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Abstract 27 

The irreversible trend for global warming underscores the necessity for accurate 28 

monitoring and analysis of atmospheric carbon dynamics on a global scale. Carbon 29 

satellites hold significant potential for atmospheric CO2 monitoring. However, existing 30 

studies on global CO2 are constrained by coarse resolution (ranging from 0.25° to 2°) 31 

and limited spatial coverage. In this study, we developed a new global dataset of 32 

column-averaged dry-air mole fraction of CO2 (XCO2) at 0.05° resolution with full 33 

coverage using carbon satellite observations, multi-source satellite products, and an 34 

improved deep learning model. We then investigated changes in global atmospheric 35 

CO2 and anomalies from 2015 to 2021. The reconstructed XCO2 products show a better 36 

agreement with Total Carbon Column Observing Network (TCCON) measurements, 37 

with R2 of 0.92 and RMSE of 1.54 ppm. The products also provide more accurate 38 

information on the global and regional spatial patterns of XCO2 compared to origin 39 

carbon satellite monitoring and previous XCO2 products. The global pattern of XCO2 40 

exhibited a distinct increasing trend with a growth rate of 2.32 ppm/year, reaching 41 

414.00 ppm in 2021. Globally, XCO2 showed obvious spatial variability across 42 

different latitudes and continents. Higher XCO2 concentrations were primarily 43 

observed in the Northern Hemisphere, particularly in regions with intensive 44 

anthropogenic activity, such as East Asia and North America. We also validated the 45 

effectiveness of our XCO2 products in detecting intensive CO2 emission sources. The 46 

XCO2 dataset is publicly accessible on the Zenodo platform at 47 

https://doi.org/10.5281/zenodo.12706142 (Wang et al., 2024a). Our products enable 48 

enhanced ability in identifying regional- and county-level XCO2 hotpots, carbon 49 

emissions and fragmented carbon sinks, providing a robust basis for targeted global 50 

carbon governance policies. 51 

 52 

Keywords: Atmospheric carbon dioxide; Satellite carbon monitoring; Deep learning; 53 

OCO-2/3 54 

 55 

1. Introduction 56 

Carbon dioxide (CO2) is a primary greenhouse gas (GHG). Anthropogenic 57 

activities and land use change since the industrial revolution have led to a marked 58 
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increase in atmospheric CO2, which is widely considered to be a major contributor to 59 

climate change, reaching a record-high of 414.71 parts per million (ppm) in 2021 60 

(Friedlingstein et al., 2022). The damaging global climate change caused by 61 

atmospheric increases in CO2 is severe and irreversible (IPCC, 2023; Kemp et al., 2022; 62 

Solomon et al., 2009). Consequently, the Paris Agreement announced to hold “the 63 

increase in the global average temperature to well below 2°C above pre-industrial levels” 64 

and pursue efforts “to limit the temperature increase to 1.5°C above pre-industrial 65 

levels.” It was also determined that the joined parties should submit their nationally 66 

determined contributions (NDCs) to reduce CO2 emissions. 67 

Accurate monitoring of atmospheric CO2 concentrations is crucial for measuring 68 

global CO2 emissions mitigation as well as characterizing terrestrial carbon change. 69 

Currently, ground-based and airborne platform-based atmospheric CO2 observation 70 

networks, such as the Total Carbon Column Observing Network (TCCON, 71 

https://tccondata.org/), are capable of providing CO2 measurements with high accuracy 72 

(Petzold et al., 2016; Wunch et al., 2011, 2010). However, these observation networks 73 

are insufficient to fully explore the spatiotemporal patterns of atmospheric CO2 at a 74 

global scale. The launch of a series of carbon observation satellites in recent years has 75 

provided favorable opportunities for continuous and large-scale atmospheric CO2 76 

observation (Buchwitz et al., 2015; Hammerling et al., 2012). The Scanning Imaging 77 

Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) onboard 78 

EnviSat was one of the first instruments to monitor the atmospheric column-averaged 79 

dry-air mole fraction of CO2 (XCO2) (Bovensmann et al., 1999). The Greenhouse Gases 80 

Observing Satellite (GOSAT) launched by Japan utilized the Thermal And Near-81 

Infrared Sensor for carbon Observation (TANSO) instrument to monitor XCO2 globally, 82 

providing products with a spatial resolution of 10 km every three days (Butz et al., 83 

2011). The Orbiting Carbon Observatory-2 (OCO-2) and OCO-3 launched by NASA 84 

provide XCO2 measurements at a finer spatial resolution (Eldering et al., 2017). These 85 

sensors are considered among the best for XCO2 observation, featuring larger 86 

overlapping swaths that cover areas of ~20×80 km² and exhibiting the least retrieval 87 

absolute bias, measuring less than 0.4 ppm (Eldering et al., 2019; Taylor et al., 2020). 88 

However, the narrow swath of the sensor can only cover limited spatial areas, and 89 

caused by the cloud and aerosol contaminations, the data from OCO-2/3 always contain 90 

large amount of missing values (Taylor et al., 2016; Crisp et al., 2017). These limitations 91 

obstacle the better understanding of the atmosphere-land carbon cycle over large spatial 92 
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scale based on satellite observation. 93 

Consequently, several studies have concentrated on generating spatially 94 

continuous XCO2 products based on satellite observations (He et al., 2022; Siabi et al., 95 

2019; Zhang and Liu, 2023). One potential solution is the application of diverse 96 

interpolation methods (He et al., 2020; Zeng et al., 2014). However, their results 97 

encounter large uncertainty in regions with sparse data coverage, due to the coarse 98 

spatial resolution of the original data. In addition, data fusion techniques have gained 99 

recognition as an effective method for obtaining full-coverage XCO2 data (Sheng et al., 100 

2022; He et al., 2022; Siabi et al., 2019; Zhang and Liu, 2023). These techniques can 101 

be broadly categorized into two groups. The first category leverages the spatiotemporal 102 

correlation inherent in multi-source XCO2 data, fusing them based on this 103 

spatiotemporal information (Wang et al., 2023; Sheng et al., 2022). For instance, Wang 104 

et al. (2023) introduced a spatiotemporal self-supervised fusion model and generate 105 

seamless global XCO2 data at a spatial resolution of 0.25°. The second category is 106 

regression-based methods, which aim to fill the gap by capturing the nonlinear 107 

relationship between multi-source XCO2 measurements and related covariates (He et 108 

al., 2022; Siabi et al., 2019; Zhang and Liu, 2023). The specific methodologies include 109 

traditional statistical models, geostatistical models and machine learning models. Siabi 110 

et al. (2019) employed the Artificial Neural Network (ANN) to establish correlation 111 

between XCO2 and eight environmental variables. Zhang and Liu (2023) utilized the 112 

convolution neural networks (CNN) coupled with attention mechanisms to produce 113 

full-coverage XCO2 data across China. Recently, Zhang et al. (2023) developed high 114 

spatial resolution global CO2 concentration data based on deep forest model and multi-115 

source satellite products. 116 

Although the development of CO2 observation satellites and the application of 117 

machine learning methods have significantly improved the estimation accuracy of 118 

XCO2, current studies still face several limitations. Firstly, due to the sparse distribution 119 

of satellite XCO2 data, previous studies always relied on assimilation and reanalysis 120 

XCO2 data, such as CAMS XCO2 with coarse spatial resolution (0.75°). This reliance 121 

often results in final products that closely mirror the assimilation and reanalysis results, 122 

leading to an oversmoothed distribution that undermines the high-resolution advantages 123 

of satellite data. Furthermore, most current studies estimated the spatial distribution of 124 

CO2 primarily based on vegetation and meteorological information, with limited 125 
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consideration of the impact of human activities and emissions, despite these have 126 

significant influence on atmospheric CO2 variability. This limitation also led to 127 

estimation results that fail to adequately capture the impact of anthropogenic emissions 128 

on atmospheric CO2. In addition, most studies that employ regression models to 129 

estimate full-coverage XCO2 are limited to regional or national scales due to the weak 130 

transferability of these models. Only a few studies (Zhang et al., 2023) have explored 131 

global-scale CO2 estimation using machine learning approaches, highlighting the need 132 

for further research to enhance model generalizability and scalability. Therefore, we 133 

intent to develop the global full-coverage XCO2 products with the capacity to capture 134 

both large-scale patterns and fine spatial details. This development leveraged satellite 135 

carbon monitoring, multi-source high spatial resolution auxiliary variables and 136 

advanced methods that exhibit spatiotemporal transferability to overcome the 137 

aforementioned limitations. 138 

In this study, we leveraged time-series OCO-2/3 XCO2 data and various related 139 

environmental variables from multi-source satellites to generate global full-coverage 140 

XCO2 products. The advanced deep learning method was adopted to model time-series 141 

XCO2 and incorporate terrestrial flux, anthropogenic flux and climatic impacts into the 142 

parameterization process. These products are designed to meet the following criteria: 143 

(1) high validated accuracy to ensure the reliability of the estimates, (2) high spatial 144 

resolution capable of capturing fine-scale variations in CO₂ concentrations, and (3) 145 

global full-coverage that overcomes missing values in satellite carbon observations. 146 

Our XCO2 products achieved full global coverage with a spatial resolution of 0.05° and 147 

a monthly temporal resolution from 2015 to 2021. We also validated our XCO2 products 148 

against in-situ XCO2 data and other XCO2 products. Based on our high-resolution 149 

products, we explored the spatial and temporal pattern of atmospheric CO2 globally and 150 

identified regions with intense CO2 emission. Our findings aim to enhance the 151 

understanding of carbon dynamics on a global scale through data reconstruction and 152 

analysis. 153 

2. Materials and methods 154 

In this study, we utilized Google Earth Engine (GEE) to integrate OCO-2/3 XCO2 155 

data and multiple environmental variables as data inputs. In addition, the attention-156 

based Bidirectional Long Short-Term Memory (At-BiLSTM) model was trained for 157 
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building the relationship between OCO-2/3 XCO2 and the related environmental 158 

variables. Then, we reconstructed the global monthly XCO2 and validated the accuracy 159 

of the products against TCCON XCO2 data and the original OCO-2/3 XCO2 data. We 160 

also analyzed the spatial and temporal variation of XCO2 over the globe and detect the 161 

intense CO2 emission regions. The methodology framework is shown in Fig.1. 162 

 163 

Figure 1. The workflow for mapping and exploring global XCO2 dynamics and drivers. 164 

2.1 Datasets 165 

2.1.1 OCO XCO2 data 166 

In this study, we utilized the satellite-based XCO2 data from OCO-2 and OCO-3, 167 

covering the period from December 2014 to December 2021. The OCO-2/3 measure at 168 

three near-infrared wavelength bands, that are 0.76 μm Oxygen A-band, 1.61 μm weak 169 

CO2, and 2.06 μm strong CO2 bands (Crisp et al., 2004). The full physics retrieval 170 
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algorithm was used to retrieve the XCO2 based on the observation of the two satellites 171 

(Crisp et al., 2021). Previous studies (Taylor et al., 2023) suggested that the OCO-2 and 172 

OCO-3 XCO2 measurements are in broad consistency and can therefore be used 173 

together in scientific analyses. The OCO-3 Level 2 XCO2 Lite version 10.4r data 174 

(OCO3_L2_Lite_FP V10.4r) from 2020 to 2021 and the OCO-2 Level 2 XCO2 Lite 175 

version 11r (OCO2_L2_Lite_FP V11r) from 2015 to 2019 were downloaded from 176 

Goddard Earth Sciences Data and Information Services Center (GES DISC, 177 

https://disc.gsfc.nasa.gov/). The products were aggregated as a daily file (Fig. 2) with a 178 

spatial resolution of 2.25 km × 1.29 km (O’Dell et al., 2018). The XCO2 data were 179 

quality filtered, and only good-quality data (i.e., xco2_quality_flag=0) were considered. 180 

To generate the monthly products with a spatial resolution of 0.05° × 0.05°, we 181 

converted the daily data to monthly data by averaging the sparse XCO2 data within a 182 

range of 0.05° × 0.05° over one month. 183 

 184 

Figure 2. Footprints of OCO-2 and OCO-3 XCO2 data on 20th January 2018 and 4th 185 

December 2021 (with quality filtering) as examples. 186 

 187 

2.1.2 TCCON XCO2 data 188 

The Total Carbon Column Observing Network (TCCON) is a global network for 189 

measuring atmospheric CO2, methane (CH4), carbon monoxide (CO) and other trace 190 

gases in the atmosphere. The XCO2 data from TCCON were demonstrated to have high 191 

accuracy with ~0.2% of XCO2 (Wunch et al., 2011). Consequently, the data have been 192 

used widely for the validation of satellite observations such as OCO-2, OCO-3 and 193 

GOSAT (Deng et al., 2016; Wunch et al., 2017). In this research, we used the GGG2014 194 

and GGG2020 datasets from 23 sites (Fig. 3 and Table 1) around the world to validate 195 

the reconstructed XCO2 products. 196 
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 197 

Figure 3. The locations of the TCCON sites. 198 

 199 

Table 1. The information on the TCCON in situ stations. 200 

ID Site name Longitude Latitude Start date End date 

1 saga01 (JP) 130.29 33.24 2011-07-28 2021-06-30 

2 xianghe01 (PRC) 116.96 39.80 2018-06-14 2022-04-09 

3 burgos01 (PH) 120.65 18.53 2017-03-03 2021-08-20 

4 harwell01 (UK) -1.32 51.57 2021-05-30 2022-05-22 

5 bremen01 (DE) 8.85 53.10 2009-01-06 2021-06-24 

6 tsukuba02 (JP) 140.12 36.05 2014-03-28 2021-03-31 

7 lauder03 (NZ) -97.49 36.60 2018-10-02 2022-11-14 

8 edwards01 (US) -117.88 34.96 2013-07-20 2022-12-25 

9 nicosia01 (CY) 33.38 35.14 2019-09-06 2021-06-01 

10 izana01 (ES) -16.5 28.31 2014-01-02 2022-10-31 

11 orleans01 (FR) 2.11 47.96 2009-09-06 2022-04-24 

12 hefei01 (PRC) 119.17 31.90 2015-11-02 2020-12-31 

13 easttroutlake01 (CA) -104.99 54.35 2016-10-03 2022-08-13 

14 karlsruhe01 (DE) 8.44 49.10 2014-01-15 2023-01-20 

15 paris01 (FR) 2.36 48.85 2014-09-23 2022-03-28 

16 garmisch01 (DE) 11.06 47.48 2007-07-18 2021-10-18 

17 rikubetsu01 (JP) 143.77 43.46 2014-06-24 2021-06-30 

18 lamont01 (US) 169.68 -45.04 2011-04-16 2022-12-19 

19 reunion01 (RE) 55.48 -20.90 2015-03-01 2020-07-18 

20 darwin01 (AU) 130.93 -12.46 2005-08-28 2020-04-30 

21 Wollongong (AU) 150.88 -34.41 2008-06-26 2020-06-30 

22 Manaus01(BR) -60.60 -3.21 2014-09-30 2015-07-27 

23 parkfalls01 (US) -90.27 45.94 2004-06-02 2020-12-29 
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JP: Japan, DE: Germany, FI: Finland, FR: French, RE: Réunion Island, AU: Australia, 201 

BR: Brazil; US: United States, PRC: People's Republic of China, NO: Norway, CY: 202 

Cyprus, NZ: New Zealand, PH: Philippines, UK: United Kingdom, CA: Canada. 203 

 204 

2.1.3 Environmental variables 205 

In the selection of environmental variables, our primary focus was on processes 206 

within the terrestrial carbon cycle. The carbon cycle on land can be conceptualized as 207 

two flux exchange processes influenced by the climatic conditions (Fig. 4). The CO2 in 208 

the atmosphere is fixed by vegetation photosynthesis and the carbon is released back 209 

into the atmosphere by respiration and disturbance processes (Beer et al., 2010; Pan et 210 

al., 2011). The carbon fluxes through these processes we considered as the land flux. 211 

Since Industrial Era, anthropogenic carbon from land use change (e.g., deforestation) 212 

and fossil fuels and cement become important parts of atmospheric CO2 (Friedlingstein 213 

et al., 2010), which we considered as the anthropogenic flux. Meanwhile, the two 214 

processes are directly or indirectly driven by the climatic features (Sitch et al., 2015; 215 

Chen et al., 2021). Consequently, we explored the potential drivers of XCO2 from the 216 

perspective of the carbon cycle at atmosphere-land interface. Multiple satellite products 217 

and reanalysis data from three aspects (i.e., land flux, anthropogenic flux and climatic 218 

impacts) were selected to consider their various effects on the XCO2. 219 

  220 

Figure 4. Simplified illustration of the global carbon cycle on land (referring to IPCC 221 
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2023). Noting that the carbon cycle in the ocean was not considered in our study and 222 

we only focused on the fast exchange fluxes. The slow carbon exchanges (e.g., chemical 223 

weathering, volcanic emissions) which are generally assumed as relatively constant 224 

over the last few centuries (Sundquist, 1986), were not included here. 225 

 226 

The key factors selected related to the land flux included gross primary 227 

productivity (GPP), enhanced vegetation index (EVI), land surface temperature (LST), 228 

vegetation continuous fields (VCF), and normalized difference snow index (NDSI). 229 

These products are all obtained from the Moderate Resolution Imaging 230 

Spectroradiometer (MODIS), which has been operated for over 20 years and produced 231 

various satellite products with fine spatial resolution and accuracy. The EVI and NDSI 232 

were converted to monthly data using the maximum value composite (MVC) method. 233 

The GPP and LST were converted to monthly data by the averaging method. 234 

The rising anthropogenic activities have greatly influenced atmospheric CO2 235 

(Friedlingstein et al., 2022). In this study, five anthropogenic factors, including land 236 

use/cover change (LUCC), nighttime lights (NTL), and three trace gases (i.e., sulfur 237 

dioxide (SO2), nitrogen dioxide (NO2), and carbon monoxide (CO)) were selected. The 238 

LUCC was obtained from MODIS MCD12Q1 with a spatial resolution of 500 m. The 239 

monthly Suomi National Polar-orbiting Partnership-Visible Infrared Imaging 240 

Radiometer Suite (NPP-VIIRS) day/night band (DNB) NTL products (spatial 241 

resolution of 15 arc-second, ~500 m) were obtained from the Earth Observation Group 242 

(EOG) of the Colorado School of Mines. We also used the SO2, NO2 and CO products 243 

from the TROPOspheric Monitoring Instrument (TROPOMI) onboard Sentinel-5 244 

Precursor (S5P), a global air monitoring satellite for the Copernicus mission. The data 245 

were also converted to the same temporal resolution (i.e., monthly). 246 

The selected climatic factors affecting XCO2 were surface pressure (SP), 10 m 247 

wind speed (WS), precipitation flux (PRE), 2 m air temperature (Temp), and total 248 

evaporation (E). These data are from the reanalysis products (Hersbach et al., 2020) 249 

developed at the European Center for Medium Weather Forecasting (ECMWF, 250 

https://www.ecmwf.int/). The WS is calculated using the products of 10 m wind 251 

components of U and V. All data were converted to monthly time-series. The bilinear 252 

interpolation approach was employed both to fill gaps in the ancillary data and to 253 

convert the data at different spatial resolutions to 0.05º resolution. The data 254 

preprocessing was conducted on GEE, R and ArcGIS 10.3. Details of these products 255 
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are listed in Table 2. 256 

Table 2. Ancillary variables selected in this study. 257 

Variables Spatial 

resolution 

Temporal 

resolution 

Product names Category 

GPP 500 m 8-day MOD17A2H Land flux-

related EVI 1 km 16-day MOD13A2 

LST 1 km daily MOD11A1 

VCF 250 m annual MOD44B 

NDSI 500 m daily MOD10A1 

LUCC 500 m annual MCD12Q1 

Anthropogenic 

flux-related  

NTL 15 arc-second monthly VNP46A2 

SO2 

~1 km daily 

OFFL/L3_SO2 

NO2 OFFL/L3_NO2 

CO OFFL/L3_CO 

SP 

~10 km monthly ERA5-Land 
Climatic 

impacts 

E 

Wind-v 

Wind-u 

Pre 

Temp 

2.2 Deep learning-based XCO2 reconstruction 258 

Given the complexity temporal dependence and nonlinear relationship between 259 

XCO2 and the environmental variables, we selected the At-BiLSTM model to relate the 260 

XCO2 data with the 16 response variables affecting atmospheric CO2, and further 261 

reconstruct the XCO2 data at a fine spatial resolution. The LSTM model is a variant of 262 

RNN that excels in modeling temporal sequences and capture long-range dependencies 263 

(Hochreiter and Schmidhuber, 1997; Graves et al., 2005), which is essential for 264 

understanding the seasonal variations of XCO2 and dynamic feedbacks between XCO2 265 

and environmental drivers we selected. Each LSTM cell includes an input gate, a forget 266 

gate and an output gate. The forget gate 𝑓𝑡 determines which information from the 267 

previous time step to forget (Eq. 1): 268 

 𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (1) 

where 𝜎 , 𝑊𝑓 , [ℎ𝑡−1, 𝑥𝑡], and 𝑏𝑓  denotes the sigmoid activation function, vectors of 269 

weights, concatenation of the hidden state at timestep t-1 and the current input, and the 270 

bias vector, respectively.  271 

The input gate 𝑖𝑡 governs the selective storage of the data in current time step, 272 

and the output from forget gate 𝑓𝑡 and input gate 𝑖𝑡 are combined in the cell state 𝐶𝑡 273 
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(Eq. 2-3): 274 

 𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (2) 

 𝐶𝑡 = 𝑓𝑡 ∙ 𝐶𝑡−1 + 𝑖𝑡 ∙ 𝑡𝑎𝑛ℎ⁡(𝑊𝐶 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) (3) 

where 𝑊𝑖 and 𝑊𝐶 denote the weight matrix for the input gate and the current cell 275 

state, respectively; 𝑏𝑖 and 𝑏𝑐 are the bias vector of the input gate and the current cell 276 

state, respectively; 𝐶𝑡−1  and 𝑡𝑎𝑛ℎ  represent the cell state at timestep t-1 and the 277 

activation function. 278 

Lastly, the output gate 𝑜𝑡⁡controls the flow of information from the cell state to 279 

the next time step (Eq. 4).  280 

 𝑜𝑡 = 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (4) 

where 𝑊𝑜 and 𝑏𝑜 denotes the weight matrix and the bias vector of the output gate, 281 

respectively. 282 

These gate structures effectively manage the flow of information within the LSTM, 283 

enabling it to capture the temporal dependencies present in the data (Yuan et al., 2020; 284 

Wang et al., 2022). Bidirectional LSTM consists of two directional LSTM, in which the 285 

data flows forward and backward (Graves et al., 2013). The bidirectional structure was 286 

chosen to enhance the capability of LSTM by allowing the model to consider both past 287 

and future context in the time series, thereby providing a more comprehensive 288 

understanding of the underlying temporal dynamics. 289 

We also defined a multi-dimensional attention layer behind the BiLSTM to focus 290 

on more critical timesteps and give them higher weights (Bahdanau et al., 2016). This 291 

is particularly important when dealing with high-dimensional input data comprising 292 

multi-timestep variables, as it allows the model to assign different weights to different 293 

timesteps, thereby improving interpretability and predictive performance (Liu and Guo, 294 

2019; Wang et al., 2024b). Based on this framework, the At-BiLSTM model offers a 295 

robust and flexible framework for linking XCO2 with multiple environmental variables 296 

and reconstructing XCO2 at a fine spatial resolution with improved accuracy and 297 

spatiotemporal consistency. 298 

The At-BiLSTM consists of one input layer, three Bidirectional LSTM (Bi-LSTM) 299 

layers, one attention layer, one dropout layer to prevent overfitting, and one fully 300 

connected layer (i.e., dense layer) for the final output. Each Bi-LSTM includes 512 301 

hidden units and tanh activation in both forward and backward directions. The attention 302 

mechanism learns a weight distribution over the time dimension using a Dense layer 303 
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with softmax activation, then multiplies these weights with the BiLSTM output to 304 

emphasize important time steps. The detailed deployment and output are provided in 305 

Table 3. The model was implemented using the TensorFlow and Keras deep learning 306 

APIs in Python. A time step of 3 was used, and the model was trained for 200 epochs 307 

with the mean squared error (MSE) as the loss function. A step-wise decay strategy was 308 

applied to the learning rate, where the rate was reduced by a factor of 10 every 50 309 

epochs to enhance training stability and convergence. Prior to training, all input data 310 

were normalized using the mean and standard deviation of the dataset. 311 

Table 3. Architecture of the At-BiLSTM model 312 

Layer Name Layer Parameters Output size 

Bi-LSTM Input layer - 3×16 

 Bi-LSTM1 units = 512, activation = ‘tanh’ 3×1024 

 Bi-LSTM2 units = 512, activation = ‘tanh’ 3 × 1024 

 Bi-LSTM3 units = 512, activation = ‘tanh’ 3 ×1024 

Attention Permute - 1024×3 

 Dense units = 3, activation = ‘softmax’ 1024×3 

 Permute - 3 ×1024 

 Multiply - 3 ×1024 

Dropout  rate = 0.5  

Full-connect Dense units = 1 1 

 313 

In this study, we adopted the sample-based cross-validation (CV) method to 314 

evaluate the model performance and the in-situ validation to assess the accuracy of 315 

reconstructed XCO2 products. We also compared the reconstructed XCO2 products with 316 

the original OCO XCO2 products and the CAMS-EGG4 GHGs data. Four metrics, 317 

including coefficient of determination (R2), root mean squared error (RMSE), mean 318 

absolute error (MAE) and mean bias, were calculated as follow, to assess the model 319 

performance. 320 

where n is the total number of data samples, and 𝑓𝑖,⁡𝑦𝑖 are the observed results and 321 

model-estimated results, respectively. 322 

 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑓𝑖)
𝑛
𝑖=1

2

∑ (𝑦𝑖 − 𝑦̅)𝑛
𝑖=1

2  (5) 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − 𝑓𝑖)
𝑛
𝑖=1

2

𝑛
 (6) 

 
𝑀𝐴𝐸 =

∑ |(𝑓𝑖 − 𝑦𝑖)|
𝑛
𝑖=1

𝑛
 (7) 
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3. Results 323 

3.1 Validation of the reconstructed XCO2 product 324 

3.1.1 Model validation results 325 

Given the distinct seasonal variation in XCO2 concentrations, we conducted the 326 

sample-based CV to evaluate the model performance during different seasons (Fig. 5). 327 

The model demonstrated high accuracy across all seasons, with R2 values exceeding 328 

0.81, MAE less than 0.73 ppm, and RMSE less than 1.09 ppm. The model performed 329 

better in spring and summer, as indicated by the densest cluster of points being closest 330 

to the 1:1 line. Conversely, the model performed worst in winter, when photosynthesis 331 

is weakest, leading to greater estimation deviation. These variations are likely 332 

influenced by the ecosystem CO2 exchange during different seasons. Overall, the model 333 

effectively captured the seasonal variation of XCO2 and provided unbiased XCO2 334 

estimations. 335 

 336 

Figure 5. (a) Density scatterplots of sample-based CV results during different seasons. 337 

The proportion of the number of points is represented as the color of the points. The 338 
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black dashed lines and grey solid lines denote the linear regression fitted lines and the 339 

1:1 line, respectively. The R2, RMSE (ppm), MAE (ppm), and mean bias (ppm) are 340 

provided. 341 

We further validated the model performance across different continents. Table 4 342 

presents the validation results for six continents. The model performance varied across 343 

continents. Notably, the model achieved the highest accuracy in Africa and Europe, 344 

with R2 of 0.80 and 0.81, and RMSE values of 1.02 and 1.14 ppm, respectively. In 345 

contrast, the model demonstrated relatively low accuracy in Oceania and South 346 

America, both located in the southern hemisphere. Despite this, the RMSE of the model 347 

in these continents were 1.22 and 0.66 ppm, respectively, indicating that the model 348 

maintained acceptable estimation accuracy in these regions. 349 

Table 4. Model performance in different continents. 350 

 R2 RMSE (ppm) MAE (ppm) Mean bias (ppm) 

Africa 0.80 1.02 0.70 -0.009 

Asia 0.73 1.27 0.85 0.002 

Europe 0.81 1.14 0.77 -0.030 

North America 0.73 1.26 0.83 -0.020 

South America 0.59 1.22 0.86 -0.012 

Oceania 0.67 0.66 0.4 0.051 

3.1.2 In situ validation results 351 

The TCCON in situ XCO2 data were adopted for validating the accuracy of the 352 

reconstructed XCO2 over the globe. The validation results for our reconstructed XCO2 353 

and the origin OCO-2/3 XCO2 are displayed in Fig. 6. The two XCO2 data showed 354 

similar precision with the R2 value of 0.91 and 0.92, respectively (Fig. 6c-d). While the 355 

reconstructed XCO2 greatly increases the data coverage with the validation sample 356 

increasing from 578 to 1432. Meanwhile, the reconstructed XCO2 has a smaller RMSE 357 

and MAE with values of 1.58 and 1.22 ppm, respectively, compared with the OCO 358 

XCO2. These results indicate that the reconstructed XCO2 had a closer agreement with 359 

TCCON XCO2. We also displayed the mean bias of OCO and reconstructed XCO2 in 360 

each TCCON site (Fig. 6a-b). As shown in Fig. 6a, the OCO-2/3 observation tend to 361 

overestimate the XCO2, while the reconstructed XCO2 could amend the underestimation 362 

of OCO XCO2. Over 68% of the validation sites of reconstructed XCO2 had a mean 363 

bias less between ± 0.4 ppm. Given the orbital constraints of the ISS (Eldering et al., 364 
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2019), OCO-3 measurements were restricted to latitudes below ± 52°. Consequently, 365 

substantial missing values of OCO XCO2 data were shown around 50°N, introducing a 366 

potential bias. In contrast, the reconstructed XCO2 effectively solves this problem and 367 

demonstrates markedly enhanced performance. 368 

 369 

Figure 6. The mean bias of the (a) OCO observed XCO2, and (b) reconstructed XCO2 370 

against global TCCON XCO2; (c) density scatterplots of the validation results for OCO 371 

observed XCO2, and (d) reconstructed XCO2 against the TCCON XCO2. The 372 

proportion of the number of points is represented as the color of the points. The number 373 

of samples n, linear regression relation, R2, RMSE (ppm), MAE (ppm), and mean bias 374 

are provided. 375 

 376 

Fig. 7 shows the individual in situ validation results of the reconstructed XCO2 377 

against TCCON site in different continents (except Antarctica). The sample numbers 378 

are varying in different sites due to the observation constraints, while the validation 379 

results from all sites showed satisfying performance. The R2 for all sites are over 0.88 380 

and the MAE are less than 1.46 ppm. The reconstructed XCO2 data performs the best 381 

in sites lauder03 and karlsruhe01, which located in North America and Europe, 382 

respectively. While the reconstructed XCO2 performed worst in saga01 which located 383 

in Asia, potentially due to the high CO2 concentrations in these regions. Overall, the 384 

reconstructed XCO2 showed high consistency with the in situ XCO2 observation in 385 

different regions over the globe. 386 
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 387 

Figure 7. Scatterplots of the TCCON in situ validation results of the reconstructed 388 

XCO2 on different TCCON sites over the globe. 389 

 390 

To assess the performance of our reconstructed XCO2 in temporal analysis, we 391 

compared the time series for monthly OCO-2/3, reconstructed and TCCON XCO2 data 392 

from December 2014 to December 2021. As depicted in Fig. 8, the reconstructed XCO2 393 

exhibits similar temporal patterns compared to the TCCON data, with the mean RMSE 394 

and MAE of 1.47 and 1.07 ppm. While the OCO-2/3 XCO2 exhibits some 395 

overestimation for high values and underestimation for low values compared with 396 

TCCON data. In contrast, the reconstructed XCO2 provided more stable estimate results. 397 

 398 

Figure 8. Comparison of the temporal variation of XCO2 data from OCO-2/3 (blue 399 

dots), TCCON (green dots), and the reconstructed products (yellow dots). 400 

 401 
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 402 

3.2 Spatiotemporal pattern of global XCO2 403 

The global distribution of annual mean XCO2 concentration from 2015 to 2021 is 404 

illustrated in Fig. 9. The results reveal pronounced spatial heterogeneity in XCO2 405 

concentrations, characterized by a marked hemispheric asymmetry. Specifically, the 406 

Northern Hemisphere exhibited systematically elevated XCO2 levels compared to the 407 

Southern Hemisphere, consistent with latitudinal gradients driven by anthropogenic 408 

emission patterns and atmospheric transport dynamics. Regionally, North America, 409 

East Asia, Central Africa, and northwest of Southern America were identified as 410 

persistent hotspots of enhanced XCO2. The high concentrations of XCO2 in North 411 

America and East Asia stem primarily from the fossil fuel emission from energy 412 

production and transportation sectors. Whereas the tropical regions (i.e., Central Africa 413 

and South America) are influenced by coupled biomass burning and land-use changes.  414 

 415 

Figure 9. The global spatial distribution of reconstructed annual mean XCO2 416 

concentration from 2015 to 2021. 417 

We also provided the annual OCO-2 XCO2 data from 2015 to 2019 and OCO-3 418 

XCO2 data from 2020 to 2021 in Fig. 10. Spatially, our reconstructed XCO₂ dataset 419 

(Fig. 9) demonstrates robust consistency with satellite observations, particularly in mid-420 
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latitude industrialized regions where both datasets capture emission hotspots. Notably, 421 

OCO-3 exhibits denser observational sampling due to its improved spatial coverage and 422 

swath width compared to OCO-2’s narrow tracks. However, persistent data gaps remain 423 

prevalent in both two satellite products after annual aggregating. These spatial coverage 424 

limitations hinder fine-scale global analysis, particularly in assessing localized 425 

emission sources and regional scale carbon flux. 426 

 427 
Figure 10. The global spatial distribution of annual mean OCO-2/OCO-3 XCO2 428 

concentration from 2015 to 2021. 429 

 430 

Fig. 11 presents the spatial distribution of the 7-year (2015-2021) averaged XCO2 431 

concentration and trend over the globe. The average XCO2 concentration from 2015 to 432 

2021 was 406.90 ± 0.80 ppm worldwide. The highest concentration of XCO2 mainly 433 

occurs in the northern low-to-mid-latitudes (10°N-45°N). More frequent human 434 

activities and carbon emissions contributed to higher atmospheric CO2 concentrations 435 

in the Northern Hemisphere. In contrast, the lowest XCO2 concentration was 404.02 436 

ppm, occurring in the Southern Hemisphere where 81% of the area is ocean. The oceans 437 

act as a vital carbon sink and absorb most atmospheric CO2. For the continent scale, the 438 

XCO2 concentrations showed a slight variation (±1 ppm) between different continents. 439 

The largest XCO2 were mainly occurred in Asia and North America over years, while 440 

the lowest XCO2 concentration all presented in Oceania (Table 4). In terms of temporal 441 
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trend, the atmospheric CO2 exhibited a distinct increasing trend over time, with the 442 

mean growth rate of 2.32 ppm yr-1. The large growth rate meanly occurs in the northern 443 

low latitudes (0°N-30°N), especially the Middle East and North Africa (growth rate 444 

over 2.5 ppm yr-1). Globally, the XCO2 increased by 14.16 ppm over seven years (Table 445 

4), especially in 2021, with increased values of up to 3 ppm. This result is consistent 446 

with the Global Carbon Budget 2022 (Friedlingstein et al., 2022), which reported that 447 

the global average atmospheric CO2 increased sharply in 2021 and reached 414.71 ppm. 448 

 449 

Figure 11. The global spatial distribution of (a) reconstructed 7-year averaged XCO2 450 

concentration, and (b) its trend from 2015 to 2021 (ppm yr-1 denotes parts per million 451 

per year). 452 

 453 

  454 
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Table 4. The reconstructed XCO2 concentrations at different continents from 2015 to 455 

2021. 456 

Continents XCO2 concentrations (ppm)  

2015 2016 2017 2018 2019 2020 2021 Increase 

Africa 399.26 402.66 404.98 406.71 409.26 411.13 414.11 14.85 

Asia 399.57 403.03 405.80 407.37 409.68 411.39 414.38 14.81 

Europe 399.55 402.88 405.77 406.96 409.48 411.30 414.17 14.62 

North America 399.60 402.95 405.76 407.32 409.70 411.61 414.28 14.68 

South America 398.94 401.96 404.27 406.17 408.78 410.47 413.57 14.63 

Oceania 398.03 401.04 403.31 405.53 408.13 409.82 412.55 14.52 

Global 399.84 401.56 405.16 407.50 409.21 411.07 414.00 14.16 

 457 

3.3 The distribution of XCO2 anomaly 458 

To better explore the dynamics of global carbon change, we further calculated the 459 

XCO2 anomalies based on the full-coverage XCO2 products and presented their global 460 

distributions from 2015 to 2021 (Fig. 12). The XCO2 anomalies were calculated by the 461 

statistical filtering method, that is, subtracting the global median XCO2 value from the 462 

global XCO2 distribution (Hakkarainen et al., 2016). The spatial pattern of XCO2 463 

anomalies were relatively consistent over seven years with no significant variations. 464 

From the global perspective, high XCO2 anomalies mainly occurred in the Northern 465 

Hemisphere. East Asia has the largest XCO2 anomalies with values ranging from 2 to 466 

3 ppm, such as the east part of China. The Middle East, North Africa and the southern 467 

part of Northern America also experienced high XCO2 anomalies. Nevertheless, 468 

negative XCO2 anomalies were also identified in the Northern Hemisphere, specifically 469 

in regions such as Tibet in China, eastern Canada, and southern Russia. Most negative 470 

XCO2 anomalies were observed in the Southern Hemisphere, which behaves as a 471 

carbon sink. However, some positive XCO2 anomalies are also observed in the tropical 472 

regions (e.g., Amazonia), which indicates the Amazonia has changed into a carbon 473 

source due to the deforestation and fire occurrence in recent years (Hubau et al., 2020; 474 

Gatti et al., 2021). 475 

 476 
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 477 
Figure 12. The global spatial distribution of annual XCO2 anomaly from 2015 to 2021. 478 

 479 

Fig. 13 illustrates the detailed spatial distribution of XCO2 concentrations and 480 

anomalies over six regions with high XCO2 retrievals in 2020. High concentrations of 481 

XCO2 were typically associated with energy-intensive heavy industrial activities, such 482 

as Toa Oil Keihin Refinery Factory located in Kawasaki City, Japan (Fig. 13f), and the 483 

Shippingport Industrial Park in Pennsylvania, United States (Fig. 13a). Moreover, 484 

certain metropolitan transport hubs also exhibited elevated CO2 anomalies attributable 485 

to dense populations and intensive activities. Examples included Shanghai Station in 486 

China (Fig.13e) and John F. Kennedy International Airport in New York, USA (Fig. 487 

13b). Attention has also been drawn to natural sources of emissions. Driven by the 488 

significant impact of agricultural mechanization and agro-industrial activities on 489 

cropland (Lin and Xu, 2018), the XCO2 anomalies also occurred in the agricultural 490 

areas northwestern Jiangsu, China (Fig. 13d). Additionally, we also observed the high 491 

XCO2 anomalies in Amazonia forest in Colombia, which have been suffered from 492 

deforestation (Gatti et al., 2023). In conclusion, our products could successfully capture 493 

the XCO2 anomalies from different sources over the globe. 494 

 495 
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 496 

Figure 13. Examples of XCO2 hotspots in six regions for 2020 detected using the 497 

reconstructed products. The subplots present the spatial distribution of XCO2 498 

concentrations, anomalies (the red panels), and the emission sources (the true color 499 

images from Google Earth), respectively. The global map in the middle presents the 500 

land use and land cover types over the globe. 501 

4. Discussion 502 

4.1 Comparison with previous studies 503 

To validate the effectiveness of our model and resulting XCO2 products, we 504 

compared our results with current studies which focuses on global XCO2 reconstruction 505 

(Table 5). As for the in-situ validation, most existing studies report high accuracy with 506 

almost all R2 over 0.9, RMSE less than 2 ppm. Regarding spatial resolution, the various 507 

products differ substantially, ranging from 1° down to 0.01°. It should be noted that 508 

increasing spatial resolution tends to compromise the accuracy of XCO2 retrievals. 509 

However, our XCO2 product achieves an optimal balance between spatial detail and 510 

measurement precision, exhibiting both high spatial resolution (0.05° ) and robust 511 

accuracy (R2=0.91, RMSE=1.54 ppm) in comprehensive evaluations. 512 

  513 
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Table 5. Comparison between current studies focusing on global XCO2 reconstruction 514 

Model Spatial resolution In-situ validation 

 (with TCCON) 

Reference 

R2 RMSE 

(ppm) 

MAE 

(ppm) 

Attentional-based LSTM 0.05° 0.91 1.54 1.22 Our study 

Deep forest 0.1° 0.96 1.01 - Zhang et al. (2023) 

S-STDCT 0.25° 0.95 1.18 - Wang et al. (2023) 

Spatiotemporal kriging 1° 0.97 1.13 0.88 Sheng et al. (2022) 

MLE & OI 0.5° 0.92 2.62 1.53 Jin et al. (2022) 

 ERT 0.01° 0.83 1.79 - Li et al. (2022) 

*S-STDCT: Self-supervised spatiotemporal discrete cosine transform; MLE & OI: maximum 515 

likelihood estimation method and optimal interpolation; ERT: Extremely randomized trees 516 

To evaluate the advancement of our XCO2 product, we compared it with original 517 

OCO-2 observations and publicly available global XCO2 datasets (Wang et al., 2023; 518 

Sheng et al., 2022; Zhang et al., 2023) across four regions: North America, Europe with 519 

northern Africa, Asia, and Oceania (Fig. 14) in January 2015. Despite monthly 520 

aggregation, OCO-2 data exhibit persistent spatial discontinuities, limiting the capacity 521 

to analyze monthly XCO2 variability at regional and national scales. Existing XCO2 522 

products (spatial resolution of 0.25°, 1°, and 0.1°, respectively) broadly reproduce 523 

large-scale XCO2 patterns but fail to resolve fine-scale heterogeneity. In comparison, 524 

our reconstructed XCO2, with the highest spatial resolution, provides a more detailed 525 

and accurate representation of the regional XCO2 patterns. For example, lower XCO2 526 

concentrations are clearly identified in eastern Canada (The first row of Fig.14) and 527 

Papua New Guinea (The fourth row of Fig. 14), regions characterized by dense forest 528 

cover. This correspondence highlights the substantial carbon sink potential of these 529 

forested areas. Our high-resolution product better identifies the CO2 heterogeneity 530 

associated with different land cover types, whereas the coarse-resolution products 531 

smooth these signals. This limitation primarily stems from the neglect of high-532 

resolution land cover dynamics and dependence on coarse-resolution 533 

assimilated/reanalysis datasets (e.g., CAMS XCO2, CarbonTracker), resulting in 534 

oversmoothed spatial patterns that obscure satellite-derived high-resolution signals. 535 

Unlike assimilation-dependent approaches, our method avoids XCO2 reanalysis inputs, 536 

preserving satellite-scale fidelity through high-resolution environmental variables 537 

modeling while maintaining precision. 538 
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 539 

Figure 14. Comparison between the OCO-2 XCO2 data, accessible XCO2 products 540 

from Wang et al. (2023), Sheng et al. (2022), Zhang et al. (2023), and our reconstructed 541 

XCO2 data in four regions, using the products of January of 2015 as an example. 542 

4.2 Limitations and future improvements 543 

Though our XCO2 products achieved full spatial coverage and high accuracy, 544 

however, there are still several limitations need further improvement. In terms of the 545 

satellite data, OCO-2 and OCO-3 provide different spatiotemporal coverages. 546 

Analyzing OCO-2 and OCO-3 data simultaneously may introduce several uncertainties 547 

due to these differences. However, OCO-3 has a similar sensor and inherits the retrieval 548 

algorithms of OCO-2. According to Taylor et al. (2023), the mean differences between 549 

OCO-3 and OCO-2 are around 0.2 ppm over land. Therefore, we suppose that the 550 

discrepancies between their datasets are minimal, and the combined analysis of data 551 

from these two satellites will have a negligible impact on our results. 552 

Additionally, though our model integrates multiple environmental variables 553 

associated with surface carbon flux variations, it does not account for vertical 554 

atmospheric transport. As XCO2 represents the column-averaged CO2 concentration, 555 

vertical redistribution of CO2 through atmospheric transport (e.g., mixing, convection) 556 

can alter the relationship between surface carbon fluxes and column concentrations 557 

(Shirai et al., 2012). The absence of such vertical transport indicators may reduce the 558 

model’s accuracy in regions or periods with strong vertical mixing. Future efforts will 559 
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incorporate vertical transport-related variables, such as planetary boundary layer height, 560 

vertical wind components, and other reanalysis-derived indicators, to better represent 561 

the atmospheric processes that influence the column-averaged CO₂ signal. 562 

Moreover, while OCO missions currently provide some of the most accurate 563 

carbon satellite-based XCO2 retrievals, they still encounter some retrieval errors and 564 

data gaps driven by algorithmic limitations and variable meteorological conditions. A 565 

critical research frontier is the refinement of XCO2 retrieval algorithms to mitigate 566 

systematic biases in high-aerosol-load regions (e.g., industrial regions and biomass-567 

burning plumes). Additionally, next-generation hyperspectral satellites, such as the 568 

upcoming CO2M (Copernicus Anthropogenic CO₂ Monitoring Mission) with 2×2 km2 569 

resolution and GeoCarb (Geostationary Carbon Observatory) offering hourly 570 

monitoring, will enhance spatial-temporal coverage and reduce cloud-induced data 571 

gaps (Reuter et al., 2025). 572 

5. Data availability 573 

The XCO2 dataset produced in this paper is available at 574 

https://doi.org/10.5281/zenodo.12706142 (Wang et al., 2024a). It includes monthly 575 

global XCO2 data at 0.05° resolution, covering the period from December 2014 to 576 

December 2021. The dataset is archived in netCDF4 format, with units in parts per 577 

million (ppm). 578 

6. Conclusion 579 

As a major driver of global warming, the monitoring of CO2 changes, especially 580 

anthropogenic CO2 emissions, is of critical importance. The launch of carbon satellites 581 

offers a significant advancement for CO2 monitoring. However, the limited spatial 582 

coverage of satellite observations constrains the utility of XCO2 data. While current 583 

XCO2 products exhibit relatively high validation accuracy, their coarse spatial 584 

resolution remains inadequate for applications such as regional- or county-level 585 

emission monitoring, as well as for the detection and inversion of large emission 586 

sources. To address these issues, we reconstructed a global full-coverage XCO2 product 587 

at a fine spatial resolution of 0.05° and temporal resolution of 1 month from 2015 to 588 

2021. The advanced deep learning method was adopted to model time-series XCO2 and 589 

incorporate terrestrial flux, anthropogenic flux and climatic impacts into the 590 
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parameterization process. Through comprehensive evaluations, including cross-591 

validation, in-situ validation, spatial distribution assessment and comparison with other 592 

XCO2 products, our reconstructed XCO2 products demonstrates significant 593 

improvements in both accuracy and spatial resolution. The main conclusions and 594 

contributions are as following: 595 

(1) The advanced At-BiLSTM model could successfully established the nonlinear 596 

relationship between satellite-derived XCO2 and a set of key environmental variables. 597 

And the reconstructed XCO2 based on our model shows relatively good agreement with 598 

TCCON XCO2, with R2, RMSE, and MAE values of 0.91, 1.58 ppm, and 1.22 ppm, 599 

respectively. 600 

(2) The reconstructed XCO2 product overcomes the extensive data gaps typically 601 

caused by narrow satellite swaths and retrieval interference from clouds and aerosols, 602 

achieving complete global coverage. Moreover, relative to existing publicly available 603 

full-coverage XCO2 datasets, our product offers the finest spatial resolution (0.05°) 604 

while maintaining comparable accuracy. 605 

(3) Our method avoids coarse XCO2 reanalysis inputs, preserving satellite-scale 606 

fidelity through high-resolution environmental variables modeling. Consequently, the 607 

products enable enhanced ability in identifying regional- and county-level XCO2 608 

hotpots, carbon emissions and fragmented carbon sinks, providing a robust basis for 609 

targeted global carbon governance policies. 610 
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