a glaciological series is missing an uncertainty estimate for a given year, we assume it to be equal to the

mean of alh-validthe annual uncertainty estimates within the series. In-the, cases where g, glaciological series have no uncertainty
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estimate for the entire period, we assume it to be equal to the mean annual uncertainty for all glaciological series from glaciers

belonging to the same region.

From the individual glacier annual glaciological time series, we estimate an individual glacier annual mass-balance anomaly
as the glaciological mass change value at year Y minus the mean mass change during the reference period from 2011 and
2020. Choosing athis recent reference period allows te-selectexploiting a larger glaciological sample, thus gettingobtaining a
better representativityrepresentativeness of glacier temporal variabilities across all regions. We allow a threshold of at least 8
years of glaciological observations within the 10-year reference period to calculate a glacier annual anemaly-mass-balance

anomaly. This means that a glacier needs to have at least 8 years of glaciological in-situ observations within the 10-year-

reference period to calculate their annual mass-balance anomaly. At this step we remove low confidence glacier anomalies

from the processing for not being representative of their regional mass balance variability (Table 2).

By = BagmmerBay — Bgrmeror=roz0Ba,2011-2020 2)
A

Starting from a given glacier g belonging to the RGI 6.0 glacier inventory (e.g. Hintereisferner, Gulkana, Mittivakat in Fig. 2),

we use the sample of neighberingneighbouring glacier annual mass-balance anomalies to capture the annual temporal

variability of its mass-changes.

slacier-anomaliesfrom-the same-or neighbering RGIH"-erder regions-are selected-manuvally following Table 2-The mean
annual mass-balance anomaly of glacier g ‘@g}y) is then calculated inverse distanceweightedaverage o the spatiallv-selected

-

sample-of N-ndividual-by kriging all glacier annual mass-balance anomalies located nearbynear the glacier (Fig. 2b2a).

5 3
Bor =SB We +op,, =K(Biv ppr( @), 0)
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300

Where pgy (d)_is the spatial correlation of the annual mass-balance anomaly and K_the function applying ordinary kriging to

305 By (constant mean). When interpolating with kriging, the weight between each pair of glaciers is based solely on the

distance between them, using a spatial correlation function which can be constrained from an empirical variogram.

Additionally, the predicted kriging uncertainty Gﬁgy grows with distance, from the measurement error of the inputs OB, at

close distances from a measured glacier, to the signal variability (spread of By)it distances far away from any measured

glacier, where the prediction is more poorly constrained.

310

We estimated empirical variograms for both local-scale modelled annual mass balance anomalies (Huss and Hock, 2015) and

for purely observational 5-year anomalies (Hugonnet et al., 2021), the latter validating the spatial correlation patterns observed
15
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320

325

330

in the modeled estimates (Fig. 3). The empirical variograms were computed independently for each contiguous region (High
Mountain Asia, North America and South America considered larger regions) and for each sub-period of 2000-2020 (annual

or 5—year) using up to 10,000 glaciers. In total, all variograms sample more than 10 billion pairwise differences between glacier

annual mass-balance anomalies s to obtain this average spatial correlation function. We then modelled the spatial correlation

in annual mass-balance anomaly pg v _as a sum of two exponential models:

_3d _3d
pﬁ,y(d) =n + s;€ - + sye - 4)

where d _is the distance between two glaciers, n = 0.23. s, = 0.14, s; = 0.63_are the partial sills and r; = 100 km_and r, =

5000 km_are the correlation ranges. With this correlation function, we estimate that two directly neighboring glaciers have an

annual mass-balance anomaly correlated at 94%, while correlated at 72% if separated by 60 km, at 51% by 250 km, at 32%
by 1000 km and at 10% by 3000 km and less than 3% after 5000 km.

1.0
= = = Yearly anomalies (Huss and Hock, 2015)
koa, = = = 5-year anomalies (Hugonnet et al., 2021)
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Figure 3: Spatial correlation of anomalies in specific mass change as used for kriging. Correlation is estimated from an average of
empirical variograms sampled from all glaciers worldwide, for 5-year mass-balance anomalies with observational estimates based on surface
elevation changes (Hugonnet et al., 2021) and for annual mb-anomalies for modelled estimates from Huss and Hock (2015), the former used
as validation and the latter being used for kriging in this study. For example. two directly neighboring glaciers have an annual mass-balance
anomaly correlated at 94%. while correlated at 72% if separated by 60 km., at 51% by 250 km, at 32% by 1000 km and at 10% by 3000 km
and less than 3% after 5000 km (Blue dotted line).
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In under-sampled regions (Arctic Canada South, Russian Arctic, Asia South East, Asia South West and New Zealand), we

added complementary glacier anomalies from neighbouring regions to calculate the mean glacier anomalies (Table 2, Fig. 4).

As a rule, all glaciers mean annual mass-balance anomalies should cover at least the period between the hydrological years

Formatted:

Font

: +Headings (Times New Roman), 10 pt

Formatted:

Font

: +Headings (Times New Roman), 10 pt

Formatted Table

from 1976 to 2023. For glaciers with mean annual mass-balance anomalies not arriving back to 1976, the best correlated

glaciological series from neighbouring regions (i.e. climatically similar) are used to fill in the past years only (Table 2, grey

sections in Fig. 4, see metadata file, decision supported by Zemp et al., 2019, 2020; Braithwaite and Hughes, 2020; Fernandez
and Somos-Valenzuela, 2022). To reduce the effect of possible climatic differences within the neighbouring regions, the

amplitude of the complementary glacier anomalies is normalized to the amplitude of the mean glacier anomaly during the

reference period.

Table 2: Regional overview of (i) Excludedexcluded glacier annual mass-balance (ii) pl tary glacier annual mass-
balance anomalies added in under sampled regions to calculate the mean glacierannual mass-balance anomalies, and (iii)
complementary annual mass-balance glacier anomalies, -normalized and used ea-gapto fill up past years only to extend the series
back in time_until at least 1976.
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2.2.2. Calibrating the mean annual-_mb anomaly on the glacier geodetic sample

Geodetic observations are reported to the FoG database with their relative uncertainties as glacier wide mean rates of elevation
change (%) in meters during a specific period of record (PoR). Glaciers may contain multiple individual geodetic observations
for different time periods depending on the dates of the DEMs used (red and blue bars in Fig. 2¢2b). To obtain the geodetic
mass change rate, we convert elevation changes-need-to-be-transformed to glacier specific mass change rates in m w.e. by
applying a density conversion factor f, + 0y, = 0:85-+0:60—(Huss;2643).850 £ 60 kg m™3 (Huss, 2013). At this step we
exclude from the processing unpublished, and therefore low confidence, DEM differencing estimates available from the FoG.
Egeo,PoR = %POR 'fp )
Fhe-To calculate the uncertainty in the geodetic mass ehangebalance rate vneertainty-is-then-caleulated-as-the-combination-of

two-independent sources-oferror:in m w.c., we propagate the uncertainty related-toin the elevation change rate dhp,_and the
uncertainty related-toin the density conversion factor 6;=—69-k—g0fp, considering that they are uncorrelated. We justify this by

the fact that elevation change errors stem from instrument noise or spatiotemporal prediction, while density conversion errors

stem from modelling errors and lack of knowledge on surface conditions, which are independent. We use reported uncertainties

for elevation change rates, and we use ay,, = 60 kgAm'3— (Huss, 2013)—Fhese-two-errors-are-combined-accordingto-the-taw
of random-error-propagation-as-follows) for the uncertainty in the density conversion factor.

2
_ —IB Tapor)\> , (%
G-Bgeo’poR - |Bgeo,PaR| ( Ahpor ) + E ©)
In a data-fusion step, we calibrate the mean annual- mass-balance anomaly (obtained from the glaciological sample) of glacier

g to a given geodetic mass change rate k (i.e. geodetic sample) belonging to glacier g-(i-e—geedetic-sample).. We obtain a “k-

calibrated” annual mass-change time series for every geodetic observation available for glacier g. The k-calibrated annual mass

-change time series is then calculated as the sum of the geodetic mass change rate k and the mean annual- mass-balance
anomaly over the period of record of the geodetic mass change rate k (grey lines in Fig. 2¢2b). Due to the large uncertainties
related to the volume-to-mass-change conversion factor over short periods of time (Huss, 2013), only geodetic observations

argerlonger than 5 years are considered for calibration.

Bcal,k,Y = Egeo,k,PoR + (,Eg,Y - .gg,PoR) (7)

The uncertainty in the k-calibrated annual mass--change time series uneertainty-is then ealeulated-as-the-combination-oftw

independenterrors:propagated from the uncertainty inherenttoin the individual geodetic mass change rates and the uncertainty
inherited-byin the glaeier’s-mean annual-anomaly.-These-two-errors-are-combined-aceording to-the- law-of randem_We consider

[ Formatted: Font: Italic
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these two uncertainties uncorrelated as they originate from independent measurements (remotely sensed and in situ) that do

not share any similar error prepagatien-sources (including density conversion).

2.2.3. Combining the resulting time series into a mean calibrated annual mass--change time series

The mean calibrated annual mass--change of glacier g (Fig. 2d2c) is finally calculated as the weighted mean of the K available

k-calibrated annual mass-change, time series (K is equal to the number of geodetic observations longer than 5 years available

for the glacier). Two different weights are applied: First, a weightweighting relative to the uncertainty in the geodetic mass
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change Hﬁeeﬁaiﬂty,(WaE ). where the k-calibrated annual mass-change time series are weighted to the inverse ratio-of
a

geok,PoR ™, A

thethat squared seedetic-mass-changerateuncertainty. And second, a weight relative to the time lag of the k-calibrated mass—

change time series (/) jin number of years to the initial (yo) and final (y,) years of the period of record of the k--geodetic rate \

PoR, Here, the point is to give more weight to a time series calibrated to a geodetic observation that is temporally close to the |

given geodetic PeRperiod of record,

K K
yr B a7 AL B W, W,
— Lik=rPratiy T ezk_1 cal,ky UBgeo,k,PoR t

Bcal,g,Y = I X ¥

1
Where, W,

B 023
geok.PoR Bgeo,k,PoR

1195 11\P . .
and, W, =-®—(§) {t=1, yo<Y<yt=Y—y, Y>yt=y,—-Y, Y<y.p=1to give temporally distant

years a moderate weight.

For later error propagation, we separate the differentseureethree sources, of errors for elevation change, density conversion

and anomaly calculation, given that those are largely independent between themselves, as previously justified, but have

different scales of spatial correlations. To propagate uncertainties to the mean calibrated annual mass-change time series

Beaigy, censideringwe consider that each source is entirely correlated with itself during the averaging of the different

We _COISICET tUah

calibrated series. This is justified because there is a single density conversion and anomaly estimation referring to a same

period and glacier, which thus have exactly the same errors. For elevation changes, there are sometimes multiple estimations

referring to a same glacier, but that often share errors from similar instruments (e.g., ASTER) or estimation methods, and so

we conservatively assume that their errors are fully correlated. Based on previous equations, we separate errers—fromerror

propagation for elevation change, density conversion and anomaly predietien:calculation:,
_ _1on o
adhvBcal,g,Y - N Zk=1 odhk,paR . fp ©)

— _ 1N 5
o—fprécal,g,Y = ;Zk=1 O'fp . dhk,PoR (10)
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= _ 1N _
O-B-Bcal,g,Y - NZk:1 GBk,Y (11)

FheAnd the total uncertainty in the mean calibrated annual mass-change time series-total-uneertainty for a certain glacier is: < [ Formatted: Left
2 _ — =2 _ =2  _ =2 _
g Bcal,g,Y =0 dh,Bcal,g,Y to fpocal,g,Y +o BvBcal,g,Y (12)

2.2.4. Integrating glacier mass changes into larger regions

405 Every glacier with available geodetic observations has a mean-calibrated annual mass change (approximately 265207.000
glaciers covering a-974%96% of the world's glaciated surfacearea). The remaining unobserved glaciers (gyops) are assumed

to behave as the regional mean of the observed sample. The Individualindividual glacier mean-calibrated annual mass change

time series can be integrated into any larger region R containing multiple glaciers. The regional-region-specific calibrated
mass-balance (i.e. grid cell or glacier region) speeifie-calibrated-mass-balanee-B.,,; at year Y and in region R is calculated as

410 the area weighted mean of the individual mean-calibrated mass-change-balance time series of the sample of observed glaciers
belonging to region R (or the specific grid point R for the gridded product, Fig 2e6ii).

N =
_ Zg:lBEal,g,Y'Ag

B, = (13)
cal,R)Y (Z§=1Ag,y)
To derive the uncertainty in the regionalregion-specific calibrated mass--balance, we need to account for spatial correlations

between the uncertainties of per-glacier mean calibrated annual mass-balanee—We-identified-change. Indeed, our three error

—Clange. 1ndecd, our

415  sources 2

anomaly predietion-

calculation, are significantly correlated spatially. For elevation change, we use the spatial correlation in elevation change error

:, elevation change, density conversion and mean annual mass-balance

pan(d) estimated in Hugonnet et al. (2021), as it is the main data source in the FoG database. These spatially correlated

elevation errors are largely due to instrument noise and temporal interpolation to match an exact period of estimation.

2 __1 . _ . _ . .
420 g dh.Bcairy Atot Zgl Zgz Pdn (d.gllgz) o Ah,Bcal,gqy g dh,Bcai,g,y Agl A.gz 14
where dg, 4, is the distance between glaciers, A, is the area of glacier g, and A;,; = )4 4, is the regional glacier area.
For density conversion, we use the spatial correlation in density conversion error p,(d) estimated by Huss et al. (in

preparation). These spatially correlated density errors are-targely due to large local and regional variations in precipitation and

firn densification, resulting in spatially correlated errors from the average value.

2 _ 1 . _ . _ . .
425 o fp'Bcal,R,Y - Atot Zgl 292 pfp (dglng) Gfpocal,gl,Y Gfp:Bcal,gz,Y A91 Agz (135)

For mean annual mass-balance anomalies, we assume that errors to the real values are completely correlated at regional scales,

and thus propagated as:

2 _ 1 2 Y
g B.Bcatry — Aot Zg o ﬁ:Bcal,g,Y A g (16)
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440

445

450

455

EinallyFinally, following the assumption that correlation between sources has a negligible impact compared to the spatial

correlation of errors within the same source, we combine all sources of error propagated at the regional-scale as independent:

2 — 42 2 2
o Bcal,R,Y =0 dh:Bcal,R,Y + o fp:Bcal,R,Y + o B:Bcal,R,Y (17)

The regional mass change in Gt of water is then obtained by multiplying the specific mass change by the region’s (or grid

point) glacierized area Sg, corrected to the year 2000 using the area change rates updated from Zemp et al. (2019). We

propagate the uncertainty in the specific regional mass change, the uncertainty in the regional area (Paul et al., 2015) and the

uncertainty in the area change assuming them uncorrelated. Errors in the area stem mostly from remote sensing delineation

errors, while errors in area change stem from a lack of multi-temporal outlines to constrain area change. They are largely

uncorrelated with error sources described above for elevation change, glaciological measurements and anomalies. However.

clevation change estimates usually already consider errors in area at the scale of each glacier, so we might conservatively be

double counting these.
AMgy = Bry " (Sr + 4ASgy) (18)

2 2 2
_ %BRy ISg OaSRy
Oarny = |AMpy] (BR,,,) +(35) + (ASR,Y> (19)

Where ? = 5% (Paul et al., 2015) and GAASSR updated-fromZemp-et-al(20149)is updated from Zemp et al. (2019)..
R

The global annual (Y) and cumulative (PeR)}-mass change (in Gt) and sea level equivalent for any given period of record is

finally calculated as the sum of the regional mass change, assuming that the regional mass loss uncertainties are independent

annual values, we assume the yearly uncertainty to be independent of other years. This is true for glaciological measurement,

having an independent uncertainty estimation for each individual year of the time series, but not for the elevation change

measurements, where uncertainties are correlated over the years of the survey period.

AMgiopy = Yi21 AMpy and AMgiop,por = Yke1 DAMp por (20)

_ 19 2 _ 19 2
OMMgiopy = \/ZR=1(GAMR,Y) and OAMgiob,por — 2R=1(UAMR,P0R) @y
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460

465

470

475

480

SLEy, = 2MGI0bY 106 4 6o p  and  SLEpog = aGlObPOR. 106 g (22)

ocean Socean

_ 2 2 — 2 2
JSLEY_\/JAMclab,Y + Osocean and GSLEPoR_\/GAMGZob,PaR * Osocean @3)

Where Syceqn = 362.5 X 10°km? and o5, = 0.1 x 106km? (Cogley, 2012)

One strength of producing per-glacier mass change time series is the possibility to integrate them as an area-weighted mean at
any given spatial resolution (i.e. regular grid, subregions, regions, basins, etc). In this study we integrate glacier mass changes
in three spatial resolutions: Regionally by the 19 RGI 1% order regions and globally to allow direct comparison with previous
global observation-based assessments by Zemp et al. (2019) and Hugonnet et al. (2021). Further, profitingfremtaking
advantage of the per-glacier annual time series, we generate a global gridded product of annual glacier mass changes for the

Copernicus Climate Change Service (C38). https:/climate.copernicus.eu/) Climate Data Store (CDS),, For consistency with

other climate observation datasets (e.g. C3S), we provide glacier changes at a global regular grid of 0.5° latitude longitude.
For temporal consistency within all regions, we extend the global time series only as far as the hydrological year 1976, in
contrast to Zemp et al. (2019) who reached back to the +960s1962. This adjustment is due to the absence of annual observations
in the Southern Hemisphere regions prior to 1976 (evidenced in Zemp et al., 2019, Fig. 710). Regional time series start from
the date of the first year of mass change records available for the region (see Table 45). Importantly, our fully operational
approach allows producing yearly updates as soon as new glacier observations are ingested into the FoG database of the
WGMS.

2.2.5. Methodological progress in data fusion of glaciological and geodetic data

The specific methodological ameliorationsimprovements on data fusion of glaciological and geodetic data of the present

assessment with respect to Zemp et al. (2019) are detailed in Table 3.

Table 3: Specific methodological improvements in data fusion of glaciological and geodetic data with respect to Zemp et al.
(2019)

Zemp et al. (2019) This study
Extraction of the temporal variability from the glaciological sample

Automatically selected with respect to the
By spatial clusters defined from 1%t and 2"¢ — distance to the glacier. Manual removal of
order regions low confidence glaciological series from
FoG WGMS, 2024 (Table 2),

Selection strategy of
glaciological time series
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Combination strategy of

glaciological anomalies Variance decomposition model

Weighted-by-distance-asing-aKriging spatiat

correlation function

Selection of
complementary glacier
anomalies from neighboring
regions for under sampled
cases

seleetedSelected by arbitrary expert choice

Normalized amplitude of
the complementary glacier
anomalies

Neorused-as4sNone

Best correlated with regional time series
(Table 2)

Normalized to the amplitude of the regional
series during the refeneereference period
(Table 2)

Calibration of the mean annual mass-balance anomaly on the glacier geodetic sample

Selection strategy of geodetic  \yj o040l DEM differencing estimates R ormoYal of low--confidence geodetieDEM
time-seriesDEM differencing Hable f WOIS d differencing estimates from FoG
observations rom kot~ > use WGMS,2024
Regional anomaly calibrated to geodetic . ngmer anomal'y calibrated over every
. . individual geodetic rate and then combined
. . rates of available observations, averaged per L2 A .
Calibration strategy by weighting mean considering geodetic

glacier and combined with estimates for
sample without observations

Uncertainty estimation and validation

uncertainty and distance to geodetic survey
period

Time-dependent uncertainty
accounting for area-change
rates

Mean regional annual change rates

Mean regional annual change rates

Assuming uneerrelationno correlation for
samples larger than 50 glaciers

Spatial correlation of
uncertainties

Spatial Cerrelationcorrelation following an
empirical function Hugonnet et al, (2022),

and Huss and-Hugennetet al. (in prep)

Validation of results Comparison with estimates in IPCC AR5

Leave-one-out Eressand leave-block-out
cross-validation over independent reference
and benchmark glacier time series

Special cases

Special treatment in the

Southern Andes region 17 Considered as a whole

Correction of Echaurren

Norte glaciological time series sec-as-isNone

Subdivided into two RGI 2" order regions,
Duedue to the scarcity of glaciological time
series in the Southern Andes region and to
better account for the distinct climatic
conditions of the Central and Patagonian
Andes (Garreaud, 2009; Garreaud et al.,
2013)

Past period (1976-2000) normalized with
respect to present period amplitude due to
suspicious values.

23

[Formatted: Font: 10 pt




2.2.6. Description of the datasets

485  The datasets produced-in-this-werk-are described in tableTable 4. The main dataset, Dataset 1, corresponds to individual

glacier annual mass change time series provided in .csv files by RGI first order regions. Glaciers are identified by their

RGIId, centroid latitude and centroid longitude corresponding to the RGI60 glacier outline geometry. For Dataset 1, the

start of the timeseriestime series is region-dependent and-starts-atcorresponds to the date of the first year of mass change

records available for the region. We also provide for every region and on a glacier-by-glacier basis a .csv file with additional

t02023.,

495

Table 4. Details of the annual glacier mass change output datasets

490  metadata information and a README, The second Dataset 2 stands as a by-product from Dataset 1, it corresponds to an
integration of the individual glacier timeseries on a global regutar-grid of 0.5° latitude longitude.- We chose this resolution
and a netCDF file format to make the glacier change product consistent and easily usable by other climate observation

datasets (e.g. C3S). To ensure global completeness of annual glacier mass changes, this dataset spans the period, from 1976

Dataset 1

Dataset 2

Dataset name

Individual glacier annual mass change time
series

Global gridded annual glacier mass changes

Dataset access

ReviewDuring review process:
https://user.geo.uzh.ch/idussa/Dussaillant etal E

ReviewDuring review process:
https://user.geo.uzh.ch/idussa/Dussaillant_etal ES

SSD_data/individual glacier_annual_mass_chan
ge_time_series/

Upon publication:
https://doi.org/10.5904/Dussaillant et al. YYYY-
MM-DD

SD_data/global_gridded annual glacier_mass_ch
anges/

Upon publication:
https://doi.org/10.5904/Dussaillant et al. YYYY-
MM-DD

File format

CemaComma delimited file (.csv)
One file per RGI 1% order Region

NetCDF (.nc)
One file per hydrological year
And one file with all hydrological years

Data format

Columns:

RGIId: glacierGlacier identifier from RGI60
(value of GLIMS_ID for Caucasus region 123-).
Unob_gla for unobserved glaciers.

CenlLat: glacierGlacier centroid Latitude
extracted from the RGI60 glacier outline
geometry. (GLIMS outlines for Caucasus region
12)

CenLon: glaeierGlacier centroid Longitude
extracted from the RGI60 glacier outline

Variables :

GaeterGlacier change (Gt)

Glacier change uncertainty (Gt)
Glacier change (m w.e.)

Glacier change uncertainty (m w.e.)
Glacier area per grid point (km?)

Dimensions:
Time
Latitude
Longitude
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https://user.geo.uzh.ch/idussa/Dussaillant_etal_ESSD_data/
https://user.geo.uzh.ch/idussa/Dussaillant_etal_ESSD_data/
https://user.geo.uzh.ch/idussa/Dussaillant_etal_ESSD_data/
https://user.geo.uzh.ch/idussa/Dussaillant_etal_ESSD_data/

geometry. (GLIMS outlines for Caucasus region
12)

YYYY: Hydrological year named as last year of
the hydrological cycle

Variable: glacier change time series and
uncertainty in m w.e.

Mean calibrated annual mass--change time
series:
RRR_gla_mean-cal-mass-change-series.csv

Elevation change error:
RRR_ gla_mean-cal-mass-
change_uncertainty_dh.csv

AnnualMean annual mass-balance anomaly
error:

RRR_gla mean-cal-mass-

change uncertainty anom.csv

Grid point naming convention: latitudeLatitude,
longitude at the middle of the grid point

Mean calibrated annual mass--change time
series and total error:
global-gridded-annual-glacier-mass-change-

FilesData file  Density conversion error: YYYY nc
names RRR_ gla_mean-cal-mass-
change_uncertainty_rho.csv One file per hydrological year YYYY, named as
Mean calibrated annual mass-change total last year of the hydrological cycle
error:
RRR_gla mean-cal-mass-
change uncertainty_tot.csv
Metadata:
RRR_RGI-region-long-name_metadata.csv
README_metadata.txt
One file per RGI 1% order region, where RRR
corresponds to the RGI-region code
Spatial Global Global
Coverage
Sp atlal‘ Individual glaciers 0.5° (latitude - longitude) regular grid
resolution
Temporal Time series startstarting hydrological year is
P region dependent (see table X3XTable 5) until Hydrological years from 1976 to 2023
coverage A
hydrological year 2023
Temporal . .
resolution Annual, hydrological year Annual, hydrological year
Conventions n/a NetCDF convention CF-1.8
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510

515

Geographic Coordinate System: WGS 84 — Geographic Coordinate System: WGS 84 —
Projection

EPSG:4326 EPSG:4326
Projection Centroid of glacier geometry (RGI60, GLIMS Centroid of grid point
identifier outlines for Caucasus, region 12)
4. Results

4.1 Global glacier mass changes

Our results provide revised annual global glacier mass changes extending back to the hydrological year 1975/761976 (annual
regional glacier mass changes further back in time depending on the region) at various spatial levels: per-glacier (Fig. 5-and
761), regional and on a global scale (Fig. 354, 5 and 56, Table 45). Globally, glaciers have lost 822648458795 + 738 Gt of
water (or 172+27183 =+ 20 Gt year™), contributing to 2224.3 + 1.7 £2.3-mm of sea level rise since 1976. Almeosthalf40% of
the total loss44%);, equivalent to 10 mm of sea level rise-wastest, occurred during the last decade from 2014-2023 only
(Table 45).

We find a record global mass loss for calendar year 2023 with-glacierslosinga-total-of-602=69at 579 + 66, Gt of water, the<

largest-annual-ratesrecorded-(about 100120, Gt larger than any other year on record) and 7% of the largest-annual-contribu

Formatted:

English (United States)

Formatted:

English (United States)

Formatted:

English (United States)

to-global-mean-sea-level rise-reported-total loss since +9761975/76, In only one year, glacier melt contributed-to-raisingth

Formatted:

Space After: 5.75 pt

rose sea Jevels ol the occans by 1.7 mm. This corresponds to about 7% of the total sea level contribution of the fast 5 decad

>

Regionally, mean jce mean-thickness losses duringin, 2023 range from 0.5 m in the less impacted regions to up to 3.0 m, in

Western North America. Higher than average glacier mass loss was also reported in Alaska, Central Europe, the Southern
Andes, High-Mountain Asia and New Zealand. Noteworthy four out of the last five years repertedrecorded, the highest global

glacier mass in recorded history, with 2022 and 2023 as the first years where all 19 glacier regions experienced ice loss.
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Figure 3:4: Specific annual mass change time series for the 19 GTN-G-regions—(, with Southern Andes separated by 2"! Order<
RGlorder regions), with respective uncertainties. The areasizq of the circle in, the pie charts represents the mass lost (in Gt) by region
and the globe since the hydrological year 1976. CeleredColoured, sections represent the mass lost during the last decade only (2014-2023).
Heat maps represent regional and global glacier mass changes in m w.e. for every hydrological year over the common period from 1976 to
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4.2 Regional glacier mass changes
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JFigure 4:5; Cumulative regi

1 glacier mass changes from hydrological year 1976 to present for the 19 GFN-Gregions. Specific+ (

mass changes in m w.e. indicate the mean height of the water layer lost over a given glacier surface, large negative values suggest regions
where glaciers have suffered the most. By multiplying by the regional glacier area in km> we obtain the mass-change in Gt of water.
Cumulative glacier mass changes in Gt correspond to the volume of water lost (1 km® w.e. = 1 Gt) and are related to the regional contributions

to global mean sea-level rise in mm.
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During-the-last-decadesSince year 2000, all glacier regions have lost ice- (Fig. 5). Alaska, Western Canada US, Svalbard,
Russian Arctic, North Asia, Caucasus, Central Asia, Asia East, Southern Andes, New Zealand and Antarctica have experienced

increased mass loss during the last decade (2014-2023):) compared to the full period since 1976. Extremely negative regional
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This versatility enables identification of individual years marked by significant glacier changes and the detection of zones with

varying impacts. For instance, it allows us to pinpoint glaeciers-within-aregionregions and subregions that were affected by
specific annual climate variations (e.g. droughts, floods, heat waves, etc.), as well as those with a larger or smaller influence

565  on the yearly contribution to hydrology and annual sea level rise.
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Figure 5:6: Illustration of the multi spatial dimensions of the global annual mass change series, example for the Iceland region during<
selected years. (i) Individual glacier annual mass change series, (ii) Gridded annual mass change series, (iii) Regional specific annual mass
570  change in m w.e. and (vi) Regional mass change in Gt (note that all the previous dimensions i, ii and iii may also be represented in Gt).,
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yearsRepresented years in Fig. 6 are chosen arbitrarily: the initial and last hydrological years considered in the global
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assessment, the well-known extremely negative mass change hydrological year 2010, attributed to the eruption of the

Eyjafjallajokull volcano
575 i

m-w-e—and-some-smallerglacier between—-5-and—2-m-w-e5(Moller et al., 2019; Adalgeirsdottir et al., 2020; Belart et al.

2020) and the most positive year of the series in 2015. This example allows us to illustrate the rather spatially homogeneous

glacier mass loss of year 2010 with larger Icelandic glaciers all losing more than 2 m w.e. and some smaller glacier losing

between 1.5 and 2 m w.e., whereas other years show larger variabilities between glaciers and grid points. This example

580 demonstrates the richness of the dataset for interpretation of glacier mass changes at different spatial scales and a deeper
analysis of the spatial and temporal impact of known glaciological trends and anomalies like, for example, the Andes
Megadrought (Gillett et al., 2006; Garreaud et al., 2017, 2020; Dussaillant et al., 2019) or the Karakoram anomaly (Farinotti
et al., 2020; Gao et al., 2020; Ougahi et al., 2022), at an unprecedented yearly temporal resolution. We note that the annual

mass-balance anomalies are extracted from a handful of glaciers in each region and thus. in each region, individual glaciers

585 share a large fraction of these variabilities.

5.2 Leave-one-out cross validation

Due to the lack of independent measurements available to compare and validate our glacier change assessment, we applied a<

leave-one-out cross validation gxercise over selected reference glaciers—The-WGMS-referene

for-eross-validation—and benchmark glaciers. Reference and benchmark glaciers are selected considering their fluctuations to

be mainly driven by climatic factors. They provide a reliable and well-documented sample of globally distributed long-term

observation series, with more than 10 (benchmark) and 30 (reference) years of continuous and ongoing glaciological mass

600 balance measurements. Noteworthily, glaciological time series can be subject to biases inherent to the glaciological method

(e.g. Thibert et al., 2008) and are encouraged to be periodically reanalysed and calibrated with long term trends derived from

high resolution elevation change surveys (Zemp et al., 2013). To reduce the risk of validating over potentially erroneous

“truths” we do not use all available glaciological time series in this experiment. We select a sample of 73 reference and

benchmark glaciers for the leave one out cross validation and then repeat the analysis over a selection of 32 glaciers knowingly
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MAE cross validation (m w.e.)

For each selected glacier, we compare the original ‘reference’ mass balance time series (reference Ba) as available from the

FoG database, with the estimated leave-one-out calibrated mass balance time series (Leave-one-out Ba). The latter is obtained

as described in the original methodology by calibrating the mean annual mass-balance anomaly of the glacier over its geodetic

sample, only that this time we exclude the selected glacier anomaly from the processing. Reference and benchmark glaciers

are usually highly monitored and contain multiple sources of geodetic observations for different time periods. However, more

than 80% of the world's glaciers present only one source of geodetic observations, i.e., the 20-year elevation change rates from

the Hugonnet et al. (2021). To make our validation exercise relevant for these under-sampled glaciers, we only consider for

calibration the elevation change rates from Hugonnet et al. (2021
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glacier, the Mean Error (ME) and the Standard deviation of the residual (S) between the reference and leave-one-out Ba are

estimated as metrics to quantify potential systematic errors and the magnitude of random errors, respectively. % Formatted: Font color: Auto %
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ME of -0.09 m w.e. The largest random errors are observed in glaciers Brewster in New Zealand (S: 0.94, ME: 0.32 m w.e.

Gulkana (S: 0.82, ME: -0.01 m w.e.) and Wolverine in Alaska (S: 1.03, ME: 0.16 m w.e.) and Zongo in the Low Latitudes (S:
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Sarenne in Central Europe (S: 0.54, ME: -0.95 m w.e.) (Fig. 7, Fig. 8.1 for reference glaciers and Fig. 8.2 for benchmark
glaciers).

Fig. largerthan-the eross-validation MAE-(Fig—6d);7d and 7e show the ME and S of residuals for each reference and benchmark

glacier against the uncertainties of the mean calibrated annual mass-change time series 03, ,,calculated by our kriging

predicting method for the same sample of glaciers. In most cases, the predicted error is larger than both the leave-one-out

cross-validation ME and S residuals for all glaciers. This means that the kriging method is cautious, predicting larger

uncertainties than what is observed in the residuals. Thus confirming that-our uneertainty-estimation-isuncertainties to be within

an-aceeptablea conservative range, and eanable to capture sources of systematic errors erand random errors introduced by the
prediction method.
notintroducenew

This leave-one-out cross-validation shows that our method introduces only small, systematic errors and has a per-glacier+

random error that is w
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Figure 8.2: Same as Figure 8.1 but for selected examples of the leave-one-out cross validation results on individual benchmark

glaciers (more than 10 years of observations).
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5.3 Leave-block-out cross validation

The experiment is similar to the leave-one-out cross validation, only this time we remove from the processing not one but all

the glacier anomalies surrounding the reference/benchmark glacier for increasing distances: first, we consider all anomalies

further than 1 km (i.e. as in leave one out cross validation, only the glacier’s series is excluded), then, we remove the closest

anomalies at different distance thresholds of 60, 120, 250, 500, 800 and 1000 km. At every step a new mean glacier mb

anomaly is calculated for the reference/benchmark glacier from the evolving sample. The ME and S of the residuals

between the calculated leave-block-out mass balance time series and the ‘reference’ Ba is estimated at every distance
threshold.

Considering all reference annual mass balance values against the leave-block-out annual mass balance values for the six
different distances, systematic errors (ME) appear to stay stable between 0.06 and 0.08 m w.e. until 500 km, and then increase

t0 0.20 m w.e. above 500 km. Random errors (S) appear to increase gradually as the distance gets larger (Table 6).

Table 6: Leave block out cross validation ME and S residuals of the leave-block-out annual mass balance, calculated for different

distance thresholds to select the glacier annual mass-balance anomaly samples, against the reference annual mass balance at
different distance thresholds

Distance threshold for selected samples (km) >1 >60 >120 >250 >500 >800 >1000
ME residual (m w.e.) 0.05 0.06 0.07 0.08 0.19 0.19 0.20
S residual (m w.e.) 0.52 0.61 0.65 0.71 0.92 0.96 1.01
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Figure 9: Leave-block-out cross-validation results and statistics over 74 glaciological time series from reference and benchmark
glaciers. (a) Mean error of the leave-block-out residuals (ME) and (b) Standard deviation of the leave-block-out residuals (S) as a function
of the distance to the closest glacier anomaly used to calculate the mean mb anomaly. (¢) ME of residuals and (d) S of residuals at different

distance thresholds against the estimated uncertainty of the mean calibrated annual mass-changeestimate for the same glacier at . Symbols

correspond to the region where the benchmark or reference glacier belongs.

Fig. 9 illustrates the leave-block-out glacier-wide results as a function of the distance to the closest glacier anomaly considered.

There is no apparent influence of the distance on systematic errors in the calculated glacier-wide leave-block-out mb justified

by absence of trends in Fig. 9a. In these cases, the slight systematic errors will mostly depend on whether the reference series

are reanalysed or not, and the quality of the elevation change used for calibration. As expected, random errors (residual S)

increases as the mean glacier anomaly is calculated from a more distant sample (Fig. 9b), from 0.5 m w.e. for nearby time

series up to 1 m w.e. for series located farther than 2000 km. Importantly, in most cases both systematic and random errors are

captured by the mean calibrated annual mass-change uncertainty at ¢ independent of the distance of the sample (Fig. 9¢ and

9d). This means that our predicted uncertainties reflect the true variability in the residuals, and that our model is providing

realistic confidence intervals for the mean annual mass-balance anomaly predictions. S is larger than o only in some few cases

with distances to the closest glacier > 500km, but the large spread suggests this is coming from the randomness of the
predictions.
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We can conclude that the spatial extrapolation of distant glaciers does not introduce clear systematic errors but increases the

random errors. However, these increased random errors are well predicted by our uncertainty assessment, showing larger

uncertainties over glaciers in under-sampled regions. Both the leave-one-out and the leave-block-out cross validations show

that our algorithm can capture the annual variability of individual glacier mass changes on glaciers not presenting glaciological

time series (99% of the global glaciers) with realistic and conservative uncertainties.

5.4 Improvements with respect to earlier assessments

A general overview of the improvements with respect to beth-previous assessments fremby Zemp et al. (2019) and Hugonnet

[Formatted: Font: 10 pt

etal. (2021) is deseribedprovided in Table 57. Regional and global glacier mass change results for the three observation-based

estimates are compared in Fig. 810 (in Gt).

Table 7: General methodological ameliorations with respect to Zemp et al. (2019) and Hugonnet et al. (2021)

[Formatted: Font: 9 pt

Zemp et al. (2019)

Hugonnet et al.
(2021)

This study

Spatial coverage

9%

97.4% of glacier
area

96% of glacier area

Spatial GIN-G . Individual glaciers Individual glaciers RGI-6
resolution - RGI Region RGI-6 Regular global grid
Temporal . 1960 - 2016 . 1976 — 2023 Globally
coverage (with global annual resolution 2000 - 2020 (regionally <1976, see ¢ Table 5)

g 1976 — 2016) gronally » see table 4Table 5
Temporal annual Muti-Pluri-annual annual
resolution (5,10 and 20 years)
Uncertainty o dh o dh
sources for N/A . .
s . . . . o density mean o density mean (Huss, 2013)
individual glaciers (only regional time series) 2013
time series (Huss, 2013) o glac. anomaly
o dh and o glac propagated Empirical spgtlal correlation function
. : . o dh propagation (Hugonnet et al, 2022)
. assuming uncorrelation for o dh propagation .
Uncertainty . o glac anomaly propagation
. samples larger than 50 glaciers (Hugonnet et al, . .
sources regional . o density propagation (Huss and Hugonnet
time series o density mean (Huss, 2013) 2022) .
(in prep))
o area change rate from .
. o area change rate from regional annual
regional annual mean
mean
Yearly updated
Annual updates No update Not updated yet since 202% (833 CDS)
Glacier inventory RGL-6 GLIMS GLIMS

Caucasus region 12
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Broadly, our new approach effectively corrects the negative bias in the long-term trends observed in Zemp €t al. (2019) thanks

to the integration of the glacier elevation changes byfrom Hugonnet et al. (2021), which translates into a significant reduction

in both regional and global uncertainties, largely noticeable for the more recent years (Fig. 10, Table 8). Globally, glacier mass

change rates between 1976 and 2016 are less negative (-131:6+28148 + 20 Gt yr'!) than previously estimated by Zemp gt al.
(2019) (-203-8204 + 454 Gt yr'!, Table 67). The resulting 53946069 + 783 Gt of cumulative mean mass loss for the period is
58%from-that35% than the 9290 + 7698 Gt predicted loss by Zemp gt al. (2019) (9290-Gt)—TFhe differences-mainly-comefrom

ssian-A b

ana—>uoanta anas;— g < p anie—6 a S10 <

geodetic-coverageas-already-pointed-out by Zemp-et-al(2019)for the same period. The differences mainly come from the

Southern Andes, Alaska, Russian Arctic, Antarctic and Subantarctic Islands, Greenland Periphery (Table 8) — all regions with

limited geodetic coverage in the previous assessment. Both regionally and globally, the years after 2000 are well aligned to

the Hugonnet et al. (2021) trends as consequence of the calibration to their geodetic trends with global coverage.

speeifieally-Alaska, Arctic Canada
North, Western North America, the Russian Arctic, Caucasus, Low Latitudes, New Zealand and the Southern Andes exhibit
less—-negative general-trends: compared to Zemp et al. (2019). In contrast, the-trends-in-the-Asia North region-are-more negative;

and Arctic Canada South trends are more negative in the past. Overall, the regional trends agree well with Hugonnet et al.
(2021) trends during the overlapping period 2000-2019 (Table 68). Deviations of more than 5 Gt yr'! are found in Alaska,

Greenland Periphery, and Antarctic and Subantarctic Islands.
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Figure 8:10; Annual glacier mass change (Gt) from this study compared with results from Zemp et al. (2019) and Hugonnet et al.< Formatted: Font color: Auto
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from our processing chain, which may have everfittedbiased the trends in Zemp gt al. (2019). The new calibrated mass change

time series reliesin these regions rely only on the 2000-2019 Hugonnet et al. (2021) estimates as calibration reference (and the

1985-2000 Huber et al. (2020) as—e

! rlack of rage-in-the clevat

hange-maps-(ess-than50%)Furtherthefor the Greenland

Periphery past period). The Antarctic and Subantarctic Islands is a region prone to large uncertainties in all studies. Because

all estimates agree within (large) uncertainties no difference can be interpreted. The Antarctic and Subantarctic Islands region

presents no glaciological or geodetic measurements before the year 2000. The signal for the past-annual variability (before
20009 is driven purely by the very-distant Echaurren Norte (Central Andes) normalized time series, and past trends are only
calibrated over the 2000-2019 Hugonnet et al. (2021) series, which are very likely everfitingbiasing the period before 2000
towards more positive values. There is insufficient evidence to support the glacier mass gain observed before 2000 in both our

assessment and the Zemp et al. (2019). We assume results in the Antarctic and Subantarctic Islands region to be very likely

biased by the lack of observations, and therefore highly uncertain, as reflected in our large error bars. However, we still include

them to provide global glacier mass changes back to 1976.

Most regions display increased amplitudes-in-their-interannual variabilityvariabilities when compared to both previous studies. <
The Gaussian regression used to fit the DEM time series in Hugonnet et al. (2021), has a smoothing effect onthe-annual
amplitude-to the point where annual variability is no longer detected (Fig.&€10). Similarly in Zemp et al. (2019), the variance

decomposition model (Eckert et al., 2011; Krzywinski and Altman, 2014) employed to extract the temporal mass change

variability for each region has shown to contribute to a slight smoothing of the annual amplitude signal (Zemp et al., 2020),
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820 conservative side. Compared with Hugonnet et al. (2021), results agree within uncertainties, but our estimated errors are

consistently larger throughout all regions. This is-eemingcomes from the propagation of the mean- mb anomaly uncertainties,
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5.35 Known limitations

5.35.1. Scarcity of the glaciological in-situ observations

The scarcity of glaciological data stands as the primary limitation in assessing the variability of glacier changes with our
methodology. In sparsely observed regions like High Mountain Asia, the Southern Andes, Arctic Canada South, the Russian
840 Arctic, Greenland and Antarctica, annual variations in glacier changes depend on limited and distant regional—or
neighberingneighbouring regions timeseries, which may not necessarily be representative of the local glacier annual
variability. As a consequence, the annual glacier mass change time series exhibit high uncertainties in these regions,

realistically estimated by our method.

845 We note a significant observational gap in the Southern Hemisphere where the glacier mass change variability before 2000 is
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situ glacier monitoring programs in these regions. In the short term, efforts must be directed towards ensuring the continuity

of glacier in situ monitoring in the Southern Hemisphere and possible correction of past long-term series.

5.3:-15.2. Availability of past geodetic observations

The lack of geodetic observations for the period before 2000 is consistent for most glacier regions, and critical for accurate
results of our assessment in less sampled regions, as shown for the Antarctic and Subantarctic Islands. The best way to correct
possible deviations in past time series is to calibrate them against accurate long-term geodetic glacier elevation changes.
Geodetic observations can be temporally enriched in all regions by unlocking historical United State spy satellite archives (e.g.

KH-9 Hexagon; and Corona declassified satellite imagery) and national historical airborne image archives.

5.5.3.2- Grid point artifact in polar regions
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To assess glacier mass changes, it is imperative to treat a glacier as a unified and indivisible entity. A sound glaciological
approach for integrating glacier-wide changes into a regular grid system is to consider a glacier belonging to a grid point if its
centroid falls within that grid point's boundaries. If the grid cell is sufficiently large, it will encompass multiple glaciers at their
full extension within the grid cell and the grid-point mean mass change will be determined accordingly. However, in cases
where the grid cell is smaller than the glacier's surface area, the grid point containing the glacier's centroid will represent the
mass change of the entire glacier, despite not all its extension is contained within the grid point (Fig. 8alla). This discrepancy
is particularly evident in polar regions above 60° latitude when integrating mass changes at a 0.5° global grid resolution. Polar
grid peintscells are relatively smaller in-surface area compared to the large polar glaciers. Consequently, this leads to a biased
estimate of mass change at the grid point containing the glaciers centroid and consequent reighberingneighbouring glacierized
grid points lack a mass change estimate (see-Figure 9bFig. 11b).

v This issue might be especially critical

5

for deconvolving the glacier signal for gravimetry (GRACE, e.g. Blazquez et al., 2018; Chen et al., 2022) or other applications

in polar regions due to coarse resolution of the ancillary datasets (usually not smaller than 0.5°). A potential solution for larger
scale applications with coarser spatial resolution would be an area-weight per tile glacier area, but this would bring an

additional bias related to the divisibility of the glacier signal.

5.3:35.4. Calendar years vsyersus hydrological years

Our results present regional glacier mass changes spanning the hydrological years from 1976 to 2023. In glaciological terms,
it is widely accepted that the hydrological year starts in winter with the onset of the accumulation season and concludes at the
end of the summer or ablation season (Cogley et al., 2011). Consequently, the hydrological year varies across regions (South
and North Hemispheres and Tropics) and does not align to the calendar year. Gridded annual glacier mass change values for a
given hydrological year will not be fully consistent. For grid-points located in the northern hemisphere glacier mass changes
correspond to the period from the 1 October of the previous year to 30" September of the given year. Whereas grid-points in
the southern hemisphere will represent glacier mass changes from the 1% April of the previous year to 315 March of the given
year. It is important to note that this discrepancy, stemming from the input data, introduces inconsistencies and uncertainties
on the gridded global assessments that users should acknowledge. For cumulative values over longer periods, these differences
become less significant. Addressing this issue would need an increase in temporal resolution of the input data to monthly

observations, which is not feasible at the global level purely relying on observations.

5.3:45.5 Glacier--specific area-change rates

We eensidertook into account the impact of glacier area changes in time for our regional mass change estimates as done by

Zemp et al. (2019). In the former study, the evolution of area change rates is calculated for each first-order glacier region
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independently represented in two-time steps: a past period with no change rates and then a linear change rate calculated from
a regional sample of glaciers with observations. This assumption is strong since glacier area changes are far from being linear,
still is the best possible guess considering the available observations. In this study, we further assume the glacier specific area-
change rates behave as their regional mean change rates. This may introduce an additional bias since glacier specific area
change rates strongly depend on the size of the considered glaciers, with an observed decreasing mean and increasing
variability of relative area changes towards smaller glaciers (Paul;2004:Fischeret-al2044)(Paul et al., 2004; Fischer et al.

2014). This also implies that the average change obtained for a greater region ultimately depends on the glacier size distribution

considered in a specific sample, which may or may not be representative of the full regional glacier size range present in the

RGI60 inventory used here.

6. Data availability

The annual mass change time-series for individual glaciers and the derived global gridded annual mass change product at a
spatial resolution of 0.5° latitude and longitude will be made available with the publication of this article from the World
Glacier Monitoring Service (https://doi.org/10.5904/ Dussaillant et al. 2024-MM-DD). During the review process, the data is
temporarily available from URL: https://user.geo.uzh.ch/idussa/Dussaillant_etal ESSD_data/. Earlier versions of the gridded

product are available from the Copernicus Climate Data Store (CDS) web-based service (Dussaillant et al. 2023, DOI
10.24381/cds.ba597449). The present version will follow in the next C3S phase. FoG database version used here (WGMS,
2024;  https://doi.org/10.5904/wgms-fog-2024-01) is available for download from the WGMS website

(https://wgms.ch/data_databaseversions/). RGI version 6.0 is available from the National Snow and Ice Data Center (NSIDC,
RGI consortium 2017; https://doi.org/10.7265/4m1f-gd79).

7. Code availability

The new updated code (after the first round of reviews) is available at

https://github.com/idussa/global mb_data—erunchingfusion. We aim to publish the final version at the end of the review

process.

8. Conclusions

Building on the strengths-and insights from previous global-ebservation-basedassessments-, we present a new dataset of glacier<

mass ehaﬂg%w%preseﬁ%aﬂew—kﬁ%gmedrchanms with global coverage and annual resolution from 1976 to 2023 based on
an approach that

s-combines the strengths from glaciological

field measurements and their-asseciatedunecertainties

critical insights into the alarming-acceleration of gl
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Given available input data, the primary limitation of the new dataset is the scarcity of glaciological field measurements

especially in the Southern Hemisphere, and the strongly reduced spatial coverage of geodetic observations before the year

2000. In addition, our approach would benefit from scientific advances concerning the volume-to-mass conversion for geodetic

estimates and the mapping or modelling of glacier area changes over time.
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