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Abstract

The irreversible trend for global warming underscores the necessity for accurate
monitoring and analysis of atmospheric carbon dynamics on a global scale. Carbon
satellites hold significant potential for atmospheric CO, monitoring. However, existing
studies on global CO: are constrained by coarse resolution (ranging from 0.25° to 2°)
and limited spatial coverage. In this study, we developed a new global dataset of
column-averaged dry-air mole fraction of CO, (XCOy) at 0.05° resolution with full
coverage using carbon satellite observations, multi-source satellite products, and an
improved deep learning model. We then investigated changes in global atmospheric
CO» and anomalies from 2015 to 2021. The reconstructed XCO» products show a better
agreement with Total Carbon Column Observing Network (TCCON) measurements,
with R? of 0.92 and RMSE of 1.54 ppm. The products also provide more accurate
information on the global and regional spatial patterns of XCO> compared to origin
carbon satellite monitoring and previous XCO; products. The global pattern of XCO»
exhibited a distinct increasing trend with a growth rate of 2.32 ppm/year, reaching
414.00 ppm in 2021. Globally, XCO> showed obvious spatial variability across
different latitudes and continents. Higher XCO; concentrations were primarily
observed in the Northern Hemisphere, particularly in regions with intensive
anthropogenic activity, such as East Asia and North America. We also validated the
effectiveness of our XCO; products in detecting intensive CO> emission sources. The
XCO, dataset is publicly accessible on the Zenodo platform at
https://doi.org/10.5281/zenodo.12706142 (Wang et al., 2024a). Our products enable

enhanced ability in identifying regional- and county-level XCO:> hotpots, carbon
emissions and fragmented carbon sinks, providing a robust basis for targeted global

carbon governance policies.

Keywords: Atmospheric carbon dioxide; Satellite carbon monitoring; Deep learning;

0CO-2/3

1. Introduction

Carbon dioxide (CO2) is a primary greenhouse gas (GHG). Anthropogenic

activities and land use change since the industrial revolution have led to a marked
2134
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increase in atmospheric CO>, which is widely considered to be a major contributor to
climate change, reaching a record-high of 414.71 parts per million (ppm) in 2021
(Friedlingstein et al., 2022). The damaging global climate change caused by
atmospheric increases in COz is severe and irreversible (IPCC, 2023; Kemp et al., 2022;
Solomon et al., 2009). Consequently, the Paris Agreement announced to hold “the
increase in the global average temperature to well below 2°C above pre-industrial levels”
and pursue efforts “to limit the temperature increase to 1.5°C above pre-industrial
levels.” It was also determined that the joined parties should submit their nationally
determined contributions (NDCs) to reduce CO; emissions.

Accurate monitoring of atmospheric CO2 concentrations is crucial for measuring
global CO; emissions mitigation as well as characterizing terrestrial carbon change.
Currently, ground-based and airborne platform-based atmospheric CO, observation
networks, such as the Total Carbon Column Observing Network (TCCON,
https://tccondata.org/), are capable of providing CO2 measurements with high accuracy
(Petzold et al., 2016; Wunch et al., 2011, 2010). However, these observation networks
are insufficient to fully explore the spatiotemporal patterns of atmospheric CO, at a
global scale. The launch of a series of carbon observation satellites in recent years has
provided favorable opportunities for continuous and large-scale atmospheric CO:
observation (Buchwitz et al., 2015; Hammerling et al., 2012). The Scanning Imaging
Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) onboard
EnviSat was one of the first instruments to monitor the atmospheric column-averaged
dry-air mole fraction of CO; (XCO) (Bovensmann et al., 1999). The Greenhouse Gases
Observing Satellite (GOSAT) launched by Japan utilized the Thermal And Near-
Infrared Sensor for carbon Observation (TANSO) instrument to monitor XCO» globally,
providing products with a spatial resolution of 10 km every three days (Butz et al.,
2011). The Orbiting Carbon Observatory-2 (OCO-2) and OCO-3 launched by NASA
provide XCO> measurements at a finer spatial resolution (Eldering et al., 2017). These
sensors are considered among the best for XCO: observation, featuring larger
overlapping swaths that cover areas of ~20x80 km? and exhibiting the least retrieval
absolute bias, measuring less than 0.4 ppm (Eldering et al., 2019; Taylor et al., 2020).
However, the narrow swath of the sensor can only cover limited spatial areas, and
caused by the cloud and aerosol contaminations, the data from OCO-2/3 always contain
large amount of missing values (Taylor et al., 2016; Crisp et al., 2017). These limitations

obstacle the better understanding of the atmosphere-land carbon cycle over large spatial
317134
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scale based on satellite observation.

Consequently, several studies have concentrated on generating spatially
continuous XCO» products based on satellite observations (He et al., 2022; Siabi et al.,
2019; Zhang and Liu, 2023). One potential solution is the application of diverse
interpolation methods (He et al., 2020; Zeng et al., 2014). However, their results
encounter large uncertainty in regions with sparse data coverage, due to the coarse
spatial resolution of the original data. In addition, data fusion techniques have gained
recognition as an effective method for obtaining full-coverage XCO- data (Sheng et al.,
2022; He et al., 2022; Siabi et al., 2019; Zhang and Liu, 2023). These techniques can
be broadly categorized into two groups. The first category leverages the spatiotemporal
correlation inherent in multi-source XCO> data, fusing them based on this
spatiotemporal information (Wang et al., 2023; Sheng et al., 2022). For instance, Wang
et al. (2023) introduced a spatiotemporal self-supervised fusion model and generate

seamless global XCO, data at a spatial resolution of 0.25°. The second category is

regression-based methods, which aim to fill the gap by capturing the nonlinear
relationship between multi-source XCO, measurements and related covariates (He et
al., 2022; Siabi et al., 2019; Zhang and Liu, 2023). The specific methodologies include
traditional statistical models, geostatistical models and machine learning models. Siabi
et al. (2019) employed the Artificial Neural Network (ANN) to establish correlation
between XCO; and eight environmental variables. Zhang and Liu (2023) utilized the
convolution neural networks (CNN) coupled with attention mechanisms to produce
full-coverage XCO> data across China. Recently, Zhang et al. (2023) developed high
spatial resolution global CO» concentration data based on deep forest model and multi-
source satellite products.

Although the development of CO> observation satellites and the application of
machine learning methods have significantly improved the estimation accuracy of
XCO», current studies still face several limitations. Firstly, due to the sparse distribution
of satellite XCO; data, previous studies always relied on assimilation and reanalysis

XCO, data, such as CAMS XCO; with coarse spatial resolution (0.75°). This reliance

often results in final products that closely mirror the assimilation and reanalysis results,
leading to an oversmoothed distribution that undermines the high-resolution advantages
of satellite data. Furthermore, most current studies estimated the spatial distribution of

CO» primarily based on vegetation and meteorological information, with limited
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consideration of the impact of human activities and emissions, despite these have
significant influence on atmospheric CO> variability. This limitation also led to
estimation results that fail to adequately capture the impact of anthropogenic emissions
on atmospheric CO». In addition, most studies that employ regression models to
estimate full-coverage XCO; are limited to regional or national scales due to the weak
transferability of these models. Only a few studies (Zhang et al., 2023) have explored
global-scale CO» estimation using machine learning approaches, highlighting the need
for further research to enhance model generalizability and scalability. Therefore, we
intent to develop the global full-coverage XCO; products with the capacity to capture
both large-scale patterns and fine spatial details. This development leveraged satellite
carbon monitoring, multi-source high spatial resolution auxiliary variables and
advanced methods that exhibit spatiotemporal transferability to overcome the
aforementioned limitations.

In this study, we leveraged time-series OCO-2/3 XCO; data and various related
environmental variables from multi-source satellites to generate global full-coverage
XCO2> products. The advanced deep learning method was adopted to model time-series
XCOz and incorporate terrestrial flux, anthropogenic flux and climatic impacts into the
parameterization process. These products are designed to meet the following criteria:
(1) high validated accuracy to ensure the reliability of the estimates, (2) high spatial
resolution capable of capturing fine-scale variations in CO: concentrations, and (3)
global full-coverage that overcomes missing values in satellite carbon observations.
Our XCO; products achieved full global coverage with a spatial resolution of 0.05° and
a monthly temporal resolution from 2015 to 2021. We also validated our XCO> products
against in-situ XCO2 data and other XCO> products. Based on our high-resolution
products, we explored the spatial and temporal pattern of atmospheric CO; globally and
identified regions with intense COz emission. Our findings aim to enhance the
understanding of carbon dynamics on a global scale through data reconstruction and

analysis.

2. Materials and methods

In this study, we utilized Google Earth Engine (GEE) to integrate OCO-2/3 XCO»
data and multiple environmental variables as data inputs. In addition, the attention-

based Bidirectional Long Short-Term Memory (At-BiLSTM) model was trained for
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building the relationship between OCO-2/3 XCO> and the related environmental
variables. Then, we reconstructed the global monthly XCO, and validated the accuracy
of the products against TCCON XCO; data and the original OCO-2/3 XCO- data. We
also analyzed the spatial and temporal variation of XCO; over the globe and detect the

intense CO» emission regions. The methodology framework is shown in Fig.1.
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Figure 1. The workflow for mapping and exploring global XCO> dynamics and drivers.
2.1 Datasets
2.1.1 OCO XCO:: data

In this study, we utilized the satellite-based XCO; data from OCO-2 and OCO-3,
covering the period from December 2014 to December 2021. The OCO-2/3 measure at
three near-infrared wavelength bands, that are 0.76 um Oxygen A-band, 1.61 pm weak

CO», and 2.06 pm strong CO> bands (Crisp et al., 2004). The full physics retrieval
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algorithm was used to retrieve the XCO- based on the observation of the two satellites
(Crisp et al., 2021). Previous studies (Taylor et al., 2023) suggested that the OCO-2 and
OCO-3 XCO> measurements are in broad consistency and can therefore be used
together in scientific analyses. The OCO-3 Level 2 XCO> Lite version 10.4r data
(OCO3_L2 Lite FP V10.4r) from 2020 to 2021 and the OCO-2 Level 2 XCO> Lite
version 11r (OCO2 L2 Lite FP Vl1Ir) from 2015 to 2019 were downloaded from
Goddard Earth Sciences Data and Information Services Center (GES DISC,
https://disc.gsfc.nasa.gov/). The products were aggregated as a daily file (Fig. 2) with a
spatial resolution of 2.25 km x 1.29 km (O’Dell et al., 2018). The XCO, data were
quality filtered, and only good-quality data (i.e., xco2_quality flag=0) were considered.
To generate the monthly products with a spatial resolution of 0.05° x 0.05°, we
converted the daily data to monthly data by averaging the sparse XCO, data within a

range of 0.05° x 0.05° over one month.
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Figure 2. Footprints of OCO-2 and OCO-3 XCO; data on 20th January 2018 and 4th
December 2021 (with quality filtering) as examples.

2.1.2 TCCON XCO: data

The Total Carbon Column Observing Network (TCCON) is a global network for
measuring atmospheric CO>, methane (CH4), carbon monoxide (CO) and other trace
gases in the atmosphere. The XCO» data from TCCON were demonstrated to have high
accuracy with ~0.2% of XCO> (Wunch et al., 2011). Consequently, the data have been
used widely for the validation of satellite observations such as OCO-2, OCO-3 and
GOSAT (Deng et al., 2016; Wunch et al., 2017). In this research, we used the GGG2014
and GGG2020 datasets from 23 sites (Fig. 3 and Table 1) around the world to validate
the reconstructed XCO> products.
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Figure 3. The locations of the TCCON sites.

Table 1. The information on the TCCON in situ stations.

180°0'0"

ID Site name Longitude Latitude Start date End date

1 saga01 (JP) 130.29 33.24 2011-07-28  2021-06-30
2 xianghe0O1 (PRC) 116.96 39.80 2018-06-14 2022-04-09
3 burgos01 (PH) 120.65 18.53 2017-03-03 2021-08-20
4 harwell01 (UK) -1.32 51.57 2021-05-30 2022-05-22
5 bremen01 (DE) 8.85 53.10 2009-01-06 2021-06-24
6 tsukuba02 (JP) 140.12 36.05 2014-03-28 2021-03-31
7 lauder03 (N2) -97.49 36.60 2018-10-02 2022-11-14
8 edwards01 (US) -117.88 34.96 2013-07-20 2022-12-25
9 nicosia0l (CY) 33.38 35.14 2019-09-06 2021-06-01
10 izana0l (ES) -16.5 28.31 2014-01-02 2022-10-31
11 orleans01 (FR) 211 47.96 2009-09-06 2022-04-24
12 hefei0l (PRC) 119.17 31.90 2015-11-02 2020-12-31
13 easttroutlake01 (CA) -104.99 54.35 2016-10-03 2022-08-13
14 karlsruhe01 (DE) 8.44 49.10 2014-01-15 2023-01-20
15 paris01 (FR) 2.36 48.85 2014-09-23  2022-03-28
16 garmisch01 (DE) 11.06 47.48 2007-07-18 2021-10-18
17 rikubetsu01 (JP) 143.77 43.46 2014-06-24 2021-06-30
18 lamont01 (US) 169.68 -45.04 2011-04-16 2022-12-19
19 reunion01 (RE) 55.48 -20.90 2015-03-01 2020-07-18
20 darwin01 (AU) 130.93 -12.46 2005-08-28 2020-04-30
21 Wollongong (AU) 150.88 -34.41 2008-06-26  2020-06-30
22 Manaus01(BR) -60.60 -3.21 2014-09-30 2015-07-27
23 parkfalls01 (US) -90.27 45,94 2004-06-02 2020-12-29
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JP: Japan, DE: Germany, FI: Finland, FR: French, RE: Réunion Island, AU: Australia,
BR: Brazil; US: United States, PRC: People's Republic of China, NO: Norway, CY:
Cyprus, NZ: New Zealand, PH: Philippines, UK: United Kingdom, CA: Canada.

2.1.3 Environmental variables

In the selection of environmental variables, our primary focus was on processes
within the terrestrial carbon cycle. The carbon cycle on land can be conceptualized as
two flux exchange processes influenced by the climatic conditions (Fig. 4). The CO> in
the atmosphere is fixed by vegetation photosynthesis and the carbon is released back
into the atmosphere by respiration and disturbance processes (Beer et al., 2010; Pan et
al., 2011). The carbon fluxes through these processes we considered as the land flux.
Since Industrial Era, anthropogenic carbon from land use change (e.g., deforestation)
and fossil fuels and cement become important parts of atmospheric CO» (Friedlingstein
et al., 2010), which we considered as the anthropogenic flux. Meanwhile, the two
processes are directly or indirectly driven by the climatic features (Sitch et al., 2015;
Chen et al., 2021). Consequently, we explored the potential drivers of XCO; from the
perspective of the carbon cycle at atmosphere-land interface. Multiple satellite products
and reanalysis data from three aspects (i.e., land flux, anthropogenic flux and climatic

impacts) were selected to consider their various effects on the XCO».
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Figure 4. Simplified illustration of the global carbon cycle on land (referring to [PCC
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2023). Noting that the carbon cycle in the ocean was not considered in our study and
we only focused on the fast exchange fluxes. The slow carbon exchanges (e.g., chemical
weathering, volcanic emissions) which are generally assumed as relatively constant

over the last few centuries (Sundquist, 1986), were not included here.

The key factors selected related to the land flux included gross primary
productivity (GPP), enhanced vegetation index (EVI), land surface temperature (LST),
vegetation continuous fields (VCF), and normalized difference snow index (NDSI).
These products are all obtained from the Moderate Resolution Imaging
Spectroradiometer (MODIS), which has been operated for over 20 years and produced
various satellite products with fine spatial resolution and accuracy. The EVI and NDSI
were converted to monthly data using the maximum value composite (MVC) method.
The GPP and LST were converted to monthly data by the averaging method.

The rising anthropogenic activities have greatly influenced atmospheric CO>
(Friedlingstein et al., 2022). In this study, five anthropogenic factors, including land
use/cover change (LUCC), nighttime lights (NTL), and three trace gases (i.c., sulfur
dioxide (SO.), nitrogen dioxide (NO2), and carbon monoxide (CO)) were selected. The
LUCC was obtained from MODIS MCD12Q1 with a spatial resolution of 500 m. The
monthly Suomi National Polar-orbiting Partnership-Visible Infrared Imaging
Radiometer Suite (NPP-VIIRS) day/night band (DNB) NTL products (spatial
resolution of 15 arc-second, ~500 m) were obtained from the Earth Observation Group
(EOQG) of the Colorado School of Mines. We also used the SO, NO> and CO products
from the TROPOspheric Monitoring Instrument (TROPOMI) onboard Sentinel-5
Precursor (S5P), a global air monitoring satellite for the Copernicus mission. The data
were also converted to the same temporal resolution (i.e., monthly).

The selected climatic factors affecting XCO» were surface pressure (SP), 10 m
wind speed (WS), precipitation flux (PRE), 2 m air temperature (Temp), and total
evaporation (E). These data are from the reanalysis products (Hersbach et al., 2020)
developed at the European Center for Medium Weather Forecasting (ECMWEF,
https://www.ecmwf.int/). The WS is calculated using the products of 10 m wind
components of U and V. All data were converted to monthly time-series. The bilinear
interpolation approach was employed both to fill gaps in the ancillary data and to
convert the data at different spatial resolutions to 0.05° resolution. The data

preprocessing was conducted on GEE, R and ArcGIS 10.3. Details of these products
10 / 34
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are listed in Table 2.

Table 2. Ancillary variables selected in this study.

Variables Spatial Temporal Product names Category
resolution resolution
GPP 500 m 8-day MOD17A2H Land flux-
EVI 1 km 16-day MOD13A2 related
LST 1 km daily MOD11A1
VCF 250 m annual MOD44B
NDSI 500 m daily MOD10A1
LUCC 500 m annual MCD120Q1
NTL 15 arc-second monthly VNP46A2 Anthropogenic
SO2 OFFL/L3_SO>
. flux-related
NO> ~1 km daily OFFL/L3_NO;
Co OFFL/L3_CO
SP
E
W!nd—v ~10 km monthly ERA5-Land C_:I|mat|c
Wind-u impacts
Pre
Temp

2.2 Deep learning-based XCO: reconstruction

Given the complexity temporal dependence and nonlinear relationship between
XCO:z and the environmental variables, we selected the At-BiLSTM model to relate the
XCO; data with the 16 response variables affecting atmospheric CO», and further
reconstruct the XCO> data at a fine spatial resolution. The LSTM model is a variant of
RNN that excels in modeling temporal sequences and capture long-range dependencies
(Hochreiter and Schmidhuber, 1997; Graves et al., 2005), which is essential for
understanding the seasonal variations of XCO: and dynamic feedbacks between XCO>
and environmental drivers we selected. Each LSTM cell includes an input gate, a forget
gate and an output gate. The forget gate f, determines which information from the
previous time step to forget (Eq. 1):

ft = O'(Wf “[he—g,xe] + bf) (1)
where o, Wy, [he—q,x.], and by denotes the sigmoid activation function, vectors of
weights, concatenation of the hidden state at timestep #-/ and the current input, and the
bias vector, respectively.

The input gate i, governs the selective storage of the data in current time step,

and the output from forget gate f; and input gate i, are combined in the cell state C;
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(Eq. 2-3):
ir = o(W; - [he—1, x¢] + b)) 2
Ci = fi " Coeq + iy - tanh(We - [hy—q1, x¢] + be) 3)
where W; and W, denote the weight matrix for the input gate and the current cell
state, respectively; b; and b, are the bias vector of the input gate and the current cell
state, respectively; C;_; and tanh represent the cell state at timestep z-/ and the
activation function.

Lastly, the output gate o, controls the flow of information from the cell state to
the next time step (Eq. 4).

0¢ = 0(Wp * [he—1, %] + bo) (4)
where W, and b, denotes the weight matrix and the bias vector of the output gate,
respectively.

These gate structures effectively manage the flow of information within the LSTM,
enabling it to capture the temporal dependencies present in the data (Yuan et al., 2020;
Wang et al., 2022). Bidirectional LSTM consists of two directional LSTM, in which the
data flows forward and backward (Graves et al., 2013). The bidirectional structure was
chosen to enhance the capability of LSTM by allowing the model to consider both past
and future context in the time series, thereby providing a more comprehensive
understanding of the underlying temporal dynamics.

We also defined a multi-dimensional attention layer behind the BILSTM to focus
on more critical timesteps and give them higher weights (Bahdanau et al., 2016). This
is particularly important when dealing with high-dimensional input data comprising
multi-timestep variables, as it allows the model to assign different weights to different
timesteps, thereby improving interpretability and predictive performance (Liu and Guo,
2019; Wang et al., 2024b). Based on this framework, the At-BiLSTM model offers a
robust and flexible framework for linking XCO> with multiple environmental variables
and reconstructing XCO» at a fine spatial resolution with improved accuracy and
spatiotemporal consistency.

The At-BiLSTM consists of one input layer, three Bidirectional LSTM (Bi-LSTM)
layers, one attention layer, one dropout layer to prevent overfitting, and one fully
connected layer (i.e., dense layer) for the final output. Each Bi-LSTM includes 512
hidden units and tanh activation in both forward and backward directions. The attention

mechanism learns a weight distribution over the time dimension using a Dense layer
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with softmax activation, then multiplies these weights with the BiLSTM output to
emphasize important time steps. The detailed deployment and output are provided in
Table 3. The model was implemented using the TensorFlow and Keras deep learning
APIs in Python. A time step of 3 was used, and the model was trained for 200 epochs
with the mean squared error (MSE) as the loss function. A step-wise decay strategy was
applied to the learning rate, where the rate was reduced by a factor of 10 every 50
epochs to enhance training stability and convergence. Prior to training, all input data
were normalized using the mean and standard deviation of the dataset.

Table 3. Architecture of the At-BiLSTM model

Layer Name Layer Parameters Output size
Bi-LSTM Input layer - 3x16
Bi-LSTM1 units = 512, activation = ‘tanh’ 3x1024
Bi-LSTM2 units = 512, activation = ‘tanh’ 3 %1024
Bi-LSTM3 units = 512, activation = ‘tanh’ 3 <1024
Attention Permute - 1024>3
Dense units = 3, activation = ‘softmax’ 102453
Permute - 3 <1024
Multiply - 3 <1024
Dropout rate = 0.5
Full-connect Dense units =1 1

In this study, we adopted the sample-based cross-validation (CV) method to
evaluate the model performance and the in-situ validation to assess the accuracy of
reconstructed XCO; products. We also compared the reconstructed XCO- products with
the original OCO XCO; products and the CAMS-EGG4 GHGs data. Four metrics,
including coefficient of determination (R?), root mean squared error (RMSE), mean

absolute error (MAE) and mean bias, were calculated as follow, to assess the model

performance.
R?=1- M (%)
2is i =)
RMSE = J?‘l(+_fl)2 (6)
MAE — ?=1I(l:li—yi)l )

where 7 is the total number of data samples, and f;, y; are the observed results and

model-estimated results, respectively.
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3. Results

3.1 Validation of the reconstructed XCO: product

3.1.1 Model validation results

Given the distinct seasonal variation in XCO» concentrations, we conducted the
sample-based CV to evaluate the model performance during different seasons (Fig. 5).
The model demonstrated high accuracy across all seasons, with R? values exceeding
0.81, MAE less than 0.73 ppm, and RMSE less than 1.09 ppm. The model performed
better in spring and summer, as indicated by the densest cluster of points being closest
to the 1:1 line. Conversely, the model performed worst in winter, when photosynthesis
is weakest, leading to greater estimation deviation. These variations are likely
influenced by the ecosystem CO> exchange during different seasons. Overall, the model

effectively captured the seasonal variation of XCO; and provided unbiased XCO:

estimations.
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Figure 5. Density scatterplots of sample-based CV results during different seasons. The
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dashed lines and grey solid lines denote the linear regression fitted lines and the 1:1
line, respectively. The R?>, RMSE (ppm), MAE (ppm), and mean bias (ppm) are
provided.

We further validated the model performance across different continents. Table 4
presents the validation results for six continents. The model performance varied across
continents. Notably, the model achieved the highest accuracy in Africa and Europe,
with R? of 0.80 and 0.81, and RMSE values of 1.02 and 1.14 ppm, respectively. In
contrast, the model demonstrated relatively low accuracy in Oceania and South
America, both located in the southern hemisphere. Despite this, the RMSE of the model
in these continents were 1.22 and 0.66 ppm, respectively, indicating that the model
maintained acceptable estimation accuracy in these regions.

Table 4. Model performance in different continents.

R? RMSE (ppm) MAE (ppm) Mean bias (ppm)
Africa 0.80 1.02 0.70 -0.009
Asia 0.73 1.27 0.85 0.002
Europe 0.81 1.14 0.77 -0.030
North America 0.73 1.26 0.83 -0.020
South America 0.59 1.22 0.86 -0.012
Oceania 0.67 0.66 0.4 0.051

3.1.2 In situ validation results

The TCCON in situ XCO; data were adopted for validating the accuracy of the
reconstructed XCO, over the globe. The validation results for our reconstructed XCO,
and the origin OCO-2/3 XCO; are displayed in Fig. 6. The two XCO, data showed
similar precision with the R? value of 0.91 and 0.92, respectively (Fig. 6¢c-d). While the
reconstructed XCO; greatly increases the data coverage with the validation sample
increasing from 578 to 1432. Meanwhile, the reconstructed XCO> has a smaller RMSE
and MAE with values of 1.58 and 1.22 ppm, respectively, compared with the OCO
XCO:z. These results indicate that the reconstructed XCO> had a closer agreement with
TCCON XCO,. We also displayed the mean bias of OCO and reconstructed XCO; in
each TCCON site (Fig. 6a-b). As shown in Fig. 6a, the OCO-2/3 observation tend to
overestimate the XCO», while the reconstructed XCO» could amend the underestimation
of OCO XCOz. Over 68% of the validation sites of reconstructed XCO> had a mean
bias less between £ 0.4 ppm. Given the orbital constraints of the ISS (Eldering et al.,
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2019), OCO-3 measurements were restricted to latitudes below + 52°. Consequently,
substantial missing values of OCO XCO, data were shown around 50°N, introducing a
potential bias. In contrast, the reconstructed XCO, effectively solves this problem and

demonstrates markedly enhanced performance.
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proportion of the number of points is represented as the color of the points. The number
of samples n, linear regression relation, R?, RMSE (ppm), MAE (ppm), and mean bias

are provided.

Fig. 7 shows the individual in situ validation results of the reconstructed XCO-
against TCCON site in different continents (except Antarctica). The sample numbers
are varying in different sites due to the observation constraints, while the validation
results from all sites showed satisfying performance. The R? for all sites are over 0.88
and the MAE are less than 1.46 ppm. The reconstructed XCO; data performs the best
in sites lauder03 and karlsruheO1, which located in North America and Europe,
respectively. While the reconstructed XCO- performed worst in sagaOl which located
in Asia, potentially due to the high CO> concentrations in these regions. Overall, the
reconstructed XCO»> showed high consistency with the in situ XCO; observation in

different regions over the globe.
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Figure 7. Scatterplots of the TCCON in situ validation
XCOs> on different TCCON sites over the globe.

results of the reconstructed

To assess the performance of our reconstructed XCO; in temporal analysis, we

compared the time series for monthly OCO-2/3, reconstructed and TCCON XCO; data

from December 2014 to December 2021. As depicted in Fig. 8, the reconstructed XCO-

exhibits similar temporal patterns compared to the TCCON data, with the mean RMSE
and MAE of 1.47 and 1.07 ppm. While the OCO-2/3 XCO> exhibits some

overestimation for high values and underestimation for low values compared with

TCCON data. In contrast, the reconstructed XCO; provided more stable estimate results.
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Figure 8. Comparison of the temporal variation of XCO: data from OCO-2/3 (blue

dots), TCCON (green dots), and the reconstructed products (yellow dots).
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3.2 Spatiotemporal pattern of global XCO:

The global distribution of annual mean XCO; concentration from 2015 to 2021 is
illustrated in Fig. 9. The results reveal pronounced spatial heterogeneity in XCO-
concentrations, characterized by a marked hemispheric asymmetry. Specifically, the
Northern Hemisphere exhibited systematically elevated XCO; levels compared to the
Southern Hemisphere, consistent with latitudinal gradients driven by anthropogenic
emission patterns and atmospheric transport dynamics. Regionally, North America,
East Asia, Central Africa, and northwest of Southern America were identified as
persistent hotspots of enhanced XCO;. The high concentrations of XCO; in North
America and East Asia stem primarily from the fossil fuel emission from energy
production and transportation sectors. Whereas the tropical regions (i.e., Central Africa

and South America) are influenced by coupled biomass burning and land-use changes.
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Figure 9. The global spatial distribution of reconstructed annual mean XCO:

concentration from 2015 to 2021.

We also provided the annual OCO-2 XCO; data from 2015 to 2019 and OCO-3
XCO; data from 2020 to 2021 in Fig. 10. Spatially, our reconstructed XCO: dataset
(Fig. 9) demonstrates robust consistency with satellite observations, particularly in mid-
latitude industrialized regions where both datasets capture emission hotspots. Notably,

OCO-3 exhibits denser observational sampling due to its improved spatial coverage and
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swath width compared to OCO-2’s narrow tracks. However, persistent data gaps remain
prevalent in both two satellite products after annual aggregating. These spatial coverage
limitations hinder fine-scale global analysis, particularly in assessing localized

emission sources and regional scale carbon flux.
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concentration from 2015 to 2021.

Fig. 11 presents the spatial distribution of the 7-year (2015-2021) averaged XCO-
concentration and trend over the globe. The average XCO:> concentration from 2015 to
2021 was 406.90 = 0.80 ppm worldwide. The highest concentration of XCO; mainly
occurs in the northern low-to-mid-latitudes (10°N-45°N). More frequent human
activities and carbon emissions contributed to higher atmospheric CO> concentrations
in the Northern Hemisphere. In contrast, the lowest XCO» concentration was 404.02
ppm, occurring in the Southern Hemisphere where 81% of the area is ocean. The oceans
act as a vital carbon sink and absorb most atmospheric CO». For the continent scale, the
XCO2 concentrations showed a slight variation (=1 ppm) between different continents.
The largest XCO; were mainly occurred in Asia and North America over years, while
the lowest XCO; concentration all presented in Oceania (Table 4). In terms of temporal
trend, the atmospheric CO; exhibited a distinct increasing trend over time, with the

mean growth rate of 2.32 ppm yr'!. The large growth rate meanly occurs in the northern
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low latitudes (0°N-30°N), especially the Middle East and North Africa (growth rate

over 2.5 ppm yr'!). Globally, the XCOz increased by 14.16 ppm over seven years (Table

4), especially in 2021, with increased values of up to 3 ppm. This result is consistent

with the Global Carbon Budget 2022 (Friedlingstein et al., 2022), which reported that

the global average atmospheric CO; increased sharply in 2021 and reached 414.71 ppm.
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Figure 11. The global spatial distribution of (a) reconstructed 7-year averaged XCO-

concentration, and (b) its trend from 2015 to 2021 (ppm yr'' denotes parts per million

per year).

Table 4. The reconstructed XCO; concentrations at different continents from 2015 to

2021.
Continents XCO; concentrations (ppm)

2015 2016 2017 2018 2019 2020 2021 Increase

Africa 399.26 402.66 404.98 406.71 409.26 411.13 414.11 14.85

Asia 399.57 403.03 405.80 407.37 409.68 411.39 414.38 14.81

Europe 399.55 402.88 405.77 406.96 409.48 411.30 414.17 14.62

North America 399.60 402.95 405.76 407.32 409.70 411.61 414.28 14.68
South America 398.94 401.96 404.27 406.17 408.78 410.47 413.57 14.63
Oceania 398.03 401.04 403.31 405.53 408.13 409.82 412.55 14.52

Global 399.84 401.56 405.16 407.50 409.21 411.07 414.00 14.16
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3.3 The distribution of XCO2 anomaly

To better explore the dynamics of global carbon change, we further calculated the
XCO; anomalies based on the full-coverage XCO, products and presented their global
distributions from 2015 to 2021 (Fig. 12). The XCO; anomalies were calculated by the
statistical filtering method, that is, subtracting the global median XCO; value from the
global XCO; distribution (Hakkarainen et al., 2016). The spatial pattern of XCO-
anomalies were relatively consistent over seven years with no significant variations.
From the global perspective, high XCO> anomalies mainly occurred in the Northern
Hemisphere. East Asia has the largest XCO; anomalies with values ranging from 2 to
3 ppm, such as the east part of China. The Middle East, North Africa and the southern
part of Northern America also experienced high XCO; anomalies. Nevertheless,
negative XCO; anomalies were also identified in the Northern Hemisphere, specifically
in regions such as Tibet in China, eastern Canada, and southern Russia. Most negative
XCO> anomalies were observed in the Southern Hemisphere, which behaves as a
carbon sink. However, some positive XCO, anomalies are also observed in the tropical
regions (e.g., Amazonia), which indicates the Amazonia has changed into a carbon
source due to the deforestation and fire occurrence in recent years (Hubau et al., 2020;

Gatti et al., 2021).
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Figure 12. The global spatial distribution of annual XCO; anomaly from 2015 to 2021.

Fig. 13 illustrates the detailed spatial distribution of XCO: concentrations and
anomalies over six regions with high XCO- retrievals in 2020. High concentrations of
XCO2 were typically associated with energy-intensive heavy industrial activities, such
as Toa Oil Keihin Refinery Factory located in Kawasaki City, Japan (Fig. 13f), and the
Shippingport Industrial Park in Pennsylvania, United States (Fig. 13a). Moreover,
certain metropolitan transport hubs also exhibited elevated CO; anomalies attributable
to dense populations and intensive activities. Examples included Shanghai Station in
China (Fig.13e) and John F. Kennedy International Airport in New York, USA (Fig.
13b). Attention has also been drawn to natural sources of emissions. Driven by the
significant impact of agricultural mechanization and agro-industrial activities on
cropland (Lin and Xu, 2018), the XCO> anomalies also occurred in the agricultural
areas northwestern Jiangsu, China (Fig. 13d). Additionally, we also observed the high
XCO; anomalies in Amazonia forest in Colombia, which have been suffered from
deforestation (Gatti et al., 2023). In conclusion, our products could successfully capture

the XCO anomalies from different sources over the globe.
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Figure 13. Examples of XCO; hotspots in six regions for 2020 detected using the
reconstructed products. The subplots present the spatial distribution of XCO>
concentrations, anomalies (the red panels), and the emission sources (the true color
images from Google Earth), respectively. The global map in the middle presents the

land use and land cover types over the globe.

4. Discussion

4.1 Comparison with previous studies

To validate the effectiveness of our model and resulting XCO: products, we
compared our results with current studies which focuses on global XCO: reconstruction
(Table 5). As for the in-situ validation, most existing studies report high accuracy with
almost all R? over 0.9, RMSE less than 2 ppm. Regarding spatial resolution, the various
products differ substantially, ranging from 1° down to 0.01°. It should be noted that
increasing spatial resolution tends to compromise the accuracy of XCO; retrievals.
However, our XCO» product achieves an optimal balance between spatial detail and

measurement precision, exhibiting both high spatial resolution (0.05°) and robust

accuracy (R>=0.91, RMSE =1.54 ppm) in comprehensive evaluations.
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Table 5. Comparison between current studies focusing on global XCO> reconstruction

Model Spatial resolution In-situ validation Reference
(with TCCON)
R?2 RMSE MAE

(ppm)  (ppm)

Attentional-based LSTM 0.05< 0.91 1.54 1.22 Our study
Deep forest 0.1° 0.96 1.01 - Zhang et al. (2023)
S-STDCT 0.25° 095 118 - Wang et al. (2023)
Spatiotemporal kriging 1< 0.97 1.13 0.88  Shengetal. (2022)
MLE & Ol 0.5 092 262 1.53 Jinetal. (2022)
ERT 0.01° 083 1.79 - Li et al. (2022)

*S-STDCT: Self-supervised spatiotemporal discrete cosine transform; MLE & OI: maximum
likelihood estimation method and optimal interpolation; ERT: Extremely randomized trees

To evaluate the advancement of our XCO: product, we compared it with original
OCO-2 observations and publicly available global XCO- datasets (Wang et al., 2023;
Sheng et al., 2022; Zhang et al., 2023) across four regions: North America, Europe with
northern Africa, Asia, and Oceania (Fig. 14) in January 2015. Despite monthly
aggregation, OCO-2 data exhibit persistent spatial discontinuities, limiting the capacity
to analyze monthly XCO> variability at regional and national scales. Existing XCO»
products (spatial resolution of 0.25°, 1°, and 0.1°, respectively) broadly reproduce
large-scale XCOz patterns but fail to resolve fine-scale heterogeneity. In comparison,
our reconstructed XCO», with the highest spatial resolution, provides a more detailed
and accurate representation of the regional XCO; patterns. For example, lower XCO:
concentrations are clearly identified in eastern Canada (The first row of Fig.14) and
Papua New Guinea (The fourth row of Fig. 14), regions characterized by dense forest
cover. This correspondence highlights the substantial carbon sink potential of these
forested areas. Our high-resolution product better identifies the CO> heterogeneity
associated with different land cover types, whereas the coarse-resolution products
smooth these signals. This limitation primarily stems from the neglect of high-
resolution land cover dynamics and dependence on coarse-resolution
assimilated/reanalysis datasets (e.g., CAMS XCO,, CarbonTracker), resulting in
oversmoothed spatial patterns that obscure satellite-derived high-resolution signals.
Unlike assimilation-dependent approaches, our method avoids XCO»> reanalysis inputs,
preserving satellite-scale fidelity through high-resolution environmental variables

modeling while maintaining precision.

24 | 34



537
538

539
540

941

542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557

0CO0-2 XCO, Wang et al. (2023) Sheng et al. (2022) Zhang et al. (2023) Reconstructed XCO,

- —’?—-'F‘.‘ﬂ X 2 v e
Q ' -, 5 ;
N - p n_\‘, 1 ‘%gﬁ 3

120°00°W 60°00W  120°00°W 80°00W  120°00°W 60°00°W  120°00°W B0VUW  120°00°W 60°00°W

30°00°N

30°0'0°N

Europe & north Africa North America

gl [ e o

0°00" 0°0’

30°00°N

Asia
¥

120°00°E 120°00°E 120°00°E 120°00°E 120°00'E

&
0°0'0°

Oceania
e
30°0'0"S

h ] b v v
120°00°E 120°00°E 120°00°E 120°00°E 120°00"E
XCO;(ppm) T T
388.24 408.78

Figure 14. Comparison between the OCO-2 XCO, data, accessible XCO; products
from Wang et al. (2023), Sheng et al. (2022), Zhang et al. (2023), and our reconstructed

XCO; data in four regions, using the products of January of 2015 as an example.

4.2 Limitations and future improvements

Though our XCO; products achieved full spatial coverage and high accuracy,
however, there are still several limitations need further improvement. In terms of the
satellite data, OCO-2 and OCO-3 provide different spatiotemporal coverages.
Analyzing OCO-2 and OCO-3 data simultaneously may introduce several uncertainties
due to these differences. However, OCO-3 has a similar sensor and inherits the retrieval
algorithms of OCO-2. According to Taylor et al. (2023), the mean differences between
OCO-3 and OCO-2 are around 0.2 ppm over land. Therefore, we suppose that the
discrepancies between their datasets are minimal, and the combined analysis of data
from these two satellites will have a negligible impact on our results.

Additionally, though our model integrates multiple environmental variables
associated with surface carbon flux variations, it does not account for vertical
atmospheric transport. As XCO; represents the column-averaged CO> concentration,
vertical redistribution of CO; through atmospheric transport (e.g., mixing, convection)
can alter the relationship between surface carbon fluxes and column concentrations
(Shirai et al., 2012). The absence of such vertical transport indicators may reduce the

model’s accuracy in regions or periods with strong vertical mixing. Future efforts will
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incorporate vertical transport-related variables, such as planetary boundary layer height,
vertical wind components, and other reanalysis-derived indicators, to better represent
the atmospheric processes that influence the column-averaged CO- signal.

Moreover, while OCO missions currently provide some of the most accurate
carbon satellite-based XCO, retrievals, they still encounter some retrieval errors and
data gaps driven by algorithmic limitations and variable meteorological conditions. A
critical research frontier is the refinement of XCO: retrieval algorithms to mitigate
systematic biases in high-aerosol-load regions (e.g., industrial regions and biomass-
burning plumes). Additionally, next-generation hyperspectral satellites, such as the
upcoming CO2M (Copernicus Anthropogenic CO2 Monitoring Mission) with 2x2 km?
resolution and GeoCarb (Geostationary Carbon Observatory) offering hourly
monitoring, will enhance spatial-temporal coverage and reduce cloud-induced data

gaps (Reuter et al., 2025).

5. Data availability

The XCO; dataset produced in this paper 1is available at
https://doi.org/10.5281/zenodo.12706142 (Wang et al., 2024a). It includes monthly
global XCO> data at 0.05° resolution, covering the period from December 2014 to

December 2021. The dataset is archived in netCDF4 format, with units in parts per
million (ppm).

6. Conclusion

As a major driver of global warming, the monitoring of CO> changes, especially
anthropogenic CO; emissions, is of critical importance. The launch of carbon satellites
offers a significant advancement for CO> monitoring. However, the limited spatial
coverage of satellite observations constrains the utility of XCO> data. While current
XCO, products exhibit relatively high validation accuracy, their coarse spatial
resolution remains inadequate for applications such as regional- or county-level
emission monitoring, as well as for the detection and inversion of large emission
sources. To address these issues, we reconstructed a global full-coverage XCO; product
at a fine spatial resolution of 0.05° and temporal resolution of 1 month from 2015 to
2021. The advanced deep learning method was adopted to model time-series XCO» and

incorporate terrestrial flux, anthropogenic flux and climatic impacts into the
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parameterization process. Through comprehensive evaluations, including cross-
validation, in-situ validation, spatial distribution assessment and comparison with other
XCO2 products, our reconstructed XCO; products demonstrates significant
improvements in both accuracy and spatial resolution. The main conclusions and
contributions are as following:

(1) The advanced At-BiLSTM model could successfully established the nonlinear
relationship between satellite-derived XCO; and a set of key environmental variables.
And the reconstructed XCO: based on our model shows relatively good agreement with
TCCON XCO,, with R?, RMSE, and MAE values of 0.91, 1.58 ppm, and 1.22 ppm,
respectively.

(2) The reconstructed XCO; product overcomes the extensive data gaps typically
caused by narrow satellite swaths and retrieval interference from clouds and aerosols,
achieving complete global coverage. Moreover, relative to existing publicly available
full-coverage XCO, datasets, our product offers the finest spatial resolution (0.05°)
while maintaining comparable accuracy.

(3) Our method avoids coarse XCO> reanalysis inputs, preserving satellite-scale
fidelity through high-resolution environmental variables modeling. Consequently, the
products enable enhanced ability in identifying regional- and county-level XCO>
hotpots, carbon emissions and fragmented carbon sinks, providing a robust basis for

targeted global carbon governance policies.
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