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Abstract. Insufficient spatiotemporal coverage of partial pressure of CO2 (pCO2) observations has hindered precise studies of 

the coastal carbon cycle along the North American Atlantic Coastal Ocean Margin (NAACOM). Earlier pCO2-products have 

encountered difficulties in accurately capturing the heterogeneity of regional variations and decadal trends of pCO2 in the 

NAACOM. This study developed a regional reconstructed pCO2-product for the NAACOM (Reconstructed Coastal 15 

Acidification Database-pCO2, or ReCAD-NAACOM-pCO2) using a two-step approach combining random forest regression 

and linear regression. The product provides monthly pCO2 data at 0.25° spatial resolution from 1993 to 2021, enabling 

investigation of regional spatial differences, seasonal cycles, and decadal changes in pCO2. The observation-based 

reconstruction was trained using Surface Ocean CO2 Atlas (SOCAT) observations as ground-truth values, with various 

satellite-derived and reanalysis environmental variables known to control sea surface pCO2 as model inputs. The product shows 20 

high accuracy during the model training, validation, and independent test phases, demonstrating robustness and capability to 

accurately reconstruct pCO2 in regions or periods lacking direct observational data in the NAACOM. Compared with all the 

observation samples from SOCAT, the pCO2-product yields a determination coefficient of 0.83, a root-mean-square error of 

18.64 µatm, and an accumulative uncertainty of 23.83 µatm. The ReCAD-NAACOM-pCO2 product demonstrates its capability 

to resolve seasonal cycles, regional-scale variations, and decadal linear trends of pCO2 along the NAACOM. This new product 25 

provides reliable pCO2 data for more precise studies of coastal carbon dynamics in the NAACOM region. The dataset is 

publicly accessible at https://doi.org/10.5281/zenodo.11500974 (Wu et al., 2024a) and will be updated regularly. 
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1 Introduction 

The coastal ocean, despite covering only 8.4% (30.4 × 106 km2) of the global ocean surface area (Chen et al., 2013; Dai et al., 

2022), plays a disproportionately significant role in the global carbon budget, accounting for approximately 10.9% of the 30 

global ocean CO2 uptake from the atmosphere (0.25 of 2.3 Pg C yr-1) on the global average (Dai et al., 2022; Friedlingstein et 

al., 2023). However, accurately quantifying the CO2 uptake in specific coastal regions only based on observations is 

challenging due to the scarcity of sea surface partial pressure of CO2 (pCO2) data. Moreover, in coastal regions, sea surface 

pCO2 is highly variable due to the influence of various physical and biogeochemical processes, such as riverine input, 

upwelling, tidal mixing, and large-scale circulations (Laruelle et al., 2018; Roobaert et al., 2024b). Accurate and 35 

comprehensive pCO2 data are necessary to quantify coastal CO2 uptake and assess the impact of climate change on coastal 

ocean ecosystems. 

This study focuses on the North American Atlantic Coastal Ocean Margin (NAACOM, Fig. 1). The entire region is defined as 

the area within 400 km of the coastline and divided into six sub-regions based on their geographic location following Fennel 

et al. (2019), including the Gulf of Mexico (GoMx), South Atlantic Bight (SAB), Mid-Atlantic Bight (MAB), Gulf of Maine 40 

(GoMe), Scotian Shelf (SS), and Gulf of St. Lawrence & Grand Banks (GStL&GB). The carbonate system in the NAACOM 

is influenced by large-scale circulations (Fig. 1), including the Gulf Stream and Labrador Current, as well as local processes 

like river discharge, export from marshes, and upwellings dynamics (Cai et al., 2020; Fennel et al., 2019; Wang et al., 2013). 

These complex physical and biogeochemical processes contribute to substantial spatial and temporal heterogeneity in sea 

surface pCO2 across the NAACOM (Cai et al., 2020). Elucidating the driving mechanisms of spatial and temporal pCO2 45 

variations necessitates extensive data coverage in time and space in this region. Over the past two decades, coastal field 

investigation efforts in this region have substantially increased through programs like the East Coast Ocean Acidification 

(ECOA) and Gulf of Mexico Ecosystems and Carbon Cruise (GOMECC)  (Cai et al., 2020; Wang et al., 2013; Wanninkhof et 

al., 2015). Data from these cruises, combined with underway measurements and buoy observations, are quality-controlled and 

compiled in the Surface Ocean CO2 Atlas (SOCAT) database (Bakker et al., 2016), substantially advancing our understanding 50 

of coastal inorganic carbon chemistry along the NAACOM (Cai et al., 2020). 

Despite significant progress in observational efforts, the spatial and temporal coverage of pCO2 data remains limited in the 

NAACOM, with observations encompassing only 2.9 % of grid cells during the period 1993-2021 (Fig. 2). Observations are 

concentrated in the southern regions, with fewer samples available during winter. This data scarcity introduces substantial 

uncertainty in the air-sea CO2 exchange quantification and hinders a comprehensive understanding of coastal inorganic carbon 55 

dynamics, particularly in areas north of Cape Cod where measurements are highly sparse (Fig. 2). For example, reported air-
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sea CO2 fluxes for the GoMe exhibit a wide range, spanning from -0.50 to +2.50 mol C m-2 yr-1, with conflicting reports 

characterizing it as a CO2 source (Fennel & Wilkin, 2009; Vandemark et al., 2011), CO2 neutral (Signorini et al., 2013), and 

CO2 sink (Cahill et al., 2016; Rutherford et al., 2021), underscoring the need for improved pCO2 data coverage. 

 60 

Figure 1. Topography (in meters) and large-scale circulation along the North American Atlantic Coastal Ocean Margin 
(NAACOM). The region is defined as coastal areas extending 400 km offshore. The thin red contour line is the 200 m isobath, 
which is roughly the location of the shelf break and a typical definition of continental shelf boundary. The Gulf Stream (thick 
black line with an arrow) flows northward along the east coast of the United States before veering eastward into the open 
Atlantic Ocean around Cape Hatteras. The Labrador Current (thick pink line with an arrow) flows southward along the east 65 
coast of Canada before meeting the Gulf Stream. In this study, the study region is divided into six sub-regions by the straight 
yellow lines, including the Gulf of Mexico (GoMx), South Atlantic Bight (SAB), Mid-Atlantic Bight (MAB), Gulf of Maine 
(GoMe), Scotian Shelf (SS), and Gulf of St. Lawrence and Grand Banks (GStL&GB) following Fennel et al. (2019). 

Recently, various global-scale and regional reconstructed pCO2-products with full coverage in time and space have been 

developed as essential supplements to observations. These products usually employed diverse algorithms and utilized 70 

environmental proxies from satellites and reanalysis products as model inputs and SOCAT observations as constraints to 

reconstruct the pCO2 field with full temporal and spatial coverage. The development of those products has significantly 
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advanced our understanding of inorganic carbon chemistry and the ocean carbon cycle. For example, seven global pCO2-

products were used to evaluate the ocean CO2 uptake in the Global Carbon Budget 2023 edition (Friedlingstein et al., 2023). 

However, most of these products reconstruct pCO2 in the open ocean, with coastal regions often being extrapolated or excluded. 75 

In contrast to the open ocean, where several global pCO2-products have been developed this past decade, there are fewer pCO2-

products specifically designed for global coastal oceans. Currently, only one pCO2-product has been developed specifically 

for the coastal ocean on a global scale (Laruelle et al., 2017; Roobaert et al., 2024a). This product was recently combined with 

an open ocean product to create a global reconstruction of the ocean CO2 sink (Landschützer et al., 2020) and has since been 

utilized to narrow the variability in global reconstructions (Fay et al., 2021). However, global products primarily aim to ensure 80 

high accuracy of parameters on a global average scale; they may not guarantee equivalent accuracy for spatiotemporal 

variations on the regional scale. In comparison, regional pCO2-products have demonstrated superior capability in resolving 

detailed small-scale variations. 

Within the NAACOM region, several area-specific pCO2-products have been reconstructed, focusing on specific regions such 

as the GoMx (e.g., Chen and Hu, 2019; Fu et al., 2020; Lohrenz and Cai, 2006) and the SAB and MAB (e.g., Wang et al., 85 

2024; Xu et al., 2020). These regional and global pCO2-products are valuable for validating model estimations (Roobaert et 

al., 2022; Ross et al., 2023). However, existing products often have limitations in spatial coverage, temporal resolution, or 

trend analysis capabilities. For instance, Chen and Hu (2019) provided a high-resolution (4 km) pCO2-product for the GoMx, 

but this product faces challenges in capturing decadal changes in pCO2 (Wu et al., 2024b). Conversely, Xu et al. (2020) 

successfully captured decadal trends of pCO2, but only as area-averaged pCO2 time series for the SAB and MAB, lacking 90 

comprehensive spatial coverage. Signorini et al. (2013) reconstructed a product using multiple linear regression (MLR) 

covering the areas from SAB to SS, but it spans only 8 years (2003-2010). Despite these valuable efforts, there remains a lack 

of comprehensive data products that adequately capture regional variations, seasonal cycles, and decadal changes in pCO2 

simultaneously for the entire NAACOM. 

This study aims to develop a regional pCO2-product specifically designed for the NAACOM, encompassing coastal regions 95 

extending 400 km offshore from the GoMx to the GB (Fig. 1). We integrated random forest and linear regression methods 

with hydrological parameters from satellite observations and reanalysis data to generate a monthly reconstructed pCO2-product 

at 0.25° spatial resolution spanning the period 1993 to 2021. The pCO2-product, termed ‘Reconstructed Coastal Acidification 

Database’ or ‘ReCAD-NAACOM-pCO2’, is specifically designed to resolve spatial variations, seasonal cycles, and decadal 

changes of pCO2 along the NAACOM. 100 
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The structure of this paper is as follows: Section 2 details the methodology used to reconstruct ReCAD-NAACOM-pCO2 and 

describes the datasets employed. Section 3 evaluates the product's accuracy, performance, and applicability in resolving 

seasonal cycles, regional variations, and decadal trends of pCO2. Sections 4 and 5 provide links to access the dataset and codes 

used for generating the dataset and figures presented in this study. The final section summarizes the conclusions. ReCAD-

NAACOM-pCO2 demonstrates enhanced capability in resolving spatial variations and capturing the seasonal cycle and decadal 105 

trends of pCO2 across different sub-regions along the NAACOM. This product offers improved insights into coastal carbon 

dynamics in this complex region, addressing the need for a comprehensive pCO2 data in the NAACOM. 

2 Data and methods 

2.1 Ground-truth data from SOCAT 

The ground-truth data for the training regression model were the seawater fugacity of CO2 (fCO2) measurement extracted from 110 

the SOCAT database (version 2023). fCO2 represents the pCO2 corrected for the non-ideal behavior of the gas in seawater, 

and both are commonly used in oceanographic studies. SOCAT compiles quality-controlled fCO2 measurements from various 

platforms, including research vessels, commercial ships, and moorings (Bakker et al., 2016). This study used the monthly 

gridded SOCAT coastal product with a spatial resolution of 0.25° × 0.25° (but with data gaps). The gridded product 

incorporated measurements with quality flags A, B (uncertainty of 2 µatm), C, and D (uncertainty of 5 µatm) (Bakker et al., 115 

2016). Over the period 1993-2021, the SOCAT product encompassed 55,347 grid cells within our study area (Fig. 2), 

accounting for approximately 2.9% of the total grid cells in the NAACOM. Spatial analysis revealed lower sampling density 

in the areas north of Cape Cod (blue box in Fig. 2). The temporal distribution of samples exhibits a notable bias, with reduced 

collection during winter (Fig. 2d). Despite these spatial and temporal heterogeneities, the SOCAT observations provide 

coverage across all sub-regions and seasons of the NAACOM (Fig. 2). This comprehensive, albeit sparse, coverage facilitates 120 

the reconstruction of the fCO2 and pCO2 field through interpolation and regression techniques. 
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Figure 2. Spatial distribution of sea surface fCO2 observations from SOCAT database (version 2023) in the NAACOM 
across four seasons from 1993 to 2021. Grid samples with data were counted by season: (a) Spring (March to May), (b) 
Summer (June to August), (c) Fall (September to November), and (d) Winter (December to February). The study region is 125 
divided into northern (blue box) and southern (red box) areas at approximately 41.5°N (Cape Cod). The number and percentage 
of grid samples are indicated for each region per season. Color scale represents fCO2 values in μatm. Higher sampling density 
is evident in the southern area. Winter shows the lowest overall sampling coverage. 
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2.2 Model design 

 130 

Figure 3. A flowchart of the two-step machine learning regression model for generating the reconstructed pCO2-
product. Grey boxes represent the input and output datasets, blue boxes illustrate the model training, validation testing, and 
independent test processes, and orange boxes represent the final trained model for predicting the reconstructed product. The 
training data, consisting of paired input variables (lon, lat, month, sea surface temperature (SST), sea surface salinity (SSS), 
sea surface height (SSH), and atmospheric pCO2 (pCO2air) and corresponding sea surface fCO2 (fCO2sea) labels), is divided into 135 
two sets: X1 (1993-2003 and 2006-2021) and X2 (2004-2005). X1 is further randomly divided into subsets for model training 
set (80%) and validation set (20%). The predictive model combines a random forest regression (RFR) and a linear regression 
(LR) algorithm. The trained and validated regression model is then applied to all satellite and reanalysis data (without gaps) 
to generate the final 3D reconstructed fCO2 product, which was finally converted to pCO2. 

The procedures of developing and reconstructing the pCO2-product are illustrated in Fig. 3. Initially, the input variables and 140 

sea surface fCO2 data were matched to create a comprehensive dataset. To maintain consistency with the SOCAT database, 

which reports sea water CO2 concentrations as fCO2, we adopted fCO2 as the output variable in our model. The matched dataset 

was then divided into two sets: X1, encompassing the periods 1993-2003 and 2006-2021, and X2, covering 2004-2005. Set 

X1 was further randomly subdivided, with 80% allocated for model training and the remaining 20% for validation test. Set X2 

served as an independent test set. The model training set (80% of X1) was used to develop a two-step RFR+LR regression 145 
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model. The RFR is designed to capture complex, nonlinear relationships between the input variables and the target variable 

(i.e., fCO2), while the LR model is subsequently applied to mitigate potential systematic biases in RFR-derived fCO2 values 

arise from spatiotemporal heterogeneities in the SOCAT observational dataset (Fig. 2). RFR, an ensemble learning technique, 

combines multiple decision trees to produce more accurate and stable predictions (Breiman, 2001; Lu et al., 2019). Each 

decision tree in the RFR is trained on a randomly selected subset of the input data, with the final prediction derived from the 150 

average output of all trees. This approach mitigates overfitting and enhances the model's generalization performance, making 

it particularly suitable for large datasets with complex, nonlinear variable relationships. The RFR model was trained using 10-

fold cross-validation, with optimized hyperparameters including a minimum leaf size of 1, bagging method for ensemble 

aggregation, and 300 learning cycles after tuning. After RFR model training, an LR model was applied to the RFR-estimated 

fCO2 (fCO2est) output to make sure the RFR model is not systematically biased: 155 

𝑓𝐶𝑂!"#$ = 	𝑎 × 𝑓𝐶𝑂!%$& + 𝑏 + 𝜀          (1) 

where fCO2obs is the observed fCO2 from SOCAT, a is the linear regression coefficient, b is the intercept, and ε is the residual 

that the linear model cannot resolve. This additional step was implemented to mitigate potential systematic bias in the RFR 

model that could arise from areas with higher sampling density, thereby ensuring a more balanced representation across the 

entire study region. The calibration was applied to each grid cell individually. To increase the data pool for linear regression, 160 

samples within a 5 × 5 grid window in space (i.e., 1.25° × 1.25°) were aggregated for LR model development. As the available 

measurements could not cover every grid cell and were insufficient to produce continuous spatial maps of the calibration 

coefficients (i.e., a and b in Equation 1), we employed a locally interpolated regression strategy similar to Carter et al. (2018). 

Mathematically, given the spatial and temporal continuity of fCO2est and fCO2obs, the coefficients a and b must also be 

continuous in space and time. Therefore, we linearly interpolated the coefficients a and b across the NAACOM. The 165 

interpolated coefficients were subsequently used to adjust the RFR-derived fCO2est. 

The validation set (20% of X1) was used to evaluate the model's performance. This subset helps in tuning the model's 

hyperparameters and provides an unbiased evaluation of the model's performance, helping to prevent overfitting. 

The independent test set (X2), covering the years 2004-2005, was used to assess the final performance of the trained model. 

This period was chosen because of the large number of observations covering the entire NAACOM, with data available for all 170 

seasons and months. Since these two years of data were not included in the model training and independent test to ensure its 

independence, it provides an unbiased evaluation of the model's performance on regions or periods without observations.  

Finally, the trained model is applied to all satellite and reanalysis data to generate the final gap-free reconstructed fCO2 data. 

https://doi.org/10.5194/essd-2024-309
Preprint. Discussion started: 19 August 2024
c© Author(s) 2024. CC BY 4.0 License.



 

9 

 

As most products reported seawater CO2 concentration as pCO2, our final product reports fCO2 and pCO2 both, with the  fCO2 

values being converted to pCO2 using the following equation (Takahashi et al., 2019): 175 

𝑝𝐶𝑂! = 𝑓𝐶𝑂! × (1.00436 − 4.669 × 10'( × 𝑆𝑆𝑇)        (2) 

2.3 Regression model input variables from satellite and reanalysis 

The input variables for training the regression model include longitude (lon), latitude (lat), month, sea surface temperature 

(SST), sea surface salinity (SSS), sea surface height (SSH), and atmospheric pCO2 (pCO2air). Longitude, latitude, and month 

serve as spatiotemporal predictors, enabling the algorithm to identify and capture regional and seasonal variability in fCO2 180 

within the study area (Su et al., 2020; Yang et al., 2024). SST, SSS, and SSH are critical variables that characterize the physical 

and biogeochemical ocean settings, which play a crucial role in determining the spatial and temporal variability of fCO2. The 

pCO2air represents the atmospheric forcing on the sea surface fCO2, as the difference between atmospheric and sea surface 

fCO2 (or pCO2) primarily determines the direction and magnitude of the air-sea CO2 exchange.  

SST data were obtained from the National Oceanic and Atmospheric Administration (NOAA) Optimum Interpolation Sea 185 

Surface Temperature (OISST) v2.1 product (Huang et al., 2021). The OISST dataset is a global gridded SST analysis that 

blends observations from various sources, including satellites, ships, and buoys. The dataset employs an optimum interpolation 

technique to combine these observations and generate a daily SST field at a spatial resolution of 0.25° × 0.25°. For this study, 

the daily SST data were averaged to create a monthly product.  

SSS data were obtained from the Simple Ocean Data Assimilation (SODA) v3.15.2 product (Carton et al., 2018). SODA is a 190 

comprehensive reanalysis dataset that integrates a global ocean model with observational data to estimate ocean state variables 

consistently. The SODA system assimilates observations from multiple sources, including floats, moorings, and ship-based 

measurements, thereby constraining the model output and enhancing the accuracy of represented ocean physical properties, 

including SSS. The SODA v3.15.2 product offers monthly SSS data with a temporal resolution of one month and a spatial 

resolution of 0.5° × 0.5°, which were linearly interpolated to a 0.25° × 0.25° grid resolution to maintain consistency with other 195 

input variables and the gridded SOCAT fCO2 data. 

SSH data were extracted from the Global Ocean Gridded L4 Sea Surface Heights (European Union-Copernicus Marine 

Service, 2021) created by the Copernicus Marine Environment Monitoring Service (CMEMS). This product provides daily 

SSH data derived from altimeters, with a spatial resolution of 0.25° × 0.25° since 1993 (ongoing). Daily SSH data were 

averaged to monthly means. 200 
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pCO2air data converted from the mole fraction of CO2 in the dry air (xCO2air) were downloaded from the NOAA Marine 

Boundary Layer (MBL) reference product (Dlugokencky and Tans, 2022). The MBL reference provides weekly zonal average 

xCO2air measurements from a global observation network. The xCO2air data was linearly interpolated to the same spatial and 

temporal resolution as the other input variables (0.25° × 0.25°, monthly). xCO2air was converted to pCO2air with the equation: 

𝑝𝐶𝑂!)*+ = 𝑥𝐶𝑂!)*+ × (𝑃 − 𝑝,)          (3) 205 

where P is the atmospheric CO2 pressure at the sea surface, which was downloaded from the fifth generation European Centre 

for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA5) (Hersbach et al., 2019), and pw is the water vapor 

pressure, which was calculated using the formula of Weiss & Price (1980) using SST from OISST and SSS from SODA. 

2.4 Evaluation of model  

The accuracy of the model outputs was assessed using several statistical metrics, including the coefficient of determination 210 

(R2), root mean square error (RMSE), mean absolute error (MAE), and mean bias error (MBE). These metrics were calculated 

for the training and validation set phases, as well as for the independent validation set: 

𝑅! 	= 	1 − ∑ <𝑦"#$,* − 𝑦%$&,*>
!.

* /∑ <𝑦"#$,* − 𝑦"#$@@@@@>!.
*         (4) 

𝑅𝑀𝑆𝐸 = C/
.
∑ <𝑦"#$,* − 𝑦%$&,*>

!.
*           (5) 

𝑀𝐴𝐸 = /
.
∑ E𝑦"#$,* − 𝑦%$&,*E.
*           (6) 215 

𝑀𝐵𝐸 = /
.
∑ <𝑦"#$,* − 𝑦%$&,*>.
*           (7) 

where 𝑖 denotes the 𝑖-th sample, 𝑦"#$ and 𝑦"#$@@@@@ are the observed pCO2 values from SOCAT and their average, 𝑦%$& represents 

the predicted pCO2 values from the final model, and N is the total number of matched samples.  

2.5 Uncertainty of reconstructed pCO2 

The uncertainty of estimated pCO2 in our product for each grid cell was accumulated from four sources of uncertainties: the 220 

direct pCO2 measurement uncertainty from SOCAT (𝑢"#$), gridding uncertainty (𝑢0+*1), mapping uncertainty (𝑢2)3), and the 

uncertainty accumulated from the input variables (𝑢*435&$). The first three sources of uncertainty were calculated according to 

the approach used by earlier reconstructed pCO2-products (Landschützer et al., 2014; Roobaert et al., 2024a; Sharp et al., 
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2022). 𝑢"#$ is inherited from the SOCAT observations. The SOCAT database uses discrete samples with quality flags A and 

B (accuracy < 2 µatm), and C and D (accuracy < 5 µatm) to create the gridded file. Adopting a conservative approach, we used 225 

the maximum 𝑢"#$ of 5 μatm. 𝑢0+*1 was calculated as the standard deviation of the samples used to calculate the gridded fCO2 

in each grid cell. 𝑢2)3 is introduced by reconstructing the pCO2 using the RFR-LR model. It was evaluated as the RMSE 

between the reconstructed pCO2 and the observed pCO2 values following Roobaert et al. (2024a) and Sharp et al. (2022). 

Given that the derivation of 𝑢"#$, 𝑢0+*1, and 𝑢2)3 is contingent upon SOCAT observations, these three uncertainties and the 

total uncertainty 𝑢367! is reported on a sub-regional basis. 230 

In addition to these three sources of uncertainty, this study incorporated cumulative uncertainties from input variables (𝑢*435&$), 

including SST, SSS, SSH, and pCO2air. These satellite-derived or reanalysis-based variables inherently possess uncertainties 

that propagate nonlinearly through the regression model, ultimately affecting the estimated pCO2 values (Wang et al., 2021, 

2023). We employed a Monte Carlo simulation to calculate 𝑢*435&$. For each input variable (SST, SSS, SSH, pCO2air), we 

added white noise following a normal distribution N(0, 𝑢8"), where 𝑢8" is the uncertainty of the respective input variable 𝑥*. 235 

We then recalculated pCO2 using these noise-added inputs and determined the resulting changes in pCO2. This process was 

repeated 100 times for each input variable, and the resulting uncertainty in pCO2 from each variable was calculated as the 

standard deviation of the differences between the original reconstructed pCO2 and the pCO2 values after adding noise in each 

grid cell. The final 𝑢*435&$ was computed as the square root of the quadratic sum of these individual uncertainties from the 

four input variables. Detailed procedures for determining uinputs are described in Appendix A. 240 

Assuming these sources are independent, the uncertainty of the estimated gridded pCO2 in our product, 𝑢367!, was calculated 

using the error propagation (Hughes and Hase, 2010; Taylor, 1997): 

𝑢367! = C𝑢"#$! + 𝑢0+*1! + 𝑢2)3! + 𝑢*435&$!           (8) 

2.6 Comparison with global reconstructed pCO2-product 

The ReCAD-NAACOM-pCO2-product was evaluated through comparisons with seven reconstructed pCO2-products that are 245 

developed for the global ocean and used in the Global Carbon Budget 2023 edition (Friedlingstein et al., 2023) and one 

reconstructed pCO2-product that is specifically developed for the global coastal ocean (Roobaert et al., 2024a). Those data 

products reconstructed pCO2sea data using different machine-learning algorithms. Detailed information on those products is 

summarized in Table 1. 
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Table 1. References for global pCO2-products used to compare with ReCAD-NAACOM-pCO2 in this study. The 250 
abbreviations in the Methods column are: RFRE for random forest-based Regression Ensemble, SOM-FFN for Self-
Organizing Map-Feed Forward Network, MLR for Multiple Linear regression, FFNN for Feed-Forward Neural Network, XGB 
for eXtreme Gradient Boosting algorithm, and GRaCER for Geospatial Random Cluster Ensemble Regression. 
Data Methods Period Resolution Source 

Open ocean 
product 

MPI_SOM-FFN_v2022 SOM-FNN 1982-2021 1°×1°, monthly Landschützer et al. (2017) 
Jena-MLS MLR 1951-2021 2°×2°, monthly Rödenbeck et al. (2022) 

CMEMS-LSCE-FFNNv2 Ensemble of 
nonlinear models 1985-2021 1°×1°, monthly Chau et al. (2022) 

LDEO-HPD XGB 1985-2018 1°×1°, monthly Gloege et al. (2022) 
NIES-NN FFNN 1980-2020 1°×1°, monthly Zeng et al. (2014) 
JMA-MLR MLR 1998-2022 1°×1°, monthly Iida et al. (2021) 
OS-ETHZ-GRaCER GRaCER 1982-2020 1°×1°, monthly Gregor & Gruber (2021) 

Coastal 
ocean 
product 

ULB–SOM–FFN–
coastalv2 SOM-FNN 1982-2020 0.25°×0.25°, monthly Roobaert et al. (2024a) 

3 Results and discussion  

3.1 Evaluating the regression model performance 255 

The ReCAD-NAACOM-pCO2-product demonstrated robust performance and high accuracy in capturing pCO2 variability 

across the NAACOM (Fig. 4). During the model training phase, using 10-fold cross validation, the product achieved an R2 of 

0.83, an RMSE of 18.2 µatm, an MAE of 11.58 µatm, and an MBE of 0.17 µatm (Fig. 4a). The model demonstrated comparable 

performance metrics during the validation phase (Fig. 4b). To further evaluate the model's generalizability and robustness, we 

also conducted an independent test using data from 2004 to 2005, in which all data samples were not included in the model 260 

training and validation sets. During this independent test phase, the pCO2-product maintained high accuracy, with R2 = 0.65, 

RMSE = 26.9 µatm, MAE = 18.81 µatm, and MBE = 0.48 µatm (Fig. 4c). Additionally, most independent validation samples 

were distributed around the 1:1 corresponding line, proving the model's ability to predict pCO2 across unsampled spatial and 

temporal domains without overfitting. The model consistently demonstrated strong performance during the training, validation, 

and independent test phases across all sub-regions (Table 2). Overall, compared with all available samples in SOCAT, it 265 

achieved an R2 of 0.83, an RMSE of 18.64 µatm, an MAE of 11.88 µatm, and an MBE of 0.11 µatm for the entire NAACOM, 

highlighting the ReCAD-NAACOM-pCO2-product's generalizability, and robustness in effectively capturing the variability in 

pCO2 and providing reliable predictions of pCO2 across the studied regions. 
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Figure 4. Evaluation of regression model for reconstructing ReCAD-NAACOM-pCO2 product. Density scatter plots 270 
compare the product estimated pCO2 (pCO2est) with the in situ SOCAT observations (pCO2obs) during the (a) model training 
phase (80% samples during the period of 1993-2003 and 2006-2021), (b) validation phase (20% samples during the period of 
1993-2003 and 2006-2021), and (c) independent test phase (samples during the period of 2004-2005). The model-estimated 
values shown in panel (a) were obtained through 10-fold cross-validation. Statistical metrics include the coefficient of 
determination (R2), root mean square error (RMSE), mean absolute error (MAE), mean bias error (MBE), and the number of 275 
samples (N). The color bar represents the number of data points within each bin. 
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Table 2. Performance of the regression model during the model training, validation, and independent test phases across 
different sub-regions. The model-estimated values during the model training phase were obtained through 10-fold cross-
validation. The metrics include the coefficient of determination (R2), root mean square error (RMSE), mean absolute error 280 
(MAE), and mean bias error (MBE). Sub-regions are the Gulf of Mexico (GoMx), South Atlantic Bight (SAB), Mid-Atlantic 
Bight (MAB), Gulf of Maine (GoMe), Scotian Shelf (SS), and Gulf of St. Lawrence and Grand Banks (GStL&GB). 

Region Type R2 RMSE (µatm) MAE (µatm) MBE (µatm) 

GStL&GB 

Training set 0.90 14.45 9.55 0.91 
Validation set 0.91 13.73 9.04 0.87 
Independent test set 0.76 25.41 17.06 -7.00 
All 0.89 15.55 10.08 0.25 

SS 

Training set 0.87 16.12 11.20 -0.96 
Validation set 0.86 14.96 10.03 -1.72 
Independent test set 0.52 30.20 23.24 -2.96 
All 0.83 17.85 12.19 -1.30 

GoMe 

Training set 0.80 21.14 15.30 0.36 
Validation set 0.80 20.54 14.99 0.01 
Independent test set 0.49 31.98 23.99 3.99 
All 0.78 21.85 15.78 0.52 

MAB 

Training set 0.84 19.75 13.82 -0.26 
Validation set 0.86 18.93 13.35 -0.10 
Independent test set 0.59 36.80 27.86 8.24 
All 0.84 20.15 14.05 -0.03 

SAB  

Training set 0.87 12.28 7.50 0.54 
Validation set 0.89 11.36 6.93 0.03 
Independent test set 0.74 23.06 16.79 -0.57 
All 0.85 13.56 8.30 0.34 

GoMx 

Training set 0.77 18.61 10.11 0.04 
Validation set 0.76 18.33 9.83 0.15 
Independent test set 0.49 14.28 7.60 -4.31 
All 0.77 18.46 10.00 -0.05 

NAACOM 

Training set 0.83 18.19 11.58 0.17 
Validation set 0.84 17.67 11.21 0.06 
Independent test set 0.65 26.93 18.81 -0.48 
All 0.83 18.64 11.88 0.11 
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3.2 Spatial distribution of product bias 

The ReCAD-NAACOM-pCO2 product exhibited a negligible area-mean bias of +0.17 µatm with a standard deviation of 9.48 

µatm when compared to all SOCAT observation grid cells across the entire NAACOM (Fig. 5). This small average difference 285 

suggests no consistent over- or under-estimation by the regression model, indicating the product's reliability in estimating the 

monthly and annual mean climatology of pCO2 across the entire NAACOM region. 

 

Figure 5. Spatial distribution of mean bias error (MBE) between ReCAD-NAACOM-pCO2 product and SOCAT 
observations across the NAACOM. The MBE is calculated for each grid cell as the average difference between product 290 
estimates and SOCAT observations. Positive values (red) indicate product overestimation, while negative values (blue) 
indicate underestimation relative to SOCAT. The overall mean difference is +0.17 ± 9.48 μatm. The NAACOM is divided into 
six sub-regions by the orange straight lines, including the Gulf of Mexico (GoMx), South Atlantic Bight (SAB), Mid-Atlantic 
Bight (MAB), Gulf of Maine (GoMe), Scotian Shelf (SS), and Gulf of St. Lawrence and Grand Banks (GStL&GB). The 
contour line in red is the 200 m isobath, which is roughly the location of the shelf break and a typical definition of continental 295 
shelf boundary. 

While the area-average difference is small, the differences are distributed heterogeneously in space. Larger differences 

(absolute difference > 10 µatm) tend to occur in nearshore regions, particularly along the coastlines of the GoMx and SAB, as 

well as in northern areas such as the GoMe, SS, and GStL&GB (Fig. 5). These regional variations can be attributed to complex 

coastal processes such as terrestrial inputs, sparse observations in the northern areas (Lavoie et al., 2021; Rutherford et al., 300 
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2021; Salisbury and Jönsson, 2018), and less accurate satellite observations in the nearshore regions (Song et al., 2023). 

Conversely, smaller differences (absolute difference < 2.5 µatm) are observed in the central parts of the GoMx, offshore 

regions of the SAB and MAB, and some nearshore regions of the SS and GB, which is likely due to more stable oceanic 

conditions in those regions. Despite these regional differences, the product's small overall difference underscores its 

effectiveness in capturing the broader pCO2 patterns across the NAACOM. 305 

3.3 Evaluating the product's capacity to capture pCO2 seasonality 

  

Figure 6. Monthly mean climatology of pCO2 in the southern and northern areas of the NAACOM from 1993 to 2021. 
Sub-regions are (a) southern areas, the red box in Fig. 2, and (b) northern areas, the blue box in Fig. 2. The x-axis represents 
months (1-12 with 1 equal January), and the y-axis shows pCO2 in µatm. Two data representations are shown: (1) SOCAT 310 
observations (black curves), which may be influenced by missing data; and (2) the complete product output (red curves). Error 
bars denote one standard deviation of the monthly mean climatology of pCO2. 

Figure 6 showcases the applicability of the product in capturing the pCO2 seasonal cycles across the southern and northern 

areas of NAACOM. The two data representations show strong similarity, demonstrating that ReCAD-NAACOM-pCO2-

product effectively captures the seasonal cycles of pCO2 in the diverse coastal environments of the NAACOM region. Our 315 

product reveals distinct seasonal cycles between the southern (the red box in Fig. 2) and northern areas (the blue box in Fig. 

2). The seasonal cycle of pCO2 in the southern areas exhibits maximum pCO2 in summer (July and August, around 400 µatm) 

and minimum in late winter to early spring (January to March, around 340 µatm) (Fig. 6a). In contrast, the northern areas 

display minimum pCO2 in late spring (April and May, less than 320 µatm) and maximum in summer (July and August, around 

380 µatm) (Fig. 6b).  The seasonal pCO2 amplitude, defined as the difference between maximum and minimum monthly mean 320 

pCO2 values within a year (Takahashi et al. 2002), is smaller in the southern areas than the northern areas, with mean amplitude 

of around 60 µatm in the south (Fig. 6a) but circa a twofold increase to110 µatm in the north (Fig. 6b). A notable feature 
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revealed by the product is the elevated pCO2 values during fall and winter in the northern areas. While pCO2 decreases after 

the summer peak in southern regions, northern areas maintain relatively high pCO2 levels throughout fall and winter (Fig. 6b).  

The product predicts smaller monthly standard deviations in southern regions (less than 40 µatm, error bars in Fig. 6a), 325 

suggesting higher model accuracy and less interannual variability in these areas. Conversely, larger monthly standard 

deviations are observed in the northern areas, suggesting potential less accuracy and remarkable interannual variability. 

However, the larger interannual variability in these areas may be an artifact due to the limited observational data available for 

regression model training, resulting in greater uncertainty in the predictions. Despite differences in the mean monthly 

climatology, the similar seasonal pCO2 cycles calculated from SOCAT and reconstructed product demonstrate the ReCAD-330 

NAACOM-pCO2-product's capability to represent seasonal pCO2 variability across diverse coastal environments. Nevertheless, 

there exist larger differences between the observations and reconstructed pCO2 in some months and regions (Fig. 6b), 

highlighting the importance of the gap-free product in an unbiased understanding of regional carbon cycles (Ren et al., 2024). 

Detailed sea surface pCO2 seasonal cycles and their controlling mechanism across different sub-regions of the NAACOM will 

be presented in our subsequent work. 335 

3.4 Evaluating the product's ability to capture regional variation by comparing it to global products 

The ReCAD-NAACOM-pCO2 product demonstrates the capability to resolve fine-scale regional spatial distributions of pCO2. 

Figure 7 illustrates the spatial distribution of annual mean climatology of pCO2 across the NAACOM as observed by SOCAT 

and predicted by different global open and coastal pCO2-products. Despite being affected by missing data, SOCAT 

observations (Fig. 7a) reveal significant regional variations in pCO2, such as the low pCO2 levels (<340 µatm) in the Louisiana 340 

Shelf (LAS) estuary plume region (box 1 in Fig. 7) and relatively higher values (> 400 µatm) in the West Florida Shelf (WFS, 

box 2 in Fig. 7), which have been systematically reported in earlier studies (Kealoha et al., 2020; Robbins et al., 2018; Wu et 

al., 2024b). The ReCAD-NAACOM-pCO2 product demonstrates superior alignment with SOCAT observations in capturing 

these regional features (Fig. 7b), accurately representing the low pCO2 values in the LAS Mississippi River plume (box 1) and 

the elevated pCO2 levels in the WFS (box 2), underscoring the product's capacity to resolve regional spatial variations in 345 

coastal pCO2 dynamics.  

In contrast, the global reconstructions of pCO2, represented by the ensemble of the seven open ocean pCO2-products (Fig. 7c), 

face challenges in resolving these regional pCO2 variations, as previously discussed by Wu et al (2024b). The coastal pCO2-

product of Roobaert et al. (2024a, ULB_SOMFFN_coastal_v2) also captures some small-scale structures, like low pCO2 in 

the LAS (Fig. 7d), but the ReCAD-NAACOM-pCO2 product exhibits closer values to the observations. In the northern area 350 

(box 3), the ReCAD-NAACOM-pCO2 product predicts higher pCO2 levels that are closer to observations in the nearshore 
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region (Fig. 7b). This is not surprising, as the ULB_SOMFNN_coastal_v2 is a global product known for its high accuracy on 

the global average. These comparisons highlight the necessity of developing regional reconstructed products in capturing the 

complex spatial heterogeneity of coastal pCO2 distributions. The ReCAD-NAACOM-pCO2 product's ability to capture 

regional features suggests its potential utility for studies focusing on coastal carbon dynamics and their response to local and 355 

regional forcing factors in future research in the NAACOM. 

 

Figure 7. Spatial distribution of annual mean pCO2 climatology in the NAACOM from different sources. (a) SOCAT 
observations, (b) ReCAD-NAACOM-pCO2 product, (c) Ensemble mean of 7 global open ocean pCO2-products listed in Table 
1, and (d) Coastal pCO2-product ULB_SOMFFN_coastal_v2 (Roobaert et al., 2024a). The black contour delineates the coastal 360 
ocean margin. Three boxes represent sub-regions in the NAACOM: box 1 for the Louisiana Shelf (LAS), box 2 for the West 
Florida Shelf (WFS), and box 3 for the Northern region. Mean pCO2 values ± standard deviation of all grid cells are provided 
for each dataset. Color scale represents pCO2 in μatm. 
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3.5 Evaluating the product's capacity to detect decadal linear trends of pCO2 

Using pCO2-products to accurately reconstruct pCO2 linear trends in coastal regions presents significant challenges due to the 365 

high spatial heterogeneity of coastal pCO2 dynamics. This heterogeneity often leads to sea surface pCO2 changes that deviate 

from atmospheric trends (Laruelle et al., 2018). Even when utilizing similar observational datasets, derived products may not 

consistently reflect the underlying trends. For instance, Wu et al. (2024b) examined the capability of various products to reflect 

pCO2 changes in the GoMx, a region where pCO2 trends exhibit significant spatial variability. Despite this heterogeneity, 

seven global open ocean products (listed in table Table 1) indicate trends similar to atmospheric pCO2 across the entire GoMx 370 

without regional differences. In contrast, the GoMx-specific regional product developed by Chen and Hu (2019) demonstrates 

no significant overall trend. The discrepancy in trend detection primarily stems from the design of the regression model and 

the selection of input variables. These factors are critical in capturing the complex spatiotemporal variability of coastal pCO2 

and its long-term evolution. 

To assess the product's capability in resolving decadal pCO2 trends, we conducted an analysis of pCO2 evolution using three 375 

distinct regions within the NAACOM (three boxes in Fig. 7) as representative examples (Fig. 8). Decadal trends of 

deseasonalized time series were calculated following the established protocol described by Sutton et al. (2022). The LAS (box 

1 in Fig. 7) has been identified as an increasing CO2 sink, characterized by a negative pCO2 rate increase from 2002-2021 (Wu 

et al., 2024). Our product results for the extended period of 1993-2021 indicate that pCO2 increased at a rate of +0.32 ± 0.11 

µatm yr⁻¹ (Fig. 8a). This rate is significantly lower than the observed atmospheric pCO2 increase in this region, which is 380 

approximately +1.8 µatm yr-1. These findings corroborate our previous conclusion that the LAS is an increasing CO2 sink, 

demonstrating our product's capability to reveal long-term pCO2 trends in this dynamic river plume region, extending the 

analysis period by nearly a decade compared to previous studies. In contrast, the WFS (box 2 in Fig. 7) exhibits accelerated 

pCO2 increase faster than atmospheric pCO2 of around +2.0 µatm yr-1 (Fig. 8b), aligning with observations reported by Robbins 

et al. (2018), which found a transition from a CO2 sink to a source in this region during the 1990s. 385 

Both ReCAD-NAACOM-pCO2 and SOCAT consistently report a pCO2 trend around +2.30 µatm yr-1 in the northern area (box 

3 in Fig. 7) over 1993-2021 (Fig. 8c), which is faster than the atmospheric pCO2 increase (around +2.0 µatm yr-1), suggesting 

that these areas have been becoming a decreasing CO2 sink. However, limited observational data in this area necessitates 

cautious interpretation and warrants further validation in future research. Overall, the spatiotemporal heterogeneity in surface 

ocean pCO2 trends across the NAACOM underscores the importance of long-term monitoring to elucidate the drivers of these 390 

trends, particularly in regions influenced by major current systems and in areas with limited observational data. 
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Figure 8. Decadal linear trends of sea surface pCO2 in three regions of the NAACOM from 1993-2021. Blue and red dots 
are monthly average pCO2 values (deseasonalized) calculated from SOCAT observations and reconstructed ReCAD-
NAACOM-pCO2, respectively. Thick lines are linear fitted regression lines. Three regions are the boxes in Fig 7: (a) Louisiana 395 
Shelf (LAS), northern Gulf of Mexico shelf river plume region; (b) West Florida Shelf (WFS); and (c) Northern areas. Linear 
trends are calculated following the established protocol by Sutton et al. (2022). Numbers in parentheses are the number of 
months with data and the p values. 
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 3.6 Evaluating the product's uncertainty 

Table 3. Uncertainty estimates for the ReCAD-NAACOM-pCO2 product across different sub-regions of the NAACOM. 400 
uobs, ugrid, umap, and uinputs represent the measurement uncertainty, gridding uncertainty, mapping uncertainty, and uncertainty 
accumulated from input variables, respectively (see method Section 2.5 for further details). upCO2 is the total combined 
uncertainty. All values are in µatm. Sub-regions are the Gulf of Mexico (GoMx), South Atlantic Bight (SAB), Mid-Atlantic 
Bight (MAB), Gulf of Maine (GoMe), Scotian Shelf (SS), and Gulf of St. Lawrence and Grand Banks (GStL&GB). 

Region uobs ugrid umap  uinputs upCO2  
GStL&GB 5.00 15.44 15.55 5.57 23.16 
SS 5.00 15.37 17.85 6.18 24.86 
GoMe 5.00 16.05 21.85 7.51 28.57 
MAB 5.00 16.14 20.15 5.97 26.97 
SAB 5.00 8.29 13.56 5.99 17.70 
GoMx 5.00 10.38 18.46 5.55 22.45 
NAACOM 5.00 12.69 18.64 5.86 23.83 

Uncertainty of the reconstructed pCO2-product was estimated by accumulating uncertainties from mapping (umap), gridding 405 

(ugrid), measurement (uobs), and input variables (uinputs, see Section 2.5 of the method for further details on the calculation). To 

maintain a conservative estimate, we adopted the larger value of 5 µatm as uobs for all data points. The gridded fCO2 values 

from SOCAT are reported as the averages of all samples collected within each grid cell. Accordingly, ugrid was quantified as 

the standard deviation of samples within each grid cell, calculated across six sub-regions. umap was calculated using the RMSE 

values reported in Table 2 following previous literature (Roobaert et al., 2024a; Sharp et al., 2022). uinputs was calculated using 410 

a Monte Carlo simulation (Appendix A). These four sources of uncertainties were evaluated across different sub-regions of 

the NAACOM, as shown in Table 3. umap contributes the largest portion to the total uncertainties across all sub-subregions 

with the maximum value up to 21.85 µatm in the SS. Overall, the ReCAD-NAACOM-pCO2 product demonstrates uncertainties 

ranging between 17 to 29 µatm across six sub-regions, and an average uncertainty of 23.83 µatm for the entire NAACOM. 

This uncertainty range is deemed reasonable, considering our conservative estimation approach. For comparison, estimated 415 

uncertainties in the North American Pacific Coastal Ocean Margin were 43.4 μatm (Sharp et al., 2022). It is important to note 

that our uncertainty calculation assumed independence among all sources, which is a simplification. Recent research by e.g., 

Ford et al. (2024) has highlighted that these uncertainties are often correlated. Future studies should consider these inter-

variable correlations to refine uncertainty estimates. 

3.7 Challenges and Limitations 420 

Even though ReCAD-NAACOM-pCO2 resolves regional pCO2 variability with high accuracy in the NAACOM, this product 

still has room for improvement in the future. Potential areas for improvement include the 0.25° spatial resolution, which is 

inadequate to resolve sub-mesoscale variability at the scale of 0.1 - 10 km (McWilliams, 1985). Furthermore, the performance 
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of the model during the independent validation phase reduced in the GoMe (R2 = 0.49) and GoMx (R2 = 0.49) (Table 2), which 

may be due to the complex biological and physical condition in the estuary plume regions in these two gulfs. In this study, we 425 

opted not to include chlorophyll-a (Chl-a) concentrations and wind speeds as input variables for model training and prediction. 

This decision was primarily due to the limited temporal coverage of satellite-derived Chl-a data, which only extends back to 

1997 with the launch of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) satellite (O'Reilly et al., 1998). The inclusion 

of Chl-a would have restricted our model's temporal range, potentially limiting its ability to capture long-term trends and 

variability in pCO2. Future versions of our model will aim to address this limitation. One potential approach is to develop a 430 

two-phase model: one for the period before 1997 without Chl-a data, and another for the post-1997 period incorporating Chl-

a information. Alternatively, we may explore methods to reconstruct historical Chl-a data or use proxy variables that correlate 

with biological productivity and are available for the entire study period. 

In our previous work, we demonstrated that incorporating wind speeds and sea surface roughness data derived from Synthetic 

Aperture Radar (SAR) could enhance model performance in predicting pCO2 at submesoscale resolutions (Wang et al., 2024). 435 

In this work, we evaluated the inclusion of wind speed as an input variable in our model. However, at the 0.25° resolution 

employed here, the addition of wind speed data did not significantly improve model performance (only increase the R2 by 0.1). 

Moreover, using the same Monte Carlo simulation approach applied to other variables, incorporating wind speeds would 

introduce an additional 6 µatm uncertainty to pCO2 estimates, doubling the input-related uncertainties. Consequently, we 

excluded wind speeds from our regression model to reduce input-related uncertainties. Despite this omission, our product 440 

demonstrates robust capability in resolving regional variations, seasonal cycles, and decadal trends in pCO2, making it valuable 

for future studies. 

4 Data availability 

The reconstructed fCO2, pCO2, and the uncertainty in ReCAD are available as a NetCDF file at 

https://doi.org/10.5281/zenodo.11500974 (Wu et al., 2024a) and will be updated regularly. 445 

5 Code availability 

Python and MATLAB code used to process data and create figures included in this paper is provided at 

https://github.com/zelunwu/ReCAD_product_v1  
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6 Conclusions 

The ReCAD-NAACOM-pCO2 product developed in this study represents a significant advancement in our ability to detect 450 

the spatial variations, seasonal cycle, and decadal changes of surface ocean pCO2 dynamics in the NAACOM. By leveraging 

a two-step approach combining random forest and linear regression, and a set of environmental predictors, we have created a 

high-resolution, long-term dataset (1993-2021 period) that captures the complex spatial and temporal variability of pCO2 

across the region. On average, compared with all available samples from the SOCAT observations in our study region, the 

product has an R2 of 0.83, an RMSE of 18.64 µatm, an MAE of 11.88 µatm, and an MBE of 0.11 µatm for the entire NAACOM, 455 

with an average uncertainty of 23.83 µatm. Key findings from this study include: 

1. The product demonstrates high accuracy and reliability, as evidenced by strong performance metrics during training, 

validation, and independent test phases across six sub-regions. 

2. Distinct seasonal cycles are observed between southern and northern sub-regions, with the product capturing nuanced 

features such as elevated pCO2 levels during fall and winter in northern areas. 460 

3. Comparison with global products highlights the superior ability of the ReCAD-NAACOM-pCO2 product to resolve 

fine-scale coastal features and variability. 

4. The pCO2-product successfully reconstructed decadal linear trends consistent with previous studies, while also 

revealing a rapid increase in	pCO2 in the northern regions of the NAACOM. 

While areas for future improvement exist, such as increasing spatial resolution and enhancing accuracy in estuary plume-465 

influenced regions, the ReCAD-NAACOM-pCO2 product provides a robust foundation for studying coastal carbon dynamics. 

This dataset will be valuable for investigating air-sea CO2 fluxes, assessing ocean acidification impacts, and understanding the 

role of coastal systems in the NAACOM. 

Future research should validate the reconstructed trends, particularly in areas with limited observational data, and explore the 

mechanisms driving the spatiotemporal variability in pCO2 across the NAACOM region. Additionally, the methodologies 470 

developed here can contribute to a more comprehensive understanding of coastal ocean carbon dynamics in the face of climate 

change and have the potential to be applied globally. 
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Appendix A: Monte Carlo simulation in calculating uinputs 

A crucial step in calculating uinputs is determining the uncertainties of the input variables. In our reconstructed model, there 

were four variables that need to be evaluated: SST, SSS, SSH, and pCO2air. Our general principle was to adopt conservative 475 

estimates, using the largest reported uncertainty for each product when available. 

SST errors are provided within the OISST product at the grid level. On the global average, OISST reports a mean bias and 

RMSE of -0.04 and 0.24 ℃ when compared with the observations on the global average (Huang et al., 2021). For our study 

region, we calculated the mean SST error across all grid cells, yielding a value of 0.23°C.  

The SODA database assimilates observational data but does not directly provide SSS error estimates. Given this limitation in 480 

uncertainty reporting, we derived an estimate based on the RMSE between model SSS and observations near our study region, 

as reported by Carton et al. (2018). Their analysis (their Fig. 8) indicates an RMSE exceeding 0.3 psu in the vicinity of our 

area of interest. To maintain a conservative approach in our uncertainty quantification, we doubled the uncertainty and adopted 

a value of 0.6 psu as the SSS uncertainty for our calculations. 

SSH errors are directly provided in the dataset, which has a mean uncertainty of 1.8 cm in our study region.  485 

pCO2air, calculated from xCO2air (MBL References), which has a global mean uncertainty of 0.22 ppm. 

To propagate these input uncertainties to the final pCO2 estimate, a Monte Carlo simulation approach was implemented: 

1. For each input variable xi, random perturbations εi were generated following a normal distribution N(0, ui), where ui 

represents the uncertainty of the respective variable listed above. 

2. Perturbed inputs (xi + εi) were used to calculate pCO2 using the established model. 490 

3. The difference (Δi) between the reconstructed pCO2 before and after adding the perturbation was computed. 

4. Steps 1, 2, and 3 were iterated 100 times for each input variable. 

5. The uncertainty contribution from each variable was quantified as the standard deviation of the 100 Δi values in each 

grid cell. 

The total uncertainty attributed to input variables (uinputs) was then calculated as the square root of quadratic sum of individual 495 

uncertainties: 

𝑢*435&$ = C𝑢99:! + 𝑢999! + 𝑢99;! + 𝑢367!#"$
!                   (A1) 
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Figure A1. Uncertainties of pCO2 accumulated from different input variables for the model. 

The largest uncertainties propagated from these variables are sourced from SSS and SSH (Fig. A1a and A1c). Simulating 500 

salinity in coastal regions are still challenging due to complex lang-ocean interaction. For the SSH, the largest uncertainties 

were observed in the GoMe and GStL. Overall, uinputs is largest in the West Florida Shelf and nearshore waters around the 

GoMe, with a mean uinputs uncertainty of 5.9 ± 4.7 µatm for the entire NAACOM. 
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