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Abstract 28 

The irreversible trend for global warming underscores the necessity for accurate 29 

monitoring and analysis of atmospheric carbon dynamics on a global scale. Carbon 30 

satellites hold significant potential for atmospheric CO2 monitoring. However, existing 31 

studies on global CO2 are constrained by coarse resolution (ranging from 0.25° to 2°) 32 

and limited spatial coverage. In this study, we developed a new global dataset of 33 

column-averaged dry-air mole fraction of CO2 (XCO2) at 0.05° resolution with full 34 

coverage using carbon satellite observations, multi-source satellite products, and an 35 

improved deep learning model. We then investigated changes in global atmospheric 36 

CO2 and anomalies from 2015 to 2021. The reconstructed XCO2 products show a better 37 

agreement with Total Carbon Column Observing Network (TCCON) measurements, 38 

with R2 of 0.92 and RMSE of 1.54 ppm. The products also provide more accurate 39 

information on the global and regional spatial patterns of XCO2 compared to origin 40 

carbon satellite monitoring and previous XCO2 products. The global pattern of XCO2 41 

exhibited a distinct increasing trend with a growth rate of 2.32 ppm/year, reaching 42 

414.00 ppm in 2021. Globally, XCO2 showed obvious spatial variability across 43 

different latitudes and continents. Higher XCO2 concentrations were primarily 44 

observed in the Northern Hemisphere, particularly in regions with intensive 45 

anthropogenic activity, such as East Asia and North America. We also validated the 46 

effectiveness of our XCO2 products in detecting intensive CO2 emission sources. The 47 

XCO2 dataset is publicly accessible on the Zenodo platform at 48 

https://doi.org/10.5281/zenodo.12706142 (Wang et al., 2024a). Our products enable 49 

enhanced ability in identifying regional- and county-level XCO2 hotpots, carbon 50 

emissions and fragmented carbon sinks, providing a robust basis for targeted global 51 

carbon governance policies. 52 

 53 

Keywords: Atmospheric carbon dioxide; Satellite carbon monitoring; Deep learning; 54 

OCO-2/3 55 

 56 

1. Introduction  57 

Carbon dioxide (CO2) is a primary greenhouse gas (GHG). Anthropogenic 58 

activities and land use change since the industrial revolution have led to a marked 59 
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increase in atmospheric CO2, which is widely considered to be a major contributor to 60 

climate change, reaching a record-high of 414.71 parts per million (ppm) in 2021 61 

(Friedlingstein et al., 2022). The damaging global climate change caused by 62 

atmospheric increases in CO2 is severe and irreversible (IPCC, 2023; Kemp et al., 2022; 63 

Solomon et al., 2009). Consequently, the Paris Agreement announced to hold “the 64 

increase in the global average temperature to well below 2°C above pre-industrial levels” 65 

and pursue efforts “to limit the temperature increase to 1.5°C above pre-industrial 66 

levels.” It was also determined that the joined parties should submit their nationally 67 

determined contributions (NDCs) to reduce CO2 emissions. 68 

Accurate monitoring of atmospheric CO2 concentrations is crucial for measuring 69 

global CO2 emissions mitigation as well as characterizing terrestrial carbon change. 70 

Currently, ground-based and airborne platform-based atmospheric CO2 observation 71 

networks, such as the Total Carbon Column Observing Network (TCCON, 72 

https://tccondata.org/), are capable of providing CO2 measurements with high accuracy 73 

(Petzold et al., 2016; Wunch et al., 2011, 2010). However, these observation networks 74 

are insufficient to fully explore the spatiotemporal patterns of atmospheric CO2 at a 75 

global scale. The launch of a series of carbon observation satellites in recent years has 76 

provided favorable opportunities for continuous and large-scale atmospheric CO2 77 

observation (Buchwitz et al., 2015; Hammerling et al., 2012). The Scanning Imaging 78 

Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) onboard 79 

EnviSat was one of the first instruments to monitor the atmospheric column-averaged 80 

dry-air mole fraction of CO2 (XCO2) (Bovensmann et al., 1999). The Greenhouse Gases 81 

Observing Satellite (GOSAT) launched by Japan utilized the Thermal And Near-82 

Infrared Sensor for carbon Observation (TANSO) instrument to monitor XCO2 globally, 83 

providing products with a spatial resolution of 10 km every three days (Butz et al., 84 

2011). The Orbiting Carbon Observatory-2 (OCO-2) and OCO-3 launched by NASA 85 

provide XCO2 measurements at a finer spatial resolution (Eldering et al., 2017). These 86 

sensors are considered among the best for XCO2 observation, featuring larger 87 

overlapping swaths that cover areas of ~20×80 km² and exhibiting the least retrieval 88 

absolute bias, measuring less than 0.4 ppm (Eldering et al., 2019; Taylor et al., 2020). 89 

However, the narrow swath of the sensor can only cover limited spatial areas, and 90 

caused by the cloud and aerosol contaminations, the data from OCO-2/3 always contain 91 

large amount of missing values (Taylor et al., 2016; Crisp et al., 2017). These limitations 92 

obstacle the better understanding of the atmosphere-land carbon cycle over large spatial 93 
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scale based on satellite observation. 94 

Consequently, several studies have concentrated on generating spatially 95 

continuous XCO2 products based on satellite observations (He et al., 2022; Siabi et al., 96 

2019; Zhang and Liu, 2023). One potential solution is the application of diverse 97 

interpolation methods (He et al., 2020; Zeng et al., 2014). However, their results 98 

encounter large uncertainty in regions with sparse data coverage, due to the coarse 99 

spatial resolution of the original data. In addition, data fusion techniques have gained 100 

recognition as an effective method for obtaining full-coverage XCO2 data (Sheng et al., 101 

2022; He et al., 2022; Siabi et al., 2019; Zhang and Liu, 2023). These techniques can 102 

be broadly categorized into two groups. The first category leverages the spatiotemporal 103 

correlation inherent in multi-source XCO2 data, fusing them based on this 104 

spatiotemporal information (Wang et al., 2023; Sheng et al., 2022). For instance, Wang 105 

et al. (2023) introduced a spatiotemporal self-supervised fusion model and generate 106 

seamless global XCO2 data at a spatial resolution of 0.25°. The second category is 107 

regression-based methods, which aim to fill the gap by capturing the nonlinear 108 

relationship between multi-source XCO2 measurements and related covariates (He et 109 

al., 2022; Siabi et al., 2019; Zhang and Liu, 2023). The specific methodologies include 110 

traditional statistical models, geostatistical models and machine learning models. Siabi 111 

et al. (2019) employed the Artificial Neural Network (ANN) to establish correlation 112 

between XCO2 and eight environmental variables. Zhang and Liu (2023) utilized the 113 

convolution neural networks (CNN) coupled with attention mechanisms to produce 114 

full-coverage XCO2 data across China. Recently, Zhang et al. (2023) developed high 115 

spatial resolution global CO2 concentration data based on deep forest model and multi-116 

source satellite products. 117 

Although the development of CO2 observation satellites and the application of 118 

machine learning methods have significantly improved the estimation accuracy of 119 

XCO2, current studies still face several limitations. Firstly, due to the sparse distribution 120 

of satellite XCO2 data, previous studies always relied on assimilation and reanalysis 121 

XCO2 data, such as CAMS XCO2 with coarse spatial resolution (0.75°). This reliance 122 

often results in final products that closely mirror the assimilation and reanalysis results, 123 

leading to an oversmoothed distribution that undermines the high-resolution advantages 124 

of satellite data. Furthermore, most current studies estimated the spatial distribution of 125 

CO2 primarily based on vegetation and meteorological information, with limited 126 
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consideration of the impact of human activities and emissions, despite these have 127 

significant influence on atmospheric CO2 variability. This limitation also led to 128 

estimation results that fail to adequately capture the impact of anthropogenic emissions 129 

on atmospheric CO2. In addition, most studies that employ regression models to 130 

estimate full-coverage XCO2 are limited to regional or national scales due to the weak 131 

transferability of these models. Only a few studies (Zhang et al., 2023) have explored 132 

global-scale CO2 estimation using machine learning approaches, highlighting the need 133 

for further research to enhance model generalizability and scalability. Therefore, we 134 

intent to develop the global full-coverage XCO2 products with the capacity to capture 135 

both large-scale patterns and fine spatial details. This development leveraged satellite 136 

carbon monitoring, multi-source high spatial resolution auxiliary variables and 137 

advanced methods that exhibit spatiotemporal transferability to overcome the 138 

aforementioned limitations. 139 

In this study, we leveraged time-series OCO-2/3 XCO2 data and various related 140 

environmental variables from multi-source satellites to generate global full-coverage 141 

XCO2 products. The advanced deep learning method was adopted to model time-series 142 

XCO2 and incorporate terrestrial flux, anthropogenic flux and climatic impacts into the 143 

parameterization process. These products are designed to meet the following criteria: 144 

(1) high validated accuracy to ensure the reliability of the estimates, (2) high spatial 145 

resolution capable of capturing fine-scale variations in CO₂ concentrations, and (3) 146 

global full-coverage that overcomes missing values in satellite carbon observations. 147 

Our XCO2 products achieved full global coverage with a spatial resolution of 0.05° and 148 

a monthly temporal resolution from 2015 to 2021. We also validated our XCO2 products 149 

against in-situ XCO2 data and other XCO2 products. Based on our high-resolution 150 

products, we explored the spatial and temporal pattern of atmospheric CO2 globally and 151 

identified regions with intense CO2 emission. Our findings aim to enhance the 152 

understanding of carbon dynamics on a global scale through data reconstruction and 153 

analysis. 154 

2. Materials and methods 155 

In this study, we utilized Google Earth Engine (GEE) to integrate OCO-2/3 XCO2 156 

data and multiple environmental variables as data inputs. In addition, the attention-157 

based Bidirectional Long Short-Term Memory (At-BiLSTM) model was trained for 158 
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building the relationship between OCO-2/3 XCO2 and the related environmental 159 

variables. Then, we reconstructed the global monthly XCO2 and validated the accuracy 160 

of the products against TCCON XCO2 data and the original OCO-2/3 XCO2 data. We 161 

also analyzed the spatial and temporal variation of XCO2 over the globe and detect the 162 

intense CO2 emission regions. The methodology framework is shown in Fig.1. 163 

 164 

Figure 1. The workflow for mapping and exploring global XCO2 dynamics and drivers. 165 

2.1 Datasets 166 

2.1.1 OCO XCO2 data 167 

In this study, we utilized the satellite-based XCO2 data from OCO-2 and OCO-3, 168 

covering the period from December 2014 to December 2021. The OCO-2/3 measure at 169 

three near-infrared wavelength bands, that are 0.76 μm Oxygen A-band, 1.61 μm weak 170 

CO2, and 2.06 μm strong CO2 bands (Crisp et al., 2004). The full physics retrieval 171 
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algorithm was used to retrieve the XCO2 based on the observation of the two satellites 172 

(Crisp et al., 2021). Previous studies (Taylor et al., 2023) suggested that the OCO-2 and 173 

OCO-3 XCO2 measurements are in broad consistency and can therefore be used 174 

together in scientific analyses. The OCO-3 Level 2 XCO2 Lite version 10.4r data 175 

(OCO3_L2_Lite_FP V10.4r) from 2020 to 2021 and the OCO-2 Level 2 XCO2 Lite 176 

version 11r (OCO2_L2_Lite_FP V11r) from 2015 to 2019 were downloaded from 177 

Goddard Earth Sciences Data and Information Services Center (GES DISC, 178 

https://disc.gsfc.nasa.gov/). The products were aggregated as a daily file (Fig. 2) with a 179 

spatial resolution of 2.25 km × 1.29 km (O’Dell et al., 2018). The XCO2 data were 180 

quality filtered, and only good-quality data (i.e., xco2_quality_flag=0) were considered. 181 

To generate the monthly products with a spatial resolution of 0.05° × 0.05°, we 182 

converted the daily data to monthly data by averaging the sparse XCO2 data within a 183 

range of 0.05° × 0.05° over one month. 184 

 185 

Figure 2. Footprints of OCO-2 and OCO-3 XCO2 data on 20th January 2018 and 4th 186 

December 2021 (with quality filtering) as examples. 187 

 188 

2.1.2 TCCON XCO2 data 189 

The Total Carbon Column Observing Network (TCCON) is a global network for 190 

measuring atmospheric CO2, methane (CH4), carbon monoxide (CO) and other trace 191 

gases in the atmosphere. The XCO2 data from TCCON were demonstrated to have high 192 

accuracy with ~0.2% of XCO2 (Wunch et al., 2011). Consequently, the data have been 193 

used widely for the validation of satellite observations such as OCO-2, OCO-3 and 194 

GOSAT (Deng et al., 2016; Wunch et al., 2017). In this research, we used the GGG2014 195 

and GGG2020 datasets from 23 sites (Fig. 3 and Table 1) around the world to validate 196 

the reconstructed XCO2 products. 197 
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 198 

Figure 3. The locations of the TCCON sites. 199 

 200 

Table 1. The information on the TCCON in situ stations. 201 

ID Site name Longitude Latitude Start date End date 

1 saga01 (JP) 130.29 33.24 2011-07-28 2021-06-30 

2 xianghe01 (PRC) 116.96 39.80 2018-06-14 2022-04-09 

3 burgos01 (PH) 120.65 18.53 2017-03-03 2021-08-20 

4 harwell01 (UK) -1.32 51.57 2021-05-30 2022-05-22 

5 bremen01 (DE) 8.85 53.10 2009-01-06 2021-06-24 

6 tsukuba02 (JP) 140.12 36.05 2014-03-28 2021-03-31 

7 lauder03 (NZ) -97.49 36.60 2018-10-02 2022-11-14 

8 edwards01 (US) -117.88 34.96 2013-07-20 2022-12-25 

9 nicosia01 (CY) 33.38 35.14 2019-09-06 2021-06-01 

10 izana01 (ES) -16.5 28.31 2014-01-02 2022-10-31 

11 orleans01 (FR) 2.11 47.96 2009-09-06 2022-04-24 

12 hefei01 (PRC) 119.17 31.90 2015-11-02 2020-12-31 

13 easttroutlake01 (CA) -104.99 54.35 2016-10-03 2022-08-13 

14 karlsruhe01 (DE) 8.44 49.10 2014-01-15 2023-01-20 

15 paris01 (FR) 2.36 48.85 2014-09-23 2022-03-28 

16 garmisch01 (DE) 11.06 47.48 2007-07-18 2021-10-18 

17 rikubetsu01 (JP) 143.77 43.46 2014-06-24 2021-06-30 

18 lamont01 (US) 169.68 -45.04 2011-04-16 2022-12-19 

19 reunion01 (RE) 55.48 -20.90 2015-03-01 2020-07-18 

20 darwin01 (AU) 130.93 -12.46 2005-08-28 2020-04-30 

21 Wollongong (AU) 150.88 -34.41 2008-06-26 2020-06-30 

22 Manaus01(BR) -60.60 -3.21 2014-09-30 2015-07-27 

23 parkfalls01 (US) -90.27 45.94 2004-06-02 2020-12-29 
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JP: Japan, DE: Germany, FI: Finland, FR: French, RE: Réunion Island, AU: Australia, 202 

BR: Brazil; US: United States, PRC: People's Republic of China, NO: Norway, CY: 203 

Cyprus, NZ: New Zealand, PH: Philippines, UK: United Kingdom, CA: Canada. 204 

 205 

2.1.3 Environmental variables 206 

In the selection of environmental variables, our primary focus was on processes 207 

within the terrestrial carbon cycle. The carbon cycle on land can be conceptualized as 208 

two flux exchange processes influenced by the climatic conditions (Fig. 4). The CO2 in 209 

the atmosphere is fixed by vegetation photosynthesis and the carbon is released back 210 

into the atmosphere by respiration and disturbance processes (Beer et al., 2010; Pan et 211 

al., 2011). The carbon fluxes through these processes we considered as the land flux. 212 

Since Industrial Era, anthropogenic carbon from land use change (e.g., deforestation) 213 

and fossil fuels and cement become important parts of atmospheric CO2 (Friedlingstein 214 

et al., 2010), which we considered as the anthropogenic flux. Meanwhile, the two 215 

processes are directly or indirectly driven by the climatic features (Sitch et al., 2015; 216 

Chen et al., 2021). Consequently, we explored the potential drivers of XCO2 from the 217 

perspective of the carbon cycle at atmosphere-land interface. Multiple satellite products 218 

and reanalysis data from three aspects (i.e., land flux, anthropogenic flux and climatic 219 

impacts) were selected to consider their various effects on the XCO2. 220 

  221 

Figure 4. Simplified illustration of the global carbon cycle on land (referring to IPCC 222 
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2023). Noting that the carbon cycle in the ocean was not considered in our study and 223 

we only focused on the fast exchange fluxes. The slow carbon exchanges (e.g., chemical 224 

weathering, volcanic emissions) which are generally assumed as relatively constant 225 

over the last few centuries (Sundquist, 1986), were not included here. 226 

 227 

The key factors selected related to the land flux included gross primary 228 

productivity (GPP), enhanced vegetation index (EVI), land surface temperature (LST), 229 

vegetation continuous fields (VCF), and normalized difference snow index (NDSI). 230 

These products are all obtained from the Moderate Resolution Imaging 231 

Spectroradiometer (MODIS), which has been operated for over 20 years and produced 232 

various satellite products with fine spatial resolution and accuracy. The EVI and NDSI 233 

were converted to monthly data using the maximum value composite (MVC) method. 234 

The GPP and LST were converted to monthly data by the averaging method.  235 

The rising anthropogenic activities have greatly influenced atmospheric CO2 236 

(Friedlingstein et al., 2022). In this study, five anthropogenic factors, including land 237 

use/cover change (LUCC), nighttime lights (NTL), and three trace gases (i.e., sulfur 238 

dioxide (SO2), nitrogen dioxide (NO2), and carbon monoxide (CO)) were selected. The 239 

LUCC was obtained from MODIS MCD12Q1 with a spatial resolution of 500 m. The 240 

monthly Suomi National Polar-orbiting Partnership-Visible Infrared Imaging 241 

Radiometer Suite (NPP-VIIRS) day/night band (DNB) NTL products (spatial 242 

resolution of 15 arc-second, ~500 m) were obtained from the Earth Observation Group 243 

(EOG) of the Colorado School of Mines. We also used the SO2, NO2 and CO products 244 

from the TROPOspheric Monitoring Instrument (TROPOMI) onboard Sentinel-5 245 

Precursor (S5P), a global air monitoring satellite for the Copernicus mission. The data 246 

were also converted to the same temporal resolution (i.e., monthly).  247 

The selected climatic factors affecting XCO2 were surface pressure (SP), 10 m 248 

wind speed (WS), precipitation flux (PRE), 2 m air temperature (Temp), and total 249 

evaporation (E). These data are from the reanalysis products (Hersbach et al., 2020) 250 

developed at the European Center for Medium Weather Forecasting (ECMWF, 251 

https://www.ecmwf.int/). The WS is calculated using the products of 10 m wind 252 

components of U and V. All data were converted to monthly time-series. The bilinear 253 

interpolation approach was employed both to fill gaps in the ancillary data and to 254 

convert the data at different spatial resolutions to 0.05º resolution. The data 255 

preprocessing was conducted on GEE, R and ArcGIS 10.3. Details of these products 256 
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are listed in Table 2. 257 

Table 2. Ancillary variables selected in this study. 258 

Variables Spatial 

resolution 

Temporal 

resolution 

Product names Category 

GPP 500 m 8-day MOD17A2H Land flux-

related EVI 1 km 16-day MOD13A2 

LST 1 km daily MOD11A1 

VCF 250 m annual MOD44B 

NDSI 500 m daily MOD10A1 

LUCC 500 m annual MCD12Q1 

Anthropogenic 

flux-related  

NTL 15 arc-second monthly VNP46A2 

SO2 

~1 km daily 

OFFL/L3_SO2 

NO2 OFFL/L3_NO2 

CO OFFL/L3_CO 

SP 

~10 km monthly ERA5-Land 
Climatic 

impacts 

E 

Wind-v 

Wind-u 

Pre 

Temp 

2.2 Deep learning-based XCO2 reconstruction 259 

Given the complexity temporal dependence and nonlinear relationship between 260 

XCO2 and the environmental variables, we selected the At-BiLSTM model to relate the 261 

XCO2 data with the 16 response variables affecting atmospheric CO2, and further 262 

reconstruct the XCO2 data at a fine spatial resolution. The LSTM model is a variant of 263 

RNN that excels in modeling temporal sequences and capture long-range dependencies 264 

(Hochreiter and Schmidhuber, 1997; Graves et al., 2005), which is essential for 265 

understanding the seasonal variations of XCO2 and dynamic feedbacks between XCO2 266 

and environmental drivers we selected. Each LSTM cell includes an input gate, a forget 267 

gate and an output gate. The forget gate 𝑓𝑡 determines which information from the 268 

previous time step to forget (Eq. 1): 269 

 𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (1) 

where 𝜎 , 𝑊𝑓 , [ℎ𝑡−1, 𝑥𝑡], and 𝑏𝑓  denotes the sigmoid activation function, vectors of 270 

weights, concatenation of the hidden state at timestep t-1 and the current input, and the 271 

bias vector, respectively.    272 

 The input gate 𝑖𝑡 governs the selective storage of the data in current time step, 273 

and the output from forget gate 𝑓𝑡 and input gate 𝑖𝑡 are combined in the cell state 𝐶𝑡 274 
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(Eq. 2-3):  275 

 𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (2) 

 𝐶𝑡 = 𝑓𝑡 ∙ 𝐶𝑡−1 + 𝑖𝑡 ∙ 𝑡𝑎𝑛ℎ⁡(𝑊𝐶 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) (3) 

where 𝑊𝑖 and 𝑊𝐶 denote the weight matrix for the input gate and the current cell 276 

state, respectively; 𝑏𝑖 and 𝑏𝑐 are the bias vector of the input gate and the current cell 277 

state, respectively; 𝐶𝑡−1  and 𝑡𝑎𝑛ℎ  represent the cell state at timestep t-1 and the 278 

activation function. 279 

Lastly, the output gate 𝑜𝑡⁡controls the flow of information from the cell state to 280 

the next time step (Eq. 4).  281 

 𝑜𝑡 = 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (4) 

where 𝑊𝑜 and 𝑏𝑜 denotes the weight matrix and the bias vector of the output gate, 282 

respectively. 283 

These gate structures effectively manage the flow of information within the LSTM, 284 

enabling it to capture the temporal dependencies present in the data (Yuan et al., 2020; 285 

Wang et al., 2022). Bidirectional LSTM consists of two directional LSTM, in which the 286 

data flows forward and backward (Graves et al., 2013). The bidirectional structure was 287 

chosen to enhance the capability of LSTM by allowing the model to consider both past 288 

and future context in the time series, thereby providing a more comprehensive 289 

understanding of the underlying temporal dynamics. 290 

We also defined a multi-dimensional attention layer behind the BiLSTM to focus 291 

on more critical timesteps and give them higher weights (Bahdanau et al., 2016). This 292 

is particularly important when dealing with high-dimensional input data comprising 293 

multi-timestep variables, as it allows the model to assign different weights to different 294 

timesteps, thereby improving interpretability and predictive performance (Liu and Guo, 295 

2019; Wang et al., 2024b). Based on this framework, the At-BiLSTM model offers a 296 

robust and flexible framework for linking XCO2 with multiple environmental variables 297 

and reconstructing XCO2 at a fine spatial resolution with improved accuracy and 298 

spatiotemporal consistency. 299 

The At-BiLSTM consists of one input layer, three Bidirectional LSTM (Bi-LSTM) 300 

layers, one attention layer, one dropout layer to prevent overfitting, and one fully 301 

connected layer (i.e., dense layer) for the final output. Each Bi-LSTM includes 512 302 

hidden units and tanh activation in both forward and backward directions. The attention 303 

mechanism learns a weight distribution over the time dimension using a Dense layer 304 
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with softmax activation, then multiplies these weights with the BiLSTM output to 305 

emphasize important time steps. The detailed deployment and output are provided in 306 

Table 3. The model was implemented using the TensorFlow and Keras deep learning 307 

APIs in Python. A time step of 3 was used, and the model was trained for 200 epochs 308 

with the mean squared error (MSE) as the loss function. A step-wise decay strategy was 309 

applied to the learning rate, where the rate was reduced by a factor of 10 every 50 310 

epochs to enhance training stability and convergence. Prior to training, all input data 311 

were normalized using the mean and standard deviation of the dataset. 312 

Table 3. Architecture of the At-BiLSTM model 313 

Layer Name Layer Parameters Output size 

Bi-LSTM Input layer - 3×16 

 Bi-LSTM1 units = 512, activation = ‘tanh’ 3×1024 

 Bi-LSTM2 units = 512, activation = ‘tanh’ 3 × 1024 

 Bi-LSTM3 units = 512, activation = ‘tanh’ 3 ×1024 

Attention Permute - 1024×3 

 Dense units = 3, activation = ‘softmax’ 1024×3 

 Permute - 3 ×1024 

 Multiply - 3 ×1024 

Dropout  rate = 0.5  

Full-connect Dense units = 1 1 

 314 

In this study, we adopted the sample-based cross-validation (CV) method to 315 

evaluate the model performance and the in-situ validation to assess the accuracy of 316 

reconstructed XCO2 products. We also compared the reconstructed XCO2 products with 317 

the original OCO XCO2 products and the CAMS-EGG4 GHGs data. Four metrics, 318 

including coefficient of determination (R2), root mean squared error (RMSE), mean 319 

absolute error (MAE) and mean bias, were calculated as follow, to assess the model 320 

performance.  321 

where n is the total number of data samples, and 𝑓𝑖,⁡𝑦𝑖 are the observed results and 322 

model-estimated results, respectively. 323 

 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑓𝑖)
𝑛
𝑖=1

2

∑ (𝑦𝑖 − 𝑦̅)𝑛
𝑖=1

2  (5) 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − 𝑓𝑖)
𝑛
𝑖=1

2

𝑛
 (6) 

 
𝑀𝐴𝐸 =

∑ |(𝑓𝑖 − 𝑦𝑖)|
𝑛
𝑖=1

𝑛
 (7) 
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3. Results 324 

3.1 Validation of the reconstructed XCO2 product 325 

3.1.1 Model validation results 326 

Given the distinct seasonal variation in XCO2 concentrations, we conducted the 327 

sample-based CV to evaluate the model performance during different seasons (Fig. 5). 328 

The model demonstrated high accuracy across all seasons, with R2 values exceeding 329 

0.81, MAE less than 0.73 ppm, and RMSE less than 1.09 ppm. The model performed 330 

better in spring and summer, as indicated by the densest cluster of points being closest 331 

to the 1:1 line. Conversely, the model performed worst in winter, when photosynthesis 332 

is weakest, leading to greater estimation deviation. These variations are likely 333 

influenced by the ecosystem CO2 exchange during different seasons. Overall, the model 334 

effectively captured the seasonal variation of XCO2 and provided unbiased XCO2 335 

estimations. 336 

 337 

Figure 5. Density scatterplots of sample-based CV results during different seasons. The 338 

proportion of the number of points is represented as the color of the points. The black 339 
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dashed lines and grey solid lines denote the linear regression fitted lines and the 1:1 340 

line, respectively. The R2, RMSE (ppm), MAE (ppm), and mean bias (ppm) are 341 

provided. 342 

We further validated the model performance across different continents. Table 4 343 

presents the validation results for six continents. The model performance varied across 344 

continents. Notably, the model achieved the highest accuracy in Africa and Europe, 345 

with R2 of 0.80 and 0.81, and RMSE values of 1.02 and 1.14 ppm, respectively. In 346 

contrast, the model demonstrated relatively low accuracy in Oceania and South 347 

America, both located in the southern hemisphere. Despite this, the RMSE of the model 348 

in these continents were 1.22 and 0.66 ppm, respectively, indicating that the model 349 

maintained acceptable estimation accuracy in these regions. 350 

Table 4. Model performance in different continents. 351 

 R2 RMSE (ppm) MAE (ppm) Mean bias (ppm) 

Africa 0.80 1.02 0.70 -0.009 

Asia 0.73 1.27 0.85 0.002 

Europe 0.81 1.14 0.77 -0.030 

North America 0.73 1.26 0.83 -0.020 

South America 0.59 1.22 0.86 -0.012 

Oceania 0.67 0.66 0.4 0.051 

3.1.2 In situ validation results 352 

The TCCON in situ XCO2 data were adopted for validating the accuracy of the 353 

reconstructed XCO2 over the globe. The validation results for our reconstructed XCO2 354 

and the origin OCO-2/3 XCO2 are displayed in Fig. 6. The two XCO2 data showed 355 

similar precision with the R2 value of 0.91 and 0.92, respectively (Fig. 6c-d). While the 356 

reconstructed XCO2 greatly increases the data coverage with the validation sample 357 

increasing from 578 to 1432. Meanwhile, the reconstructed XCO2 has a smaller RMSE 358 

and MAE with values of 1.58 and 1.22 ppm, respectively, compared with the OCO 359 

XCO2. These results indicate that the reconstructed XCO2 had a closer agreement with 360 

TCCON XCO2. We also displayed the mean bias of OCO and reconstructed XCO2 in 361 

each TCCON site (Fig. 6a-b). As shown in Fig. 6a, the OCO-2/3 observation tend to 362 

overestimate the XCO2, while the reconstructed XCO2 could amend the underestimation 363 

of OCO XCO2. Over 68% of the validation sites of reconstructed XCO2 had a mean 364 

bias less between ± 0.4 ppm. Given the orbital constraints of the ISS (Eldering et al., 365 
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2019), OCO-3 measurements were restricted to latitudes below ± 52°. Consequently, 366 

substantial missing values of OCO XCO2 data were shown around 50°N, introducing a 367 

potential bias. In contrast, the reconstructed XCO2 effectively solves this problem and 368 

demonstrates markedly enhanced performance.  369 

 370 

Figure 6. The mean bias of the (a) OCO observed XCO2, and (b) reconstructed XCO2 371 

against global TCCON XCO2; (c) density scatterplots of the validation results for OCO 372 

observed XCO2, and (d) reconstructed XCO2 against the TCCON XCO2. The 373 

proportion of the number of points is represented as the color of the points. The number 374 

of samples n, linear regression relation, R2, RMSE (ppm), MAE (ppm), and mean bias 375 

are provided.  376 

 377 

Fig. 7 shows the individual in situ validation results of the reconstructed XCO2 378 

against TCCON site in different continents (except Antarctica). The sample numbers 379 

are varying in different sites due to the observation constraints, while the validation 380 

results from all sites showed satisfying performance. The R2 for all sites are over 0.88 381 

and the MAE are less than 1.46 ppm. The reconstructed XCO2 data performs the best 382 

in sites lauder03 and karlsruhe01, which located in North America and Europe, 383 

respectively. While the reconstructed XCO2 performed worst in saga01 which located 384 

in Asia, potentially due to the high CO2 concentrations in these regions. Overall, the 385 

reconstructed XCO2 showed high consistency with the in situ XCO2 observation in 386 

different regions over the globe. 387 
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 388 

Figure 7. Scatterplots of the TCCON in situ validation results of the reconstructed 389 

XCO2 on different TCCON sites over the globe. 390 

 391 

To assess the performance of our reconstructed XCO2 in temporal analysis, we 392 

compared the time series for monthly OCO-2/3, reconstructed and TCCON XCO2 data 393 

from December 2014 to December 2021. As depicted in Fig. 8, the reconstructed XCO2 394 

exhibits similar temporal patterns compared to the TCCON data, with the mean RMSE 395 

and MAE of 1.47 and 1.07 ppm. While the OCO-2/3 XCO2 exhibits some 396 

overestimation for high values and underestimation for low values compared with 397 

TCCON data. In contrast, the reconstructed XCO2 provided more stable estimate results. 398 

 399 

Figure 8. Comparison of the temporal variation of XCO2 data from OCO-2/3 (blue 400 

dots), TCCON (green dots), and the reconstructed products (yellow dots). 401 

 402 
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3.2 Spatiotemporal pattern of global XCO2 403 

The global distribution of annual mean XCO2 concentration from 2015 to 2021 is 404 

illustrated in Fig. 9. The results reveal pronounced spatial heterogeneity in XCO2 405 

concentrations, characterized by a marked hemispheric asymmetry. Specifically, the 406 

Northern Hemisphere exhibited systematically elevated XCO2 levels compared to the 407 

Southern Hemisphere, consistent with latitudinal gradients driven by anthropogenic 408 

emission patterns and atmospheric transport dynamics. Regionally, North America, 409 

East Asia, Central Africa, and northwest of Southern America were identified as 410 

persistent hotspots of enhanced XCO2. The high concentrations of XCO2 in North 411 

America and East Asia stem primarily from the fossil fuel emission from energy 412 

production and transportation sectors. Whereas the tropical regions (i.e., Central Africa 413 

and South America) are influenced by coupled biomass burning and land-use changes.  414 

 415 

Figure 9. The global spatial distribution of reconstructed annual mean XCO2 416 

concentration from 2015 to 2021. 417 

We also provided the annual OCO-2 XCO2 data from 2015 to 2019 and OCO-3 418 

XCO2 data from 2020 to 2021 in Fig. 10. Spatially, our reconstructed XCO₂ dataset 419 

(Fig. 9) demonstrates robust consistency with satellite observations, particularly in mid-420 

latitude industrialized regions where both datasets capture emission hotspots. Notably, 421 

OCO-3 exhibits denser observational sampling due to its improved spatial coverage and 422 



 

 19 / 34 

 

swath width compared to OCO-2’s narrow tracks. However, persistent data gaps remain 423 

prevalent in both two satellite products after annual aggregating. These spatial coverage 424 

limitations hinder fine-scale global analysis, particularly in assessing localized 425 

emission sources and regional scale carbon flux. 426 

 427 
Figure 10. The global spatial distribution of annual mean OCO-2/OCO-3 XCO2 428 

concentration from 2015 to 2021. 429 

 430 

Fig. 11 presents the spatial distribution of the 7-year (2015-2021) averaged XCO2 431 

concentration and trend over the globe. The average XCO2 concentration from 2015 to 432 

2021 was 406.90 ± 0.80 ppm worldwide. The highest concentration of XCO2 mainly 433 

occurs in the northern low-to-mid-latitudes (10°N-45°N). More frequent human 434 

activities and carbon emissions contributed to higher atmospheric CO2 concentrations 435 

in the Northern Hemisphere. In contrast, the lowest XCO2 concentration was 404.02 436 

ppm, occurring in the Southern Hemisphere where 81% of the area is ocean. The oceans 437 

act as a vital carbon sink and absorb most atmospheric CO2. For the continent scale, the 438 

XCO2 concentrations showed a slight variation (±1 ppm) between different continents. 439 

The largest XCO2 were mainly occurred in Asia and North America over years, while 440 

the lowest XCO2 concentration all presented in Oceania (Table 4). In terms of temporal 441 

trend, the atmospheric CO2 exhibited a distinct increasing trend over time, with the 442 

mean growth rate of 2.32 ppm yr-1. The large growth rate meanly occurs in the northern 443 



 

 20 / 34 

 

low latitudes (0°N-30°N), especially the Middle East and North Africa (growth rate 444 

over 2.5 ppm yr-1). Globally, the XCO2 increased by 14.16 ppm over seven years (Table 445 

4), especially in 2021, with increased values of up to 3 ppm. This result is consistent 446 

with the Global Carbon Budget 2022 (Friedlingstein et al., 2022), which reported that 447 

the global average atmospheric CO2 increased sharply in 2021 and reached 414.71 ppm. 448 

 449 

Figure 11. The global spatial distribution of (a) reconstructed 7-year averaged XCO2 450 

concentration, and (b) its trend from 2015 to 2021 (ppm yr-1 denotes parts per million 451 

per year). 452 

 453 

Table 4. The reconstructed XCO2 concentrations at different continents from 2015 to 454 

2021. 455 

Continents XCO2 concentrations (ppm)  

2015 2016 2017 2018 2019 2020 2021 Increase 

Africa 399.26 402.66 404.98 406.71 409.26 411.13 414.11 14.85 

Asia 399.57 403.03 405.80 407.37 409.68 411.39 414.38 14.81 

Europe 399.55 402.88 405.77 406.96 409.48 411.30 414.17 14.62 

North America 399.60 402.95 405.76 407.32 409.70 411.61 414.28 14.68 

South America 398.94 401.96 404.27 406.17 408.78 410.47 413.57 14.63 

Oceania 398.03 401.04 403.31 405.53 408.13 409.82 412.55 14.52 

Global 399.84 401.56 405.16 407.50 409.21 411.07 414.00 14.16 
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 456 

3.3 The distribution of XCO2 anomaly 457 

To better explore the dynamics of global carbon change, we further calculated the 458 

XCO2 anomalies based on the full-coverage XCO2 products and presented their global 459 

distributions from 2015 to 2021 (Fig. 12). The XCO2 anomalies were calculated by the 460 

statistical filtering method, that is, subtracting the global median XCO2 value from the 461 

global XCO2 distribution (Hakkarainen et al., 2016). The spatial pattern of XCO2 462 

anomalies were relatively consistent over seven years with no significant variations. 463 

From the global perspective, high XCO2 anomalies mainly occurred in the Northern 464 

Hemisphere. East Asia has the largest XCO2 anomalies with values ranging from 2 to 465 

3 ppm, such as the east part of China. The Middle East, North Africa and the southern 466 

part of Northern America also experienced high XCO2 anomalies. Nevertheless, 467 

negative XCO2 anomalies were also identified in the Northern Hemisphere, specifically 468 

in regions such as Tibet in China, eastern Canada, and southern Russia. Most negative 469 

XCO2 anomalies were observed in the Southern Hemisphere, which behaves as a 470 

carbon sink. However, some positive XCO2 anomalies are also observed in the tropical 471 

regions (e.g., Amazonia), which indicates the Amazonia has changed into a carbon 472 

source due to the deforestation and fire occurrence in recent years (Hubau et al., 2020; 473 

Gatti et al., 2021). 474 

 475 
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 476 
Figure 12. The global spatial distribution of annual XCO2 anomaly from 2015 to 2021. 477 

 478 

Fig. 13 illustrates the detailed spatial distribution of XCO2 concentrations and 479 

anomalies over six regions with high XCO2 retrievals in 2020. High concentrations of 480 

XCO2 were typically associated with energy-intensive heavy industrial activities, such 481 

as Toa Oil Keihin Refinery Factory located in Kawasaki City, Japan (Fig. 13f), and the 482 

Shippingport Industrial Park in Pennsylvania, United States (Fig. 13a). Moreover, 483 

certain metropolitan transport hubs also exhibited elevated CO2 anomalies attributable 484 

to dense populations and intensive activities. Examples included Shanghai Station in 485 

China (Fig.13e) and John F. Kennedy International Airport in New York, USA (Fig. 486 

13b). Attention has also been drawn to natural sources of emissions. Driven by the 487 

significant impact of agricultural mechanization and agro-industrial activities on 488 

cropland (Lin and Xu, 2018), the XCO2 anomalies also occurred in the agricultural 489 

areas northwestern Jiangsu, China (Fig. 13d). Additionally, we also observed the high 490 

XCO2 anomalies in Amazonia forest in Colombia, which have been suffered from 491 

deforestation (Gatti et al., 2023). In conclusion, our products could successfully capture 492 

the XCO2 anomalies from different sources over the globe. 493 

 494 
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 495 
Figure 13. Examples of XCO2 hotspots in six regions for 2020 detected using the 496 

reconstructed products. The subplots present the spatial distribution of XCO2 497 

concentrations, anomalies (the red panels), and the emission sources (the true color 498 

images from Google Earth), respectively. The global map in the middle presents the 499 

land use and land cover types over the globe. 500 

4. Discussion 501 

4.1 Comparison with previous studies 502 

To validate the effectiveness of our model and resulting XCO2 products, we 503 

compared our results with current studies which focuses on global XCO2 reconstruction 504 

(Table 5). As for the in-situ validation, most existing studies report high accuracy with 505 

almost all R2 over 0.9, RMSE less than 2 ppm. Regarding spatial resolution, the various 506 

products differ substantially, ranging from 1° down to 0.01°. It should be noted that 507 

increasing spatial resolution tends to compromise the accuracy of XCO2 retrievals. 508 

However, our XCO2 product achieves an optimal balance between spatial detail and 509 

measurement precision, exhibiting both high spatial resolution (0.05° ) and robust 510 

accuracy (R2=0.91, RMSE =1.54 ppm) in comprehensive evaluations. 511 

  512 
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Table 5. Comparison between current studies focusing on global XCO2 reconstruction 513 

Model Spatial resolution In-situ validation 

 (with TCCON) 

Reference 

R2 RMSE 

(ppm) 

MAE 

(ppm) 

Attentional-based LSTM 0.05° 0.91 1.54 1.22 Our study 

Deep forest 0.1° 0.96 1.01 - Zhang et al. (2023) 

S-STDCT 0.25° 0.95 1.18 - Wang et al. (2023) 

Spatiotemporal kriging 1° 0.97 1.13 0.88 Sheng et al. (2022) 

MLE & OI 0.5° 0.92 2.62 1.53 Jin et al. (2022) 

 ERT 0.01° 0.83 1.79 - Li et al. (2022) 

*S-STDCT: Self-supervised spatiotemporal discrete cosine transform; MLE & OI: maximum 514 

likelihood estimation method and optimal interpolation; ERT: Extremely randomized trees 515 

To evaluate the advancement of our XCO2 product, we compared it with original 516 

OCO-2 observations and publicly available global XCO2 datasets (Wang et al., 2023; 517 

Sheng et al., 2022; Zhang et al., 2023) across four regions: North America, Europe with 518 

northern Africa, Asia, and Oceania (Fig. 14) in January 2015. Despite monthly 519 

aggregation, OCO-2 data exhibit persistent spatial discontinuities, limiting the capacity 520 

to analyze monthly XCO2 variability at regional and national scales. Existing XCO2 521 

products (spatial resolution of 0.25°, 1°, and 0.1°, respectively) broadly reproduce 522 

large-scale XCO2 patterns but fail to resolve fine-scale heterogeneity. In comparison, 523 

our reconstructed XCO2, with the highest spatial resolution, provides a more detailed 524 

and accurate representation of the regional XCO2 patterns. For example, lower XCO2 525 

concentrations are clearly identified in eastern Canada (The first row of Fig.14) and 526 

Papua New Guinea (The fourth row of Fig. 14), regions characterized by dense forest 527 

cover. This correspondence highlights the substantial carbon sink potential of these 528 

forested areas. Our high-resolution product better identifies the CO2 heterogeneity 529 

associated with different land cover types, whereas the coarse-resolution products 530 

smooth these signals. This limitation primarily stems from the neglect of high-531 

resolution land cover dynamics and dependence on coarse-resolution 532 

assimilated/reanalysis datasets (e.g., CAMS XCO2, CarbonTracker), resulting in 533 

oversmoothed spatial patterns that obscure satellite-derived high-resolution signals. 534 

Unlike assimilation-dependent approaches, our method avoids XCO2 reanalysis inputs, 535 

preserving satellite-scale fidelity through high-resolution environmental variables 536 

modeling while maintaining precision.  537 
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 538 

Figure 14. Comparison between the OCO-2 XCO2 data, accessible XCO2 products 539 

from Wang et al. (2023), Sheng et al. (2022), Zhang et al. (2023), and our reconstructed 540 

XCO2 data in four regions, using the products of January of 2015 as an example. 541 

4.2 Limitations and future improvements 542 

Though our XCO2 products achieved full spatial coverage and high accuracy, 543 

however, there are still several limitations need further improvement. In terms of the 544 

satellite data, OCO-2 and OCO-3 provide different spatiotemporal coverages. 545 

Analyzing OCO-2 and OCO-3 data simultaneously may introduce several uncertainties 546 

due to these differences. However, OCO-3 has a similar sensor and inherits the retrieval 547 

algorithms of OCO-2. According to Taylor et al. (2023), the mean differences between 548 

OCO-3 and OCO-2 are around 0.2 ppm over land. Therefore, we suppose that the 549 

discrepancies between their datasets are minimal, and the combined analysis of data 550 

from these two satellites will have a negligible impact on our results.  551 

Additionally, though our model integrates multiple environmental variables 552 

associated with surface carbon flux variations, it does not account for vertical 553 

atmospheric transport. As XCO2 represents the column-averaged CO2 concentration, 554 

vertical redistribution of CO2 through atmospheric transport (e.g., mixing, convection) 555 

can alter the relationship between surface carbon fluxes and column concentrations 556 

(Shirai et al., 2012). The absence of such vertical transport indicators may reduce the 557 

model’s accuracy in regions or periods with strong vertical mixing. Future efforts will 558 
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incorporate vertical transport-related variables, such as planetary boundary layer height, 559 

vertical wind components, and other reanalysis-derived indicators, to better represent 560 

the atmospheric processes that influence the column-averaged CO₂ signal. 561 

Moreover, while OCO missions currently provide some of the most accurate 562 

carbon satellite-based XCO2 retrievals, they still encounter some retrieval errors and 563 

data gaps driven by algorithmic limitations and variable meteorological conditions. A 564 

critical research frontier is the refinement of XCO₂ retrieval algorithms to mitigate 565 

systematic biases in high-aerosol-load regions (e.g., industrial regions and biomass-566 

burning plumes). Additionally, next-generation hyperspectral satellites, such as the 567 

upcoming CO2M (Copernicus Anthropogenic CO₂ Monitoring Mission) with 2×2 km2 568 

resolution and GeoCarb (Geostationary Carbon Observatory) offering hourly 569 

monitoring, will enhance spatial-temporal coverage and reduce cloud-induced data 570 

gaps (Reuter et al., 2025). 571 

5. Data availability 572 

The XCO2 dataset produced in this paper is available at 573 

https://doi.org/10.5281/zenodo.12706142 (Wang et al., 2024a). It includes monthly 574 

global XCO2 data at 0.05° resolution, covering the period from December 2014 to 575 

December 2021. The dataset is archived in netCDF4 format, with units in parts per 576 

million (ppm). 577 

6. Conclusion 578 

As a major driver of global warming, the monitoring of CO2 changes, especially 579 

anthropogenic CO2 emissions, is of critical importance. The launch of carbon satellites 580 

offers a significant advancement for CO2 monitoring. However, the limited spatial 581 

coverage of satellite observations constrains the utility of XCO2 data. While current 582 

XCO2 products exhibit relatively high validation accuracy, their coarse spatial 583 

resolution remains inadequate for applications such as regional- or county-level 584 

emission monitoring, as well as for the detection and inversion of large emission 585 

sources. To address these issues, we reconstructed a global full-coverage XCO2 product 586 

at a fine spatial resolution of 0.05° and temporal resolution of 1 month from 2015 to 587 

2021. The advanced deep learning method was adopted to model time-series XCO2 and 588 

incorporate terrestrial flux, anthropogenic flux and climatic impacts into the 589 
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parameterization process. Through comprehensive evaluations, including cross-590 

validation, in-situ validation, spatial distribution assessment and comparison with other 591 

XCO2 products, our reconstructed XCO2 products demonstrates significant 592 

improvements in both accuracy and spatial resolution. The main conclusions and 593 

contributions are as following: 594 

(1) The advanced At-BiLSTM model could successfully established the nonlinear 595 

relationship between satellite-derived XCO2 and a set of key environmental variables. 596 

And the reconstructed XCO2 based on our model shows relatively good agreement with 597 

TCCON XCO2, with R2, RMSE, and MAE values of 0.91, 1.58 ppm, and 1.22 ppm, 598 

respectively.  599 

(2) The reconstructed XCO2 product overcomes the extensive data gaps typically 600 

caused by narrow satellite swaths and retrieval interference from clouds and aerosols, 601 

achieving complete global coverage. Moreover, relative to existing publicly available 602 

full-coverage XCO2 datasets, our product offers the finest spatial resolution (0.05°) 603 

while maintaining comparable accuracy. 604 

(3) Our method avoids coarse XCO2 reanalysis inputs, preserving satellite-scale 605 

fidelity through high-resolution environmental variables modeling. Consequently, the 606 

products enable enhanced ability in identifying regional- and county-level XCO2 607 

hotpots, carbon emissions and fragmented carbon sinks, providing a robust basis for 608 

targeted global carbon governance policies.  609 
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