
Response to Anonymous Referee #2: 

This study reconstructed a global full-coverage XCO2 product with a 0.05º spatial 

resolution using multi-component satellite data and an advanced deep learning method. 

However, the manuscript lacks innovation and sufficient detail in several aspects. My 

comments are listed below: 

 

Response: We are truly grateful for reviewing our manuscript and providing us with 

constructive feedback. Considering your feedback, we have elaborated on the 

innovation of our study and provided additional details in section 2. materials and 

methods, 3. Results and 4. Discussion. We responded to your comments point by point 

as below. 

 

Q1. (1) The manuscript notes that the spatial resolution of current global full-coverage 

XCO2 products is relatively coarse, ranging from approximately 0.25º to 2º (Line 128). 

However, global XCO2 products with a 0.1º spatial resolution already exist 

(https://doi.org/10.1016/j.envint.2023.108057), indicating a need for more 

comprehensive literature review.  

 

Response: Thank you for pointing out this oversight and we apologize for omitting this 

important reference. We have provided a more tailed literature review in 1. 

introduction as follows: 

“The second category is regression-based methods, which aim to fill the gap by 

capturing the nonlinear relationship between multi-source XCO2 measurements and 

related covariates (He et al., 2022; Siabi et al., 2019; Zhang and Liu, 2023). The specific 

methods include traditional statistical models, geostatistical models and machine 

learning models. Siabi et al. (2019) employed the Artificial Neural Network (ANN) to 

establish correlation between XCO2 and eight environmental variables. Zhang and Liu 

(2023) utilized the convolution neural networks (CNN) coupled with attention 

mechanisms to produce full-coverage XCO2 data across China. Recently, Zhang et al. 

(2023) developed high spatial resolution global CO2 concentration data based on deep 

forest model and multi-source satellite products. 

Although the development of CO2 observation satellites and the application of 

machine learning methods have significantly improved the estimation accuracy of 



XCO2, current studies still face several limitations. Firstly, due to the sparse distribution 

of satellite XCO2 data, previous studies always relied on assimilation and reanalysis 

XCO2 data, such as CAMS XCO2 with coarse spatial resolution (0.75°). This reliance 

often results in final products that closely mirror the assimilation and reanalysis results, 

leading to an oversmoothed distribution that undermines the high-resolution advantages 

of satellite data. Furthermore, most current studies estimated the spatial distribution of 

CO2 primarily based on vegetation and meteorological information, with limited 

consideration of the impact of human activities and emissions, despite these have 

significant influence on atmospheric CO2 variability. This limitation also led to 

estimation results that fail to adequately capture the impact of anthropogenic emissions 

on atmospheric CO2. In addition, most studies that employ regression models to 

estimate full-coverage XCO2 are limited to regional or national scales due to the weak 

transferability of these models. Only a few studies (Zheng et al., 2023) have explored 

global-scale CO2 estimation using machine learning approaches, highlighting the need 

for further research to enhance model generalizability and scalability.” 

 

(2) Although this study improves the XCO2 spatial resolution to 0.05º, its 

innovation and advantages compared to other datasets remain unclear. It is 

recommended to clearly articulate the study’s novelty and specific strengths. 

 

Response: Thanks for this constructive suggestion. We added a more detailed 

comparison with other datasets to highlight the innovation and advantages of our study 

in section 4.1 Comparison with previous studies, as follows: 

“To validate the effectiveness of our model and resulting XCO2 products, we 

compared our results with current studies which focuses on global XCO2 reconstruction 

(Table 5). As for the in-situ validation, most existing studies report high accuracy with 

almost all R2 over 0.9, RMSE less than 2 ppm. Regarding spatial resolution, the various 

products differ substantially, ranging from 1° down to 0.01°. It should be noted that 

increasing spatial resolution tends to compromise the accuracy of XCO2 retrievals. 

However, our XCO2 product achieves an optimal balance between spatial detail and 

measurement precision, exhibiting both high spatial resolution (0.05 ° ) and robust 

accuracy (R2=0.91, RMSE =1.54 ppm) in comprehensive evaluations. 

 



Table 5. Comparison between current studies focusing on global XCO2 reconstruction 

Model Spatial resolution In-situ validation 

 (with TCCON) 

Reference 

R2 RMSE 

(ppm) 

MAE 

(ppm) 

Attentional-based LSTM 0.05° 0.91 1.54 1.22 Our study 

Deep forest 0.1° 0.96 1.01 - Zhang et al. (2023) 

S-STDCT 0.25° 0.95 1.18 - Wang et al. (2023) 

Spatiotemporal kriging 1° 0.97 1.13 0.88 Sheng et al. (2022) 

MLE & OI 0.5° 0.92 2.62 1.53 Jin et al. (2022) 

 ERT 0.01° 0.83 1.79 - Li et al. (2022) 

*S-STDCT: Self-supervised spatiotemporal discrete cosine transform, MLE & OI: maximum 

likelihood estimation method and optimal interpolation; ERT: Extremely randomized trees 

To evaluate the advancement of our XCO2 product, we compared it with original 

OCO-2 observations and publicly available global XCO2 datasets (Wang et al., 2023; 

Sheng et al., 2022; Zhang et al., 2023) across four regions: North America, Europe with 

northern Africa, Asia, and Oceania (Fig. 13) in January 2015. Despite monthly 

aggregation, OCO-2 data exhibit persistent spatial discontinuities, limiting the capacity 

to analyze monthly XCO2 variability at regional and national scales. Existing XCO2 

products (spatial resolution of 0.25°, 1°, and 0.1°, respectively) broadly reproduce 

large-scale XCO2 patterns but fail to resolve fine-scale heterogeneity. In comparison, 

our reconstructed XCO2, with the highest spatial resolution, provides a more detailed 

and accurate representation of the regional XCO2 patterns. For example, lower XCO2 

concentrations are clearly identified in eastern Canada (The first row of Fig.13) and 

Papua New Guinea (The fourth row of Fig. 13), regions characterized by dense forest 

cover. This correspondence highlights the substantial carbon sink potential of these 

forested areas. Our high-resolution product better identifies the CO2 heterogeneity 

associated with different land cover types, whereas the coarse-resolution products 

smooth these signals. This limitation primarily stems from the neglect of high-

resolution land cover dynamics and dependence on coarse-resolution 

assimilated/reanalysis datasets (e.g., CAMS XCO2, CarbonTracker), resulting in 

oversmoothed spatial patterns that obscure satellite-derived high-resolution signals. 

Unlike assimilation-dependent approaches, our method avoids XCO2 reanalysis inputs, 

preserving satellite-scale fidelity through high-resolution environmental variables 

modeling while maintaining precision.”  



 

 

Figure 13. Comparison between the OCO-2 XCO2 data, accessible XCO2 products 

from Wang et al. (2023), Sheng et al. (2022), Zhang et al. (2023), and our reconstructed 

XCO2 data in four regions, using the products of January of 2015 as an example. 

And we also summarized the advantages and contributions of our study in 6. 

Conclusion as follows: 

“As a major driver of global warming, the monitoring of CO2 changes, especially 

anthropogenic CO2 emissions, is of critical importance. The launch of carbon satellites 

offers a significant advancement for CO2 monitoring. However, the limited spatial 

coverage of satellite observations constrains the utility of XCO2 data. While current 

XCO2 products exhibit relatively high validation accuracy, their coarse spatial 

resolution remains inadequate for applications such as regional- or county-level 

emission monitoring, as well as for the detection and inversion of large emission 

sources. To address these issues, we reconstructed a global full-coverage XCO2 product 

at a fine spatial resolution of 0.05° and temporal resolution of 1 month from 2015 to 

2021. The advanced deep learning method was adopted to model time-series XCO2 and 

incorporate terrestrial flux, anthropogenic flux and climatic impacts into the 

parameterization process. Through comprehensive evaluations, including cross-

validation, in-situ validation, spatial distribution assessment and comparison with other 

XCO2 products, our reconstructed XCO2 products demonstrates significant 

improvements in both accuracy and spatial resolution. The main conclusions and 



contributions are as following: 

(1) The advanced At-BiLSTM model could successfully established the nonlinear 

relationship between satellite-derived XCO2 and a set of key environmental variables. 

And the reconstructed XCO2 based on our model shows relatively good agreement with 

TCCON XCO2, with R2, RMSE, and MAE values of 0.91, 1.58 ppm, and 1.22 ppm, 

respectively.  

(2) The reconstructed XCO2 product overcomes the extensive data gaps typically 

caused by narrow satellite swaths and retrieval interference from clouds and aerosols, 

achieving complete global coverage. Moreover, relative to existing publicly available 

full-coverage XCO2 datasets, our product offers the finest spatial resolution (0.05°) 

while maintaining comparable accuracy. 

(3) Our method avoids coarse XCO2 reanalysis inputs, preserving satellite-scale 

fidelity through high-resolution environmental variables modeling. Consequently, the 

products enable enhanced ability in identifying regional- and county-level XCO2 

hotpots, carbon emissions and fragmented carbon sinks, providing a robust basis for 

targeted global carbon governance policies.” 

 

Q2. The model methodology section lacks essential explanations. The study employs 

the Attention-based Bidirectional Long Short-Term Memory (At-BiLSTM) model for 

global XCO2 reconstruction, but it does not justify the choice of this model or clarify 

its advantages over traditional LSTM models. Additionally, the model’s interpretation 

remains unclear. It is recommended to provide a rationale for selecting At-BiLSTM and 

elucidate its specific benefits and interpretive framework. 

 

Response: Thanks for this constructive suggestion. Given the complex temporal 

dependencies and nonlinear relationships between atmospheric XCO2 and a wide range 

of environmental variables, we selected the Attention-based Bidirectional Long Short-

Term Memory (At-BiLSTM) model for this study. This choice is motivated by several 

key considerations: 

Firstly, LSTM networks are well-suited for modeling temporal sequences and 

capturing long-range dependencies, which is essential for understanding the seasonal 

variations of XCO2 and dynamic feedbacks between XCO2 and environmental drivers 

such as temperature, vegetation activity, and surface pressure. The bidirectional 

structure enhances this capability by allowing the model to consider both past and future 



context in the time series, thereby providing a more comprehensive representation of 

the underlying temporal dynamics. 

Secondly, the incorporation of the attention mechanism enables the model to 

dynamically focus on the most critical time steps when making predictions. This is 

particularly important when dealing with high-dimensional input data comprising 

multi-timestep variables, as it allows the model to assign different weights to different 

input features, thereby improving interpretability and predictive performance. 

Finally, the At-BiLSTM model’s ability to capture nonlinear relationships is 

crucial in the context of atmospheric CO₂ modeling, where interactions between 

variables are complex and nonlinear. By leveraging the strengths of deep learning, the 

model can learn intricate patterns from the multi-source data that are difficult to capture 

with traditional statistical or linear models. 

Therefore, we chose At-BiLSTM model as a robust and flexible framework to 

reconstructing XCO2 at fine spatial resolution with improved accuracy and 

spatiotemporal consistency.  

We have included the necessary clarifications of its advancement in 2.2 Deep 

learning-based XCO2 reconstruction: 

“The LSTM model is a variant of RNN that excels in modeling temporal sequences 

and capture long-range dependencies (Hochreiter and Schmidhuber, 1997; Graves et al., 

2005), which is essential for understanding the seasonal variations of XCO2 and 

dynamic feedbacks between XCO2 and environmental drivers we selected. Each LSTM 

cell includes an input gate, a forget gate and an output gate. The forget gate 𝑓𝑡 

determines which information from the previous time step to forget (Eq. 1): 

 𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (1) 

where 𝜎 , 𝑊𝑓 , [ℎ𝑡−1, 𝑥𝑡], and 𝑏𝑓  denotes the sigmoid activation function, vectors of 

weights, concatenation of the hidden state at timestep t-1 and the current input, and the 

bias vector, respectively.    

 The input gate 𝑖𝑡 governs the selective storage of the data in current time step, 

and the output from forget gate 𝑓𝑡 and input gate 𝑖𝑡 are combined in the cell state 𝐶𝑡 

(Eq. 2-3):  

 𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (2) 

 𝐶𝑡 = 𝑓𝑡 ∙ 𝐶𝑡−1 + 𝑖𝑡 ∙ 𝑡𝑎𝑛ℎ⁡(𝑊𝐶 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) (3) 

where 𝑊𝑖 and 𝑊𝐶 denote the weight matrix for the input gate and the current cell 



state, respectively; 𝑏𝑖 and 𝑏𝑐 are the bias vector of the input gate and the current cell 

state, respectively; 𝐶𝑡−1  and 𝑡𝑎𝑛ℎ  represent the cell state at timestep t-1 and the 

activation function. 

Lastly, the output gate 𝑜𝑡⁡controls the flow of information from the cell state to 

the next time step (Eq. 4).  

 𝑜𝑡 = 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (4) 

where 𝑊𝑜 and 𝑏𝑜 denotes the weight matrix and the bias vector of the output gate, 

respectively. 

These gate structures effectively manage the flow of information within the LSTM, 

enabling it to capture the temporal dependencies present in the data (Yuan et al., 2020; 

Su et al., 2021). Bidirectional LSTM consists of two directional LSTM, in which the 

data flows forward and backward (Graves et al., 2013). The bidirectional structure was 

chosen to enhance the capability of LSTM by allowing the model to consider both past 

and future context in the time series, thereby providing a more comprehensive 

understanding of the underlying temporal dynamics. 

We also defined a multi-dimensional attention layer behind the BiLSTM to focus 

on more critical timesteps and give them higher weights (Bahdanau et al., 2016). This 

is particularly important when dealing with high-dimensional input data comprising 

multi-timestep variables, as it allows the model to assign different weights to different 

timesteps, thereby improving interpretability and predictive performance (Liu and Guo, 

2019). Based on this framework, the At-BiLSTM model offers a robust and flexible 

framework for linking XCO2 with multiple environmental variables and reconstructing 

XCO2 at fine spatial resolution with improved accuracy and spatiotemporal consistency.” 

 

And we have also added the detailed architecture of At-BiLSTM model as follows: 

“The At-BiLSTM consists of one input layer, three Bidirectional LSTM (Bi-

LSTM) layers, one attention layer, one dropout layer to prevent overfitting, and one 

fully connected layer (i.e., dense layer) for the final output. Each Bi-LSTM includes 

512 hidden units and tanh activation in both forward and backward directions. The 

attention mechanism learns a weight distribution over the time dimension using a Dense 

layer with softmax activation, then multiplies these weights with the BiLSTM output 

to emphasize important time steps. The detailed deployment and output are provided in 

Table 3. The model was implemented using the TensorFlow and Keras deep learning 



APIs in Python. A time step of 3 was used, and the model was trained for 200 epochs 

with the mean squared error (MSE) as the loss function. A step-wise decay strategy was 

applied to the learning rate, where the rate was reduced by a factor of 10 every 50 

epochs to enhance training stability and convergence. Prior to training, all input data 

were normalized using the mean and standard deviation of the dataset.” 

Table 3. Architecture of the At-BiLSTM model 

Layer Name Layer Parameters Output size 

Bi-LSTM Input layer - 3×16 

 Bi-LSTM1 units = 512, activation = ‘tanh’ 3×1024 

 Bi-LSTM2 units = 512, activation = ‘tanh’ 3 × 1024 

 Bi-LSTM3 units = 512, activation = ‘tanh’ 3 ×1024 

Attention Permute - 1024×3 

 Dense units = 3, activation = ‘softmax’ 1024×3 

 Permute - 3 ×1024 

 Multiply - 3 ×1024 

Dropout  rate = 0.5  

Full-connect Dense units = 1 1 

 

Q3. (1) The discussion section requires further elaboration. It should comprehensively 

address the advantages of the model used and the resulting full-coverage XCO2 product 

compared to other models and datasets.  

 

Response: Thank you for this valuable comment. We have revised the discussion 

section, and added two sub-section: 4.1 Comparison with previous studies and 4.2 

Limitations and future improvements. In added section 4.1 Comparison with 

previous studies, we elaborated the comparison with previous studies, and clarified the 

advantages of the full-coverage XCO2 product we generated:  

“To validate the effectiveness of our model and resulting XCO2 products, we 

compared our results with current studies which focuses on global XCO2 reconstruction 

(Table 5). As for the in-situ validation, most existing studies report high accuracy with 

almost all R2 over 0.9, RMSE less than 2 ppm. Regarding spatial resolution, the various 

products differ substantially, ranging from 1° down to 0.01°. It should be noted that 

increasing spatial resolution tends to compromise the accuracy of XCO2 retrievals. 

However, our XCO2 product achieves an optimal balance between spatial detail and 



measurement precision, exhibiting both high spatial resolution (0.05 ° ) and robust 

accuracy (R2=0.91, RMSE =1.54 ppm) in comprehensive evaluations. 

Table 5. Comparison between current studies focusing on global XCO2 reconstruction 

Model Spatial resolution In-situ validation 

 (with TCCON) 

Reference 

R2 RMSE 

(ppm) 

MAE 

(ppm) 

Attentional-based LSTM 0.05° 0.91 1.54 1.22 Our study 

Deep forest 0.1° 0.96 1.01 - Zhang et al. (2023) 

S-STDCT 0.25° 0.95 1.18 - Wang et al. (2023) 

Spatiotemporal kriging 1° 0.97 1.13 0.88 Sheng et al. (2022) 

MLE & OI 0.5° 0.92 2.62 1.53 Jin et al. (2022) 

 ERT 0.01° 0.83 1.79 - Li et al. (2022) 

*S-STDCT: Self-supervised spatiotemporal discrete cosine transform, MLE & OI: maximum 

likelihood estimation method and optimal interpolation; ERT: Extremely randomized trees 

To evaluate the advancement of our XCO2 product, we compared it with original 

OCO-2 observations and publicly available global XCO2 datasets (Wang et al., 2023; 

Sheng et al., 2022; Zhang et al., 2023) across four regions: North America, Europe with 

northern Africa, Asia, and Oceania (Fig. 13) in January 2015. Despite monthly 

aggregation, OCO-2 data exhibit persistent spatial discontinuities, limiting the capacity 

to analyze monthly XCO2 variability at regional and national scales. Existing XCO2 

products (spatial resolution of 0.25°, 1°, and 0.1°, respectively) broadly reproduce 

large-scale XCO2 patterns but fail to resolve fine-scale heterogeneity. In comparison, 

our reconstructed XCO2, with the highest spatial resolution, provides a more detailed 

and accurate representation of the regional XCO2 patterns. For example, lower XCO2 

concentrations are clearly identified in eastern Canada (The first row of Fig. 13) and 

Papua New Guinea (The fourth row of Fig. 13), regions characterized by dense forest 

cover. This correspondence highlights the substantial carbon sink potential of these 

forested areas. Our high-resolution product better identifies the CO2 heterogeneity 

associated with different land cover types, whereas the coarse-resolution products 

smooth these signals. This limitation primarily stems from the neglect of high-

resolution land cover dynamics and dependence on coarse-resolution 

assimilated/reanalysis datasets (e.g., CAMS XCO2, CarbonTracker), resulting in 

oversmoothed spatial patterns that obscure satellite-derived high-resolution signals. 

Unlike assimilation-dependent approaches, our method avoids XCO2 reanalysis inputs, 



preserving satellite-scale fidelity through high-resolution environmental variables 

modeling while maintaining precision.  

 

Figure 13. Comparison between the OCO-2 XCO2 data, accessible XCO2 products 

from Wang et al. (2023), Sheng et al. (2022), Zhang et al. (2023), and our reconstructed 

XCO2 data in four regions, using the products of January of 2015 as an example.” 

 

(2) Additionally, the global spatial distribution characteristics of XCO2 need more 

detailed discussion. 

 

Response: Many thanks for this comment. We have added two figures and more 

description of the global spatial distribution characteristics of XCO2 in 3.2 

Spatiotemporal pattern of global XCO2 as follows: 

The global distribution of annual mean XCO2 concentration from 2015 to 2021 is 

illustrated in Fig. 8. The results reveal pronounced spatial heterogeneity in XCO2 

concentrations, characterized by a marked hemispheric asymmetry. Specifically, the 

Northern Hemisphere exhibited systematically elevated XCO2 levels compared to the 

Southern Hemisphere, consistent with latitudinal gradients driven by anthropogenic 

emission patterns and atmospheric transport dynamics. Regionally, North America, 

East Asia, Central Africa, and northwest of Southern America were identified as 

persistent hotspots of enhanced XCO2. The high concentrations of XCO2 in North 

America and East Asia stem primarily from the fossil fuel emission from energy 

production and transportation sectors. Whereas the tropical regions (i.e., Central Africa 



and South America) are influenced by coupled biomass burning and land-use changes.  

 

Figure 8. The global spatial distribution of reconstructed annual mean XCO2 

concentration from 2015 to 2021. 

We also provided the annual OCO-2 XCO2 data from 2015 to 2019 and OCO-3 

XCO2 data from 2020 to 2021 in Fig. 9. Spatially, our reconstructed XCO₂ dataset 

demonstrates robust consistency with satellite observations, particularly in mid-latitude 

industrialized regions where both datasets capture emission hotspots. Notably, OCO-3 

exhibits denser observational sampling due to its improved spatial coverage and swath 

width compared to OCO-2’s narrow tracks. However, persistent data gaps remain 

prevalent in both two satellite products after annual aggregating. These spatial coverage 

limitations hinder fine-scale global analysis, particularly in assessing localized 

emission sources and regional scale carbon flux. 

 



 

Figure 9. The global spatial distribution of annual mean OCO-2/OCO-3 XCO2 

concentration from 2015 to 2021. 

 

Q4. (1) In the conclusion or discussion section, please clearly specify the concrete data 

or scientific significance of the high-resolution XCO2. 

 

Response: Thanks for this constructive suggestion. We have provided further examples 

to introduce the significance of high-resolution XCO2 products, in 4.1 Comparison 

with previous studies we supplemented the comparison with other coarse-resolution 

data products as follows: 

“To evaluate the advancement of our XCO2 product, we compared it with original 

OCO-2 observations and publicly available global XCO2 datasets (Wang et al., 2023; 

Sheng et al., 2022; Zhang et al., 2023) across four regions: North America, Europe with 

northern Africa, Asia, and Oceania (Fig. 13) in January 2015. Despite monthly 

aggregation, OCO-2 data exhibit persistent spatial discontinuities, limiting the capacity 

to analyze monthly XCO2 variability at regional and national scales. Existing XCO2 

products (spatial resolution of 0.25°, 1°, and 0.1°, respectively) broadly reproduce 

large-scale XCO2 patterns but fail to resolve fine-scale heterogeneity. In comparison, 

our reconstructed XCO2, with the highest spatial resolution, provides a more detailed 



and accurate representation of the regional XCO2 patterns. For example, lower XCO2 

concentrations are clearly identified in eastern Canada (The first row of Fig. 13) and 

Papua New Guinea (The fourth row of Fig. 13), regions characterized by dense forest 

cover. This correspondence highlights the substantial carbon sink potential of these 

forested areas. Our high-resolution product better identifies the CO2 heterogeneity 

associated with different land cover types, whereas the coarse-resolution products 

smooth these signals. This limitation primarily stems from the neglect of high-

resolution land cover dynamics and dependence on coarse-resolution 

assimilated/reanalysis datasets (e.g., CAMS XCO2, CarbonTracker), resulting in 

oversmoothed spatial patterns that obscure satellite-derived high-resolution signals. 

Unlike assimilation-dependent approaches, our method avoids XCO2 reanalysis inputs, 

preserving satellite-scale fidelity through high-resolution environmental variables 

modeling while maintaining precision.” 

 

Figure 13. Comparison between the OCO-2 XCO2 data, accessible XCO2 products 

from Wang et al. (2023), Sheng et al. (2022), Zhang et al. (2023), and our reconstructed 

XCO2 data in four regions, using the products of January of 2015 as an example. 

And we also elaborated further in 6. Conclusion as follows: 

“As a major driver of global warming, the monitoring of CO2 changes, especially 

anthropogenic CO2 emissions, is of critical importance. The launch of carbon satellites 

offers a significant advancement for CO2 monitoring. However, the limited spatial 

coverage of satellite observations constrains the utility of XCO2 data. While current 

XCO2 products exhibit relatively high validation accuracy, their coarse spatial 



resolution remains inadequate for applications such as regional- or county-level 

emission monitoring, as well as for the detection and inversion of large emission 

sources. To address these issues, we reconstructed a global full-coverage XCO2 product 

at a fine spatial resolution of 0.05° and temporal resolution of 1 month from 2015 to 

2021. The advanced deep learning method was adopted to model time-series XCO2 and 

incorporate terrestrial flux, anthropogenic flux and climatic impacts into the 

parameterization process. Through comprehensive evaluations, including cross-

validation, in-situ validation, spatial distribution assessment and comparison with other 

XCO2 products, our reconstructed XCO2 products demonstrates significant 

improvements in both accuracy and spatial resolution. The main conclusions and 

contributions are as following: 

(1) The advanced At-BiLSTM model could successfully established the nonlinear 

relationship between satellite-derived XCO2 and a set of key environmental variables. 

And the reconstructed XCO2 based on our model shows relatively good agreement with 

TCCON XCO2, with R2, RMSE, and MAE values of 0.91, 1.58 ppm, and 1.22 ppm, 

respectively.  

(2) The reconstructed XCO2 product overcomes the extensive data gaps typically 

caused by narrow satellite swaths and retrieval interference from clouds and aerosols, 

achieving complete global coverage. Moreover, relative to existing publicly available 

full-coverage XCO2 datasets, our product offers the finest spatial resolution (0.05°) 

while maintaining comparable accuracy. 

(3) Our method avoids coarse XCO2 reanalysis inputs, preserving satellite-scale 

fidelity through high-resolution environmental variables modeling. Consequently, the 

products enable enhanced ability in identifying regional- and county-level XCO2 

hotpots, carbon emissions and fragmented carbon sinks, providing a robust basis for 

targeted global carbon governance policies.” 

 

(2) Additionally, provide an outlook for future research, outlining key issues to 

address in global XCO2 or CO2 concentration reconstruction studies, such as critical 

challenges or priorities that should be focused on. 

 

Response: Thank you for this comment. We have added section 4.2 Limitations and 

future improvements to provide a more detailed discussion of key challenges and the 

future outlook. Two key points are highlighted: firstly, the incorporation of auxiliary 



variables that capture vertical CO₂ transport. Secondly, the enhancement of satellite 

observation coverage and accuracy to minimize data gaps and retrieval errors. The 

revised context is as follows: 

“Additionally, though our model integrates multiple environmental variables 

associated with surface carbon flux variations, it does not account for vertical 

atmospheric transport. As XCO2 represents the column-averaged CO2 concentration, 

vertical redistribution of CO2 through atmospheric transport (e.g., mixing, convection) 

can alter the relationship between surface carbon fluxes and column concentrations. 

The absence of such vertical transport indicators may reduce the model’s accuracy in 

regions or periods with strong vertical mixing. Future efforts will incorporate vertical 

transport-related variables, such as planetary boundary layer height, vertical wind 

components, and other reanalysis-derived indicators, to better represent the 

atmospheric processes that influence the column-averaged CO₂ signal. 

Moreover, while OCO missions currently provide some of the most accurate 

carbon satellite-based XCO2 retrievals, they still encounter some retrieval errors and 

data gaps driven by algorithmic limitations and variable meteorological conditions. A 

critical research frontier is the refinement of XCO₂ retrieval algorithms to mitigate 

systematic biases in high-aerosol-load regions (e.g., industrial regions and biomass-

burning plumes). Additionally, next-generation hyperspectral satellites, such as the 

upcoming CO2M (Copernicus Anthropogenic CO₂ Monitoring Mission) with 2×2 km² 

resolution and GeoCarb (Geostationary Carbon Observatory) offering hourly 

monitoring, will enhance spatial-temporal coverage and reduce cloud-induced data 

gaps.” 

 

Q5. The construction of the OCO dataset is unclear. For instance, it is not specified 

how grids containing both OCO-2 and OCO-3 data within the same time period were 

processed. 

 

Response: Thanks for this comment. In this study, given that OCO-3 has more 

intensive observations, we utilized the OCO-3 XCO2 data for all available year (i.e., 

2020-2021) and used the data of OCO-2 for the other years (i.e., 2015-2019). Although 

OCO-3 began providing data in August 2019, we used OCO-2 data for entire 2019 to 

maintain consistency in our monthly estimates.  



In addition, analysing OCO-2 and OCO-3 data simultaneously may introduce 

several uncertainties due to their different spatiotemporal coverages. However, OCO-3 

has a similar sensor with OCO-2 and inherits the retrieval algorithms of OCO-2. 

According to Taylor et al. (2023), the mean differences between OCO-3 and OCO-2 

are around 0.2 ppm over land. Therefore, we suppose that the discrepancies between 

their datasets are minimal, and the combined analysis of data from these two satellites 

will have a negligible impact on our results. And we discussed this in 4.2 Limitations 

and future improvements as follows: 

“In terms of the satellite data, OCO-2 and OCO-3 provide different spatiotemporal 

coverages. Analyzing OCO-2 and OCO-3 data simultaneously may introduce several 

uncertainties due to these differences. However, OCO-3 has a similar sensor and 

inherits the retrieval algorithms of OCO-2. According to Taylor et al. (2023), the mean 

differences between OCO-3 and OCO-2 are around 0.2 ppm over land. Therefore, we 

suppose that the discrepancies between their datasets are minimal, and the combined 

analysis of data from these two satellites will have a negligible impact on our results.” 

 

Q6. The study utilized various satellite-derived variables, including land flux, 

anthropogenic flux, and climatic impacts, for global XCO2. However, it is unclear 

whether these satellite data have gaps, particularly in high-latitude regions. If gaps exist, 

the study should specify how they were addressed. 

 

Response: Many thanks for this constructive comment. Among all ancillary variables, 

those related to climatic impacts from ERA5-Land, as well as land use and cover change 

(LUCC), vegetation continuous fields (VCF), and nighttime lights (NTL), provide full 

spatial coverage. Given that the XCO₂ reconstruction was performed on a monthly scale, 

all satellite-derived variables were aggregated to monthly averages using Google Earth 

Engine (GEE). During this averaging process, most data gaps were effectively filled. 

For variables that still contained missing values after monthly aggregation, we applied 

bilinear interpolation methods to fill the remaining gaps.  

We have added the description of data processing in 2.1.3 Environmental 

variables as follows: 

“All data were converted to monthly time-series. The bilinear interpolation 

approach was employed both to fill gaps in the ancillary data and to convert the data at 



different spatial resolutions to 0.05º resolution. The data preprocessing was conducted 

on GEE, R and ArcGIS 10.3.” 

 

Q7. Line 243-244. “…spatial resolutions to 1 km resolution”. The ‘1 km resolution’ is 

inconsistent with the study’s focus on a 0.05º 

 

Response: Thank you for your correction. We apologize for the typographical error 

and all data have been processed at the resolution of 0.05º to match the XCO2 products. 

We have revised these accordingly. 

 

Q8. The manuscript contains several typo errors. For instance, in Line 303, “Figure 5. 

(a) Density scatterplots of sample-based…” includes an unnecessary ‘(a)’. In Line 314, 

the value ‘1.21’ should be corrected to ‘1.22 ppm’. These errors should be revised for 

accuracy and clarity. 

 

Response: Thank you for the correction. We have revised these accordingly and 

checked the full manuscript to avoid such typo errors. 


