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Abstract. Insufficient spatiotemporal coverage of the partial pressure of CO2 (pCO2) observations has hindered precise carbon 

cycle studies in coastal oceans and justifies the development of spatially and temporally continuous pCO2 data products. Earlier 

pCO2 products have difficulties in capturing the heterogeneity of regional variations and decadal trends of pCO2 in the North 

American Atlantic Coastal Ocean Margin (NAACOM). This study developed a regional reconstructed pCO2 product for the 15 

NAACOM (Reconstructed Coastal Acidification Database-pCO2, or ReCAD-NAACOM-pCO2) using a two-step approach 

combining random forest regression and linear regression. The product provides monthly pCO2 data at 0.25° spatial resolution 

from 1993 to 2021, enabling investigation of regional spatial differences, seasonal cycles, and decadal changes in pCO2. The 

observation-based reconstruction was trained using Surface Ocean CO2 Atlas (SOCAT) observations as observational values, 

with various satellite-derived and reanalysis environmental variables known to control sea surface pCO2 as model inputs. The 20 

product shows high accuracy during the model training, validation, and independent test phases, demonstrating robustness and 

capability to accurately reconstruct pCO2 in regions or periods lacking direct observational data. Compared with all the 

observation samples from SOCAT, the pCO2 product yields a determination coefficient of 0.92, a root-mean-square error of 

12.70 µatm, and an accumulative uncertainty of 23.25 µatm. The ReCAD-NAACOM-pCO2 product demonstrates its capability 

to resolve seasonal cycles, regional-scale variations, and decadal trends of pCO2 along the NAACOM. This new product 25 

provides reliable pCO2 data for more precise studies of coastal carbon dynamics in the NAACOM region. The dataset is 

publicly accessible at https://zenodo.org/records/14038561 (Wu et al., 2024a) and will be updated regularly. 
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1 Introduction 

Accurate and comprehensive sea surface partial pressure of CO2 (pCO2) datasets are necessary for quantifying coastal CO2 

uptake and assessing the impact of climate change on coastal ocean ecosystems. On a global scale, the coastal ocean, covering 30 

8.4% (30.4 × 106 km2) of the global ocean surface area (Chen et al., 2013; Dai et al., 2022), plays a significant role in the 

global carbon budget, accounting for approximately 10.9% of the global ocean CO2 uptake from the atmosphere (0.25 of 2.3 

Pg C yr-1) on the global average (Dai et al., 2022; Friedlingstein et al., 2023).  However, on regional scales, areal-based CO2 

uptake fluxes in specific coastal regions are often much greater than those in open oceans despite their less distinguishable 

global means (Dai et al., 2022). This is because sea surface pCO2 is highly variable due to the influence of various physical 35 

and biogeochemical processes in coastal oceans, such as riverine input, upwelling, tidal mixing, and large-scale circulations 

(Laruelle et al., 2018; Roobaert et al., 2024b). Thus, accurately quantifying the CO2 uptake in specific coastal regions becomes 

particularly challenging when only using observations due to the incomplete coverage of pCO2 data in space and time.  

This study focuses on the North American Atlantic Coastal Ocean Margin (NAACOM, Fig. 1). The entire region is defined as 

the area within 400 km of the coastline and divided into six sub-regions based on their geographic location following Fennel 40 

et al. (2019), including the Gulf of Mexico (GoMx), South Atlantic Bight (SAB), Mid-Atlantic Bight (MAB), Gulf of Maine 

(GoMe), Scotian Shelf (SS), and Gulf of St. Lawrence & Grand Banks (GStL&GB). The carbonate system in the NAACOM 

is influenced by large-scale circulations (Fig. 1), including the Gulf Stream and Labrador Current, as well as local processes 

like river discharge, export from marshes, and upwellings dynamics (Cai et al., 2020; Fennel et al., 2019; Wang et al., 2013). 

These complex physical and biogeochemical processes contribute to substantial spatial and temporal heterogeneity in sea 45 

surface pCO2 across the NAACOM (Cai et al., 2020). Elucidating the driving mechanisms of these spatiotemporal pCO2 

variations necessitates extensive data coverage in time and space in this region. Over the past two decades, coastal field 

investigation efforts in this region have substantially increased through programs like the East Coast Ocean Acidification 

(ECOA) and Gulf of Mexico Ecosystems and Carbon Cruise (GOMECC)  (Cai et al., 2020; Wang et al., 2013; Wanninkhof et 

al., 2015). Underway measurements from these cruises, combined with underway measurements from volunteer observing 50 

ships and buoys, are quality-controlled and compiled in the Surface Ocean CO2 Atlas (SOCAT) database (Bakker et al., 2016), 

substantially advancing our understanding of coastal inorganic carbon chemistry along the NAACOM (Cai et al., 2020). 

Despite significant progress in observational efforts, the spatial and temporal coverage of pCO2 data remains limited in the 

NAACOM, with observations encompassing only 2.9 % of grid cells during the period 1993-2021 (Fig. 2). Observations are 

concentrated in the southern regions, with fewer samples available during winter. This data scarcity introduces substantial 55 

uncertainty in the air-sea CO2 exchange quantification and hinders a comprehensive understanding of coastal inorganic carbon 
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dynamics, particularly in areas north of Cape Cod where measurements are highly sparse (Fig. 2). For example, reported air-

sea CO2 fluxes for the GoMe exhibit a wide range spanning from -0.50 to +2.50 mol C m-2 yr-1, with conflicting reports 

characterizing it as a CO2 source (Fennel & Wilkin, 2009; Vandemark et al., 2011), CO2 neutral (Signorini et al., 2013), and 

CO2 sink (Cahill et al., 2016; Rutherford et al., 2021), underscoring the need for improved pCO2 data coverage. 60 

 

Figure 1. Topography (in meters) and large-scale circulation along the North American Atlantic Coastal Ocean Margin 
(NAACOM). The study region, defined as coastal areas extending 400 km offshore, is indicated by blue shading. The thick 
black line is the 200 m isobath, which roughly marks the shelf break and typically defines the continental shelf boundary. The 
Gulf Stream (thick red dashed line with an arrow) flows northward along the east coast of the United States before veering 65 
eastward into the open Atlantic Ocean around Cape Hatteras. The Labrador Current (thick light blue dashed line with an arrow) 
flows southward along the east coast of Canada before meeting the Gulf Stream. Following Fennel et al. (2019), the study 
region is divided into six sub-regions by straight orange lines: the Gulf of Mexico (GoMx), South Atlantic Bight (SAB), Mid-
Atlantic Bight (MAB), Gulf of Maine (GoMe), Scotian Shelf (SS), and Gulf of St. Lawrence and Grand Banks (GStL&GB). 
Dashed contour lines indicate bathymetric depths of 50 m and 100 m on the shelf (from coastline to 200 m isobath), and 1000 70 
m, 2000 m, 3000 m, and 4000 m from the shelf break to the open ocean. 
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Recently, various pCO2 products, global or regional, with full coverage in time and space have been developed as essential 

supplements to observations. These products usually employed diverse algorithms and utilized environmental proxies from 

satellites and reanalysis products as model inputs and SOCAT observations as constraints to reconstruct the pCO2 field with 

full temporal and spatial coverage. The development of those products has significantly advanced our understanding of 75 

inorganic carbon chemistry and the ocean carbon cycle. For example, seven global pCO2 products were used to evaluate the 

ocean CO2 uptake in the Global Carbon Budget 2023 edition (Friedlingstein et al., 2023). However, most of these products 

reconstruct pCO2 in the open ocean, with coastal regions often being extrapolated or excluded. Currently, only one pCO2 

product has been developed specifically for the coastal ocean on a global scale (Laruelle et al., 2017; Roobaert et al., 2024a). 

This product was recently combined with an open ocean product to create a global reconstruction of the ocean CO2 sink 80 

(Landschützer et al., 2020) and has since been utilized to narrow the variability in global reconstructions (Fay et al., 2021). 

However, global products primarily aim to ensure high accuracy of parameters on a global average; they may not guarantee 

equivalent accuracy for spatiotemporal variations on the regional scale. In comparison, regional pCO2 products have 

demonstrated superior capability in resolving detailed small-scale variations. 

Within the NAACOM region, several area-specific pCO2 products have been reconstructed, focusing on specific regions such 85 

as the GoMx (e.g., Chen and Hu, 2019; Fu et al., 2020; Lohrenz and Cai, 2006) and the SAB and MAB (e.g., Wang et al., 

2024; Xu et al., 2020). These regional and global pCO2 products are valuable for validating model estimations (Roobaert et 

al., 2022; Ross et al., 2023). However, existing products often have limitations in spatial coverage, temporal resolution, or 

trend analysis capabilities. For instance, Chen and Hu (2019) provided a high-resolution (4 km) pCO2 product for the GoMx, 

but this product faces challenges in capturing decadal changes in pCO2 (Wu et al., 2024b). Conversely, Xu et al. (2020) 90 

successfully captured decadal trends of pCO2, but only as area-averaged pCO2 time series for the SAB and MAB, lacking 

comprehensive spatial coverage. Signorini et al. (2013) reconstructed a product using multiple linear regression (MLR) 

covering the areas from SAB to SS, but it spans only 8 years (2003-2010). Despite these valuable efforts, there remains a lack 

of comprehensive data products that adequately capture regional variations, seasonal cycles, and decadal changes in pCO2 

simultaneously for the entire NAACOM. 95 

This study aims to develop a regional pCO2 product specifically designed for the NAACOM, encompassing coastal regions 

extending 400 km offshore from the GoMx to the GB (Fig. 1). We integrated random forest and linear regression methods 

with hydrological parameters from satellite observations and reanalysis data to generate a monthly reconstructed pCO2 product 

at 0.25° spatial resolution spanning the period from 1993 to 2021. The pCO2 product, termed ‘Reconstructed Coastal 

Acidification Database’ or ‘ReCAD-NAACOM-pCO2’, is specifically designed to resolve spatial variations, seasonal cycles, 100 

and decadal changes of pCO2 along the NAACOM. 
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The structure of this paper is as follows: Section 2 details the methodology used to reconstruct ReCAD-NAACOM-pCO2 and 

describes the datasets employed. Section 3 evaluates the accuracy of the reconstructed product, performance, and applicability 

in resolving seasonal cycles, regional variations, and decadal trends of pCO2. Sections 4 and 5 provide links to access the 

dataset and codes used for generating the dataset and figures presented in this study. The final section summarizes the 105 

conclusions. ReCAD-NAACOM-pCO2 demonstrates enhanced capability in resolving spatial variations and capturing the 

seasonal cycle and decadal trends of pCO2 than the global products across different sub-regions along the NAACOM. This 

product offers improved insights into coastal carbon dynamics in this complex region, addressing the need for a comprehensive 

pCO2 dataset in the NAACOM. Applications of this data product to examine the processes controlling the spatial variability, 

seasonal cycle, and decadal trends of pCO2 and air-sea CO2 flux will be published separately. 110 

2 Data and methods 

2.1 Observational data from SOCAT 

The observational data for training the regression model were the seawater fugacity of CO2 (fCO2) measurement extracted 

from the SOCAT database (version 2023). fCO2 represents the pCO2 corrected for the non-ideal behavior of the gas in seawater, 

and both are commonly used in oceanographic studies. SOCAT compiles quality-controlled fCO2 measurements from various 115 

platforms, including research vessels, commercial ships, and moorings (Bakker et al., 2016). This study used the monthly 

gridded SOCAT coastal product with a spatial resolution of 0.25° × 0.25° (but with data gaps). The gridded product 

incorporated measurements with quality flags A, B (uncertainty of 2 µatm), C, and D (uncertainty of 5 µatm) (Bakker et al., 

2016). Over the period of 1993-2021, the SOCAT product encompassed 55,347 grid cells within our study area (Fig. 2), 

accounting for approximately 2.9% of the total grid cells in the NAACOM. Observational data show lower sampling density 120 

in the areas north of Cape Cod and western and southern GoMx (blue box in Fig. 2). The temporal distribution of samples 

exhibits a notable bias, with reduced collection during winter (Fig. 2d). Despite these spatial and temporal heterogeneities, the 

SOCAT observations provide coverage across all sub-regions and seasons of the NAACOM (Fig. 2). This comprehensive, 

albeit sparse, coverage facilitates the reconstruction of the fCO2 and pCO2 field through interpolation and regression 

techniques. 125 
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Figure 2. Spatial distribution of sea surface pCO2 observations from SOCAT database (version 2023) in the NAACOM 
across four seasons from 1993 to 2021. Grid samples with data were counted by season: (a) Spring (March to May), (b) 
Summer (June to August), (c) Fall (September to November), and (d) Winter (December to February). The study region is 
divided into northern (blue box) and southern (red box) areas at approximately 41.5°N (Cape Cod). The number and percentage 130 
of grid samples are indicated for each region per season. Color scale represents pCO2 values in μatm. Higher sampling density 
is evident in the southern area. Winter shows the lowest overall sampling coverage. Note that the SOCAT database provides 
quality-controlled fCO2 measurements as the default parameter, which are subsequently converted to pCO2 using Eq. (2). 
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2.2 Model design 

 135 

Figure 3. A flowchart of the two-step machine learning regression model for generating the reconstructed pCO2 
product. Grey boxes represent the input and output datasets, blue boxes illustrate the model training, validation testing, and 
independent test processes, and orange boxes represent the final trained model for predicting the reconstructed product. The 
two models in the orange boxes are identical. The training data, consisting of paired input variables (lon, lat, month, sea surface 
temperature (SST), sea surface salinity (SSS), sea surface height (SSH), and atmospheric pCO2 (pCO2air) and corresponding 140 
sea surface fCO2 (fCO2sea) labels), is divided into two sets: X1 (1993-2003 and 2006-2021) and X2 (2004-2005). X1 is further 
randomly divided into subsets for model training set (80%) and validation set (20%). The predictive model combines a random 
forest regression (RFR) and a linear regression (LR) algorithm. The trained and validated regression model is then applied to 
all satellite and reanalysis data (without gaps) to generate the 3D reconstructed fCO2sea product, which was then converted to 
pCO2sea with satellite SST data. 145 

The procedures of developing and reconstructing the pCO2 product are illustrated in Fig. 3. Initially, the input variables and 

sea surface fCO2 data were matched to create a comprehensive dataset. To maintain consistency with the SOCAT database, 

which reports sea water CO2 concentrations as fCO2, we adopted fCO2 as the model training label and first-step output variable 

in our model. During the model development phase, fCO2 measurements served as training labels for the machine learning 

algorithm. The matched dataset was then divided into two sets: X1, encompassing the periods 1993-2003 and 2006-2021, and 150 

X2, covering 2004-2005. Set X1 was further randomly subdivided, with 80% allocated for model training and the remaining 

20% for validation test. Set X2 served as an independent test set. The model training set (80% of X1) was used to develop a 
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two-step RFR+LR regression model. The RFR is designed to capture complex, nonlinear relationships between the input 

variables and the target variable (i.e., fCO2), while the LR model is subsequently applied to mitigate potential systematic biases 

in RFR-derived fCO2 values arising from spatiotemporal heterogeneities in the SOCAT observational dataset (Fig. 2). RFR, 155 

an ensemble learning technique, combines multiple decision trees to produce more accurate and stable predictions (Breiman, 

2001; Lu et al., 2019). Each decision tree in the RFR is trained on a randomly selected subset of the input data, with the final 

prediction derived from the average output of all trees. This approach mitigates overfitting and enhances the generalization 

performance of the model, making it particularly suitable for large datasets with complex, nonlinear variable relationships. 

The RFR model was trained using 10-fold cross-validation, with optimized hyperparameters including a minimum leaf size of 160 

1, bagging method for ensemble aggregation, and 300 learning cycles after tuning. After RFR model training, an LR model 

was applied to the RFR-estimated fCO2 (fCO2est) output to make sure the RFR model is not systematically biased: 

𝑓𝐶𝑂!"#$ = 	𝑎 × 𝑓𝐶𝑂!%$& + 𝑏 + 𝜀          (1) 

where fCO2obs is the observed fCO2 from SOCAT, a is the linear regression coefficient, b is the intercept, and ε is the residual 

that the linear model cannot resolve. This additional step was implemented to mitigate potential systematic bias in the RFR 165 

model that could arise from areas with higher sampling density, thereby ensuring a more balanced representation across the 

entire study region. The comparison between estimated pCO2 before and after LR calibration is presented in Appendix A. The 

calibration was applied to each grid cell individually. To increase the data pool for linear regression, samples within a 5 × 5 

grid window in space (i.e., 1.25° × 1.25°) were aggregated for LR model development. As the available measurements could 

not cover every grid cell and were insufficient to produce continuous spatial maps of the calibration coefficients (i.e., a and b 170 

in Eq. (1)), we employed a locally interpolated regression strategy similar to Carter et al. (2018). Mathematically, given the 

spatial and temporal continuity of fCO2est and fCO2obs, the coefficients a and b must also be continuous in space and time. 

Therefore, we linearly interpolated the coefficients a and b across the NAACOM. The interpolated coefficients were 

subsequently used to adjust the RFR-derived fCO2est. 

The validation set, comprising 20% of X1 randomly sampled from 1993-2003 and 2006-2021, serves as a critical monitoring 175 

step for model evaluation. This subset plays two key roles: first, it tests hyperparameter tuning by providing independent 

performance metrics on unseen data, and second, it helps detect potential overfitting by monitoring the divergence between 

training and validation performance. While the validation set itself cannot prevent overfitting, it enables the detection of 

overfitting patterns when the performance of the model improves on training data but deteriorates on validation data. Through 

this continuous evaluation process, the validation set ensures more robust model development and helps achieving better 180 

generalization capabilities. 
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The independent test set (X2), covering the years 2004-2005, serves as a critical evaluation period specifically designed to 

assess the reliability of the model in predicting values for years that were completely excluded from both training and validation 

phases. Because we intentionally withhold these two years from model development, this approach directly tests the capability 

of the model to generate reliable predictions and fill temporal data gaps for periods without observational data. 185 

Finally, the trained model is applied to all satellite and reanalysis data to generate the final gap-free reconstructed fCO2 data. 

As most products reported seawater CO2 concentration as pCO2, we subsequently converted the reconstructed fCO2 values to 

pCO2 using the following equation (Takahashi et al., 2019) and our final product reports fCO2 and pCO2 both: 

𝑝𝐶𝑂! = 𝑓𝐶𝑂! × (1.00436 − 4.669 × 10'( × 𝑆𝑆𝑇)        (2) 

2.3 Regression model input variables from satellite and reanalysis 190 

The input variables for training the regression model include longitude (lon), latitude (lat), month, sea surface temperature 

(SST), sea surface salinity (SSS), sea surface height (SSH), and atmospheric pCO2 (pCO2air). Longitude, latitude, and month 

serve as spatiotemporal predictors, enabling the algorithm to identify and capture regional and seasonal variability in fCO2 

within the study area (Su et al., 2020; Yang et al., 2024). SST, SSS, and SSH are critical variables that characterize the physical 

and biogeochemical ocean settings, which play a crucial role in determining the spatial and temporal variability of fCO2. The 195 

pCO2air represents the atmospheric forcing on the air-sea CO2 exchange. Including pCO2air is essential for accurately assessing 

the decadal pCO2 trend.  

SST data were obtained from the National Oceanic and Atmospheric Administration (NOAA) Optimum Interpolation Sea 

Surface Temperature (OISST) v2.1 product (Huang et al., 2021). The OISST dataset is a global gridded SST analysis that 

blends observations from various sources, including satellites, ships, and buoys. The dataset employs an optimum interpolation 200 

technique to combine these observations and generate a daily SST field at a spatial resolution of 0.25° × 0.25°. For this study, 

the daily SST data were averaged to create a monthly product.  

SSS data were obtained from the Simple Ocean Data Assimilation (SODA) v3.15.2 product (Carton et al., 2018). SODA is a 

comprehensive reanalysis dataset that integrates a global ocean model with observational data to estimate ocean state variables 

consistently. The SODA system assimilates observations from multiple sources, including floats, moorings, and ship-based 205 

measurements, thereby constraining the model output and enhancing the accuracy of represented ocean physical properties, 

including SSS. The SODA v3.15.2 product offers monthly SSS data with a temporal resolution of one month and a spatial 

resolution of 0.5° × 0.5°, which were linearly interpolated to a 0.25° × 0.25° grid resolution to maintain consistency with other 
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input variables and the gridded SOCAT fCO2 data. Noted that such interpolation could potentially introduce additional errors. 

We doubled the SSS uncertainty in the region, assuming this would encompass its true uncertainty (see Appendix B). 210 

SSH data were extracted from the Global Ocean Gridded L4 Sea Surface Heights (European Union-Copernicus Marine 

Service, 2021) created by the Copernicus Marine Environment Monitoring Service (CMEMS). This product provides daily 

SSH data derived from altimeters, with a spatial resolution of 0.25° × 0.25° since 1993 (ongoing). Daily SSH data were 

averaged to monthly means. 

pCO2air data converted from the mole fraction of CO2 in the dry air (xCO2air) were downloaded from the NOAA Marine 215 

Boundary Layer (MBL) reference product (Dlugokencky and Tans, 2022). The MBL reference provides weekly zonal average 

xCO2air measurements from a global observation network. The xCO2air data was linearly interpolated to the same spatial and 

temporal resolution as the other input variables (0.25° × 0.25°, monthly). xCO2air was converted to pCO2air with the equation: 

𝑝𝐶𝑂!)*+ = 𝑥𝐶𝑂!)*+ × (𝑃 − 𝑝,)          (3) 

where P is the total atmospheric pressure on the sea surface, which was downloaded from the fifth generation European Centre 220 

for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA5) (Hersbach et al., 2019), and pw is the water vapor 

pressure, which was calculated using the formula of Weiss & Price (1980) using SST from OISST and SSS from SODA. 

2.4 Evaluation of model  

The accuracy of the model outputs was assessed using several statistical metrics, including the coefficient of determination 

(R2), root mean square error (RMSE), mean absolute error (MAE), and mean bias error (MBE). These metrics were calculated 225 

for the training and validation set phases, as well as for the independent validation set: 

𝑅! 	= 	1 − ∑ <𝑦"#$,* − 𝑦%$&,*>
!.

* /∑ <𝑦"#$,* − 𝑦"#$@@@@@>!.
*         (4) 

𝑅𝑀𝑆𝐸 = C/
.
∑ <𝑦"#$,* − 𝑦%$&,*>

!.
*           (5) 

𝑀𝐴𝐸 = /
.
∑ E𝑦"#$,* − 𝑦%$&,*E.
*           (6) 

𝑀𝐵𝐸 = /
.
∑ <𝑦"#$,* − 𝑦%$&,*>.
*           (7) 230 
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where 𝑖 denotes the 𝑖-th sample, 𝑦"#$ and 𝑦"#$@@@@@ are the observed pCO2 values from SOCAT and their average, 𝑦%$& represents 

the predicted pCO2 values from the final model, and N is the total number of matched samples. 

2.5 Uncertainty of reconstructed pCO2 

The uncertainty of estimated pCO2 in our product for each grid cell was accumulated from four sources of uncertainties: the 

direct pCO2 measurement uncertainty from SOCAT (𝑢"#$), gridding uncertainty (𝑢0+*1), mapping uncertainty (𝑢2)3), and the 235 

uncertainty accumulated from the input variables (𝑢*435&$). The first three sources of uncertainty were calculated according to 

the approach used by earlier reconstructed pCO2 products (Landschützer et al., 2014; Roobaert et al., 2024a; Sharp et al., 

2022). 𝑢"#$ is inherited from the SOCAT observations. The SOCAT database uses discrete samples with quality flags A and 

B (accuracy < 2 µatm), and C and D (accuracy < 5 µatm) to create the gridded file. Adopting a conservative approach, we used 

the maximum 𝑢"#$ of 5 μatm. 𝑢0+*1 was calculated as the standard deviation of the samples used to calculate the gridded fCO2 240 

in each grid cell. 𝑢2)3 is introduced by reconstructing the pCO2 using the RFR-LR model. It was evaluated as the RMSE 

between the reconstructed pCO2 and the observed pCO2 values following Roobaert et al. (2024a) and Sharp et al. (2022). 

Given that the derivation of 𝑢"#$, 𝑢0+*1, and 𝑢2)3 is contingent upon SOCAT observations, these three uncertainties and the 

total uncertainty 𝑢367! is reported on a sub-regional basis. 

In addition to these three sources of uncertainty, this study incorporated cumulative uncertainties from input variables (𝑢*435&$), 245 

including SST, SSS, SSH, and pCO2air. These satellite-derived or reanalysis-based variables inherently possess uncertainties 

that propagate nonlinearly through the regression model, ultimately affecting the estimated pCO2 values (Wang et al., 2021, 

2023). We employed a Monte Carlo simulation to calculate 𝑢*435&$. For each input variable (SST, SSS, SSH, pCO2air), we 

added white noise following a normal distribution N(0, 𝑢8"), where 𝑢8" is the uncertainty of the respective input variable 𝑥*. 

We then recalculated pCO2 using these noise-added inputs and determined the resulting changes in pCO2. This process was 250 

repeated 100 times for each input variable, and the resulting uncertainty in pCO2 from each variable was calculated as the 

standard deviation of the differences between the original reconstructed pCO2 and the pCO2 values after adding noise in each 

grid cell. The final 𝑢*435&$ was computed as the square root of the quadratic sum of these individual uncertainties from the 

four input variables. Detailed procedures for determining uinputs are described in Appendix B. 

Assuming these sources are independent, the uncertainty of the estimated gridded pCO2 in our product, 𝑢367!, was calculated 255 

using the error propagation (Hughes and Hase, 2010; Taylor, 1997): 

𝑢367! = C𝑢"#$! + 𝑢0+*1! + 𝑢2)3! + 𝑢*435&$!           (8) 
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2.6 Comparison with global reconstructed pCO2 product 

The ReCAD-NAACOM-pCO2 product was evaluated through comparisons with seven reconstructed pCO2 products that are 

developed for the global ocean and used in the Global Carbon Budget 2023 edition (Friedlingstein et al., 2023) and one 260 

reconstructed pCO2 product that is specifically developed for the global coastal ocean ( ULB_SOMFNN_coastal_v2, Roobaert 

et al., 2024a). Those data products reconstructed pCO2sea data using different machine-learning algorithms. Detailed 

information on those products is summarized in Table 1. 

Table 1. References for global pCO2 products used to compare with ReCAD-NAACOM-pCO2 in this study. The 
abbreviations in the Methods column are: RFRE for random forest-based Regression Ensemble, SOM-FFN for Self-265 
Organizing Map-Feed Forward Network, MLR for Multiple Linear regression, FFNN for Feed-Forward Neural Network, XGB 
for eXtreme Gradient Boosting algorithm, and GRaCER for Geospatial Random Cluster Ensemble Regression. 
Data Methods Period Resolution Source 

Open ocean 
product 

MPI_SOM-FFN_v2022 SOM-FNN 1982-2021 1°×1°, monthly Landschützer et al. (2017) 
Jena-MLS MLR 1951-2021 2°×2°, monthly Rödenbeck et al. (2022) 

CMEMS-LSCE-FFNNv2 Ensemble of 
nonlinear models 1985-2021 1°×1°, monthly Chau et al. (2022) 

LDEO-HPD XGB 1985-2018 1°×1°, monthly Gloege et al. (2022) 
NIES-NN FFNN 1980-2020 1°×1°, monthly Zeng et al. (2014) 
JMA-MLR MLR 1998-2022 1°×1°, monthly Iida et al. (2021) 
OS-ETHZ-GRaCER GRaCER 1982-2020 1°×1°, monthly Gregor & Gruber (2021) 

Coastal 
ocean 
product 

ULB–SOM–FFN–
coastalv2 SOM-FNN 1982-2020 0.25°×0.25°, monthly Roobaert et al. (2024a) 

3 Results and discussion  

3.1 Evaluating the regression model performance 

Our product employs a two-step RFR+LR algorithm to retrieve pCO2. The initial RFR step accurately captures most seasonal 270 

and decadal pCO2 variations across all six sub-regions (Appendix A). When comparing only at matching grid cells where 

SOCAT measurements are available, the differences (N = 12) in monthly mean climatology between SOCAT and RFR-derived 

pCO2 are less than 2 µatm on average with standard deviations below 5 µatm across all sub-regions (Fig. A1). However, the 

RFR-derived pCO2 shows lower accuracy in capturing long-term pCO2 changes in the GoMe and SAB. The subsequent LR 

calibration improves the performance significantly: R² values increase from 0.69 to 0.81 in the GoMe and from 0.83 to 0.93 275 

in the SAB, while RMSE decreases from 12.43 to 10.51 µatm in the GoMe and from 10.83 to 8.12 µatm in the SAB (Fig. A2). 

The ReCAD-NAACOM-pCO2 product demonstrated robust performance and high accuracy in capturing pCO2 variability 

across the NAACOM (Fig. 4). During the model training phase, the product achieved an R2 of 0.96, an RMSE of 9.1 µatm, an 
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MAE of 5.92 µatm, and an MBE of 0.05 µatm (Fig. 4a). The model demonstrated comparable performance metrics during the 

validation phase (Fig. 4b). To further evaluate generalizability and robustness of the model, we also conducted an independent 280 

test using data from 2004 to 2005, in which all data samples were not included in the model training and validation sets. During 

this independent test phase, the pCO2 product maintained high accuracy, with R2 = 0.64, RMSE = 27.2 µatm, MAE = 18.86 

µatm, and MBE = 0.07 µatm (Fig. 4c). Additionally, most independent validation samples were distributed around the 1:1 

corresponding line, proving ability of the models in predicting pCO2 across unsampled spatial and temporal domains without 

overfitting. The model consistently demonstrated strong performance during the training, validation, and independent test 285 

phases across all sub-regions (Table 2). Overall, compared with all available samples in SOCAT, it achieved an R2 of 0.92, 

an RMSE of 12.70 µatm, an MAE of 7.55 µatm, and an MBE of 0.13 µatm for the entire NAACOM (Table 2), highlighting 

the generalizability of the ReCAD-NAACOM-pCO2 product, and robustness in effectively capturing the variability in pCO2 

and providing reliable predictions of pCO2 across the studied regions. 

 290 
Figure 4. Evaluation of regression model for reconstructing ReCAD-NAACOM-pCO2 product. Density scatter plots 
compare the product estimated pCO2 (pCO2est) with the in situ SOCAT observations (pCO2obs) during the (a) model training 
phase (80% samples during the period of 1993-2003 and 2006-2021), (b) validation phase (20% samples during the period of 
1993-2003 and 2006-2021), and (c) independent test phase (samples during the period of 2004-2005). Statistical metrics 
include the coefficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE), mean bias error 295 
(MBE), and the number of samples (N). The color bar represents the number of data points within each bin. 
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Table 2. Performance of the regression model during the model training, validation, and independent test phases across 
different sub-regions. The metrics include the coefficient of determination (R2), root mean square error (RMSE), mean 
absolute error (MAE), and mean bias error (MBE). Sub-regions are the Gulf of Mexico (GoMx), South Atlantic Bight (SAB), 300 
Mid-Atlantic Bight (MAB), Gulf of Maine (GoMe), Scotian Shelf (SS), and Gulf of St. Lawrence and Grand Banks 
(GStL&GB). 

Region Type R2 RMSE (µatm) MAE (µatm) MBE (µatm) 

GStL&GB 

Training set 0.97 7.81 5.31 0.33 
Validation set 0.91 13.57 8.83 0.44 
Independent test set 0.76 25.23 16.82 -5.64 
All 0.94 11.48 6.92 -0.15 

SS 

Training set 0.96 9.35 6.61 -1.13 
Validation set 0.90 13.27 9.41 -0.90 
Independent test set 0.50  30.92 24.12 -3.50 
All 0.90 13.82 8.89 -1.32 

GoMe 

Training set 0.95 10.62 7.72 0.14 
Validation set 0.81 20.12 14.35 0.83 
Independent test set 0.49 31.66 23.95 3.72 
All 0.90 14.91 9.97 0.49 

MAB 

Training set 0.97 9.39 6.60 -0.06 
Validation set 0.84 19.49 13.47 -0.19 
Independent test set 0.56 37.93 28.53 7.13 
All 0.93 13.26 8.44 0.08 

SAB  

Training set 0.96 6.76 4.24 0.30 
Validation set 0.87 12.03 6.98 0.98 
Independent test set 0.73 23.60 16.75 1.33 
All 0.91 10.63 5.95 0.52 

GoMx 

Training set 0.94 9.13 5.14 0.08 
Validation set 0.76 19.08 9.82 0.74 
Independent test set 0.46 14.70 7.64 -4.49 
All 0.90 11.86 6.10 0.09 

NAACOM 

Training set 0.96 9.11 5.92 0.05 
Validation set 0.84 17.89 11.04 0.50 
Independent test set 0.64 27.17 18.86 0.07 
All 0.92 12.70 7.55 0.13 
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3.2 Spatial distribution of product bias 

The ReCAD-NAACOM-pCO2 product exhibited a negligible area-mean bias of +0.13 µatm with a standard deviation of 12.70 

µatm when compared to all SOCAT observation grid cells across the entire NAACOM (Fig. 5 and Table 2). This small 305 

average difference suggests no consistent over- or under-estimation by the regression model, indicating reliability of the 

product in estimating the monthly and annual mean climatology of pCO2 across the entire NAACOM region. 

 

Figure 5. Spatial distribution of mean bias error (MBE) between ReCAD-NAACOM-pCO2 product and SOCAT 
observations across the NAACOM. The MBE is calculated for each grid cell as the average difference between product 310 
estimates and SOCAT observations. Positive values (red) indicate product overestimation, while negative values (blue) 
indicate underestimation relative to SOCAT. Regional MBE values with one standard deviation are shown for each sub-region, 
corresponding to the values in the last column of Table 2. The overall bias error for the NAACOM is +0.13 ± 12.97 μatm. 
Following Fennel et al. (2019), the study region is divided into six sub-regions by straight orange lines: the Gulf of Mexico 
(GoMx), South Atlantic Bight (SAB), Mid-Atlantic Bight (MAB), Gulf of Maine (GoMe), Scotian Shelf (SS), and Gulf of St. 315 
Lawrence and Grand Banks (GStL&GB). The thick black line is the 200 m isobath, which roughly marks the shelf break and 
typically defines the continental shelf boundary. 
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While the area-average difference is small, the differences are distributed heterogeneously in space. Larger differences 

(absolute difference > 10 µatm) tend to occur in nearshore regions, particularly along the coastlines of the GoMx and SAB, as 

well as in northern areas such as the GoMe, SS, and GStL&GB (Fig. 5). These regional variations can be attributed to complex 320 

coastal processes such as terrestrial inputs, sparse observations in the northern areas (Lavoie et al., 2021; Rutherford et al., 

2021; Salisbury and Jönsson, 2018), and less accurate satellite observations in the nearshore regions (Song et al., 2023). 

Conversely, smaller differences (absolute difference < 2.5 µatm) are observed in the central parts of the GoMx, offshore 

regions of the SAB and MAB, and some nearshore regions of the SS and GB, which is likely due to more stable oceanic 

conditions in those regions. Regional MBE for different machine learning development phases (training, validation, and test 325 

sets) are detailed in Table 2. Despite these regional differences, MBE of both the validation set (-1.0 ~ 1.0 µatm) and 

independent test set (-4.5 ~ 7.5 µatm) demonstrate minimal values across sub-regions (Table 2), underscoring the effectiveness 

of the product in capturing the broader pCO2 patterns across the NAACOM. 

3.3 Evaluating the capacity of the product in capturing pCO2 seasonality 

  330 

Figure 6. Monthly mean climatology of pCO2 in the southern and northern areas of the NAACOM from 1993 to 2021. 
Sub-regions are (a) southern areas, the red box in Fig. 2, and (b) northern areas, the blue box in Fig. 2. Two data representations 
are shown: (1) SOCAT observations (black curves), which may be influenced by missing data; and (2) the complete gap-filled 
product output (red curves). Error bars denote one standard deviation of the monthly mean climatology of pCO2. Numbers 
indicate the mean difference (± one standard deviation) between monthly climatological pCO2 calculated from the two sources, 335 
with positive values indicating higher product estimates compared to SOCAT observations. The x-axis shows months (1-12, 
where 1 represents January), and the y-axis shows pCO2 in µatm. 

One of the primary objectives of this product is to capture the seasonal cycle of pCO2 across the NAACOM region. Figure 6 

showcases the applicability of the product in capturing the pCO2 seasonal cycles across the southern and northern areas of 

NAACOM (red and blue boxes in Fig. 2). The comparison of monthly climatologies between the gap-filled product and 340 
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SOCAT observations reveals strong agreement in the southern regions, despite of the coverage difference, with product-

estimated monthly means being only 3.05 ± 5.60 µatm higher than SOCAT (Fig. 6a), suggesting that our product effectively 

captures the seasonal cycle where data are abundant. 

In the northern regions where SOCAT data are sparse, the gap-filling ability of the product is also well demonstrated. In the 

northern region, the area-average monthly pCO2 climatology calculated from the continuous reconstructed product are 22 ± 345 

11.12 µatm lower than SOCAT observations, which can be attributed to limited observational coverage in this area. This area 

is characterized by sparse sampling, with observation density approximately 50% lower than in the southern regions (Fig. 2) 

due to the smaller area and limited cruise coverage. For instance, the GStL region only has one summer cruise in SOCAT 

database (Fig. 2b), and the SS and GoMe have particularly sparse winter observations (Fig. 2d). The higher latitudes typically 

exhibit larger seasonal amplitudes in pCO2, making the limited sampling from SOCAT particularly problematic for accurate 350 

characterization. Our gap-free product provides comprehensive spatial and temporal coverage, enabling more robust analysis 

of pCO2 patterns and variability in these historically under-sampled regions. 

Over the 29 years period, the product predicts smaller monthly standard deviations in southern regions (less than 40 µatm, 

error bars in Fig. 6a), suggesting higher model accuracy and less interannual variability in these areas. Conversely, larger 

monthly standard deviations are observed in the northern areas, suggesting potential less accuracy and remarkable interannual 355 

variability. However, the larger interannual variability in these areas may be an artifact due to the limited observational data 

available for regression model training, resulting in greater uncertainty in the predictions. Despite differences in the mean 

monthly climatology, the similar seasonal pCO2 cycles calculated from SOCAT and reconstructed product demonstrate the 

capability of the ReCAD-NAACOM-pCO2 product to represent seasonal pCO2 variability across diverse coastal environments. 

Nevertheless, there exist larger differences between the observations and reconstructed pCO2 in some months and regions (Fig. 360 

6b), highlighting the importance of the gap-free product in an unbiased understanding of regional carbon cycles (Ren et al., 

2024). Detailed sea surface pCO2 seasonal cycles and their controlling mechanism across different sub-regions of the 

NAACOM will be presented in our subsequent work. 

3.4 Evaluating the ability of the products in capturing regional variation by comparing it to global products 

The ReCAD-NAACOM-pCO2 product demonstrates the capability to resolve fine-scale regional spatial distributions of pCO2. 365 

Figure 7 illustrates the spatial distribution of annual mean climatology of pCO2 across the NAACOM as observed by SOCAT 

and predicted by different global open and coastal pCO2 products. Despite being affected by missing data, SOCAT 

observations (Fig. 7a) reveal significant regional variations in pCO2. In the Louisiana Shelf (LAS) estuary plume region (box 

1 in Fig. 7), pCO2 values consistently remain below 340 µatm, while the West Florida Shelf (WFS, box 2 in Fig. 7) exhibits 
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elevated values exceeding 400 µatm. These contrasting patterns have been reported in previous regional studies (Kealoha et 370 

al., 2020; Robbins et al., 2018; Wu et al., 2024b). 

 

Figure 7. Spatial distribution of annual mean pCO2 climatology in the NAACOM from different sources. (a) SOCAT 
observations, (b) ReCAD-NAACOM-pCO2 product, (c) Ensemble mean of 7 global open ocean pCO2 products listed in Table 
1, and (d) Coastal pCO2 product ULB_SOMFFN_coastal_v2 (Roobaert et al., 2024a). The black contour delineates the coastal 375 
ocean margin. Three boxes represent sub-regions in the NAACOM: box 1 for the Louisiana Shelf (LAS), box 2 for the West 
Florida Shelf (WFS), box 3 for the entire Northern region, and box 4 for the southern GStL. (S.GStL). Mean pCO2 ± standard 
deviation of all grid cells are provided for each dataset. Color scale represents pCO2 in μatm. 

The ReCAD-NAACOM-pCO2 product demonstrates superior alignment with SOCAT observations in capturing these regional 

features that have been reported in previous observation-based studies (Fig. 7b), accurately representing the low pCO2 values 380 

in the LAS Mississippi River plume (box 1) and the elevated pCO2 levels in the WFS (box 2). In contrast, the global 

reconstructions of pCO2, represented by the ensemble of the seven open ocean pCO2 products (Fig. 7c), face challenges in 

resolving these regional pCO2 variations, as previously discussed in Wu et al (2024b). The coastal pCO2 product from Roobaert 
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et al. (2024a, ULB_SOMFFN_coastal_v2) also captures some small-scale structures, like low pCO2 in the LAS (Fig. 7d), but 

the ReCAD-NAACOM-pCO2 product exhibits closer values to the observations. In the northern area (box 3), the ReCAD-385 

NAACOM-pCO2 product predicts higher pCO2 levels that are closer to observations in the nearshore region (Fig. 7b). This is 

not surprising, as the ULB_SOMFNN_coastal_v2 is a global product known for its high accuracy on the global average. 

In addition to these previously documented regional variations, our product reveals several notable features not previously 

captured by observations or other existing products. For instance, the GoMe displays intermediate pCO2 levels around 380 

μatm, distinctly higher than surrounding waters at comparable latitudes, a feature previously documented by a multiple linear 390 

regression reconstructed pCO2 product (Signorini et al., 2013) and five-year (2004-2009) mooring and cruise data (Vandemark 

et al., 2011) but contradict to another two studies based on numerical models (Cahill et al., 2016; Rutherford et al., 2021). In 

the southern GStL (S.GStL, box 4 in Fig. 7), pCO2 values are slightly higher compared to adjacent waters at similar latitudes, 

aligning with high nutrient concentrations typically observed in these river-influenced waters (Lavoie et al., 2021). These 

regional patterns could not be completely captured by the global products (Fig. 7c and 7d). Ability of the ReCAD-NAACOM-395 

pCO2 product in resolving such regional features demonstrates its potential value for investigating coastal carbon dynamics 

and their responses to local and regional forcing factors in the NAACOM. 

3.5 Evaluating the capacity of the product in detecting decadal linear trends of pCO2 

Using pCO2 products to accurately reconstruct pCO2 linear trends in coastal regions presents significant challenges due to the 

high spatial heterogeneity of coastal pCO2 dynamics. This heterogeneity often leads to sea surface pCO2 changes that deviate 400 

from atmospheric trends (Laruelle et al., 2018). Even when utilizing similar observational datasets, derived products may not 

consistently reflect the underlying trends. For instance, Wu et al. (2024b) examined the capability of various products to reflect 

pCO2 changes in the GoMx, a region where pCO2 trends exhibit significant spatial variability. Despite this heterogeneity, 

seven global open ocean products (listed in Table 1) indicate trends similar to atmospheric pCO2 across the entire GoMx 

without regional differences. In contrast, the GoMx-specific regional product developed by Chen and Hu (2019) demonstrates 405 

no significant overall trend. The discrepancy in trend detection primarily stems from the design of the regression model and 

the selection of input variables. These factors are critical in capturing the complex spatiotemporal variability of coastal pCO2 

and its long-term evolution. 

To assess capability of the product in resolving decadal pCO2 trends, we conducted an analysis of pCO2 evolution using three 

distinct regions within the NAACOM (three boxes in Fig. 7) as representative examples (Fig. 8). Decadal trends of 410 

deseasonalized time series were calculated following the established protocol described by Sutton et al. (2022). The LAS (box 

1 in Fig. 7) has been identified as an increasing CO2 sink, characterized by a negative pCO2 rate increase from 2002-2021 (Wu 
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et al., 2024). Our product results for the extended period of 1993-2021 indicate that pCO2 increased at a rate of +0.44 ± 0.11 

µatm yr⁻¹ (Fig. 8a). This rate is significantly lower than the observed atmospheric pCO2 increase in this region during 2002-

2021, which is approximately +1.8 µatm yr-1. These findings corroborate our previous conclusion that the LAS is an increasing 415 

CO2 sink, demonstrating the capability our product in revealing long-term pCO2 trends in this dynamic river plume region, 

extending the analysis period by nearly a decade compared to previous studies. In contrast, the WFS (box 2 in Fig. 7) exhibits 

accelerated pCO2 increase faster than atmospheric pCO2 of around +2.0 µatm yr-1 (Fig. 8b), aligning with observations reported 

by Robbins et al. (2018), which found a transition from a CO2 sink to a source in this region during the 1990s. 

Both ReCAD-NAACOM-pCO2 and SOCAT consistently report a pCO2 trend around +2.3 to +2.5 µatm yr-1 in the northern 420 

area (box 3 in Fig. 7) over 1993-2021 (Fig. 8c), which is faster than the atmospheric pCO2 increase (around +2.0 µatm yr-1), 

suggesting that these areas have been becoming a decreasing CO2 sink. However, limited observational data in this area 

necessitates cautious interpretation and warrants further validation in future research. Overall, the spatiotemporal heterogeneity 

in surface ocean pCO2 trends across the NAACOM underscores the importance of long-term monitoring to elucidate the drivers 

of these trends, particularly in regions influenced by major current systems and in areas with limited observational data. 425 
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Figure 8. Decadal linear trends of sea surface pCO2 in three regions of the NAACOM from 1993-2021. Blue and red dots 
are monthly average pCO2 values (deseasonalized) calculated from SOCAT observations and reconstructed ReCAD-
NAACOM-pCO2, respectively. Thick lines are linear fitted regression lines. Three regions are the boxes in Fig 7: (a) Louisiana 
Shelf (LAS), northern Gulf of Mexico shelf river plume region; (b) West Florida Shelf (WFS); and (c) Northern areas. Linear 430 
trends are calculated following the established protocol by Sutton et al. (2022). Numbers in parentheses are the number of 
months with data and the p values. 
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 3.6 Evaluating the uncertainty of the product 

Table 3. Uncertainty estimates for the ReCAD-NAACOM-pCO2 product across different sub-regions of the NAACOM. 
uobs, ugrid, umap, and uinputs represent the measurement uncertainty, gridding uncertainty, mapping uncertainty, and uncertainty 435 
accumulated from input variables, respectively (see method Section 2.5 for further details). upCO2 is the total combined 
uncertainty. All values are in µatm. Sub-regions are the Gulf of Mexico (GoMx), South Atlantic Bight (SAB), Mid-Atlantic 
Bight (MAB), Gulf of Maine (GoMe), Scotian Shelf (SS), and Gulf of St. Lawrence and Grand Banks (GStL&GB). 

Region uobs ugrid umap  uinputs upCO2  
GStL&GB 5.00 15.44 13.57 5.57 21.88 
SS 5.00 15.37 13.27 6.18 21.80 
GoMe 5.00 16.05 20.12 7.51 27.27 
MAB 5.00 16.14 19.49 5.97 26.48 
SAB 5.00 8.29 12.03 5.99 16.57 
GoMx 5.00 10.38 19.08 5.55 22.97 
NAACOM 5.00 12.69 17.89 5.86 23.25 

Uncertainty of the reconstructed pCO2 values in each grid cell was estimated by accumulating uncertainties from mapping 

(umap), gridding (ugrid), measurement (uobs), and input variables (uinputs, see Section 2.5 of the method for further details on the 440 

calculation). To maintain a conservative estimate, we adopted the larger value of 5 µatm as uobs for all data points. The gridded 

fCO2 values from SOCAT are reported as the averages of all samples collected within each grid cell. Accordingly, ugrid was 

quantified as the standard deviation of samples within each grid cell, calculated across six sub-regions. Following previous 

literature (Roobaert et al., 2024a; Sharp et al., 2022), umap was calculated using the RMSE values of the model validation phase 

reported in Table 2. The uncertainty from the validation set (20% of X1) was chosen for its larger sample size than independent 445 

test set (X2) and consistency with 10-fold cross-validation results, while avoiding potential underestimation from the training 

set. uinputs was calculated using a Monte Carlo simulation (Appendix B). These four sources of uncertainties were evaluated 

across different sub-regions of the NAACOM, as shown in Table 3. umap contributes the largest portion to the total uncertainties 

across all sub-subregions with the maximum value up to 20.12 µatm in the GoMe. Overall, the ReCAD-NAACOM-pCO2 

product demonstrates uncertainties ranging between 16 to 28 µatm across six sub-regions, and an average uncertainty of 23.25 450 

µatm for the entire NAACOM. 

Our uncertainty estimation employs a conservative estimation, using maximum values at calculation step. This approach likely 

overestimates the true uncertainty. Despite this conservative method, our calculated uncertainty for the Atlantic margins is 

comparable to the 43.4 μatm reported by Sharp et al. (2022) for areas within 100 km of the North American Pacific margins. 

suggesting a good product performance of our product. It is important to note that our uncertainty calculation assumed 455 

independence among all sources, which is a simplification. Recent research has highlighted that these uncertainties are often 

correlated (Ford et al., 2024). Future studies should consider these inter-variable correlations to refine uncertainty estimates. 

In addition, the uncertainties reported in this section and provided in the NetCDF file represent the propagated errors for 
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individual pCO2 values in each grid cell. Methods to calculate uncertainties in regional averages of pCO2 or air-sea CO2 fluxes 

over specific spatial and temporal domains are detailed in Roobaert et al. (2024) and Landschützer et al. (2014). 460 

3.7 Challenges and limitations 

Even though ReCAD-NAACOM-pCO2 resolves regional pCO2 variability with high accuracy in the NAACOM, this product 

still has room for improvement in the future. Potential areas for improvement include the 0.25° spatial resolution, which is 

inadequate to resolve sub-mesoscale variability at the scale of 0.1 - 10 km (McWilliams, 1985). Furthermore, during the 

independent validation phase, the accuracy of the model predicted values reduced in the GoMe (R2 = 0.49) and GoMx (R2 = 465 

0.46) (Table 2), which may be due to the complex biological and physical condition in the estuary plume regions in these two 

gulfs. In this study, we opted not to include chlorophyll-a (Chl-a) concentrations and wind speeds as input variables for model 

training and prediction. This decision was primarily due to the limited temporal coverage of satellite-derived Chl-a data, which 

only extends back to 1997 with the launch of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) satellite (O'Reilly et al., 

1998). The inclusion of Chl-a would have restricted the temporal range of our model, potentially limiting its ability to capture 470 

long-term trends and variability in pCO2. Future versions of our model will aim to address this limitation. One potential 

approach is to develop a two-phase model: one for the period before 1997 without Chl-a data, and another for the post-1997 

period incorporating Chl-a information. Alternatively, we may explore methods to reconstruct historical Chl-a data or use 

proxy variables that correlate with biological productivity and are available for the entire study period. 

In our previous work, we demonstrated that incorporating wind speeds and sea surface roughness data derived from Synthetic 475 

Aperture Radar (SAR) could enhance model performance in predicting pCO2 at submesoscale resolutions (Wang et al., 2024). 

In this work, we evaluated the inclusion of wind speed as an input variable in our model. However, at the 0.25° resolution 

employed here, the addition of wind speed data did not significantly improve model performance (only increase the R2 by 0.1). 

Moreover, using the same Monte Carlo simulation approach applied to other variables, incorporating wind speeds would 

introduce an additional 6 µatm uncertainty to pCO2 estimates, doubling the input-related uncertainties. Consequently, we 480 

excluded wind speeds from our regression model to reduce input-related uncertainties. Despite this omission, our product 

demonstrates robust capability in resolving regional variations, seasonal cycles, and decadal trends in pCO2, making it valuable 

for future studies. 

4 Data availability 

The reconstructed fCO2, pCO2, and the uncertainty in ReCAD (v1.1) are available as a NetCDF file at 485 

https://zenodo.org/records/14038561 (Wu et al., 2024a) and will be updated regularly. 

https://zenodo.org/records/14038561
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5 Code availability 

Python and MATLAB code used to process data and create figures included in this paper is provided at 

https://github.com/zelunwu/ReCAD  

6 Conclusions 490 

The ReCAD-NAACOM-pCO2 product developed in this study represents a significant advancement in our ability to detect 

the spatial variations, seasonal cycle, and decadal changes of surface ocean pCO2 dynamics in the NAACOM. By leveraging 

a two-step approach combining random forest and linear regression, and a set of environmental predictors, we have created a 

high-resolution, long-term dataset (1993-2021 period) that captures the complex spatial and temporal variability of pCO2 

across the region. On average, compared with all available samples from the SOCAT observations in our study region, the 495 

product has an R2 of 0.92, an RMSE of 12.70 µatm, an MAE of 7.55 µatm, and an MBE of 0.13 µatm for the entire NAACOM, 

with an average uncertainty of 23.25 µatm. Key findings from this study include: 

1. The product demonstrates high accuracy and reliability, as evidenced by strong performance metrics during training, 

validation, and independent test phases across six sub-regions. 

2. Distinct seasonal cycles are observed between southern and northern sub-regions, with the product capturing nuanced 500 

features such as elevated pCO2 levels during fall and winter in northern areas. 

3. Comparison with global products highlights the superior ability of the ReCAD-NAACOM-pCO2 product to resolve 

fine-scale coastal features and variability. 

4. The pCO2 product successfully reconstructed decadal linear trends consistent with previous studies, while also 

revealing a rapid increase in	pCO2 in the northern regions of the NAACOM. 505 

While areas for future improvement exist, such as increasing spatial resolution and enhancing accuracy in estuary plume-

influenced regions, the ReCAD-NAACOM-pCO2 product provides a robust foundation for studying coastal carbon dynamics. 

This dataset will be valuable for investigating air-sea CO2 fluxes, assessing ocean acidification impacts, and understanding the 

role of coastal systems in the NAACOM. 

Future research should validate the reconstructed trends, particularly in areas with limited observational data, and explore the 510 

mechanisms driving the spatiotemporal variability in pCO2 across the NAACOM region. Additionally, the methodologies 

developed here can contribute to a more comprehensive understanding of coastal ocean carbon dynamics in the face of climate 

change and have the potential to be applied globally. 

https://github.com/zelunwu/ReCAD
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Appendix A: Before and after LR calibration 

 515 

Figure A1. Comparisons of monthly pCO2 climatology with SOCAT observations across six sub-regions: evaluations 
before and after Linear Regression (LR) calibration Values indicate the mean difference (± one standard deviation, blue: 
before LR, red: after LR) between model-estimated pCO2 and SOCAT observations over the 12-month period, computed only 
at grid points and times where SOCAT measurements are available.  
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 520 

Figure A2. Comparisons of deseasonalized monthly pCO2 anomalies with SOCAT observations across six sub-regions: 

evaluations before and after Linear Regression (LR) calibration. Values represent R² and RMSE between model-estimated 

pCO2 and SOCAT observations (blue: before LR; red: after LR), computed only at grid points and times where SOCAT 

measurements are available. 

Appendix B: Monte Carlo simulation in calculating uinputs 525 

A crucial step in calculating uinputs is determining the uncertainties of the input variables. In our reconstructed model, there 

were four variables that need to be evaluated: SST, SSS, SSH, and pCO2air. Our general principle was to adopt conservative 

estimates, using the largest reported uncertainty for each product when available. 

SST errors are provided within the OISST product at the grid level. On the global average, OISST reports a mean bias and 

RMSE of -0.04 and 0.24 ℃ when compared with the observations on the global average (Huang et al., 2021). For our study 530 

region, we calculated the mean SST error across all grid cells, yielding a value of 0.23°C.  

The SODA database assimilates observational data but does not directly provide SSS error estimates. Given this limitation in 

uncertainty reporting, we derived an estimate based on the RMSE between model SSS and observations near our study region, 

as reported by Carton et al. (2018). Their analysis (their Fig. 8) indicates an RMSE exceeding 0.3 psu in the vicinity of our 
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area of interest. In addition, interpolating the 0.5° SSS data to 0.25° resolution could potentially introduce more errors. To 535 

maintain a conservative approach in our uncertainty quantification, we doubled the uncertainty and adopted a value of 0.6 psu 

as the SSS uncertainty for our calculations. 

SSH errors are directly provided in the dataset, which has a mean uncertainty of 1.8 cm in our study region.  

pCO2air, calculated from xCO2air (MBL References), which has a global mean uncertainty of 0.22 ppm. 

To propagate these input uncertainties to the final pCO2 estimate, a Monte Carlo simulation approach was implemented: 540 

1. For each input variable xi, random perturbations εi were generated following a normal distribution N(0, ui), where ui 

represents the uncertainty of the respective variable listed above. 

2. Perturbed inputs (xi + εi) were used to calculate pCO2 using the established model. 

3. The difference (Δi) between the reconstructed pCO2 before and after adding the perturbation was computed. 

4. Steps 1, 2, and 3 were iterated 100 times for each input variable. 545 

5. The uncertainty contribution from each variable was quantified as the standard deviation of the 100 Δi values in each 

grid cell. 

The total uncertainty attributed to input variables (uinputs) was then calculated as the square root of the quadratic sum of 

individual uncertainties: 

𝑢*435&$ = C𝑢99:! + 𝑢999! + 𝑢99;! + 𝑢367!#"$
!                   (A1) 550 
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Figure B1. Uncertainties of pCO2 accumulated from different input variables for the model. 

The largest uncertainties propagated from these variables are sourced from SSS and SSH (Fig. B1a and B1c). Simulating 

salinity in coastal regions is still challenging due to complex lang-ocean interaction. For the SSH, the largest uncertainties 

were observed in the GoMe and GStL. Overall, uinputs is largest in the West Florida Shelf and nearshore waters around the 555 

GoMe, with a mean uinputs uncertainty of 5.9 ± 4.7 µatm for the entire NAACOM. 
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