
Review of Wu et al. (essd-2024-309) 

General comments 

Wu et al. describe a new data product that reconstructs sea surface pCO2 in the North American 
Atlantic coastal ocean margin over nearly thirty years. The authors rely on the gridded Surface 
Ocean CO2 Atlas (SOCAT) dataset as the baseline observations for this data product, and they 
reconstruct pCO2 using a two-step random forest regression (RFR) + linear regression (LR) 
approach. They find that their data product (ReCAD-NAACOM-pCO2) effectively captures 
coastal features and variability along the North Atlantic coastal margin. The authors report a 
region-wide R2 of 0.83 and RMSE of 18.64 μatm in comparison to observations. Overall, this 
manuscript describes a useful product that has value for those engaged in studies of ocean 
acidification and air-sea CO2 flux in the region. There are some areas, however, where more 
detailed explanations and thorough analyses would make this a stronger contribution. 

General responses: We sincerely appreciate the reviewer's recognition of the value of 
our work. We have carefully addressed the reviewer's suggestions for strengthening our 
contribution through more detailed explanations and thorough analyses. The 
manuscript has been extensively revised to incorporate feedback from both reviewers. 
Major improvements include: 

1. Clarified the usage and distinction between fCO2 and pCO2 throughout different 
sections of the manuscript 

2. Enhanced the presentation and explanation of Mean Bias Error (MBE) in Section 
3.2 and Fig. 5 to avoid potential confusion 

3. Substantially revised Section 3.3 to better explain why product-estimated pCO2 and 
SOCAT observations show discrepancies in the northern areas, attributing these 
differences to limited observational coverage 

4. Restructured Section 3.4 and Fig. 7 to clearly differentiate between previously 
documented regional variations and newly identified phenomena revealed by our 
product 

Additionally, we have made an important revision regarding model evaluation. In our 
previous version, we reported the model outputs for the training dataset (80% of X1) 
using results from 10-fold cross-validation. We have now updated our methodology to 
use direct predictions from the final trained model [y = f(X1)] for these data points. 
This revision aligns with machine learning best practices, as the final data product 
should utilize predictions from the complete trained model rather than intermediate 
cross-validation results. The cross-validation metrics remain valuable for model 
evaluation during the development phase, while the final product benefits from the full 
model trained on the entire training dataset. For uncertainty quantification, we maintain 
the use of validation set RMSE, as it aligns well with 10-fold cross-validation results 
and provides a more comprehensive assessment of model uncertainty. Noted that this 
revision did not essentially change the results of this work. 

All revisions are highlighted in red in the manuscript and are detailed in this 
response letter. 

 



R1C1. The strategy of adjusting RFR estimates with an LR is a unique and straightforward 
way to mitigate possible biases in the RFR estimates. However, this aspect of the methodology 
could use more explanation, in particular with respect to why this correction might be needed 
and how it improves the product ReCAD-NAACOM-pCO2 relative to not implementing the 
LR step. If, as indicated, the LR serves to “mitigate potential systematic biases in RFR-derived 
fCO2 values [that] arise from spatiotemporal heterogeneities in the SOCAT observational 
dataset”, I envision a figure like Fig. 4c before and after applying the LR would emphasize the 
added value of this methodological step. 

Response: We thank the reviewer for this constructive suggestion. To demonstrate the 
value of the LR calibration step, we have added two new figures comparing the 
performance before and after LR calibration across six sub-regions in Appendix A. 
These figures show both monthly climatology and pCO2 trends. While the LR 
calibration yields modest improvements in monthly climatology, it significantly 
enhances the representation of monthly pCO2 anomalies (deseasonalized), as evidenced 
by improved R² values and reduced RMSE. We have incorporated these findings into 
Results Section 3.1, lines 271-277: 

“Our product employs a two-step RFR+LR algorithm to retrieve pCO2. The initial RFR 
step accurately captures most seasonal and decadal pCO2 variations across all six sub-
regions (Appendix A). When comparing only at matching grid cells where SOCAT 
measurements are available, the differences (N = 12) in monthly mean climatology 
between SOCAT and RFR-derived pCO2 are less than 2 µatm on average with standard 
deviations below 5 µatm across all sub-regions (Fig. A1). However, the RFR-derived 
pCO2 shows lower accuracy in capturing long-term pCO2 changes in the GoMe and 
SAB. The subsequent LR calibration improves the performance significantly: R² values 
increase from 0.69 to 0.81 in the GoMe and from 0.83 to 0.93 in the SAB, while RMSE 
decreases from 12.43 to 10.51 µatm in the GoMe and from 10.83 to 8.12 µatm in the 
SAB (Fig. A2).” 

 
R1C2 . I find the analysis presented in Section 3.3 to be somewhat lacking. While the 
similarities in large-scale climatological patterns between the raw observations and ReCAD-
NAACOM-pCO2 is encouraging, more interesting is where, when, and why the two datasets 
differ, and how those differences speak to the value added by the gap-filled product. In 
particular, I see much higher wintertime pCO2 in the observations compared to the product in 
the northern region in Fig. 6. Is this result due to preferential observational coverage of high-
pCO2 areas in that season, as potentially indicated by Fig. 2d? This type of analysis I think is 
more interesting to readers, and more effective at communicating the utility of the new product. 

Response: We thank the reviewer for this constructive and valuable suggestion. 
Following both reviewers’ comments, we have expanded Section 3.3 to include a more 
detailed analysis of the differences between observations and our gap-filled product, 
particularly focusing on regional and seasonal variations. We have added new 
discussions about the sampling limitations in the northern regions and how our product 
addresses these gaps. For convenience, we attached the revisions below (lines 339-353): 

" One of the primary objectives of this product is to capture the seasonal cycle of pCO2 
across the NAACOM region. Figure 6 showcases the applicability of the product in 
capturing the pCO2 seasonal cycles across the southern and northern areas of 



NAACOM (red and blue boxes in Fig. 2). The comparison of monthly climatologies 
between the gap-filled product and SOCAT observations reveals strong agreement in 
the southern regions, despite of the coverage difference, with product-estimated 
monthly means being only 3.05 ± 5.60 µatm higher than SOCAT (Fig. 6a), suggesting 
that our product effectively captures the seasonal cycle where data are abundant. 

In the northern regions where SOCAT data are sparse, the gap-filling ability of the 
product is also well demonstrated. In the northern region, the area-average monthly 
pCO2 climatology calculated from the continuous reconstructed product are 22 ± 11.12 
µatm lower than SOCAT observations, which can be attributed to limited observational 
coverage in this area. This area is characterized by sparse sampling, with observation 
density approximately 50% lower than in the southern regions (Fig. 2) due to the 
smaller area and limited cruise coverage. For instance, the GStL region only has one 
summer cruise in SOCAT database (Fig. 2b), and the SS and GoMe have particularly 
sparse winter observations (Fig. 2d). The higher latitudes typically exhibit larger 
seasonal amplitudes in pCO2, making the limited sampling from SOCAT particularly 
problematic for accurate characterization. Our gap-free product provides 
comprehensive spatial and temporal coverage, enabling more robust analysis of pCO2 
patterns and variability in these historically under-sampled regions.” 

 
R1C3. The comparisons to global products detailed in Section 3.4 would benefit from some 
quantitative results to be presented alongside the qualitative interpretation of the annual mean 
climatological figures. The authors assert, for example, that compared to 
ULB_SOMFFN_coastal_v2 “the ReCAD-NAACOM-pCO2 product exhibits closer values to 
the observations”, but provide no evidence outside visual inspection of Fig. 7. Instead, by 
comparing (for instance) the average and RMSE of differences between the gridded SOCAT 
observations and corresponding values from the products within specific regions, the authors 
could more clearly emphasize the level of improvement provided by ReCAD-NAACOM-pCO2. 

Response: We thank the reviewer for catching this. Regarding Figure 7 in Section 3.4, 
our previous work (Wu et al., 2024) indicated that existing pCO2 products did not 
adequately meet our requirements for regional analysis. Therefore, the objective of 
Fig.7 is to show the capability of this product in capturing these regional variations.  

We agreed that Section 3.4 could be more quantitative and revised the relative 
descriptions. The revised section now presents two distinct components: (1) validation 
of previously confirmed regional variations, and (2) discussion of novel patterns 
revealed by our product that warrant future investigation. The expanded Section 3.4 is 
provided below (lines 380-398): 

“The ReCAD-NAACOM-pCO2 product demonstrates superior alignment with SOCAT 
observations in capturing these regional features that have been reported in previous 
observation-based studies (Fig. 7b) …. 

In addition to these previously documented regional variations, our product reveals 
several notable features not previously captured by observations or other existing 



products. For instance, the GoMe displays intermediate pCO2 levels around 380 μatm, 
distinctly higher than surrounding waters at comparable latitudes, a feature previously 
documented by a multiple linear regression reconstructed pCO2 product (Signorini et 
al., 2013) and five-year (2004-2009) mooring and cruise data (Vandemark et al., 2011) 
but contradict to another two studies based on numerical models (Cahill et al., 2016; 
Rutherford et al., 2021). In the southern GStL (S.GStL, box 4 in Fig. 7), pCO2 values 
are slightly higher compared to adjacent waters at similar latitudes, aligning with high 
nutrient concentrations typically observed in these river-influenced waters (Lavoie et 
al., 2021). These regional patterns could not be completely captured by the global 
products (Fig. 7c and 7d). Ability of the ReCAD-NAACOM-pCO2 product in 
resolving such regional features demonstrates its potential value for investigating 
coastal carbon dynamics and their responses to local and regional forcing factors in the 
NAACOM.” 

 
Additional line-specific comments are provided below. 

Specific comments 

R1C4. 49: Aren’t the fCO2 data included in SOCAT from these cruises exclusively from 
underway measurements (not discrete)? In which case, perhaps this sentence should read 
“Underway measurements from these research cruises, combined with underway 
measurements from volunteer observing ships and buoy observations, …” or something to that 
effect. 

Response: We appreciate the reviewer's attention to detail regarding the types of 
measurements included in our study. In response, we have modified the sentence to 
read (lines 51-52): 
“Underway measurements from these cruises, combined with underway measurements 
from volunteer observing ships and buoy, are quality-controlled and compiled in the 
Surface Ocean CO2 Atlas (SOCAT) database (Bakker et al., 2016),” 

 
R1C5. Figure 1: The regional labels might be better displayed in orange rather than red. As 
they are now, one might understandably associate the red labels with the red 200m isobath, 
which can be confusing. 

Response: We thank the reviewer for this helpful suggestion. We have changed the 
regional labels from red to orange to avoid confusion with the 200m isobath. Additional 
revisions to the figure have also been made based on suggestions from another reviewer. 
The modified Figure 1 is attached for reference: 



 
Figure 1. Topography (in meters) and large-scale circulation along the North American Atlantic 
Coastal Ocean Margin (NAACOM). The study region, defined as coastal areas extending 400 km 
offshore, is indicated by blue shading. The thick black line is the 200 m isobath, which roughly marks 
the shelf break and typically defines the continental shelf boundary. The Gulf Stream (thick red dashed 
line with an arrow) flows northward along the east coast of the United States before veering eastward 
into the open Atlantic Ocean around Cape Hatteras. The Labrador Current (thick light blue dashed line 
with an arrow) flows southward along the east coast of Canada before meeting the Gulf Stream. 
Following Fennel et al. (2019), the study region is divided into six sub-regions by straight orange lines: 
the Gulf of Mexico (GoMx), South Atlantic Bight (SAB), Mid-Atlantic Bight (MAB), Gulf of Maine 
(GoMe), Scotian Shelf (SS), and Gulf of St. Lawrence and Grand Banks (GStL&GB). Dashed contour 
lines indicate bathymetric depths of 50 m and 100 m on the shelf (from coastline to 200 m isobath), and 
1000 m, 2000 m, 3000 m, and 4000 m from the shelf break to the open ocean. 

 

R1C6. 75–77: These two sentences say essentially the same thing and could be combined. 
Response: We thank the reviewer for catching this redundancy. We have removed the 

second sentence. 
 
R1C7. 105: The word “enhanced” suggests a comparison for the spatial, seasonal, and decadal 
variability. It should be mentioned here that the capability of the product at resolving these 
variations is enhanced in reference to some other dataset. Global products? The gridded 
SOCAT observations? 

Response:  We agree that clarification is needed to specify the reference point for our 
product's enhanced capabilities. In response, we have modified the original sentence to 
read (line 108): 
“… enhanced capability in resolving spatial variations and capturing the seasonal cycle 
and decadal trends of pCO2 better than those of the global products across different sub-
regions along the NAACOM.” 



 
R1C8. 109: I find the “ground-truth data” terminology to be somewhat misleading. Ground-
truth suggests data that is used to evaluate some model or remote-sensing measurement, but 
here the data is used not only as a ground-truth but also for training the model itself. Perhaps 
something like “observational data”, “model training data”, etc. might be more appropriate. 

Response:  We appreciate the reviewer's suggestion regarding proper use of 
terminology. We initially adopted the term 'ground-truth data' from remote sensing and 
machine learning studies. However, we agree that in the context of our oceanographic 
research, “observational data” is a more appropriate and precise term. To address this, 
we have replaced three instances of “ground-truth data” with “observational data” in 
the manuscript. 

 

R1C9. 118: Sampling density also looks to be particularly low in the western Gulf of Mexico. 
Response: We fully concur with the reviewer's observations. Indeed, the sampling 
density is also low in the western and southern Gulf of Mexico, as we previously noted 
in our Gulf of Mexico publication (Wu et al., 2024). We have modified the original 
sentence as follows (lines 121-122): 
“Observational data show lower sampling density in the areas north of Cape Cod and 
western and southern GoMx (blue box in Fig. 2).”  

 
R1C10. Figure 3: My understanding is that the “Model” (light orange box with curved sides) 
is the same that is applied to all satellite and reanalysis data to construct the gridded product. 
As such, I’d recommend some modification to this flow chart. The arrow from “Model” to 
“Predictive model” is confusing if those two items are indeed the same. 

Response: We sincerely appreciate the reviewer's comments regarding the clarity of 
our original flowchart. We acknowledge that the initial representation could have been 
clearer, and we have made three modifications to address this concern: 
1) We have made the two “models” the same in the flowchart. 
2) We have added a sentence in the caption explicitly stating that 'The two models in 
the orange boxes are identical.' to avoid any potential confusion. 
3) Following another reviewer's valuable suggestion, we have included the model 
outputs in the flowchart. This addition clarifies the sequential nature of our approach: 
our machine learning model first outputs fCO2sea, which is then converted to pCO2sea 
using OISST data. 

The revised flowchart with caption is attached: 



 

Figure 3. A flowchart of the two-step machine learning regression model for generating the 
reconstructed pCO2 product. Grey boxes represent the input and output datasets, blue boxes illustrate 
the model training, validation testing, and independent test processes, and orange boxes represent the 
final trained model for predicting the reconstructed product. The two models in the orange boxes are 
identical. The training data, consisting of paired input variables (lon, lat, month, sea surface temperature 
(SST), sea surface salinity (SSS), sea surface height (SSH), and atmospheric pCO2 (pCO2air) and 
corresponding sea surface fCO2 (fCO2sea) labels), is divided into two sets: X1 (1993-2003 and 2006-2021) 
and X2 (2004-2005). X1 is further randomly divided into subsets for model training set (80%) and 
validation set (20%). The predictive model combines a random forest regression (RFR) and a linear 
regression (LR) algorithm. The trained and validated regression model is then applied to all satellite and 
reanalysis data (without gaps) to generate the 3D reconstructed fCO2sea product, which was then 
converted to pCO2sea with satellite SST data. 

 
R1C11. 167–168: More explanation should be given here on exactly how the validation set is 
used to evaluate the model performance. 

Response: We appreciate the reviewer's suggestion for clarification regarding the 
validation set's role in model evaluation. We have expanded our explanation as follows 
(lines 176-182): 

“The validation set, comprising 20% of X1 randomly sampled from 1993-2003 and 
2006-2021, serves as a critical monitoring step for model evaluation. This subset plays 
two key roles: first, it tests hyperparameter tuning by providing independent 
performance metrics on unseen data, and second, it helps detect potential overfitting by 
monitoring the divergence between training and validation performance. While the 
validation set itself cannot prevent overfitting, it enables detection of overfitting 
patterns when performance of the model improves on training data but deteriorates on 
validation data. Through this continuous evaluation process, the validation set ensures 
more robust model development and helps achieving better generalization capabilities.” 
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R1C12. 171–172: This sentence is somewhat unclear. 
Response: We appreciate the reviewer's suggestion for clarification. We have modified 
our explanation as follows (lines 183-186): 

“The independent test set (X2), covering the years 2004-2005, serves as a critical 
evaluation period specifically designed to assess reliability of the model in predicting 
values for years that were completely excluded from both training and validation phases. 
Because we intentionally withhold these two years from model development, this 
approach directly tests capability of the model in generating reliable predictions and fill 
temporal data gaps for periods without observational data.” 

 
R1C13. 178: How is month treated in the model training? If you’re only using 1–12 for the 
months of the year, there will be an unintended effect whereby months that should be treated 
as similar (e.g., January vs. December) will be treated as extremely different (1 vs. 12). See 
Sauzède et al. (2015) or Gregor et al. (2018) for information about transforming cyclical 
predictors using sine and cosine functions. 

Response: We used numerical values 1-12 to represent months in our algorithm. We 
agree with the reviewer's comment regarding the treatment of monthly data and the 
potential artificial discontinuity. Following this suggestion, we conducted additional 
analyses by implementing the suggested sinusoidal transformation [sin(month/12 * 2π)] 
and reran our complete modeling framework. The comparisons are shown in the table 
bellow. Our analysis revealed that this modification resulted in minimal differences in 
the model output matrix, with variations comparable to those stemming from random 
sampling algorithms.  

Months R2 RMSE (µatm) MAE (µatm) MBE (µatm) 
1-12 0.92 12.70 7.55 0.13 
sin(month/12 * 2π) 0.90 14.59 8.70 -0.17 

 
These tests suggest that the seasonal cycle information in our study region is largely 
captured by other variables (SST, SSS, SSH, and pCO2air), which inherently contain 
seasonal patterns. Based on these findings, we conclude that the minimal impact of the 
monthly representation method indicates our current conclusions remain robust.  
Given no improvements in model performance, we maintained the original 
methodology to preserve consistency in the manuscript's statistical analyses, as the 
Mente Carlo simulation. However, we acknowledge that implementing proper cyclical 
variable treatment is theoretically more appropriate. In our ongoing development of 
version 2 of this product, which includes reconstructed SSS fields for the entire Pacific 
and Atlantic margins (currently under validation), we plan to implement the sinusoidal 
transformation for monthly variables. 

 
R1C14. 206: I believe P represents the total atmospheric pressure, not the “CO2 atmospheric 
pressure”. 

Response: We sincerely appreciate the reviewer's careful reading and attention to detail. 
Yes, the original text contained a typo. We have corrected this inaccuracy and revised 



the text as follows: 
“where P is the total atmospheric pressure on the sea surface, …” 

 
R1C15. 315–324: I’m not sure this discussion is very valuable because the general features 
discussed here are evident in the product but also in the observations themselves. It might be 
more effective to discuss the seasonal cycle features in the product as they relate to the 
observations; what information is added by the gap-filled product? 

Response:  We thank the reviewer for this constructive comment. We have revised this 
paragraph to better highlight how our gap-free product enhances our understanding of 
seasonal cycles beyond what is visible in the raw observations. The revised discussion 
now quantifies the agreement between our reconstructed product and SOCAT 
observations, and explains regional differences in their monthly climatologies: 

  

Figure 6. Monthly mean climatology of pCO2 in the southern and northern areas of the NAACOM 
from 1993 to 2021. Sub-regions are (a) southern areas, the red box in Fig. 2, and (b) northern areas, the 
blue box in Fig. 2. Two data representations are shown: (1) SOCAT observations (black curves), which 
may be influenced by missing data; and (2) the complete gap-filled product output (red curves). Error 
bars denote one standard deviation of the monthly mean climatology of pCO2. Numbers indicate the 
mean difference (± one standard deviation) between monthly climatological pCO2 calculated from the 
two sources, with positive values indicating higher product estimates compared to SOCAT observations. 
The x-axis shows months (1-12, where 1 represents January), and the y-axis shows pCO2 in µatm. 

“One of the primary objectives of this product is to capture the seasonal cycle of pCO2 
across the NAACOM region. Figure 6 showcases the applicability of the product in 
capturing the pCO2 seasonal cycles across the southern and northern areas of 
NAACOM (red and blue boxes in Fig. 2). The comparison of monthly climatologies 
between the gap-filled product and SOCAT observations reveals strong agreement in 
the southern regions, despite of the coverage difference, with product-estimated 
monthly means being only 3.05 ± 5.60 µatm higher than SOCAT (Fig. 6a), suggesting 
that our product effectively captures the seasonal cycle where data are abundant. 

In the northern regions where SOCAT data are sparse, the gap-filling ability of the 
product is also well demonstrated. In the northern region, the area-average monthly 
pCO2 climatology calculated from the continuous reconstructed product are 22 ± 11.12 
µatm lower than SOCAT observations, which can be attributed to limited observational 
coverage in this area. This area is characterized by sparse sampling, with observation 
density approximately 50% lower than in the southern regions (Fig. 2) due to the 



smaller area and limited cruise coverage. For instance, the GStL region only has one 
summer cruise in SOCAT database (Fig. 2b), and the SS and GoMe have particularly 
sparse winter observations (Fig. 2d). The higher latitudes typically exhibit larger 
seasonal amplitudes in pCO2, making the limited sampling from SOCAT particularly 
problematic for accurate characterization. Our gap-free product provides 
comprehensive spatial and temporal coverage, enabling more robust analysis of pCO2 
patterns and variability in these historically under-sampled regions.” 

 
R1C16. 416: It should be clarified here that this uncertainty value for the North American 
Pacific Coastal Ocean Margin is specific to areas within 100km of the coastline and the 
uncertainty provided for ReCAD-NAACOM-pCO2 is for areas within 400km. 

Response: We appreciate the reviewer’s careful attention to detail. We have revised the 
original sentence to make it more precise (lines 454-456): 
“Despite this conservative method, our calculated uncertainty for the Atlantic margins 
is comparable to the 43.4 μatm reported by Sharp et al. (2022) for areas within 100 km 
of the North American Pacific margins. suggesting a good product performance of our 
product.” 

 

Technical corrections 

R1C17. 148: Should be “arising” or “that arise” 
Response: We appreciate the reviewer’s careful attention to detail. We have modified 
the original phrase "... arise from ..." to "... arising from ...". The revised sentence now 
reads (lines 154-157):  
“… while the LR model is subsequently applied to mitigate potential systematic biases 
in RFR-derived fCO2 values arising from spatiotemporal heterogeneities in the SOCAT 
observational dataset (Fig. 2).” 

 
R1C18. 424: Recommend changing wording here: “the performance…reduced” is somewhat 
awkward 

Response:  We thanks for pointing out this and revised the original sentence to (line 
466): 
“Furthermore, during the independent validation phase, the accuracy of the model 
predicted values reduced in the GoMe …” 

 
References 
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Response letter to Reviewer#2 

Overview 

The authors are presenting a new, regional pCO2-product specifically designed for the North 
American Atlantic coastal region that provides monthly pCO2 at a .25-degree spatial resolution 
from 1993-2021. The product uses integrated random forest and linear regression methods 
incorporating observational products in order to generate their monthly reconstructed pCO2-
product. This allows for analysis of regional, seasonal, and yearly trends in addition to an 
uncertainty calculation. The authors find through validation that their product provides high 
accuracy, improving public access for more precise, higher resolution coastal carbon dynamics 
in the NAACOM region. 

There is great need for products like these to be publicly accessible, and this contributes an 
important resource to the scientific community. The authors do a nice job of introducing the 
field, the data gaps, and where this product can contribute to those gaps. I do recommend for 
publication, following a few edits as outlined below. 

General responses: We sincerely appreciate the reviewer's recognition of the value of 
our work. We have carefully addressed the reviewer's suggestions for strengthening our 
contribution through more detailed explanations and thorough analyses. The 
manuscript has been extensively revised to incorporate feedback from both reviewers. 
Major improvements include: 

5. Clarified the usage and distinction between fCO2 and pCO2 throughout different 
sections of the manuscript 

6. Enhanced the presentation and explanation of Mean Bias Error (MBE) in Section 
3.2 and Fig. 5 to avoid potential confusion 

7. Substantially revised Section 3.3 to better explain why product-estimated pCO2 and 
SOCAT observations show discrepancies in the northern areas, attributing these 
differences to limited observational coverage 

8. Restructured Section 3.4 and Fig. 7 to clearly differentiate between previously 
documented regional variations and newly identified phenomena revealed by our 
product 

Additionally, we have made an important revision regarding model evaluation. In our 
previous version, we reported the model outputs for the training dataset (80% of X1) 
using results from 10-fold cross-validation. We have now updated our methodology to 
use direct predictions from the final trained model [y = f(X1)] for these data points. 
This revision aligns with machine learning best practices, as the final data product 
should utilize predictions from the complete trained model rather than intermediate 
cross-validation results. The cross-validation metrics remain valuable for model 
evaluation during the development phase, while the final product benefits from the full 
model trained on the entire training dataset. For uncertainty quantification, we maintain 
the use of validation set RMSE, as it aligns well with 10-fold cross-validation results 
and provides a more comprehensive assessment of model uncertainty. Noted that this 
revision did not essentially change the results of this work. 



All revisions are highlighted in red in the manuscript and are detailed in this 
response letter. 

 

R2C19. One edit I have for the paper regards the interchangeable use of fCO2 and pCO2. In 
section 2.1 the authors mention that “both are commonly used in oceanographic studies”, which 
is accurate. However, they are not interchangeably used. At the end of Section 2.2 an equation 
to convert pCO2 to fCO2 is provided, but it’s unclear at what point this conversion is made. 
Figure 2 shows values in fCO2, but the rest of the figures use pCO2. I recommend a clear 
statement about conversion with the introduction of fCO2, as well as consistency in the figures 
(I would convert Figure 2 to showing pCO2 or at least have a clear statement on the conversion 
and reason for fCO2 presentation in the figure caption). 

Response: We thank the reviewer for highlighting this important distinction between 
fCO2 and pCO2. Throughout the main text, we primarily focused on pCO2 comparisons, 
as this parameter was directly provided by other products.  We discovered an error, 
which actually shows pCO2 values in our Python codes but was incorrectly written as 
fCO2 in both the color bar and caption for Figure 2. We have now corrected these labels 
and added a clarifying sentence to the caption. The modified Figure 2 is attached for 
reference. 

 

Figure 2. Spatial distribution of sea surface pCO2 observations from SOCAT database (version 
2023) in the NAACOM across four seasons from 1993 to 2021. Grid samples with data were counted 
by season: (a) Spring (March to May), (b) Summer (June to August), (c) Fall (September to November), 
and (d) Winter (December to February). The study region is divided into northern (blue box) and 
southern (red box) areas at approximately 41.5°N (Cape Cod). The number and percentage of grid 
samples are indicated for each region per season. Color scale represents pCO2 values in μatm. Higher 



sampling density is evident in the southern area. Winter shows the lowest overall sampling coverage. 
Note that the SOCAT database provides quality-controlled fCO2 measurements as the default parameter, 
which are subsequently converted to pCO2 using Eq. (2). 

Regarding the usage of fCO2 in our study, because SOCAT reports fCO2 directly rather 
than pCO2, we specifically use it as the label during model training. Based on our 
previous work on carbonate dynamic in the Gulf of Mexico (Wu et al., 2024), we 
decided to provide both reconstructed fCO2 and pCO2 in our final product. The model 
trains and outputs fCO2 directly, and the predicted fCO2 values are subsequently 
converted to pCO2 using OISST data. This process was briefly mentioned in the last 
paragraph of Section 2.2: 

“Finally, the trained model is applied to all satellite and reanalysis data to generate the 
final gap-free reconstructed fCO2 data. As most products reported seawater CO2 
concentration as pCO2, our final product reports both fCO2 and pCO2, with the fCO2 
values being converted to pCO2 using the following equation (Takahashi et al., 2019).” 

To further clarify this, we have made the following modifications: 

1) We updated Figure 3 to show that the model first outputs 3D fCO2, which is 
then converted to pCO2 

2) A clarifying sentence was added at the beginning of Section 2.2 (Model design, 
line 148): “During the model development phase, fCO2 measurements served as 
training labels for the machine learning algorithm.” 

3) We modified the last paragraph of Section 2.2 to emphasize that fCO2 was used 
in the model development phases before conversion to pCO2 

The revised Figure 3 is attached for reference." 

 

Figure 3. A flowchart of the two-step machine learning regression model for generating the 
reconstructed pCO2 product. Grey boxes represent the input and output datasets, blue boxes illustrate 
the model training, validation testing, and independent test processes, and orange boxes represent the 
final trained model for predicting the reconstructed product. The two models in the orange boxes are 
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identical. The training data, consisting of paired input variables (lon, lat, month, sea surface temperature 
(SST), sea surface salinity (SSS), sea surface height (SSH), and atmospheric pCO2 (pCO2air) and 
corresponding sea surface fCO2 (fCO2sea) labels), is divided into two sets: X1 (1993-2003 and 2006-2021) 
and X2 (2004-2005). X1 is further randomly divided into subsets for model training set (80%) and 
validation set (20%). The predictive model combines a random forest regression (RFR) and a linear 
regression (LR) algorithm. The trained and validated regression model is then applied to all satellite and 
reanalysis data (without gaps) to generate the 3D reconstructed fCO2sea product, which was then 
converted to pCO2sea with satellite SST data. 

 

R2C20. My second edit has to do with the calculation of uncertainty. There is a calculation 
representing the inputs (uinputs), but some of the products are in the original resolution and others 
are linearly interpolated to that resolution. Does the interpolation introduce more error, and is 
this taken into account?  

Response: We appreciate the reviewer's inquiry regarding our input variables. Our 
model uses sea surface height (SSH), sea surface temperature (SST), sea surface salinity 
(SSS), and atmospheric pCO2 as input variables. To clarify, 1) both SSH and SST are 
at 0.25° resolution and monthly timescale, averaged from daily data. 2) Atmospheric 
pCO2 has a very small spatial gradient when compare with the sea surface pCO2. Thus, 
interpretation won’t introduce additional uncertainty. In our previous studies, we found 
that even Mauna Loa pCO2 data would closely approximate the pCO2 observed at U.S. 
East Coast stations, as pCO2 typically varies little globally (Wu et al., 2024). 

SSS is the variable most likely to introduce uncertainty due to interpolation. It's crucial 
as it reflects the interaction between terrestrial and open ocean waters. While SODA is 
a widely used and respected salinity product, its uncertainty in our study region is not 
well-defined. Therefore, we adopted a conservative approach: we doubled the 
uncertainty reported in the SODA paper for our calculations. To clarify this in our 
methods, we've added a sentence in the Method section (lines 210-211): 

"Noted that such interpolation could potentially introduce additional errors. We doubled 
the SSS uncertainty in the region, assuming this would encompass its true uncertainty 
(see Appendix B)." 

And in Appendix B, line 535: 

“Their analysis (their Fig. 8) indicates an RMSE exceeding 0.3 psu in the vicinity of 
our area of interest. In addition, interpolating the 0.5° SSS data to 0.25° resolution could 
potentially introduce more errors. To maintain a conservative approach in our 
uncertainty quantification, we doubled the uncertainty and adopted a value of 0.6 psu 
as the SSS uncertainty for our calculations.” 

We acknowledge that SODA SSS may not be optimal in our outer study region. Our 
Monte Carlo simulations indicate that the SSS-induced uncertainty (around 4 µatm) is 
small compared to the final uncertainty around 20 µatm, but we agree that a more 
accurate SSS product would be preferable. To the best of our knowledge, currently, no 



such reliable coastal SSS data are publicly available for this region. We are developing 
an improved SSS product for this area, which requires further evaluation. Once we are 
confident in its reliability, we plan to make it publicly available and incorporate it into 
ReCAD version 2. 

 

R2C21. Additionally, I will note that I greatly appreciate the inclusion of an uncertainty 
calculation and the strength it lends to the product. I would have liked to see it highlighted a 
bit more in the rest of the paper results—some of the data could also be discussed with 
uncertainty included, rather than purely keeping the uncertainty in one section at the end of the 
paper. I think the addition of the uncertainty calculation makes this product stronger, and should 
be displayed as such. 

Response: We appreciate the reviewer raising this important point. While writing the 
manuscript, we deliberated but ultimately decided not to include error analysis for the 
monthly mean and regional average, to avoid confusion and maintain focus and 
conciseness. Please see R2C10 for detailed explanation. 

 

R2C22. Finally, Figure 5 and figure 7, and the associated discussions in 3.2 and 3.4, present 
some extremely interesting data. We compare some of the regional differences and the products 
effectiveness of capturing broader pCO2 patterns across the North Atlantic coast. I would have 
loved to had this extrapolated on a little further, and perhaps seen more numbers broken down 
by region. We can visually look at the figures, but it’s a little hard to assess and I think the 
paper would be strengthened by expanding this section a little more with increased quantitative 
results. 

Response: We thank the reviewer for this constructive suggestion. We have enhanced 
the quantitative presentation of our results in several ways. Figure 5 illustrates the 
spatial distribution of mean bias error (MBE), these values complement the subregional 
MBE statistics already provided in the last column of Table 2. To make this more clear, 
we have now incorporated the average MBE values for all six subregions directly 
within the figure. We have also expanded the discussion section with additional 
quantitative analysis of regional patterns. Please see our response to R2C8 for further 
details of these modifications. 

Regarding Figure 7 in Section 3.4, our previous work (Wu et al., 2024) indicated that 
existing pCO2 products did not adequately meet our requirements for regional analysis. 
Therefore, one of our primary objectives of this work was to develop a product to 
capture these regional variations. The pCO2 distribution shows a clear south-to-north 
decreasing gradient, with distinct regional patterns superimposed on this large-scale 
distribution. We selected specific regions where pCO2 variations have been well-
documented in previous studies, including elevated pCO2 in the West Florida Shelf 
(WFS), and low pCO2 in the Mississippi River estuary. 

Our product also reveals several interesting features, such as relatively higher pCO2 



values in the Gulf of Maine (GoMe, compared to surrounding waters) that potentially 
associated with local high-pCO2 river estuary waters, and notable regional variations in 
northern areas. The northern regions are particularly interesting as previous studies 
have reported conflicting results, with some identifying these areas as CO2 sinks and 
others as CO2 sources. However, those spatial variations haven’t been confidently 
confirmed by observations yet.  

Following the reviewer's suggestion, we have expanded Section 3.4 to provide a more 
comprehensive analysis. The revised section now presents two distinct components: (1) 
validation of previously confirmed regional variations, and (2) discussion of novel 
patterns revealed by our product that warrant future investigation. The expanded 
Section 3.4 is provided below: 

“The ReCAD-NAACOM-pCO2 product demonstrates superior alignment with SOCAT 
observations in capturing these regional features that have been reported in previous 
observation-based studies (Fig. 7b) …. 

In addition to these previously documented regional variations, our product reveals 
several notable features not previously captured by observations or other existing 
products. For instance, the GoMe displays intermediate pCO2 levels around 380 μatm, 
distinctly higher than surrounding waters at comparable latitudes, a feature previously 
documented by a multiple linear regression reconstructed pCO2 product (Signorini et 
al., 2013) and five-year (2004-2009) mooring and cruise data (Vandemark et al., 2011) 
but contradict to another two studies based on numerical models (Cahill et al., 2016; 
Rutherford et al., 2021). In the southern GStL (S.GStL, box 4 in Fig. 7), pCO2 values 
are slightly higher compared to adjacent waters at similar latitudes, aligning with high 
nutrient concentrations typically observed in these river-influenced waters (Lavoie et 
al., 2021). These regional patterns could not be completely captured by the global 
products (Fig. 7c and 7d). Ability of the ReCAD-NAACOM-pCO2 product in 
resolving such regional features demonstrates its potential value for investigating 
coastal carbon dynamics and their responses to local and regional forcing factors in the 
NAACOM.” 

We plan to use this data product to discuss further the spatial and season variability of 
all sub-regions in NAACOM and the decadal trends in the data-rich MAB and SAB 
sub-regions in our subsequent publications. 

 

Specific Comments: 

R2C23. Figure 1: I felt that the colors of this figure made it difficult to interpret. The way the 
lines were drawn made the topography difficult to see. For consistency with the other figures 
in the paper, I would suggest shifting the coastal contour line to being black.  Then perhaps 
make the Gulf stream and Labrador current lines dotted or dashed lines (also, change Gulf 
Stream’s color if you shift contour to black), so they don’t block as much topography. I would 
match the labels of the regions to the lines denoting the regions, and finally increase the 



deviation in the color scale. Right now, it’s not very easy to tell a difference between 800-
1000m, and similarly between 0-300m is all about the same tone. 

Response: We thank the reviewer for these suggestions to improve the figure's clarity. 
We agree with the reviewer regarding the visualization challenges of marine terrain data. 
The bathymetry in our study area presents a particular challenge due to the flat 
topography on the shelf (0-200 m), but rapid changes on the slope from 200m-2000m 
depth. For the colors, while we initially attempted to maintain consistent colors for the 
200m isobath across all figures, this proved challenging due to the different colormaps 
required for various figures. To address these concerns, we have made the following 
modifications to Figure 1: 

1) Implemented a light blue background to represent areas within 400 km of the 
coast 

2) Added dashed contour lines for shelf depths (-50 m, -100 m, -200 m) and slope 
depths (-1000 m, -2000 m, -3000 m, -4000 m) 

3) Updated the 200 m isobath to a thick black line in all figures for consistency 
4) Modified the Gulf Stream and Labrador Current indicators to dashed arrows, 

following the reviewer's suggestion. The Gulf Stream is colored red to represent 
warm current and the Labrador Current is colored blue to represent cold current. 
Both are semi-transparent to avoid obscuring the contour lines 

5) Added a legend to help readers interpret the lines in the figure 

We have also revised the figure caption accordingly. The modified Figure 1 is attached 
for reference: 

 
Figure 2. Topography (in meters) and large-scale circulation along the North American Atlantic 
Coastal Ocean Margin (NAACOM). The study region, defined as coastal areas extending 400 km 
offshore, is indicated by blue shading. The thick black line is the 200 m isobath, which roughly marks 
the shelf break and typically defines the continental shelf boundary. The Gulf Stream (thick red dashed 



line with an arrow) flows northward along the east coast of the United States before veering eastward 
into the open Atlantic Ocean around Cape Hatteras. The Labrador Current (thick light blue dashed line 
with an arrow) flows southward along the east coast of Canada before meeting the Gulf Stream. 
Following Fennel et al. (2019), the study region is divided into six sub-regions by straight orange lines: 
the Gulf of Mexico (GoMx), South Atlantic Bight (SAB), Mid-Atlantic Bight (MAB), Gulf of Maine 
(GoMe), Scotian Shelf (SS), and Gulf of St. Lawrence and Grand Banks (GStL&GB). Dashed contour 
lines indicate bathymetric depths of 50 m and 100 m on the shelf (from coastline to 200 m isobath), and 
1000 m, 2000 m, 3000 m, and 4000 m from the shelf break to the open ocean. 

 

R2C24. Equations: center the equations in the document 

Response: We appreciate the reviewer's attention to detail regarding equation 
formatting. Upon re-examination of the ESSD templates, we have confirmed that left-
aligned equations are indeed the default format specified in both the ESSD Microsoft 
Word and LaTeX templates. We have decided to maintain this alignment to adhere to 
the journal's standard formatting guidelines, unless otherwise instructed by the editorial 
team. We thank the reviewer again for their careful revision. 

 

R2C25. Lines 183-184: The nature of this sentence is implying an interchangeable use of fCO2 
and pCO2, which I don’t think is accurate 

Response: We appreciate the reviewer's suggestion and agree that clarification was 
needed. We have modified the sentence as follows (lines 197-198): 

“pCO2air represents the atmospheric forcing on the air-sea CO2 exchange. Including 
pCO2air is essential for accurately assessing the decadal pCO2 trend. ” 

 

R2C26. Line 284+: Authors show an area-mean bias of +0.17, but with the regional breakdown 
and discussion, I’d be very curious how that bias varies by region. Can we see numbers for the 
other regions as well? 

Response:  

The values shown in this figure represent the Mean Bias Error (MBE). We have updated 
our methodology to use direct predictions from the final trained model [ y = f(80% of 
X1)] for the training dataset (80% of X1), replacing our previous approach that used 
10-fold cross-validation outputs. Consequently, the overall MBE for the entire region 
has been updated to +0.13 ±12.70 µatm. The regional mean bias values are reported in 
the last column of Table 2. For clarity, we have now incorporated these bias errors with 
their standard deviations directly into Figure 5: 



 
Figure 5. Spatial distribution of mean bias error (MBE) between ReCAD-NAACOM-pCO2 
product and SOCAT observations across the NAACOM. The MBE is calculated for each grid cell as 
the average difference between product estimates and SOCAT observations. Positive values (red) 
indicate product overestimation, while negative values (blue) indicate underestimation relative to 
SOCAT. Regional MBE values with one standard deviation are shown for each sub-region, 
corresponding to the values in the last column of Table 2. The overall bias error for the NAACOM is 
+0.13 ± 12.97 μatm. Following Fennel et al. (2019), the study region is divided into six sub-regions by 
straight orange lines: the Gulf of Mexico (GoMx), South Atlantic Bight (SAB), Mid-Atlantic Bight 
(MAB), Gulf of Maine (GoMe), Scotian Shelf (SS), and Gulf of St. Lawrence and Grand Banks 
(GStL&GB). The thick black line is the 200 m isobath, which roughly marks the shelf break and typically 
defines the continental shelf boundary. 

We also added two sentences to describe the distribution of MBE more quantitatively 
in lines 326-329: 

“… Regional MBE for different machine learning development phases (training, 
validation, and test sets) are detailed in Table 2. Despite these regional differences, 
MBE of both the validation set (-1.0 ~ 1.0 µatm) and independent test set (-4.5 ~ 7.5 
µatm) demonstrate minimal values across sub-regions (Table 2), underscoring the 
product’s effectiveness in capturing the broader pCO2 patterns across the NAACOM.” 

 

 

R2C27. Figure 5: Similar edit suggestions to figure 1; update contour line to be black and 
match the colors of regional names to the lines denoting the regions 

Response: We thank the reviewer for these suggestions regarding visual consistency. 
Following the reviewer's recommendations, we have modified Figure 5 to maintain 
consistency with Figure 1 by: 

1) Updating the 200 m isobath to a thick black line 
2) Matching the colors of regional boundary lines and their corresponding region 



names 
3) Revising the figure caption accordingly 

The modified Figure 5 is attached in the previous comment. 

 

R2C28. Figure 6: the error bar denotes one standard deviation of the monthly mean climatology, 
but didn’t the authors also actually calculate a pCO2 error? Why is that not included in any of 
the figures? 

Response: We appreciate the reviewer raising this important point. While writing the 
manuscript, we deliberated but ultimately decided not to include error analysis for the 
monthly mean and regional average, to avoid confusion and maintain focus and 
conciseness. The error metrics shown in our figures serve different purposes: 

1) The error bars in Fig. 6 and the values after "±" sign in Fig. 7 represent standard 
deviations (σ), which characterize the natural variability of pCO2 - temporal 
variability across the 29-year period (1993-2021) in Fig. 6, and spatial variability 
in Fig. 7. 

2) The uncertainties reported elsewhere in the manuscript and provided in the NetCDF 
file reflect the propagated errors of individual pCO2 estimates in each grid cell.  

3) While these grid-cell uncertainties can be used to calculate uncertainties for area 
and monthly averages (following methods detailed in Roobaert et al., 2024 and 
Landschützer et al., 2014), we have deliberately focused this manuscript on 
establishing the fundamental reliability of our product and decided not to include 
this part in this manuscript to avoid potential confusion.  

A comprehensive analysis of uncertainties in regional averages and their implications 
for CO2 flux calculations will be presented in our forthcoming manuscript examining 
pCO2 seasonal cycles, regional variability, and mean seawater CO2 uptake in the 
NAACOM. To ensure proper use of our dataset, we have added guidance in lines 459-
461: 

“… In addition, the uncertainties reported in this section and provided in the NetCDF 
file represent the propagated errors for individual pCO2 values in each grid cell. 
Methods to calculate uncertainties in regional averages of pCO2 or air-sea CO2 fluxes 
over specific spatial and temporal domains are detailed in Roobaert et al. (2024) and 
Landschützer et al. (2014).” 

Detailed methods for calculating the uncertainty of monthly or area means (which 
did not appear in the text): 

The uncertainty of monthly or regional means (𝜃!"#$) can be expressed as: 

𝜃!"#$ = #𝜃%&'"(() + 𝜃*+,))  

where 𝜃%&'"(( is the standard error of monthly or regional means, which is a function 
of the standard deviation (𝜎*+,)) for each month and the number of samples (N1 = 29 



for monthly means, or N1 = total grid cells in a specific region for regional average): 

𝜃%&'"(( =
𝜎*+,)
&𝑁-

 

𝜃*+,)  is the uncertainty of product-estimated area-average pCO2 accumulated from 
each grid cell, which could be calculated following Landschützer et al. (2014) and 
Roobaert et al. (2024): 

𝜃*+,) = (
𝑢./%)

𝑁)
+
𝑢0(1')
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+
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where uobs, ugrid, and umap represent observational uncertainties, gridded uncertainty, and 
mapping uncertainty, respectively, as defined in our manuscript. N2 denotes the number 
of grid cells in each region. For umap, the value of N is corrected to effective sample size 
Neff as individual errors from each grid cell are not spatially independent, which could 
also be calculated with a Monte Carlo simulation (Landschützer et al., 2018). 

We will report the uncertainty of monthly or regional means together with our 
scientific question--what controls regional and seasonal variability--in a separate 
publication.  

 

R2C29. Line 415: The statement “This uncertainty is deemed reasonable” confused me. 
Deemed reasonable by who? What metrics are being used? “reasonable” is a very vague term. 

Response: We appreciate the reviewer's observation and agree that our original 
expression lacked precision. We have revised our approach explanation and comparison 
as follows in lines 453-456:  

“Our uncertainty estimation employs a conservative estimation, using maximum values 
at calculation step. This approach likely overestimates the true uncertainty. Despite this 
conservative method, our calculated uncertainty for the Atlantic margins is comparable 
to the 43.4 μatm reported by Sharp et al. (2022) for areas within 100 km of the North 
American Pacific margins. suggesting a good product performance of our product” 

 

R2C30. Acknowledgments: Make sure to include the SOCAT statement from the website that 
they ask you to include when you use their product (“The Surface Ocean CO2 Atlas (SOCAT) 
is an international effort, endorsed by the International Ocean Carbon Coordination Project 
(IOCCP), the Surface Ocean Lower Atmosphere Study (SOLAS) and the Integrated Marine 
Biosphere Research (IMBeR) program, to deliver a uniformly quality-controlled surface ocean 
CO2 database. The many researchers and funding agencies responsible for the collection of 
data and quality control are thanked for their contributions to SOCAT.”) 

Response: We appreciate the reviewer's suggestion and totally agree on the importance 
of acknowledging the scientific community's contributions to the data publicly, 
especially for the SOCAT effort. We have revised our acknowledgments section 



accordingly and have also carefully reviewed the websites of other datasets used in this 
work to ensure comprehensive recognition. The updated acknowledgments now read 
as follows: 

“The authors acknowledge the National Oceanic and Atmospheric Administration 
(NOAA) for providing the OISST data, the University of Maryland Ocean Climate 
Laboratory for the SODA dataset, and the European Union Copernicus Marine Service 
Information (CMEMS) for the SSH data. We also express our gratitude to the scientific 
community for sharing their observational carbonate data in the SOCAT effort. The 
SOCAT is an international effort, endorsed by the International Ocean Carbon 
Coordination Project (IOCCP), the Surface Ocean Lower Atmosphere Study (SOLAS) 
and the Integrated Marine Biosphere Research (IMBeR) program, to deliver a 
uniformly quality-controlled surface ocean CO₂ database. The many researchers and 
funding agencies responsible for the collection of data and quality control are thanked 
for their contributions to SOCAT. 

This work is part of Zelun Wu’s Ph.D. Dissertation under the University of Delaware-
Xiamen University Dual Degree Program in Oceanography.” 
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