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Dear Editors and Referees,

On behalf of all co-authors, I thank you for your and for the anonymous referees’
comments on our manuscript entitled “A full-coverage satellite-based global
atmospheric CO2 dataset at 0.05° resolution from 2015 to 2021 for exploring global
carbon dynamics”. We appreciate the positive and constructive comments. We
carefully considered the comments and suggestions point-by-point and modified the

manuscript accordingly.

Please note that we used blue text for our responses to the comments and red text to
show changes in the revised manuscript. Overall, this manuscript has been re-edited

and proofread by all the authors.

We hope the revised version of the manuscript will be considered for publication in

Earth System Science Data.

Should you have any questions, please do not hesitate to contact me or any of the co-

authors. I am looking forward to hearing from you.

Thank you very much.

Sincerely,

Dr. Zhige Wang (on behalf of all co-authors)
College of Environmental and Resource Sciences
Zhejiang University,

Hangzhou 310058, China

E-mail: zgwang@zju.edu.cn



Response to Anonymous Referee #1:

This manuscript presents the development of a global dataset of column-averaged
dry-air mole fraction of CO. (XCO-) at high resolution (0.05 using multi satellite
products, and an improved deep learning model. They further evaluate new datasets
using the measurements from the TCCON network. While the study shows promise,
there are significant concerns regarding methodological transparency, and clarity of
explicit demonstration of advantages over existing satellite products. Addressing these

issues will greatly enhance the manuscript’s impact and originality.

Response: We sincerely appreciate your thorough review of our manuscript and the
valuable, constructive feedback. In response, we have expanded our discussion of the
methods, and the advantages of our products over existing XCO data. Our point-by-

point responses to your comments are provided below.

Q1. (1) The manuscript lacks in describing the methodological details of the improved
deep learning model. The authors should clearly outline the specific innovations or

modifications that lead to improved accuracy.

Response: Thanks for the suggestion. Given the complex temporal dependencies and
nonlinear relationships between atmospheric XCO; and a wide range of environmental
variables, we selected the Attention-based Bidirectional Long Short-Term Memory
(At-BiLSTM) model for this study. This choice is motivated by several key
considerations:

Firstly, LSTM networks are well-suited for modeling temporal sequences and
capturing long-range dependencies, which is essential for understanding the seasonal
variations of XCO; and dynamic feedbacks between XCO> and environmental drivers
such as temperature, vegetation activity, and surface pressure. The bidirectional
structure enhances this capability by allowing the model to consider both past and future
context in the time series, thereby providing a more comprehensive representation of
the underlying temporal dynamics.

Secondly, the incorporation of the attention mechanism enables the model to
dynamically focus on the most critical time steps when making predictions. This is

particularly important when dealing with high-dimensional input data comprising



multi-timestep variables, as it allows the model to assign different weights to different
input features, thereby improving interpretability and predictive performance.

Finally, the At-BiLSTM model’s ability to capture nonlinear relationships is
crucial in the context of atmospheric CO. modeling, where interactions between
variables are complex and nonlinear. By leveraging the strengths of deep learning, the
model can learn intricate patterns from the multi-source data that are difficult to capture
with traditional statistical or linear models.

Therefore, we chose At-BiLSTM model as a robust and flexible framework to
reconstructing XCO> at fine spatial resolution with improved accuracy and
spatiotemporal consistency.

We have included the necessary clarifications in 2.2 Deep learning-based XCO2
reconstruction:

“The LSTM model is a variant of RNN that excels in modeling temporal sequences
and capture long-range dependencies (Hochreiter and Schmidhuber, 1997; Graves et al.,
2005), which is essential for understanding the seasonal variations of XCO; and
dynamic feedbacks between XCO, and environmental drivers we selected. Each LSTM
cell includes an input gate, a forget gate and an output gate. The forget gate f;
determines which information from the previous time step to forget (Eq. 1):

ft = O'(Wf “[he—q,xe] + bf) (1)
where o, Wy, [hi_1,%:], and bs denotes the sigmoid activation function, vectors of
weights, concatenation of the hidden state at timestep #-/ and the current input, and the
bias vector, respectively.

The input gate i; governs the selective storage of the data in current time step,
and the output from forget gate f; and input gate i, are combined in the cell state C;
(Eq. 2-3):
ip = o(W; - [he—q,x] + by) (2)
Ce = fr - Ce—q +i¢ - tanh(We - [he—1, %] + bc) 3)
where W; and W, denote the weight matrix for the input gate and the current cell
state, respectively; b; and b, are the bias vector of the input gate and the current cell
state, respectively; C;_; and tanh represent the cell state at timestep z-/ and the
activation function.
Lastly, the output gate o, controls the flow of information from the cell state to

the next time step.



or = o(Wp * [he—1, %] + bo) (4)
where W, and b, denotes the weight matrix and the bias vector of the output gate,
respectively.

These gate structures effectively manage the flow of information within the LSTM,
enabling it to capture the temporal dependencies present in the data (Yuan et al., 2020;
Su et al., 2021). Bidirectional LSTM consists of two directional LSTM, in which the
data flows forward and backward (Graves et al., 2013). The bidirectional structure was
chosen to enhance the capability of LSTM by allowing the model to consider both past
and future context in the time series, thereby providing a more comprehensive
understanding of the underlying temporal dynamics.

We also defined a multi-dimensional attention layer behind the BILSTM to focus
on more critical timesteps and give them higher weights (Bahdanau et al., 2016). This
is particularly important when dealing with high-dimensional input data comprising
multi-timestep variables, as it allows the model to assign different weights to different
timesteps, thereby improving interpretability and predictive performance (Liu and Guo,
2019; Wang et al., 2024b). Based on this framework, the At-BiLSTM model offers a
robust and flexible framework for linking XCO» with multiple environmental variables
and reconstructing XCO; at fine spatial resolution with improved accuracy and
spatiotemporal consistency.” (Page 11-12 Line 262-298)

And we have also added the detailed deployment and output of this deep learning
model as follows:

“The At-BiLSTM consists of one input layer, three Bidirectional LSTM (Bi-
LSTM) layers, one attention layer, one dropout layer to prevent overfitting, and one
fully connected layer (i.e., dense layer) for the final output. Each Bi-LSTM includes
512 hidden units and tanh activation in both forward and backward directions. The
attention mechanism learns a weight distribution over the time dimension using a Dense
layer with softmax activation, then multiplies these weights with the BILSTM output
to emphasize important time steps. The detailed deployment and output are provided in
Table 3. The model was implemented using the TensorFlow and Keras deep learning
APIs in Python. A time step of 3 was used, and the model was trained for 200 epochs
with the mean squared error (MSE) as the loss function. A step-wise decay strategy was
applied to the learning rate, where the rate was reduced by a factor of 10 every 50
epochs to enhance training stability and convergence. Prior to training, all input data

were normalized using the mean and standard deviation of the dataset.”



Table 3. Architecture of the At-BiLSTM model

Layer Name Layer Parameters Output size
Bi-LSTM Input layer 3x16
Bi-LSTM1 units = 512, activation = ‘tanh’ 3x1024
Bi-LSTM2 units = 512, activation = ‘tanh’ 3 %1024
Bi-LSTM3 units = 512, activation = ‘tanh’ 3 x1024
Attention Permute - 10243
Dense units = 3, activation = ‘softmax’ 10243
Permute - 3 %1024
Multiply - 3 <1024
Dropout rate = 0.5
Full-connect Dense units =1 1

(Page 12-13 Line 299-313)

(2) Additionally, since the formation and distribution of XCO: are influenced by
atmospheric transport processes across multiple vertical layers (and not solely by
surface fluxes), it is important that the manuscript explains how these vertical transport
processes are incorporated into the model. If these processes are not accounted for, this

limitation should be explicitly acknowledged.

Response: Thank you for raising this important point. In this study, we estimated
column-averaged CO2 (XCOz2), and as such, vertical transport processes were not
explicitly incorporated into the modeling framework. However, we acknowledge that
vertical redistribution of CO» through atmospheric transport processes (e.g., mixing and
convection) can significantly influence the spatiotemporal patterns of XCOo,
particularly by altering the linkage between surface fluxes and column concentrations.
The absence of vertical transport indicators in our model may limit its accuracy,
especially in regions or periods characterized by strong vertical mixing. We have
included a discussion of this limitation and have highlighted it as a key area for future
model enhancement in 4.2 Limitations and future improvements:

“Additionally, though our model integrates multiple environmental variables
associated with surface carbon flux variations, it does not account for vertical
atmospheric transport. As XCO> represents the column-averaged CO2 concentration,

vertical redistribution of CO> through atmospheric transport (e.g., mixing, convection)



can alter the relationship between surface carbon fluxes and column concentrations.
The absence of such vertical transport indicators may reduce the model’s accuracy in
regions or periods with strong vertical mixing. Future efforts will incorporate vertical
transport-related variables, such as planetary boundary layer height, vertical wind
components, and other reanalysis-derived indicators, to better represent the
atmospheric processes that influence the column-averaged CO; signal.” (Page 25-26

Line 553-562)

Q2. Although the authors present a new global XCO: product at 0.05° resolution, the
distinct novelty and advantages over existing datasets remain unclear. The study should
explicitly state how the analyzed information significantly differs from or improves
upon existing satellite data. While validation against TCCON is good, the authors
should explicitly compare these results with those from existing datasets to clearly

demonstrate accuracy improvements.

Response: Thanks for the constructive suggestion. To validate the effectiveness of our
model and resulting XCO; products, we firstly compared our results with current
studies which focuses on global XCO> reconstruction. Afterwards, we compared our
products with original OCO-2 observations and three publicly available global XCO»
datasets to evaluate the advancement of our XCO> product. The comparison results
have added in 4.1 Comparison with previous studies as follow:

“To validate the effectiveness of our model and resulting XCO; products, we
compared our results with current studies which focuses on global XCO- reconstruction
(Table 5). As for the in-situ validation, most existing studies report high accuracy with
almost all R? over 0.9, RMSE less than 2 ppm. Regarding spatial resolution, the various
products differ substantially, ranging from 1° down to 0.01°. It should be noted that
increasing spatial resolution tends to compromise the accuracy of XCO; retrievals.
However, our XCO» product achieves an optimal balance between spatial detail and

measurement precision, exhibiting both high spatial resolution (0.05°) and robust

accuracy (R?>=0.91, RMSE =1.54 ppm) in comprehensive evaluations.



Table 5. Comparison between current studies focusing on global XCO» reconstruction

Model Spatial resolution In-situ validation Reference
(with TCCON)
R  RMSE MAE

(ppm)  (ppm)

Attentional-based LSTM 0.05< 0.91 1.54 1.22 Our study
Deep forest 0.1° 0.96 1.01 - Zhang et al. (2023)
S-STDCT 0.25° 095 118 - Wang et al. (2023)
Spatiotemporal kriging 1< 0.97 1.13 0.88  Shengetal. (2022)
MLE & Ol 0.5° 092 262 1.53 Jinetal. (2022)
ERT 0.01° 083 179 - Li et al. (2022)

*S-STDCT: Self-supervised spatiotemporal discrete cosine transform, MLE & OI: maximum
likelihood estimation method and optimal interpolation; ERT: Extremely randomized trees

To evaluate the advancement of our XCO; product, we compared it with original
OCO-2 observations and publicly available global XCO> datasets (Wang et al., 2023;
Sheng et al., 2022; Zhang et al., 2023) across four regions: North America, Europe with
northern Africa, Asia, and Oceania (Fig. 14) in January 2015. Despite monthly
aggregation, OCO-2 data exhibit persistent spatial discontinuities, limiting the capacity
to analyze monthly XCO; variability at regional and national scales. Existing XCO,
products (spatial resolution of 0.25°, 1°, and 0.1°, respectively) broadly reproduce
large-scale XCO> patterns but fail to resolve fine-scale heterogeneity. In comparison,
our reconstructed XCO», with the highest spatial resolution, provides a more detailed
and accurate representation of the regional XCO; patterns. For example, lower XCO»
concentrations are clearly identified in eastern Canada (The first row of Fig.14) and
Papua New Guinea (The fourth row of Fig. 14), regions characterized by dense forest
cover. This correspondence highlights the substantial carbon sink potential of these
forested areas. Our high-resolution product better identifies the CO» heterogeneity
associated with different land cover types, whereas the coarse-resolution products
smooth these signals. This limitation primarily stems from the neglect of high-
resolution land cover dynamics and dependence on coarse-resolution
assimilated/reanalysis datasets (e.g., CAMS XCO,, CarbonTracker), resulting in
oversmoothed spatial patterns that obscure satellite-derived high-resolution signals.
Unlike assimilation-dependent approaches, our method avoids XCO; reanalysis inputs,
preserving satellite-scale fidelity through high-resolution environmental variables

modeling while maintaining precision.”
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Figure 14. Comparison between the OCO-2 XCO, data, accessible XCO; products
from Wang et al. (2023), Sheng et al. (2022), Zhang et al. (2023), and our reconstructed
XCOz> data in four regions, using the products of January of 2015 as an example.
(Page 23-25 Line 504-542)

Q3. The study lacks specificity in demonstrating how the new dataset quantitatively
improves understanding relative to existing satellite data. Providing explicit examples

or quantifiable differences would enhance the significance of this study.

Response: Thanks for this suggestion. Compared with the existing satellite data and
reconstructed data, our products deliver two major enhancements: (1) Our
reconstructed XCO> product overcomes the extensive data gaps typically caused by
narrow satellite swaths and retrieval interference from clouds and aerosols, achieving
complete global coverage without compromising measurement accuracy. (2) Relative
to existing publicly available full-coverage global XCO: products, our product offers
the finest spatial resolution (0.05°). Moreover, our method avoids coarse XCO;
reanalysis inputs, preserving satellite-scale fidelity through high-resolution
environmental variables modeling. Consequently, the products enable enhanced spatial
details in identifying regional- and county-level XCO; hotpots, carbon emissions and
fragmented carbon sinks, providing a robust basis for targeted global carbon

governance policies at relevant scales. We have added explicit comparison between

30°0°0°N

30°0'0°N

0°0'0"

30°0'0"S



180°0'0"

0OCO-2/3 data and our products in section 3.2 Spatiotemporal pattern of global XCO2
as follow:

“The global distribution of annual mean XCO> concentration from 2015 to 2021
is illustrated in Fig. 9. The results reveal pronounced spatial heterogeneity in XCO-
concentrations, characterized by a marked hemispheric asymmetry. Specifically, the
Northern Hemisphere exhibited systematically elevated XCO; levels compared to the
Southern Hemisphere, consistent with latitudinal gradients driven by anthropogenic
emission patterns and atmospheric transport dynamics. Regionally, North America,
East Asia, Central Africa, and northwest of Southern America were identified as
persistent hotspots of enhanced XCO,. The high concentrations of XCO; in North
America and East Asia stem primarily from the fossil fuel emission from energy
production and transportation sectors. Whereas the tropical regions (i.e., Central Africa

and South America) are influenced by coupled biomass burning and land-use changes.
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Figure 9. The global spatial distribution of reconstructed annual mean XCO:
concentration from 2015 to 2021.

We also provided the annual OCO-2 XCO, data from 2015 to 2019 and OCO-3
XCO data from 2020 to 2021 in Fig. 10. Spatially, our reconstructed XCO> dataset

(Fig. 9) demonstrates robust consistency with satellite observations, particularly in mid-
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latitude industrialized regions where both datasets capture emission hotspots. Notably,
OCO-3 exhibits denser observational sampling due to its improved spatial coverage and
swath width compared to OCO-2’s narrow tracks. However, persistent data gaps remain
prevalent in both two satellite products after annual aggregating. These spatial coverage
limitations hinder fine-scale global analysis, particularly in assessing localized

emission sources and regional scale carbon flux.”
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Figure 10. The global spatial distribution of annual mean OCO-2/0CO-3 XCO

concentration from 2015 to 2021.
(Page 18-19 Line 404-429)

Additionally, we also added a detailed local-scale evaluation contrasting OCO-2/3
observations, our reconstructed XCO: product, and other publicly available global
XCO: datasets in 4.1 Comparison with previous studies, as follows:

“To evaluate the advancement of our XCO> product, we compared it with original
OCO-2 observations and publicly available global XCO; datasets (Wang et al., 2023;
Sheng et al., 2022; Zhang et al., 2023) across four regions: North America, Europe with
northern Africa, Asia, and Oceania (Fig. 14) in January 2015. Despite monthly
aggregation, OCO-2 data exhibit persistent spatial discontinuities, limiting the capacity
to analyze monthly XCO> variability at regional and national scales. Existing XCO»

products (spatial resolution of 0.25° 1°, and 0.1°, respectively) broadly reproduce
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large-scale XCO; patterns but fail to resolve fine-scale heterogeneity. In comparison,
our reconstructed XCO», with the highest spatial resolution, provides a more detailed
and accurate representation of the regional XCO, patterns. For example, lower XCO»
concentrations are clearly identified in eastern Canada (The first row of Fig.14) and
Papua New Guinea (The fourth row of Fig. 14), regions characterized by dense forest
cover. This correspondence highlights the substantial carbon sink potential of these
forested areas. Our high-resolution product better identifies the CO> heterogeneity
associated with different land cover types, whereas the coarse-resolution products
smooth these signals. This limitation primarily stems from the neglect of high-
resolution land cover dynamics and dependence on coarse-resolution
assimilated/reanalysis datasets (e.g., CAMS XCO,, CarbonTracker), resulting in
oversmoothed spatial patterns that obscure satellite-derived high-resolution signals.
Unlike assimilation-dependent approaches, our method avoids XCO: reanalysis inputs,
preserving satellite-scale fidelity through high-resolution environmental variables

modeling while maintaining precision.”
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Figure 14. Comparison between the OCO-2 XCO, data, accessible XCO> products
from Wang et al. (2023), Sheng et al. (2022), Zhang et al. (2023), and our reconstructed
XCO; data in four regions, using the products of January of 2015 as an example.

(Page 23-25 Line 517-542)
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Q4. The conclusion stating “promising advancement™ is too broad. It should be
explicitly clarified what specific policy, modeling, or scientific implications this

advancement has, thus highlighting concrete applications or benefits.

Response: Thanks for this constructive suggestion. We have revised the section 6.
Conclusion and explicitly clarified the key contributions of this study:

“The main conclusions and contributions are as follows:

(1) The advanced At-BiLSTM model could successfully established the nonlinear
relationship between satellite-derived XCO; and a set of key environmental variables.
And the reconstructed XCO- based on our model shows relatively good agreement with
TCCON XCO,, with R%, RMSE, and MAE values of 0.91, 1.58 ppm, and 1.22 ppm,
respectively.

(2) The reconstructed XCO; product overcomes the extensive data gaps typically
caused by narrow satellite swaths and retrieval interference from clouds and aerosols,
achieving complete global coverage. Moreover, relative to existing publicly available
full-coverage XCO, datasets, our product offers the finest spatial resolution (0.05°)
while maintaining comparable accuracy.

(3) Our method avoids coarse XCO> reanalysis inputs, preserving satellite-scale
fidelity through high-resolution environmental variables modeling. Consequently, the
products enable enhanced ability in identifying regional- and county-level XCO>
hotpots, carbon emissions and fragmented carbon sinks, providing a robust basis for
targeted global carbon governance policies.” (Page 27 Line 594-610)

We also changed the description in the Abstract:

“The XCO; dataset is publicly accessible on the Zenodo platform at
https://doi.org/10.5281/zenodo.12706142 (Wang et al., 2024a). Our products enable

enhanced ability in identifying regional- and county-level XCO:> hotpots, carbon
emissions and fragmented carbon sinks, providing a robust basis for targeted global

carbon governance policies.” (Page 2 Line 46-51)


https://doi.org/10.5281/zenodo.12706142

Response to Anonymous Referee #2:

This study reconstructed a global full-coverage XCO> product with a 0.05%%patial
resolution using multi-component satellite data and an advanced deep learning method.
However, the manuscript lacks innovation and sufficient detail in several aspects. My

comments are listed below:

Response: We are truly grateful for reviewing our manuscript and providing us with
constructive feedback. Considering your feedback, we have elaborated on the
innovation of our study and provided additional details in section 2. materials and
methods, 3. Results and 4. Discussion. We responded to your comments point by point

as below.

Q1. (1) The manuscript notes that the spatial resolution of current global full-coverage
XCO:2 products is relatively coarse, ranging from approximately 0.250 2<Line 128).
However, global XCO: products with a 0.1 spatial resolution already exist
(https://doi.org/10.1016/j.envint.2023.108057), indicating a need for more

comprehensive literature review.

Response: Thank you for pointing out this oversight and we apologize for omitting this
important reference. We have provided a more tailed literature review in 1.
introduction as follows:

“The second category is regression-based methods, which aim to fill the gap by
capturing the nonlinear relationship between multi-source XCO, measurements and
related covariates (He et al., 2022; Siabi et al., 2019; Zhang and Liu, 2023). The specific
methods include traditional statistical models, geostatistical models and machine
learning models. Siabi et al. (2019) employed the Artificial Neural Network (ANN) to
establish correlation between XCO; and eight environmental variables. Zhang and Liu
(2023) utilized the convolution neural networks (CNN) coupled with attention
mechanisms to produce full-coverage XCO; data across China. Recently, Zhang et al.
(2023) developed high spatial resolution global CO2 concentration data based on deep
forest model and multi-source satellite products.

Although the development of CO2 observation satellites and the application of

machine learning methods have significantly improved the estimation accuracy of



XCO», current studies still face several limitations. Firstly, due to the sparse distribution
of satellite XCO, data, previous studies always relied on assimilation and reanalysis

XCOz> data, such as CAMS XCO; with coarse spatial resolution (0.75°). This reliance

often results in final products that closely mirror the assimilation and reanalysis results,
leading to an oversmoothed distribution that undermines the high-resolution advantages
of satellite data. Furthermore, most current studies estimated the spatial distribution of
CO» primarily based on vegetation and meteorological information, with limited
consideration of the impact of human activities and emissions, despite these have
significant influence on atmospheric CO> variability. This limitation also led to
estimation results that fail to adequately capture the impact of anthropogenic emissions
on atmospheric CO,. In addition, most studies that employ regression models to
estimate full-coverage XCO; are limited to regional or national scales due to the weak
transferability of these models. Only a few studies (Zheng et al., 2023) have explored
global-scale CO; estimation using machine learning approaches, highlighting the need
for further research to enhance model generalizability and scalability. Therefore, we
intent to develop the global full-coverage XCO, products with the capacity to capture
both large-scale patterns and fine spatial details. This development leveraged satellite
carbon monitoring, multi-source high spatial resolution auxiliary variables and
advanced methods that exhibit spatiotemporal transferability to overcome the

aforementioned limitations.” (Page 4-5 Line 106-138)

(2) Although this study improves the XCO. spatial resolution to 0.05%9 its
innovation and advantages compared to other datasets remain unclear. It is

recommended to clearly articulate the study’s novelty and specific strengths.

Response: Thanks for this constructive suggestion. We added a more detailed
comparison with other datasets to highlight the innovation and advantages of our study
in section 4.1 Comparison with previous studies, as follows:

“To validate the effectiveness of our model and resulting XCO; products, we
compared our results with current studies which focuses on global XCO- reconstruction
(Table 5). As for the in-situ validation, most existing studies report high accuracy with
almost all R? over 0.9, RMSE less than 2 ppm. Regarding spatial resolution, the various

products differ substantially, ranging from 1° down to 0.01°. It should be noted that



increasing spatial resolution tends to compromise the accuracy of XCO> retrievals.
However, our XCO» product achieves an optimal balance between spatial detail and
measurement precision, exhibiting both high spatial resolution (0.05°) and robust
accuracy (R?>=0.91, RMSE =1.54 ppm) in comprehensive evaluations.

Table 5. Comparison between current studies focusing on global XCO»> reconstruction

Model Spatial resolution In-situ validation Reference
(with TCCON)
R?2  RMSE MAE

(ppm)  (ppm)

Attentional-based LSTM 0.05< 0.91 1.54 1.22 Our study
Deep forest 0.1° 0.96 1.01 - Zhang et al. (2023)
S-STDCT 0.25° 095 118 - Wang et al. (2023)
Spatiotemporal kriging 1° 0.97 1.13 0.88  Shengetal. (2022)
MLE & Ol 0.5° 092 262 1.53 Jin et al. (2022)
ERT 0.01< 083 1.79 - Li et al. (2022)

*S-STDCT: Self-supervised spatiotemporal discrete cosine transform; MLE & OI: maximum
likelihood estimation method and optimal interpolation; ERT: Extremely randomized trees

To evaluate the advancement of our XCO; product, we compared it with original
OCO-2 observations and publicly available global XCO, datasets (Wang et al., 2023;
Sheng et al., 2022; Zhang et al., 2023) across four regions: North America, Europe with
northern Africa, Asia, and Oceania (Fig. 14) in January 2015. Despite monthly
aggregation, OCO-2 data exhibit persistent spatial discontinuities, limiting the capacity
to analyze monthly XCO> variability at regional and national scales. Existing XCO-
products (spatial resolution of 0.25°, 1°, and 0.1°, respectively) broadly reproduce
large-scale XCOz patterns but fail to resolve fine-scale heterogeneity. In comparison,
our reconstructed XCO», with the highest spatial resolution, provides a more detailed
and accurate representation of the regional XCO; patterns. For example, lower XCO-
concentrations are clearly identified in eastern Canada (The first row of Fig.14) and
Papua New Guinea (The fourth row of Fig. 14), regions characterized by dense forest
cover. This correspondence highlights the substantial carbon sink potential of these
forested areas. Our high-resolution product better identifies the CO> heterogeneity
associated with different land cover types, whereas the coarse-resolution products
smooth these signals. This limitation primarily stems from the neglect of high-
resolution land cover dynamics and dependence on coarse-resolution

assimilated/reanalysis datasets (e.g., CAMS XCO,, CarbonTracker), resulting in



Europe & north Africa North America

Asia

Oceania

oversmoothed spatial patterns that obscure satellite-derived high-resolution signals.
Unlike assimilation-dependent approaches, our method avoids XCO; reanalysis inputs,
preserving satellite-scale fidelity through high-resolution environmental variables

modeling while maintaining precision.
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Figure 14. Comparison between the OCO-2 XCO; data, accessible XCO> products
from Wang et al. (2023), Sheng et al. (2022), Zhang et al. (2023), and our reconstructed
XCO; data in four regions, using the products of January of 2015 as an example.”
(Page 23-25 Line 504-542)

We also summarized the advantages and contributions of our study in 6.
Conclusion as follows:

“As a major driver of global warming, the monitoring of CO- changes, especially
anthropogenic CO; emissions, is of critical importance. The launch of carbon satellites
offers a significant advancement for CO> monitoring. However, the limited spatial
coverage of satellite observations constrains the utility of XCO> data. While current
XCO2 products exhibit relatively high validation accuracy, their coarse spatial
resolution remains inadequate for applications such as regional- or county-level
emission monitoring, as well as for the detection and inversion of large emission
sources. To address these issues, we reconstructed a global full-coverage XCO- product
at a fine spatial resolution of 0.05° and temporal resolution of 1 month from 2015 to

2021. The advanced deep learning method was adopted to model time-series XCO» and



incorporate terrestrial flux, anthropogenic flux and climatic impacts into the
parameterization process. Through comprehensive evaluations, including cross-
validation, in-situ validation, spatial distribution assessment and comparison with other
XCO2 products, our reconstructed XCO; products demonstrates significant
improvements in both accuracy and spatial resolution. The main conclusions and
contributions are as following:

(1) The advanced At-BiLSTM model could successfully established the nonlinear
relationship between satellite-derived XCO; and a set of key environmental variables.
And the reconstructed XCO» based on our model shows relatively good agreement with
TCCON XCO,, with R?, RMSE, and MAE values of 0.91, 1.58 ppm, and 1.22 ppm,
respectively.

(2) The reconstructed XCO» product overcomes the extensive data gaps typically
caused by narrow satellite swaths and retrieval interference from clouds and aerosols,
achieving complete global coverage. Moreover, relative to existing publicly available
full-coverage XCO> datasets, our product offers the finest spatial resolution (0.05°)
while maintaining comparable accuracy.

(3) Our method avoids coarse XCO; reanalysis inputs, preserving satellite-scale
fidelity through high-resolution environmental variables modeling. Consequently, the
products enable enhanced ability in identifying regional- and county-level XCO>
hotpots, carbon emissions and fragmented carbon sinks, providing a robust basis for
targeted global carbon governance policies.” (Page 26-27 Line 580-610)

And we have further elaborated on the specific strength of our products in 1.
Introduction as follows:

“In this study, we leveraged time-series OCO-2/3 XCO; data and various related
environmental variables from multi-source satellites to generate global full-coverage
XCOz products. The advanced deep learning method was adopted to model time-series
XCO; and incorporate terrestrial flux, anthropogenic flux and climatic impacts into the
parameterization process. These products are designed to meet the following criteria:
(1) high validated accuracy to ensure the reliability of the estimates, (2) high spatial
resolution capable of capturing fine-scale variations in CO: concentrations, and (3)
global full-coverage that overcomes missing values in satellite carbon observations.”

(Page S Line 139-146)



Q2. The model methodology section lacks essential explanations. The study employs
the Attention-based Bidirectional Long Short-Term Memory (At-BiLSTM) model for
global XCOz> reconstruction, but it does not justify the choice of this model or clarify
its advantages over traditional LSTM models. Additionally, the model’s interpretation
remains unclear. It is recommended to provide a rationale for selecting At-BiLSTM and

elucidate its specific benefits and interpretive framework.

Response: Thanks for this constructive suggestion. Given the complex temporal
dependencies and nonlinear relationships between atmospheric XCO; and a wide range
of environmental variables, we selected the Attention-based Bidirectional Long Short-
Term Memory (At-BiLSTM) model for this study. This choice is motivated by several
key considerations:

Firstly, LSTM networks are well-suited for modeling temporal sequences and
capturing long-range dependencies, which is essential for understanding the seasonal
variations of XCO> and dynamic feedbacks between XCO; and environmental drivers
such as temperature, vegetation activity, and surface pressure. The bidirectional
structure enhances this capability by allowing the model to consider both past and future
context in the time series, thereby providing a more comprehensive representation of
the underlying temporal dynamics.

Secondly, the incorporation of the attention mechanism enables the model to
dynamically focus on the most critical time steps when making predictions. This is
particularly important when dealing with high-dimensional input data comprising
multi-timestep variables, as it allows the model to assign different weights to different
input features, thereby improving interpretability and predictive performance.

Finally, the At-BiLSTM model’s ability to capture nonlinear relationships is
crucial in the context of atmospheric CO. modeling, where interactions between
variables are complex and nonlinear. By leveraging the strengths of deep learning, the
model can learn intricate patterns from the multi-source data that are difficult to capture
with traditional statistical or linear models.

Therefore, we chose At-BiLSTM model as a robust and flexible framework to
reconstructing XCO» at fine spatial resolution with improved accuracy and
spatiotemporal consistency.

We have included the necessary clarifications of its advancement in 2.2 Deep

learning-based XCO: reconstruction:



“The LSTM model is a variant of RNN that excels in modeling temporal sequences
and capture long-range dependencies (Hochreiter and Schmidhuber, 1997; Graves et al.,
2005), which is essential for understanding the seasonal variations of XCO> and
dynamic feedbacks between XCO, and environmental drivers we selected. Each LSTM
cell includes an input gate, a forget gate and an output gate. The forget gate f;
determines which information from the previous time step to forget (Eq. 1):

ft = oWy - [he_q,x¢] + bf) (1)
where o, Wy, [he—q,x.], and by denotes the sigmoid activation function, vectors of
weights, concatenation of the hidden state at timestep ¢-/ and the current input, and the
bias vector, respectively.

The input gate i, governs the selective storage of the data in current time step,
and the output from forget gate f; and input gate i, are combined in the cell state C,
(Eq. 2-3):
ip = o(W; - [he—q,xc] + by) (2)
Ce = fr - Ce—1 +i¢ - tanh(We - [he—1, %] + b¢) 3)
where W; and W, denote the weight matrix for the input gate and the current cell
state, respectively; b; and b, are the bias vector of the input gate and the current cell
state, respectively; C,_; and tanh represent the cell state at timestep 7~/ and the
activation function.

Lastly, the output gate o, controls the flow of information from the cell state to
the next time step (Eq. 4).

0¢ = o(Wp " [he—1,x¢] + by) 4)
where W, and b, denotes the weight matrix and the bias vector of the output gate,
respectively.

These gate structures effectively manage the flow of information within the LSTM,
enabling it to capture the temporal dependencies present in the data (Yuan et al., 2020;
Su et al., 2021). Bidirectional LSTM consists of two directional LSTM, in which the
data flows forward and backward (Graves et al., 2013). The bidirectional structure was
chosen to enhance the capability of LSTM by allowing the model to consider both past
and future context in the time series, thereby providing a more comprehensive
understanding of the underlying temporal dynamics.

We also defined a multi-dimensional attention layer behind the BiILSTM to focus

on more critical timesteps and give them higher weights (Bahdanau et al., 2016). This



is particularly important when dealing with high-dimensional input data comprising
multi-timestep variables, as it allows the model to assign different weights to different
timesteps, thereby improving interpretability and predictive performance (Liu and Guo,
2019; Wang et al., 2024b). Based on this framework, the At-BiLSTM model offers a
robust and flexible framework for linking XCO» with multiple environmental variables
and reconstructing XCO» at fine spatial resolution with improved accuracy and

spatiotemporal consistency.” (Page 11-12 Line 262-298)

And we have also added the detailed architecture of At-BiLSTM model as follows:

“The At-BiLSTM consists of one input layer, three Bidirectional LSTM (Bi-
LSTM) layers, one attention layer, one dropout layer to prevent overfitting, and one
fully connected layer (i.e., dense layer) for the final output. Each Bi-LSTM includes
512 hidden units and tanh activation in both forward and backward directions. The
attention mechanism learns a weight distribution over the time dimension using a Dense
layer with softmax activation, then multiplies these weights with the BILSTM output
to emphasize important time steps. The detailed deployment and output are provided in
Table 3. The model was implemented using the TensorFlow and Keras deep learning
APIs in Python. A time step of 3 was used, and the model was trained for 200 epochs
with the mean squared error (MSE) as the loss function. A step-wise decay strategy was
applied to the learning rate, where the rate was reduced by a factor of 10 every 50
epochs to enhance training stability and convergence. Prior to training, all input data
were normalized using the mean and standard deviation of the dataset.”

Table 3. Architecture of the At-BiLSTM model

Layer Name Layer Parameters Output size
Bi-LSTM Input layer - 3x16
Bi-LSTM1 units = 512, activation = ‘tanh’ 3x1024
Bi-LSTM2 units = 512, activation = ‘tanh’ 3 %1024
Bi-LSTM3 units = 512, activation = ‘tanh’ 3 <1024
Attention Permute - 1024>3
Dense units = 3, activation = ‘softmax’ 1024>3
Permute - 3 %1024
Multiply - 3 <1024
Dropout rate = 0.5

Full-connect Dense units =1 1




(Page 12-13 Line 299-313)

Q3. (1) The discussion section requires further elaboration. It should comprehensively
address the advantages of the model used and the resulting full-coverage XCO. product

compared to other models and datasets.

Response: Thank you for this valuable comment. We have revised the discussion
section, and added two sub-section: 4.1 Comparison with previous studies and 4.2
Limitations and future improvements. In added section 4.1 Comparison with
previous studies, we elaborated the comparison with previous studies, and clarified the
advantages of the full-coverage XCO- product we generated:

“To validate the effectiveness of our model and resulting XCO; products, we
compared our results with current studies which focuses on global XCO; reconstruction
(Table 5). As for the in-situ validation, most existing studies report high accuracy with
almost all R? over 0.9, RMSE less than 2 ppm. Regarding spatial resolution, the various
products differ substantially, ranging from 1° down to 0.01°. It should be noted that
increasing spatial resolution tends to compromise the accuracy of XCO; retrievals.
However, our XCO> product achieves an optimal balance between spatial detail and

measurement precision, exhibiting both high spatial resolution (0.05°) and robust

accuracy (R*=0.91, RMSE =1.54 ppm) in comprehensive evaluations.

Table 5. Comparison between current studies focusing on global XCO- reconstruction

Model Spatial resolution In-situ validation Reference
(with TCCON)
R  RMSE MAE

(ppm)  (ppm)

Attentional-based LSTM 0.05< 0.91 1.54 1.22 Our study
Deep forest 0.1< 0.96 1.01 - Zhang et al. (2023)
S-STDCT 0.25< 095 118 - Wang et al. (2023)
Spatiotemporal kriging 1< 0.97 1.13 0.88  Sheng et al. (2022)
MLE & Ol 0.5° 092 262 1.53 Jinetal. (2022)
ERT 0.01= 0.83 1.79 - Lietal. (2022)

*S-STDCT: Self-supervised spatiotemporal discrete cosine transform, MLE & OI: maximum
likelihood estimation method and optimal interpolation; ERT: Extremely randomized trees

To evaluate the advancement of our XCO; product, we compared it with original

OCO-2 observations and publicly available global XCO, datasets (Wang et al., 2023;



Sheng et al., 2022; Zhang et al., 2023) across four regions: North America, Europe with
northern Africa, Asia, and Oceania (Fig. 14) in January 2015. Despite monthly
aggregation, OCO-2 data exhibit persistent spatial discontinuities, limiting the capacity
to analyze monthly XCO> variability at regional and national scales. Existing XCO:
products (spatial resolution of 0.25° 1°, and 0.1°, respectively) broadly reproduce
large-scale XCO; patterns but fail to resolve fine-scale heterogeneity. In comparison,
our reconstructed XCO», with the highest spatial resolution, provides a more detailed
and accurate representation of the regional XCO, patterns. For example, lower XCO»
concentrations are clearly identified in eastern Canada (The first row of Fig. 14) and
Papua New Guinea (The fourth row of Fig. 14), regions characterized by dense forest
cover. This correspondence highlights the substantial carbon sink potential of these
forested areas. Our high-resolution product better identifies the CO> heterogeneity
associated with different land cover types, whereas the coarse-resolution products
smooth these signals. This limitation primarily stems from the neglect of high-
resolution land cover dynamics and dependence on coarse-resolution
assimilated/reanalysis datasets (e.g., CAMS XCO,, CarbonTracker), resulting in
oversmoothed spatial patterns that obscure satellite-derived high-resolution signals.
Unlike assimilation-dependent approaches, our method avoids XCO; reanalysis inputs,
preserving satellite-scale fidelity through high-resolution environmental variables

modeling while maintaining precision.
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Figure 14. Comparison between the OCO-2 XCO: data, accessible XCO; products



from Wang et al. (2023), Sheng et al. (2022), Zhang et al. (2023), and our reconstructed
XCO; data in four regions, using the products of January of 2015 as an example.”

(Page 23-25 Line 504-542)

(2) Additionally, the global spatial distribution characteristics of XCO, need more
detailed discussion.

Response: Many thanks for this comment. We have added two figures and more
description of the global spatial distribution characteristics of XCO; in 3.2
Spatiotemporal pattern of global XCO: as follows:

“The global distribution of annual mean XCO:> concentration from 2015 to 2021
is illustrated in Fig. 9. The results reveal pronounced spatial heterogeneity in XCO-
concentrations, characterized by a marked hemispheric asymmetry. Specifically, the
Northern Hemisphere exhibited systematically elevated XCO: levels compared to the
Southern Hemisphere, consistent with latitudinal gradients driven by anthropogenic
emission patterns and atmospheric transport dynamics. Regionally, North America,
East Asia, Central Africa, and northwest of Southern America were identified as
persistent hotspots of enhanced XCO». The high concentrations of XCO> in North
America and East Asia stem primarily from the fossil fuel emission from energy
production and transportation sectors. Whereas the tropical regions (i.e., Central Africa

and South America) are influenced by coupled biomass burning and land-use changes.
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Figure 9. The global spatial distribution of reconstructed annual mean XCO:

concentration from 2015 to 2021.
We also provided the annual OCO-2 XCO; data from 2015 to 2019 and OCO-3
XCO> data from 2020 to 2021 in Fig. 10. Spatially, our reconstructed XCO- dataset

demonstrates robust consistency with satellite observations, particularly in mid-latitude

industrialized regions where both datasets capture emission hotspots. Notably, OCO-3

exhibits denser observational sampling due to its improved spatial coverage and swath

width compared to OCO-2’s narrow tracks. However, persistent data gaps remain

prevalent in both two satellite products after annual aggregating. These spatial coverage

limitations hinder fine-scale global analysis, particularly in assessing localized

emission sources and regional scale carbon flux.”
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(Page 18-20 Line 404-429)

Q4. (1) In the conclusion or discussion section, please clearly specify the concrete data
or scientific significance of the high-resolution XCOx.

Response: Thanks for this constructive suggestion. We have provided further examples
to introduce the significance of high-resolution XCO: products, in 4.1 Comparison
with previous studies we supplemented the comparison with other coarse-resolution
data products as follows:

“To evaluate the advancement of our XCO> product, we compared it with original
OCO-2 observations and publicly available global XCO> datasets (Wang et al., 2023;
Sheng et al., 2022; Zhang et al., 2023) across four regions: North America, Europe with
northern Africa, Asia, and Oceania (Fig. 13) in January 2015. Despite monthly
aggregation, OCO-2 data exhibit persistent spatial discontinuities, limiting the capacity
to analyze monthly XCO, variability at regional and national scales. Existing XCO,
products (spatial resolution of 0.25° 1°, and 0.1°, respectively) broadly reproduce

large-scale XCO> patterns but fail to resolve fine-scale heterogeneity. In comparison,

30008 000" 30°00'N



our reconstructed XCO», with the highest spatial resolution, provides a more detailed
and accurate representation of the regional XCO; patterns. For example, lower XCO-
concentrations are clearly identified in eastern Canada (The first row of Fig. 13) and
Papua New Guinea (The fourth row of Fig. 13), regions characterized by dense forest
cover. This correspondence highlights the substantial carbon sink potential of these
forested areas. Our high-resolution product better identifies the CO> heterogeneity
associated with different land cover types, whereas the coarse-resolution products
smooth these signals. This limitation primarily stems from the neglect of high-
resolution land cover dynamics and dependence on coarse-resolution
assimilated/reanalysis datasets (e.g., CAMS XCO,, CarbonTracker), resulting in
oversmoothed spatial patterns that obscure satellite-derived high-resolution signals.
Unlike assimilation-dependent approaches, our method avoids XCO; reanalysis inputs,
preserving satellite-scale fidelity through high-resolution environmental variables

modeling while maintaining precision.”

0CO0-2 XCO, Wang et al. (2023) Sheng et al. (2022) Zhang et al. (2023) Reconstructed XCO,
. — _ﬁ"‘_‘_ Y B
L : & AL
8 -, LE ~ 4
£ : '* E Y
\ ) g
£ \. i :
2 . = . B
N 5 1 e
© 120°00°'W 80°00"W  120°0'0'W 60°00°W 120°00'W 80°00"W 120°00'W 60°0'0°'W  120°00°W 60°00"W
ﬁ PN T
< P b e “‘
<
5
z
b & 1 [ & 3
o ) : LY P 3
-3 L '
: Y. T\ LA
w

000" 000" 000"

30°00°N

Asia
‘%1 1 ..
= ';‘f-.

120°00"E 120°00°E 120°00°E

‘\_,u“’ &
.g i
3
c 8
v =
120°00°E 120°00°E 120°00°E 120°00°E
XCO:(ppm) NN C —
388.24 408.78

Figure 14. Comparison between the OCO-2 XCO, data, accessible XCO> products
from Wang et al. (2023), Sheng et al. (2022), Zhang et al. (2023), and our reconstructed
XCO; data in four regions, using the products of January of 2015 as an example.
(Page 24-25 Line 517-542)

And we also elaborated further in 6. Conclusion as follows:

“As a major driver of global warming, the monitoring of CO> changes, especially

anthropogenic CO; emissions, is of critical importance. The launch of carbon satellites



offers a significant advancement for CO> monitoring. However, the limited spatial
coverage of satellite observations constrains the utility of XCO> data. While current
XCO; products exhibit relatively high validation accuracy, their coarse spatial
resolution remains inadequate for applications such as regional- or county-level
emission monitoring, as well as for the detection and inversion of large emission
sources. To address these issues, we reconstructed a global full-coverage XCO- product
at a fine spatial resolution of 0.05° and temporal resolution of 1 month from 2015 to
2021. The advanced deep learning method was adopted to model time-series XCO» and
incorporate terrestrial flux, anthropogenic flux and climatic impacts into the
parameterization process. Through comprehensive evaluations, including cross-
validation, in-situ validation, spatial distribution assessment and comparison with other
XCOz products, our reconstructed XCO; products demonstrates significant
improvements in both accuracy and spatial resolution. The main conclusions and
contributions are as following:

(1) The advanced At-BiLSTM model could successfully established the nonlinear
relationship between satellite-derived XCO- and a set of key environmental variables.
And the reconstructed XCO» based on our model shows relatively good agreement with
TCCON XCO,, with R?, RMSE, and MAE values of 0.91, 1.58 ppm, and 1.22 ppm,
respectively.

(2) The reconstructed XCO> product overcomes the extensive data gaps typically
caused by narrow satellite swaths and retrieval interference from clouds and aerosols,
achieving complete global coverage. Moreover, relative to existing publicly available
full-coverage XCO» datasets, our product offers the finest spatial resolution (0.05°)
while maintaining comparable accuracy.

(3) Our method avoids coarse XCO; reanalysis inputs, preserving satellite-scale
fidelity through high-resolution environmental variables modeling. Consequently, the
products enable enhanced ability in identifying regional- and county-level XCO>
hotpots, carbon emissions and fragmented carbon sinks, providing a robust basis for

targeted global carbon governance policies.” (Page 26-27 Line 580-610)

(2) Additionally, provide an outlook for future research, outlining key issues to
address in global XCOz or CO> concentration reconstruction studies, such as critical

challenges or priorities that should be focused on.



Response: Thank you for this comment. We have added section 4.2 Limitations and
future improvements to provide a more detailed discussion of key challenges and the
future outlook. Two key points are highlighted: firstly, the incorporation of auxiliary
variables that capture vertical CO: transport. Secondly, the enhancement of satellite
observation coverage and accuracy to minimize data gaps and retrieval errors. The
revised context is as follows:

“Additionally, though our model integrates multiple environmental variables
associated with surface carbon flux variations, it does not account for vertical
atmospheric transport. As XCO; represents the column-averaged CO> concentration,
vertical redistribution of CO> through atmospheric transport (e.g., mixing, convection)
can alter the relationship between surface carbon fluxes and column concentrations.
The absence of such vertical transport indicators may reduce the model’s accuracy in
regions or periods with strong vertical mixing. Future efforts will incorporate vertical
transport-related variables, such as planetary boundary layer height, vertical wind
components, and other reanalysis-derived indicators, to better represent the
atmospheric processes that influence the column-averaged CO: signal.

Moreover, while OCO missions currently provide some of the most accurate
carbon satellite-based XCO; retrievals, they still encounter some retrieval errors and
data gaps driven by algorithmic limitations and variable meteorological conditions. A
critical research frontier is the refinement of XCO: retrieval algorithms to mitigate
systematic biases in high-aerosol-load regions (e.g., industrial regions and biomass-
burning plumes). Additionally, next-generation hyperspectral satellites, such as the
upcoming CO2M (Copernicus Anthropogenic CO2 Monitoring Mission) with 2x2 km?
resolution and GeoCarb (Geostationary Carbon Observatory) offering hourly
monitoring, will enhance spatial-temporal coverage and reduce cloud-induced data

gaps (Reuter et al., 2025).” (Page 25-26 Line 553-572)

Q5. The construction of the OCO dataset is unclear. For instance, it is not specified
how grids containing both OCO-2 and OCO-3 data within the same time period were

processed.

Response: Thanks for this comment. In this study, given that OCO-3 has more

intensive observations, we utilized the OCO-3 XCO> data for all available year (i.e.,

2020-2021) and used the data of OCO-2 for the other years (i.e., 2015-2019). Although



OCO-3 began providing data in August 2019, we used OCO-2 data for entire 2019 to
maintain consistency in our monthly estimates.

In addition, analysing OCO-2 and OCO-3 data simultaneously may introduce
several uncertainties due to their different spatiotemporal coverages. However, OCO-3
has a similar sensor with OCO-2 and inherits the retrieval algorithms of OCO-2.
According to Taylor et al. (2023), the mean differences between OCO-3 and OCO-2
are around 0.2 ppm over land. Therefore, we suppose that the discrepancies between
their datasets are minimal, and the combined analysis of data from these two satellites
will have a negligible impact on our results. And we discussed this in 4.2 Limitations
and future improvements as follows:

“In terms of the satellite data, OCO-2 and OCO-3 provide different spatiotemporal
coverages. Analyzing OCO-2 and OCO-3 data simultaneously may introduce several
uncertainties due to these differences. However, OCO-3 has a similar sensor and
inherits the retrieval algorithms of OCO-2. According to Taylor et al. (2023), the mean
differences between OCO-3 and OCO-2 are around 0.2 ppm over land. Therefore, we
suppose that the discrepancies between their datasets are minimal, and the combined
analysis of data from these two satellites will have a negligible impact on our results.”

(Page 25 Line 545-552)

Q6. The study utilized various satellite-derived variables, including land flux,
anthropogenic flux, and climatic impacts, for global XCO,. However, it is unclear
whether these satellite data have gaps, particularly in high-latitude regions. If gaps exist,

the study should specify how they were addressed.

Response: Many thanks for this constructive comment. Among all ancillary variables,
those related to climatic impacts from ERAS-Land, as well as land use and cover change
(LUCC), vegetation continuous fields (VCF), and nighttime lights (NTL), provide full
spatial coverage. Given that the XCO: reconstruction was performed on a monthly scale,
all satellite-derived variables were aggregated to monthly averages using Google Earth
Engine (GEE). During this averaging process, most data gaps were effectively filled.
For variables that still contained missing values after monthly aggregation, we applied

bilinear interpolation methods to fill the remaining gaps.



We have added the description of data processing in 2.1.3 Environmental
variables as follows:

“All data were converted to monthly time-series. The bilinear interpolation
approach was employed both to fill gaps in the ancillary data and to convert the data at
different spatial resolutions to 0.05° resolution.” (Page 10 Line 252-254)

Q7. Line 243-244. “.. spatial resolutions to 1 km resolution”. The ‘1 km resolution’ is

inconsistent with the study’s focus on a 0.05°

Response: Thank you for your correction. We apologize for the typographical error
and all data have been processed at the resolution of 0.05 match the XCO: products.
We have revised these accordingly.

Q8. The manuscript contains several typo errors. For instance, in Line 303, “Figure 5.
(a) Density scatterplots of sample-based...” includes an unnecessary ‘(a)’. In Line 314,
the value ‘1.21° should be corrected to “1.22 ppm’. These errors should be revised for

accuracy and clarity.

Response: Thank you for the correction. We have revised these accordingly and
checked the full manuscript to avoid such typo errors.



