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Abstract. Long-term burn severity assessment can support better pre- and post-fire management plans. In this study, Portuguese 

Burn Severity Atlas was created containing historical fires in Portugal from 1984 to 2022. As prerequisites, fire data were gathered 

and delimited for all years. Due to the availability of satellite images, for different years, different imagery from Landsat sensors 

(30m) were applied. Exploratory analysis showed that burn severity estimates are significantly affected by the time lag between 15 

the satellite imagery acquisition and the fire date. We explicitly incorporated the effect of time lag in the degradation of burn 

severity estimates in the selection of the most suitable pre- and post-fire satellite images for each fire. Using Google Earth Engine, 

burn severity estimates were calculated for fires equal to or larger than 500 ha between 1984 and 2000 and larger than 100 ha for 

fires from 2001 1984 to 2022 with known start and end dates (valid fires). Different indices were calculated, such as the differenced 

Normalized Burn Ratio (dNBR), relative dNBR (RdNBR), Relativized Burn Ratio (RBR), and a burn severity index that combines 20 

dNBR with enhanced vegetation index (dNBR-EVI). Overall, in Portugal, 4.92M ha4.85 M ha burned over the 38-year period 

(1984–2022), from which 3.193.29 millionM ha were caused by valid fires (64.8 %68 %). Among these, a total area of 3.11 million 

ha3.18 M ha had burn severity estimates via the applied indices (97 %97 % of valid and 63 %66 % of all fires). Results show that 

Portugal has experienced, on average, “high” burn severity throughout this period, with large percentages of dNBR pixels between 

0.419 and 0.66 (29 %32 %) and > 0.66 (21 %20 %). Estimates from different burn severity indices provided a more complete 25 

representation of the burn severity impacts. Via the analysis of only three fires throughout the study period, the dNBR-EVI showed 

potential in differentiating the “unburned” and “regrowth” burn severity while RBR was more prone to signal saturation, i.e., 

inability to show “high” and “very high” burn severity. However, more in-depth research is needed to fully confirm these properties. 

This atlas can be accessed at  https://doi.org/10.5281/zenodo.12773611 (Jahanianfard et al., 2025) and be used by researchers to 

have a better understanding of historical fires, their corresponding impacts on vegetation cover, air, soil, and water quality, and 30 

identification of the most influential environmental and climatical drivers of burn severity.  

Keywords: Time lag, Google Earth Engine, Normalized Burn Ratio (NBR), Landsat, image SUITABILITY, confidence map.  

1 Introduction 

Fires are global widespread natural, dynamic, and periodically disturbing phenomena (Whitman et al., 2020; Fernández-Guisuraga 

et al., 2023b; Kurbanov et al., 2022; Jain et al., 2020) with more than half of the surface land at risk of being affected (Alonso-35 

González and Fernández-García, 2021). Fires expose terrestrial ecosystems with various impacts on forest ecology and structure, 

soil erosion, loss of biodiversity, and endanger human life and infrastructures. Over the past 20 years, fires have burned on average 

0.4 billion ha of land annually, with a cumulative total of 7.2 billion ha of burned area globally (Kurbanov et al., 2022).  

https://doi.org/10.5281/zenodo.12773611
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According to statistics provided by the European Commission (2018), approximately 50,000 fires have burned from 1980 to 2018, 

with an annual average of 0.5 million ha, especially in five Mediterranean European member states: Spain, Portugal, Italy, Greece, 40 

and France (Fernández-Guisuraga et al., 2023a). In these countries, the occurrence of extreme fires is getting more frequent and 

more intense with larger burned areas as their fire regime has shifted from “fuel-limited” to “drought-driven” (Pausas and 

Fernández-Muñoz, 2012). The fire regime shift has heterogeneous extent, seasonality, and frequency (Morresi et al., 2022). Its two 

main causes are accumulation of flammable fuels combined with consequences of global warming such as prolonged and more 

frequent droughts and heatwaves (Fernández-Guisuraga et al., 2023a). The accumulation of flammable fuels are caused by land 45 

use change, agricultural farming abandonment in rural zones, and lack or absence of adaptive management (Moreira et al., 2020). 

Moreover, increasing global warming, will likely lead to prolonged fire seasons which may contribute to an increase in number, 

frequency, and area of fires (Moreira et al., 2020; Miller et al., 2023; Holsinger et al., 2021; Fernández-Guisuraga et al., 2021). 

However, it is still unclear whether this predicted increase will lead to an increase in burn severity (Soverel et al., 2011; Morresi 

et al., 2022; Fernández-Guisuraga et al., 2023b; Parks et al., 2016).  50 

Burn severity can be defined as the extent to which fire induces ecological and visible changes on soil and vegetation (Key and 

Benson, 2006; Key, 2006; Lentile et al., 2006; Veraverbeke et al., 2010). Estimation of burn severity provides insights into forming 

better pre- and post-fire management strategies, including fuel treatments and post-fire recovery plans (Chu and Guo, 2014; Miller 

et al., 2023; García-Llamas et al., 2019). Burn severity estimates are highly time-sensitive since post-fire conditions depend on 

pre-fire conditions (Miller et al., 2023). A delayed estimation of burn severity will most likely lead to its poor estimation due to 55 

first environmental responses such as forest recovery, tree/seedling recruitment, resprouting, vegetation regrowth, and ashes wash 

off by wind or precipitation (Miller et al., 2023; Dos Santos et al., 2020; Keeley et al., 2008; Keeley, 2009; Chu and Guo, 2014; 

Key, 2006) or secondly by seasonal lag, influenced by low sun angle, increasing the risk of shadow contamination even on flat 

terrains (Holsinger et al., 2021; Key, 2006). Hence, burn severity can be assessed during three periods based on different time lags, 

which are the difference between the dates of fire occurrence and burn severity estimation, categorized as rapid assessment (less 60 

than two weeks), initial assessment (1 to 8 weeks) and extended assessment ( 2 to 12 months) (Key, 2006).  

The most reliable approach to estimate burn severity is via field assessment (Key and Benson, 2006) by measuring the observable 

fire-induced changes such as the extent of fire-consumed vegetation, stems of vegetation being charred, soil being exposed, and 

loss of chlorophyll in leaves (Keeley, 2009). These fire-induced changes correspond to structural, thermal, and spectral alterations 

in soil and vegetation (Miller et al., 2023). One of the most used metrics is the Composite Burn Index (CBI) (Key and Benson, 65 

2006; García-Llamas et al., 2019) that visually ranks the burn severity from 0 (unburned) to 3 (high severity) (Parks et al., 2018; 

Fernández-Guisuraga et al., 2023a; Addison and Oommen, 2018). The reason for CBI’s popularity is due to its rapid protocol and 

its overall estimation of fire induced damage on vegetation and soil, especially when assessing burn severity of large fires. 

However, burn severity field assessments have multiple drawbacks as they are intensive, logistically challenging, highly resource-

dependent, especially in inaccessible and/or remote burned areas, and have limited capability in capturing the burn severity 70 

heterogeneity over large burned areas. Moreover, the impacts of historical fires and evolution of burn severity cannot be measured 

via field assessment (Miller et al., 2023). 

The emergence of remote sensing (RS), especially via application of satellite imagery, over the past decades has enabled free-of-

charge remotely-sensed burn severity assessment as an alternative option to expensive and time-consuming field severity (Miller 

et al., 2023; Holsinger et al., 2021; Fernández-Guisuraga et al., 2021; Miller and Thode, 2006; Parks et al., 2014; Fernández-García 75 

et al., 2018). The capability of capturing spectral information in the visible, near-infrared (NIR) and shortwave infrared (SWIR) 

parts of the electromagnetic spectrum (Key and Benson, 2006) has enabled the detection of fire-induced structural, thermal, and 

spectral changes on land surface (Miller et al., 2023). Satellite sensors have different optical bands, spatial resolutions, temporal 
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revisiting frequencies and time spans (Lentile et al., 2006). Thus, there are tradeoffs in the application of different satellite RS 

sensors and the availability of clear-sky imagery (Miller et al., 2023). Moreover, caution should be taken when using RS products 80 

as they may acquire top of the canopy reflectance with limited capability to estimate burn severity of the understory strata (García-

Llamas et al., 2019; Mihajlovski et al., 2023). Last but not least, RS-derived burn severity estimates “must be linked to ground-

truth data” (García-Llamas et al., 2019; Miller et al., 2023; Chu and Guo, 2014). 

Multiple studies have found moderate correlations between satellite-derived RS and ground burn severity indices, providing higher 

confidence in RS derived burn severity estimates. However, the strength of these correlations varies from one region to another 85 

and can be influenced by environmental factors such as fuel, vegetation type, and topography (Fernández-Guisuraga et al., 2021). 

In this context, mono (only post-fire image) and bi-temporal (both pre-and post-fire images) normalized burn ratio (NBR) derived 

indices, such as differenced Normalized Burn Ratio (dNBR), Relative Differenced Normalized Burn Ratio (RdNBR), Relativized 

Burn Ratio (RBR), and burn severity index that combines dNBR with enhanced vegetation index (Gao et al., 2000) (dNBR-EVI) 

Fernández-García et al., (2018)(Gao et al., 2000), have been applied. The dNBR (Key and Benson, 2006) is considered as the 90 

“standard” index for burn severity quantification (Alonso-González and Fernández-García, 2021), specifically in the 

Mediterranean regions (Fernández-García et al., 2022; Miller and Thode, 2006; Picotte et al., 2016; Fernández-Guisuraga et al., 

2023a; Chu and Guo, 2014; Keeley et al., 2008; Fernández-García et al., 2018). The RdNBR provides a relative measurement of 

burn severity based on the pre-fire state of vegetation (Miller and Thode, 2006) and has proven to be more sensitive than the dNBR, 

especially in areas with low vegetation cover density (Parks et al., 2014). However, the calculation of RdNBR presents some 95 

difficulties due to its formula and its “numerically unstable” range as the result of pre-fire NBRs with very low values (Fernández-

Guisuraga et al., 2023a). Another relative measure of burn severity without the calculation difficulties is RBR (Parks et al., 2014). 

According to Fernández-Guisuraga et al. (2023a), RBR showed better correlation with CBI in Mediterranean ecosystems in 

comparison to dNBR. Additionally, according to Fernández-García et al., (2018), their proposed index known as dNBR-EVI, 

exhibits the best correlation with CBI in Mediterranean regions in comparison to NBR, dNBR, RdNBR, and RBR. Moreover, 100 

dNBR-EVI is claimed to show no signal saturation in high-severity areas, as saturation is a known issue for NBR-derived indices 

in regions with high burn severity (Fernández-García et al., 2018; Santis et al., 2010; Fernández-Guisuraga et al., 2023a).  

The estimation of burn severity of historical fires can be performed using satellite-derived RS indices. This feature can enable the 

evaluation of changes or trends in burn severity patterns over a specific period  (Lutz et al., 2011; Picotte et al., 2016). The first 

project devoted to the creation of a burn severity atlas was the Monitoring Trends in Burn Severity (MTBS) which provided dNBR 105 

and RdNBR maps for large fires from 1984 to present in the USA using Landsat imagery (Eidenshink et al., 2007; Picotte et al., 

2020). There have been records of burn severity atlases created for parts of some countries such as Canada (Picotte et al., 2016; 

Whitman et al., 2020; Guindon et al., 2021). Moreover, the MOSEV dataset provides 20 years of burn severity maps using 

Moderate Resolution Imaging Spectroradiometer (MODIS) imagery and products (Alonso-González and Fernández-García, 2021). 

Although this dataset provides daily global coverage, it has considerable limitations such as the spatial resolution (500m), the 110 

limited capability of  mapping burn severity heterogeneity especially at regional scale (Alonso-González and Fernández-García, 

2021), the absence of burn severity estimates for fires before the year 2000 and low burned area mapping accuracy (Moreno-Ruiz 

et al., 2020).  

To the best of our knowledge, detailed long-term estimates of burn severity are missing for European fire-prone countries, such as 

Portugal. Thus, the main objective of this study is to create a high resolution multidecadal burn severity atlas for mainland Portugal 115 

entitled “Portuguese Burn Severity Atlas”.  
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2 Data and methods  

The study area consists of mainland Portugal (“37°N to 42°N latitude and 6°W to 10°W longitude”) (Parente et al., 2016), covering 

around “90,000 km2 of Southern Europe” (Rego and Bacao, 2010) generally with Mediterranean climate consisting of “warm, dry 

summers and cold, wet winters” (Nunes et al., 2016), elevation ranging “from sea level to approximately 2000m”(Mora and Vieira, 120 

2020), and with domination of different vegetation types within its extent (e.g., “farmland and evergreen oak (Quercus suber, Q. 

rotundifolia) woodlands in South, forests of pine (Pinus pinaster) and eucalypt (Eucalyptus globulus) in North and shrublands and 

deciduous oak forests” in Center) (Tonini et al., 2017).  

To estimate the burn severity of historical fires in Portugal (1984–2022), it is necessary to primarily gather fire data containing the 

start and end dates (Sdate and Edate), the burned perimeters and extents (Sect. 2.1). Then, we selected RS sensor or family of 125 

sensors to have coherency over the study period (Sect. 2.2). Next steps were to select burn severity indices well correlated with 

ground observations specifically in the Mediterranean regions (Fernández-Guisuraga et al., 2023a)  (Sect. 2.3), assign sampling 

period to select RS imagery (Sect. 2.4), quantify the influence of time lag on burn severity estimates and accordingly apply the 

necessary adaptation to the sampling period (Sect. 2.5)  and finally to calculate the burn severity estimate for each of the fires with 

the most suitable pair of images (Sect. 2.6).  130 

 2.1 Fire data  

We focused the work on fires equal to or larger than 100 ha, that were responsible for 75 % of the total burned area in Portugal 

(Divisão de Defesa da Floresta Contra Incêndios (DGRF), 2006; Fernandes, 2009). Only fires with known start and end date were 

kept and considered as valid. 

The fire perimeters were supplied by the Instituto da Conservação da Natureza e das Florestas (ICNF), (2021b). For the period 135 

from 1984 to 2000, uncertainties regarding the fire dates are greater than the subsequent years up to present. Hence, “Monthly Fire 

Atlas” (Neves et al., 2023) was used to provide dates for fires of this duration, using “day-of-year (DOY)” dataset, which 

correspond to a band representing the day of year closest to the actual fire date of each individual fire. However, there were still 

cases in which multiple fires were marked as one resulting in inaccuracies regarding the dates. Hence, additional functions to 

analyze satellite imagery and manual corrections were implemented to discard any fires or proportion of their perimeters which 140 

did not have visible fire scar on false color composite (R: SWIR, B: NIR, and G: RED) image acquired on the date mentioned on 

“DOY” band or the fire scar also appeared on the image acquired prior to this date. 

The fire perimeters were supplied by the Instituto da Conservação da Natureza e das Florestas (ICNF), (2021b). 

For the period from 1984 to 2000, uncertainties regarding the fire dates are much larger than the subsequent years up to present. 

For this period, there are two official fire datasets in Portugal gathered and provided by the Instituto da Conservação da Natureza 145 

e das Florestas (ICNF), (2021): i) Portugal Rural Fire Dataset (PRFD) and ii) the National Mapping Burnt Area (NMBA) (Kanevski 

and Pereira, 2017). Parente et al. (2016) presents comprehensive details on both of these datasets, however in summary, the PRFD 

dataset contains fire dates obtained through ground measurements with exclusion of fire perimeters, while NMBA is based on RS 

imagery (Parente and Pereira, 2016; Parente et al., 2018). To minimize these uncertainties, we initially intersected NMBA and 

PRFD. For the intersecting areas, fire dates were retrieved from the PRFD dataset. In cases of no intersections, a 10 km buffer was 150 

created around NMBA perimeters, and the buffered dataset was again intersected with PRFD. For any intersected areas, respective 

fire dates from PRFD were retrieved and recorded. These fire dates were manually confirmed analyzing Landsat 1 to 5 imagery 

acquired approximately on or as close as possible to the fire dates recorded in PRFD. In cases where the fire scars were not visible 

on the “false-color composite” (R: SWIR, G: NIR, B: red) or “false- color NIR composite” (R:NIR, G: red, B:green) of Landsat 1 

to 5 imagery, images taken shortly before and after the recorded dates were examined, and the corresponding fire date was updated 155 
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with the acquisition date of the image where the fire scar first appeared. Additionally, duplicates and entries without geometric 

perimeters were removed from the fire data. Thus, although there are data of fire perimeters since 1975 (Oliveira et al., 2011), due 

to lack of fire dates, we determined the starting year of this atlas to be 1984. Thereafter, it was observed that mainly (98.6 %) valid 

fires with areas equal to or larger than 500 ha with recorded dates were obtained for fires from 1984 to 2000.  

To gather fire data from 2001 to 2022, multiple sources were utilized. The fire perimeters were supplied by the Instituto da 160 

Conservação da Natureza e das Florestas (ICNF), (2021b). The firese perimeters were derived through semi-automatic supervised 

classification of satellite imagery, with subsequent manual editing for refinement (Oliveira et al., 2011). Any discrepancies were 

identified and rectified by comparing the mapped fire perimeters with field statistics at the national level. The Sdates and Edates 

for most of the fires were also obtained from the ICNF. However, after conducting an exploratory analysis, errors were detected in 

the provided fire dates. Therefore, the Sdates and Edates were redetermined by combining data MODIS and the Visible Infrared 165 

Imaging Radiometer Suite (VIIRS) thermal anomalies following the method developed by Benali et al. (2016). The data were 

cross-referenced with data reported by the ICNF. Moreover, visual analysis of images from various sensors, particularly for fires 

occurring after 2017, were also incorporated to confirm and/or update the fire dates. The minimum mapping unit for this period 

(2001 to 2022) is 100 ha. 

Between 1984 and 2022, a total number of 38,70037,581 perimeters representing historical fires with a total burned area of 4.924.85  170 

million ha were recorded in mainland Portugal – 2.00 million ha between 1984 to 2000 and 2.92 million2.85 million ha between 

2001 to 2022. Within this atlas, 3200 5099 perimeters (8.414 %) are considered valid fires, accounting for a total burned area of 

3.193.29 million  ha (64.868 %) – 0.780.95 million ha between 1984 to 2000 and 2.412.34 million ha between 2001 to 2022 – in 

all vegetation types, distributed within the extent of the mainland Portugal.  To have an overview on the frequency of valid fires 

within the mainland of Portugal, FigA1 is provided in the Appendix. The frequencies of fires in Northern and Central regions are 175 

higher in comparison to other regions based on level 2 “Nomenclature of Territorial Units for Statistics” (presented as NUTS2) 

frontiers classification (Registo Nacional de Dados Geográficos - Direção-Geral do Território (DGT), 2024; Meneses et al., 2018). 

2.2 RS imagery: access and processing 

Portuguese Burn Severity Atlas spans across several years (1984–2022) overlapping the acquisition period of several sensors. 

Atmospherically corrected surface reflectance images from the Landsat series of sensors were used as reference to calculate burn 180 

severity indices. This choice was based on Landsat’s long available data archive, especially Landsat-5 going back as far as 1984, 

the high spatial resolution (30 meters), consistency between sensors with revisiting frequency of 16 days, and provision of required 

bands for burn severity indices (NIR, SWIR, red, and blue bands – Sect. 2.3). 

For fires from 1984 to 2001 and 2003 to 2011, imageries from Landsat-5 Thematic Mapper (TM) were applied. For 2002, both 

images from Landsat-5 TM and Landsat-7 Enhanced Thematic Mapper Plus (ETM+) were available, however, it was observed that 185 

there were more available clear-sky images from Landsat-7 in comparison to Landsat-5 imagery. Thus, for 2002, imagery from 

Landsat-7 was used to estimate burn severity. For 2012, there is no Landsat imagery available except for Landsat-7. This sensor 

suffered a technical failure in its scan line corrector (SLC) in May 2003 resulting in multiple gaps within its imageries since this 

time (Key and Benson, 2006). These gaps reduce the quality and availability of satellite imagery (providing 46 % of area of valid 

fires of 2012 with burn severity estimates). Hence, for only 2012, in addition to burn severity estimates obtained from Landsat-7, 190 

estimates from atmospherically corrected surface reflectance imagery of Terra abroad MODIS with spatial resolution of 500 m 

were provided. This addition aims to give users the option to choose between spatial resolution superiority of estimates with 

Landsat-7 or more areas with burn severity estimates via MODIS. In this regard, additional exploratory analysis was conducted to 

evaluate comparability of Landsat-7 versus MODIS derived dNBR- following the approach by Alonso-González and Fernández-
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García, 2021. Our analysis showed no correlation with details provided in Appendix A and Fig A2. Hence, for the statistics provided 195 

in this study such as sum of area with burn severity estimates, Landsat-7 derived estimates of 2012 were utilized. For yearsthe 

years 2013 to 2022, imageries from Landsat-8 Operational Land Imager (OLI) were applied. In Table 1, the applied sensors for 

each year are summarized. 

In the past, conduction of bi-temporal burn severity estimates, such as dNBR, by manually gathering pre- and post-fire images was 

difficult and time-consuming. However, with the emergence of cloud-based processors such as Google Earth Engine (GEE), 200 

through “an internet-based application programming interface (API) written in JavaScript” (Perez and Vitale, 2023), this process 

is now feasible, free and can be semi-automated (Yilmaz et al., 2023; Whitman et al., 2020) when fire data are available (Parks et 

al., 2018). In this study, all the processes of image acquisition, calculation of the burn severity indices, and generation of burn 

severity maps were performed within the GEE platform. One of the biggest limitations of GEE is its optimization when performing 

heavy processing (Carille et al., 2024). To overcome this limitation, separate functions were defined in our code to process images 205 

and generate burn severity estimates. The GEE datasets of different Landsat sensors are also summarized in Table 1.  

 

Table 1. Summary of sensors used for each year and their characteristics (availability date, corresponding bands, GEE dataset). ** 

With gaps within its imagery since May 2003.  

Years Sensor Availability date GEE dataset Bands 

1984–2001 and 

2003–2011 

Landsat- 5 (TM) 16 March 1984 to 05 

May 2012 

LANDSAT/LT05/C02/T1_L2 (USGS 

Landsat 5 Level 2, Collection 2, Tier 

1|Earth Engine Data Catalog|Google 

Developers, 2021) 

NIR:'SR_B4' 

SWIR: 'SR_B7' 

RED: 'SR_B3' 

BLUE: 'SR_B1' 

Cloud-mask: 

'QA_PIXEL' 

2002 and 2012 Landsat- 7 (ETM+) 28 May 1999 to 26 

September 2023 ** 

LANDSAT/LE07/C02/T1_L2 

(USGS Landsat 7 Level 2, Collection 

2, Tier 1 | Earth Engine Data Catalog 

| Google Developers, 2023) 

NIR:'SR_B4' 

SWIR: 'SR_B7' 

RED: 'SR_B3' 

BLUE: 'SR_B1' 

Cloud-mask: 

'QA_PIXEL' 

2012 MODIS - Terra 18 February 2000 to 

present 

MODIS/006/MOD09A1 

(MOD09A1.006 Terra Surface 

Reflectance 8-Day Global 500m | 

Earth Engine Data Catalog | Google 

Developers, 2023) 

NIR: 'sur_refl_b02' 

SWIR: 'sur_refl_b07' 

RED: 'sur_refl_b01' 

BLUE: 'sur_refl_b03' 

Cloud-mask: 'StateQA' 

2013–2022 Landsat- 8 (OLI) 18 March 2013 to 

present 

LANDSAT/LC08/C02/T1_L2 

(USGS Landsat 8 Level 2, Collection 

2, Tier 1 | Earth Engine Data Catalog 

| Google Developers, 2023) 

NIR: 'SR_B5', 

SWIR: 'SR_B7' 

RED: 'SR_B4' 

BLUE: ,'SR_B2' 

Cloud-mask: 

'QA_PIXEL' 

2.3 RS burn severity indices 210 

Portuguese Burn Severity Atlas is created using bi-temporal NBR derived burn severity indices as dNBR, RdNBR, RBR, and 

dNBR-EVI. The NBR is calculated via the normalized difference of NIR and SWIR optical bands based on the principle that 
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healthy vegetations have high NIR reflection while burned/dead vegetations have high SWIR reflection (Key and Benson, 2006; 

Whitman et al., 2020). The burn severity indices, along with their formulas, are summarized in Table 2. 

The atlas includes the corresponding offset values, i.e. mean value for each of these indices outside the burned area, that are 215 

representative of the unburned environment surrounding the burned areas. They are incorporated to isolate fire induced changes 

from unburned environment (Key, 2006; Miller and Thode, 2006; Parks et al., 2014, 2018), minimize the impacts of differences in 

pre- and post-fire imagery due to phenology or precipitation conditions (Parks et al., 2018), and improving the comparison of burn 

severity estimates across fires (Parks et al., 2014). The offset was estimated by calculating the mean values of pixels located within 

180 m outside the burned area for all the years following the formula of each corresponding burn severity index (Parks et al. 220 

(2018)). However, a buffer of 500 m was used for 2012 because only MODIS data was available for this year (see Sect. 2.2).   

 

Table 2. Summary of burn severity indices and their corresponding formulas. NIR, SWIR, RED, and BLUE refer to the satellite 

bands of NIR, SWIR, red, and blue bands, respectively. *The offset refers to the corresponding mean value of the burn severity 

index within the buffer (180 m except for year 2012 which is 500 m) outside the burned area. 225 

Spectral burn 

severity index 
Formula Interpretation Reference 

NBR 
NIR − SWIR

NIR + SWIR
 

Demonstrating the vegetation loss based on the 

principle that healthy vegetations have high 

NIR and burned ones have high SWIR 

reflections. 

(Key and Benson, 

2006; Whitman et 

al., 2020) 

dNBR NBRpre - NBRpost – offsetdNBR
∗  

Absolute difference of pre- and post-fire state 

of vegetation. 

(Key and Benson, 

2006) 

RdNBR 

1.
dNBR

 √|NBRpre|
− offsetRdNBR

∗ , |NBRpre| ≥ 0.001 

2.
dNBR

√|0.001|
 − offsetRdNBR

∗ , |NBRpre| < 0.001 

Relative difference of pre- and post-fire state 

of vegetation, considering the pre-fire state of 

vegetations and their density. 

(Miller and Thode, 

2006; Parks et al., 

2018) 

RBR 
dNBR

NBRpre+1.001
 – offsetRBR

∗
 

Relative difference of pre- and post-fire 

vegetation state without the difficulty in its 

formula. 

(Parks et al., 2014) 

dNBR-EVI 

EVI =2.5 × (
NIR+RED

NIR+6∗RED−7,5∗BLUE+1
) Demonstrating the amount of vegetation loss 

without the saturation of pixels in areas with 

high burn severity. 

(Gao et al., 2000) 

dNBR + EVI post – offsetdNBR−EVI
∗

 

 

2.4 RS imagery sampling period  

Considering the fact that the Landsat series have a revisit frequency of 16 days, few clear images annually are available in cloudy 

regions, especially with older satellites like Landsat-5 (Gao et al., 2006). Thus, a longer sampling period is often needed, while 

there is no guaranteed window. The probability of clear images during rapid assessment (<two weeks) is low. In the initial 230 

assessment (one to eight weeks), clear Landsat images may be obtained, but the probability is not high, and assessing delayed 

consequences like tree mortality or tree survivorship is challenging (Key, 2006). In the extended assessment period (two to twelve 

months), the probability of acquiring clear images is higher, however, as mentioned above, RS-derived burn severity indices are 

strongly affected by time lag (Morresi et al., 2022).  

To address these issues, we set our test sampling periods as follows: one day to 120 days before each fire’s Sdate and three days to 235 

120 days after each fire’s Edate as the pre- and post-fire sampling periods, respectively. The one-day before Sdate and three-days 

after Edate were defined to avoid images with active fires or smoke contamination. To minimize seasonal differences, we capped 

the sampling period at 120 days, though some variation in seasons may still have occurred.  
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2.5 Quantification of time lag influence  

To produce the most accurate and representative burn severity estimates from satellite imagery for each fire, the most suitable pre- 240 

and post-fire images are required, meaning images with the lowest time lag or with lowest difference between fire event and their 

acquisition date. Hence, it is crucial to understand and quantify the impact of the time lag on burn severity estimates.  

Valid fires from 2013 to 2018 were chosen to be analyzed and the Landsat-8 (OLI) imagery was used. Primarily, for each fire, two 

image collections (IC) were created in GEE. IC is a GEE data type that stores a set of images taken within the bounds of any area 

of interest within the assigned sampling period (Carille et al., 2024). In this case, corresponds to images overlapping the burned 245 

area during our sampling period (each temporal buffered fire date ± 120 days) resulting in one IC for pre- and one IC for post-fire 

images (preIC and postIC, respectively). Each IC was filtered to only have images with actual coverage over at least 90 % of the 

burned area and at least 90 % of the covering pixels were cloud/cirrus free not only over the burned area but also within a 2-km 

buffer around it. This filter was used to account for contaminated pixels within the border and to exclude the impacts of shadow 

contamination of cloud/cirrus within the burned area surroundings. The NBR of all the available processed pre- and post-fire 250 

images were calculated, hereafter referred to as pre-NBR and post-NBR, respectively. 

For each fire, the dNBRs from all the possible combinations of pre- and post-NBRs were calculated in MATLAB R2021b. A subset 

of fires was created with at least one dNBR estimation with both pre- and post-NBRs with time lags equal to or less than 7 days 

with lowest cloud contamination, referred to as the reference dNBR. We assigned this threshold under the assumption that 

significant dNBR degradation was unlikely to occur within 7 days. To quantify the variation in dNBR caused by time lag, the 255 

difference between the reference dNBR and the lagged dNBRs, calculated by either lagged pre- or/and post-NBRs, were estimated 

at a pixel scale- with corresponding results shown in Sect.3.2 and Figure 4. The time lag of both pre- and post-NBRs used for 

reference dNBR calculation were considered as the basis of dates instead of fires’ Sdates and Edates.  

Using simple linear regression analyses, we modelled the median of pixel-by-pixel dNBR difference (dependent variable) as 

function of pre- or post-fire time lags (independent variables). After 110 days, the dNBR degradation was too high (higher than 260 

0.1), leading to inaccurate burn severity estimates (different discrete dNBR classification according to European Forest Fire 

Information Service (hereafter as EFFIS) (European Commission, 2018; Llorens et al., 2021). Thus, we reduced our sampling 

period to ±110 days. From the found correlation and adaptation of our sampling period, a function represented in Eq. (1) was 

developed to calculate “SUITABILITY” property that penalizes possible RS images based on their time lag (ranging from 0 to 100 

for time lags of 111 and 0 days, respectively).  265 

 

 Suitability [%] = 1- (time lag ×0.009)                                                   (1) 

2.6 Burn severity calculation  

RS burn severity indices were generated using pre- and post-NBRs derived from images with the highest “SUITABILITY”. 

Thereafter, it was observed that a significant number of fires had a large proportion of their areas with missing values. To address 270 

this issue, an "iteration process" was introduced. Within this process, following the computation of the burn severity indices with 

the pair of images with highest SUITABILITY, a comparison was made between the area with dNBR estimates and the original 

burned area. For fires with a missing data extent larger than 70 ha, the burn severity indices were recalculated with the pairs of 

images with the lower SUITABILITY, filling the missing data areas. We performed multiple trialstrials, and the lowest possible 

value obtained was 70 ha without GEE code freezing during an acceptable amount of computation time. To optimize GEE 275 

performance, a maximum of four iterations were set, thus areas without burn severity estimates after the fourth iteration were 

disregarded (Fig.1). Details of the scenarios used for the iteration process are shown in Fig A1 A3 along with examples of each of 
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these scenarios presented in Fig A2 A4 to FigA5 FigA7 in the Appendix. Additionally, a "confidence" map was generated for each 

fire defined as the average SUITABILITY of the pair of images used to estimate the burn severity metric in a given pixel. That 

annual burn severity maps are provided in absoluteon an absolute scale, along with their associated confidence maps. 280 
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Figure 1. Flowchart demonstratdemonstratesing the iteration process used for the calculation of burn severity indices and to have 305 

estimates for the largest proportion of the fire area as possible. PreIC and postIC are our abbreviated versions of pre-fire 

ImageCollection and post-fire ImageCollection, respectively. Sorted-pre and -postICs were sorted based on SUITABILITY of 

images from highest to lowest.  

3 Results  

3.1 Overview 310 

Coverage of Portuguese Burn Severity Atlas corresponds to 3.113.18 million ha accounting for 63 %66 % and 97 %97 % of all 

and valid fires, respectively. From 1984 to 2000, 0.750.94 million ha of burned areas have burn severity estimates (15 %19 % of 

all  and 23 %29% of valid) and while for fires of 2001 to 2022, 2.352.24 million ha of burned area have burn severity estimates 
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(48 %46 % of all and 74 %68 % of valid). The use of several iterations improved the coverage of the atlas by 14 %12 %, adding 

0.440.38 million ha of estimated burn severity extent to the 2.672.8 million ha obtained by using only one iteration (details are 315 

summarized in Table B1, presented in Appendix).  

Figure 2(a) represents the spatial distribution of annual burn severity estimates of the valid fires between 1984 to 2022, using 

dNBR as the standard burn severity index. For pixels that burned several times, the average dNBR value is presented. To facilitate 

the interpretation of the burn severity estimates, color classifications were applied on dNBR pixel values according to the thresholds 

assigned by EFFIS (European Commission, 2018; Llorens et al., 2021). Different burn severity classes can be observed, 320 

highlighting its heterogeneity throughout Portugal. High dNBR values (>= 0.42) are concentrated in Southern and southwestern 

parts of the Centro region, northeastern Vale do Tejo, and the Algarve region. Very low dNBR values (between -0.1 to 0.1) are 

mainly distributed in northeastern Centro and scattered in Norte regions, with isolated observations in Alentejo and Vale do Tejo. 

The histogram of dNBR pixel counts of all the years (without pixel averaging) along with the corresponding Cumulative 

Distribution Function (CDF) - secondary y-axis - and mean dNBR value are presented in Fig 2(b). In Portuguese Burn Severity 325 

Atlas, “Unburned or Regrowth of vegetation” class with dNBR <= 0.1, represents 15 %9 % of the total dNBR pixel values. Most 

of the area had burn severity estimates with dNBR values ranging from 0.2 to 0.7, with the highest associated with “High” burn 

severity (29 %32 %). The mean dNBR pixel value is 0.4170.45 with corresponding CDF of 0.610.64 that can be interpreted as 

“High” burn severity and 20 %21 % had “Very high” burn severity with CDF of 0.90.88 at dNBR pixel value equal to 0.7. Thus, 

results show that Portugal has had,has had on average, “High” burn severity throughout this 38-year study period.  330 

 

 

 

 

a) b) 
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 335 

Figure 2. (a) Spatial distribution of the overlaid dNBR pixel value of all the years (1984 to 2022) is presented, with the average 

pixel value presented in the area where burned more than once. “Nomenclature of Territorial Units for Statistics” (presented as 

NUTS2) frontiers ((Registo Nacional de Dados Geográficos - Direção-Geral do Território (DGT), 2024; Meneses et al., 2018) 

Registo Nacional de Dados Geográficos - Direção-Geral do Território (DGT), 2024; Meneses et al., 2018) was applied to 

demonstrate the extent of the mainland Portugal and its five regions. (b) The histogram shows the distribution and frequency of all 340 

annual dNBR pixel counts, with no averaging. On the secondary y-axis, the cumulative distribution of the dNBR pixel value is 

presented. The dNBR classification according to EFFIS (European Commission, 2018; Llorens et al., 2021) combined with 

percentage of pixel counts within these classes are also shown (panel (b)). 

To have a temporal overview, in Fig 3, the annual burned extent is shown in red bars. Although there is no apparent trend, the 

largest burned extents were registered in 2003, 2005 and 2017, representing the largest fire seasons with a large difference in 345 

comparison to 1980’s and 1990’s. The highest percentage of valid burned area occurred in 2017, for which 99.8 % had burn severity 

estimates. For most of the years, this atlas provides burn severity estimates for more than 90 % of area with the exception of 2012, 

2007, 2006, 2011, and 1987 with values varying between 68.745.7 % % and 86.2 %80.6 %. The variation of area with burn severity 

estimates (pink line) highlights the lack of burn severity estimates for annual valid fires. For recent years – 2013 onwards – this 

variation is almost constant (on average ≈98.9 %98.8 %).  350 
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Figure 33. Timeline of total burned extents of fires 1984 to 2022. On left-y axis, annual burned area in unit of 103 ha and on 

secondary y-axis the percentages of valid burned area and area with burn severity estimates are shown. No records for fires in 1997 355 

were obtained and thus this year is presented in blank.  

3.2 Influence of time lag on dNBR estimates 

Figure 4 shows the pixel-by-pixel variability of the difference between lagged dNBR and reference dNBRs. With the increase of 

both pre- and post-fire time lags, their variability increases and hence, the degradation of the dNBR estimates increases. The 

magnitudes of the impacts of pre- and post-fire lags are different as with the increase of post-fire time lag, the variability of dNBR 360 

difference is larger than with the increase of pre-fire time lag. On average, the increase in pre-fire time lags leads to positive 

differences, which means dNBR tends to be overestimated, and with increasing post-fire time lags, dNBR tends to be 

underestimated. 

The linear regressions using time lag and the dNBR difference had R2
pre= 0.76 and R2

post = 0.53, with similar slope =0.0009 and p-

value <0.01. A slope of 0.0009 means that, on average, dNBR degrades by 0.0009 for each added lag day. As the slopes were 365 

similar for both pre-and post-fire, a single suitability function was adopted. Both regressions had very small (near zero) offset 

values (-0.012 and 0.001, respectively) and hence, they were not used in the suitability function. 

The fire-by-fire confidence variability of burn severity estimates through each iteration is shown in Fig 5. No trend regarding the 

variation of confidence throughout the atlas years is observed. On average, high confidence values (>80 %) for the first iteration 

were obtained for most of the years except for 1986 and 20102007 and 2010, for which Landsat-5 TM images were used and 2012 370 

using Landsat-7 ETM+ (see Table 1). The range of confidence variability of the first iteration in 2007 is the largest. As expected, 

for the second to fourth iterations, the variability ranges are higher than the first iteration and on average the lowest confidence 

values (< 70 %65 %) were observed for 2012 and 20112001, 2000, 2011, and 1986. Two isolated fires showed confidence values 
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<30 % - for both the second to fourth iterations and first- in 2010 and 19852011 and 2012, respectively and one with confidence 

<20 % for the first iteration in 1986. Concurrently, the fire-by- fire variability analysis performed on both pre- and post-fire time 375 

lags of the first and second to fourth iterations are following these results. As for fires before 2000, “DOY” is used as fire dates 

(see Sec. 2.1), the variability of post-fire time lag for most years of this duration is equal to 0. Additionally, this analysis highlighted 

that on average both pre- and post-fire time lags from the first iterations were less than ±50 days. For recent years – 2013 onwards 

and especially via the first iteration - both pre- and post-fire time lags on average are less than ±20 days (fire-by- fire boxplot is 

presented in Fig B1, presented in Appendix). 380 

Due to the coarse spatial resolution of MODIS Terra (500 m) and the 70 ha enforced threshold for the iteration process, in 2012, 

the burn severity estimates were obtained only through the first iteration as no more iterations were needed. Moreover, due to its 

high temporal resolution, with daily revisiting frequency, the suitability of images used for burn severity estimates were high. 

Thus, for 2012, the variation of confidence is small and its average is high (>90 %). 

 385 
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Figure 4. Boxplot presents dispersion of pixel-by-pixel difference of dNBRs versus the time lag. The time lag, calculated as the 

difference of time lags of reference NBRs, is shown on the x-axis and the negative values represent pre-fire time lags, while the 

positive ones represent the post-fire time lags.  390 
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Figure 5. Fire- by-by-fire confidence variability over the years obtained through the first iteration or second to fourth iterations. 

In 2012, burn severity estimates were only obtained through the first iteration. The year 1997 is presented in blank due to not 395 

having valid fire data.  
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3.3 Burn severity according to the different indices  

The burn severity estimates of three two very large fires (area > = 10,000 ha) that occurred in 2017 , and 2003 , and 1991 with 

different indices (dNBR, RBR, RdNBR and dNBR-EVI) are provided in Fig 6- (a.1), ) and (b.1) , and (c.1), as examples. Overall, 400 

dNBR and dNBR-EVI have very similar distributions, while RdNBR has the highest range in contrast to RBR, suggesting having 

higher sensitivity to burn severity variation.  

Throughout these figures, patches with low dNBR pixel values (<0.1) were coincident with low values for the different burn 

severity indices except for the dNBR-EVI, where these patches had pixel values mostly ranging from 0.1 to 0.256. However, there 

is a large green patch in Fig 6(c.1) in the eastern part of the fire perimeter even with dNBR-EVI, which suggests an error in the 405 

burned area mapping. Thus, only based on these examples, results suggest that with dNBR-EVI index and its low pixel values 

(<0.1), the “unburned” class can be distinguished, only under the assumption that dNBR-EVI may have similar scales like dNBR 

for interpretation. Via RBR, pixel values larger than 0.42 were not observed and the RdNBR index showed most of the pixel values 

mainly within the range of 0.66 to 2.00, suggesting its tendency towards higher pixel values.  

In the second panels of Fig 6 (a.2, b.2, and c.2), the histograms of the different burn severity indices are provided. The frequency 410 

of dNBR, dNBR-EVI, and RBR exhibit nearly symmetric distribution shapes. While the histogram representing RdNBR is skewed 

to the left, suggesting a bias towards higher pixel values. RBR histograms show a central tendency toward lower pixel values with 

a narrow spread, highlighting this point that with lower range, RBR is less sensitive to burn severity variation. The histograms 

demonstrating the distributions of dNBR and dNBR-EVI exhibit almost similar spread ranges and almost similar central tendencies 

with pixel values larger than central tendency of RBR histogram. The RdNBR histograms display a widespread range and a central 415 

tendency toward larger pixel values. Although RdNBR pixel values lower than -2 and greater than 2 are common, the number of 

out-of-range RdNBR pixels is sufficiently low that they were not observable in the histograms. As a result, the x-axis was limited 

to the range of -1 to 2.  

 

 420 
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Figure 6. Burn severity estimates via dNBR, dNBR-EVI, RBR, and RdNBR for three two large fires (area >= 10k ha) as examples 445 

are presented in panels (a.1,  and b.1, and c.1). The thresholds applied are according EFFIS classification for dNBR (European 

Commission, 2018; Llorens et al., 2021). However, to facilitate the comparison of different severity indices, the same color 

classification was applied on all the indices. In the second panel, the histograms represent the distribution of different burn severity 

estimates via different indices. 

4 Discussion 450 

Portuguese Burn Severity Atlas includes estimates for 63 %66 % of the total burned area between 1984 to 2022. The remaining 37 

% 34 % of burned area without burn severity estimates were mainly due to the exclusion of fires <500 ha during 1984 to 2000 (25 

%) and <100 ha , exclusion of fires being merged as onefor fires of 2001 onwards (10 %), and lack of satellite imagery to estimate 

burn severity (2 %). When considering only the fires with start and end date, only 3 %3 % area of the burned area did not have 

burn severity estimates due to either lack of Landsat imagery with clear pixels within our sampling period or due to limitations of 455 

GEE performing heavier processing and stopping the code after the fourth iteration. Within this study, the focus was on large fires 

(>=100 ha), however, this can be considered as a limitation of our atlas. As our developed methodology can be applied to smaller 

fires (<100 ha), the exploration of burn severity of small fires can be a research opportunity for future studies. 

As it can be seen in Figure 2(b), 15 %9 % of the dNBR pixel values are lower than 0.1. According to EFFIS (European Commission, 

2018) burn severity discrete classification (European Commission, 2018; Llorens et al., 2021), dNBR pixel values less than 0.1 460 

can be considered “Unburnt or Regrowth of Vegetation”. This can be caused by either commission errors in the burned area 

mapping or due to the high regrowth potential of Portuguese vegetation cover, especially within the first month posterior to fire 

occurrence (Neves et al., 2023).  

Results show that in almost 40 years, Portugal has on average experienced “High” burn severity. Mateus and Fernandes, (2014) 

detailed the following reasons behind the high severity fire regime in Portugal: 1) dominance of highly flammable Eucalyptus 465 

globus especially in Centro and Norte regions accounting for 77 % of all forest fires, 2) 90 % of all forest fires occurring within 

the months of June to September as the result of droughts, 3) dry conditions of dominant vegetation types due to seasonal weather 

patterns, 4) high productivity of understory plants specifically shrubs, 5) dominance of stand-replacing and crown fires, and most 

importantly 6) prioritizing fire suppression over prevention.  

No visible trend was observed regarding the annual burned area extent over the studied yearsyears studied (Fig 3); however, the 470 

three largest fire seasons were in 2003, 2005, and 2017. Many fire research studies focused on these three years, not only because 

of their huge magnitude of burned extent, but also due to their different drivers (Beighley and Hyde, 2018) and consequences 

(Nitzsche et al., 2024). Oliveira et al., (2021) also found no trend regarding the burned extent over the years in Portugal while 

highlighting that 2017 was “the worst year” regarding the burned area. For these three years, more than 96 %98 % of valid fires 

have burn severity estimates although imagery from different sensors were applied - Landsat-5 TM and Landsat- 8 OLI - due to 475 

different satellite availability dates (Table 1). 

More reliable fire data since 2001 are available for Portugal as better means of data record technologies from various sources have 

been applied  (Nunes et al., 2016). For recent years – 2013 onwards, higher percentage of burned area with severity estimates (on 

average ≈99 %98 %) with no drastic variation were obtained, for which only images from Landsat- 8 OLI sensor were used. Hence, 

our omission error for fires posterior to 2001 are less than the ones prior to this year.  Although both Landsat-5 TM and Landsat-8 480 

OLI sensors have a similar temporal resolution, it was observed that via Landsat-8 OLI, more images with clear pixels –minimum 

reflectance contamination such as cloud, cirrus, shadow, and smoke – were available during the sampling period of ±110 days. 
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This can be explained due to the difference in “daily acquisition image rate” of Landsat-8 OLI and Landsat-5 TM. Acquisition 

image rate is defined as the number of images acquired by each sensor on a daily basis. Landsat- 5 TM acquires 225 to 250 images 

per day, which varies based on various factors such as the amount of sunlit land (Loveland and Dwyer, 2012). While Landsat-8 485 

OLI acquires 725 images per day (Loveland and Irons, 2016). This point can be confirmed by the time series boxplot of fire-by-

fire confidence (%) – average of SUITABILITY of pre- and post-fire images- showing smaller range variations with high average 

values (>80 %) for recent years (Fig 5). Higher confidence is the result of greater SUITABILITY value, which occurs when time 

lag decreases (Eq. (1)). Thus, in recent years, the time lags variation range should also be smaller which is confirmed by Fig B1 

(mentioned in Sect 3.2).  490 

Burn severity estimates were obtained from different Landsat sensors to ensure “spectral consistency” over the long study period 

(Fernández-Guisuraga and Fernandes, 2024). This objective was achieved for all years. For 2012, aside from Landsat-7, estimates 

were also provided by MODIS Terra imagery. According to Landsat sensors’ availability dates (Table1), no images from this family 

of sensors were available for this year aside from Landsat-7 ETM+ with SLC failure. One possible alternative would be to use 

images from Earth Observation-1 Advanced Land Imager (hereafter EO-1 ALI) available from November 2000 to March 2017 495 

with a spatial resolution of 30 m (Chander et al., 2009). Although EO-1 had the capability of imagining with global coverage, it 

was an experimental and mission-based satellite (Hoang and Koike, 2018), and according to USGS website (EarthExplorer, 2025) 

there were no images available for Portugal in 2012.  

Hence, in addition to MODIS-derived estimates for 2012, burn severity estimates via Landsat-7 ETM+ are included in the second 

version of the atlas which provide approximately 46 % of area of valid fires of 2012 with estimates. The rest (54 %) do not have 500 

estimates either due to gaps caused by the SCL failure or lack of cloud-free imagery. Users can now choose between having 

estimates for the year 2012 with: 

-Landsat-7 data, with high resolution (30 m) covering about 37% of total burned area extent, or  

- MODIS data, with moderate resolution (500 m), covering about 81% of the total burned area extent. 

 According to Alonso-González and Fernández-García, 2021, the burn severity estimates obtained by Landsat-8 and MODIS in 505 

global scale are comparable despite the big difference in their resolution and to evaluate their comparability (Alonso-González and 

Fernández-García, 2021). However, as our issue is regarding 2012, comparability assessment was performed between Landsat-7 

and MODIS for years 2002 and 2012 (area = 107,000 and n=170 fires) (See Appendix A Fig. A2). Our analysis revealed that the 

correlation between the estimates (dNBR) from these sensors are weak (Pearson’s correlation coefficient (R) = 0.37 and 

significance of correlation (P) = 0) and estimates via MODIS have the tendency to underestimate burn severity. Hence, caution 510 

should be taken if using the estimates from MODIS for 2012. However,tThe influence of different Landsat sensors’ characteristics 

in burn severity estimates cannot be discarded. No assessment in this regard was performed as the sensors’ availability dates do 

not overlap (Table 1). However, there are multiple studies which used burn severity estimates from different Landsat sensors and 

no incoherency has been reported (Singleton et al., 2019; Guindon et al., 2021; Mueller et al., 2020). Through the development of 

this atlas, bands from atmospherically corrected surface reflectance images from Level 2, Collection 2, Tier 1 (Table 1) with the 515 

most similar wavelength from different Landsat sensors were used to minimized any possible inconsistency of the bands reflectance 

(Whitman et al., 2020). As stated by. Vogelmann et al., (2016), although there are minor changes to Landsat sensors, their spectral 

characteristics are still “reasonably comparable” and other factors such as smoke and haze are more influential to having impacts 

on spectral signals in comparison to differences in sensors’ characteristics. While Poursanidis et al., (2015) claimed that Landsat- 

8 OLI sensor provides more accurate results in comparison to Landsat- 5 TM, though these were addressed to landcover mapping 520 

and not burn severity estimation.  
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We define RS images with “quality” as images with small time lags and preferably with little to no reflectance contaminations 

(e.g., cloud, cirrus, shadow, and smoke). Via the application of images with high quality, the most reliable burn severity estimates 

can be obtained (Miller et al., 2023; Dos Santos et al., 2020; Keeley et al., 2008). However, the number of high quality images 

over each individual fire perimeter is scarce, especially when considering the older sensors (Gao et al., 2006). To increase the 525 

coverage of burn severity estimates, we considered an extensive sampling period (±110 days) and incorporated an “iteration 

process”, improving the coverage of our atlas by 14 %12 %. To the best of our knowledge, no other studies in literature have 

applied such a process before. However, mean compositing of different scenes to have burn severity or other types of atlases have 

been practiced (Parks et al., 2018; Whitman et al., 2020; Neves et al., 2023).  

Due to our relatively long sampling period and as no specific scene acquisition row and/or path were determined when applying 530 

Landsat imagery, the occurrence of seasonal variation and “mismatched phenology” between the pre- and post-fire images could 

have happened (Parks et al., 2018; Key, 2006; Storey et al., 2005; Lutes et al., 2006) as phenology is not constant throughout the 

year (Balata et al., 2022). On average, the worst pre- and post- fire time lags of this atlas were lower than ±50days for the first 

iterated burn severity estimations (Fig B1A6), thus, on average the seasonality influences have been minimized, although no further 

assessment in this regard was performed. More research related to seasonality and phenology analysis is necessary (Key, 2006; 535 

Howe et al., 2022; Parks et al., 2018). In this atlas, we have calculated the offset values of burn severity indices of individual fires 

according to their corresponding formulas (Table 2). As indicated by Parks et al., (2018), offset value are accounted to differentiate 

between phenology variation between pre- and post-fire images. Hence, they can be applied to minimize the impacts caused by 

any possible “mismatched phenology” between pre- and post-fire images. Moreover, as suggestion for future studies, the lack of 

knowledge in the degree of seasonality influence on quality of burn severity estimates can be highlighted that via the offset values 540 

provided in the atlas and comparison between them and time lag such analysis can be conducted.  

The definitions related to sampling periods are ambiguous. Our sampling period is ±110 days to avoid and minimize capturing 

environmental and ecological responses. In many studies related to the “trend and evolution analysis of burn severity”, such as the 

one performed by Dillon et al., (2006), the burn severity estimates calculated within 6 months or ±180 days from the ignition date 

were excluded. Dillon et al., (2006) classified this sampling period as “initial assessment”. On the other hand, by definition 545 

provided by Key, (2006), our sampling period is categorized as extended assessment. Thus, we have called our sampling period 

“rapid” to “extended assessment”.  

As burn severity estimates are highly time-sensitive, with the increase of time lag, the accuracy of RS estimates decreases and 

degrades as environmental responses are cumulated over fire impacts (Key, 2006). To have an understanding over this degradation, 

we modeled the variation of dNBR, as the standard burn severity index, caused by the increase of time lag (Fig 4). The dNBR 550 

tends to increase with the increase of the pre-fire time lag, which leads to an overestimation of burn severity. In Portugal, as in all 

Mediterranean-climate areas, vegetation vigor is lower before fire occurrence as a result of high temperatures and solar radiation, 

and low water availability (Verbyla et al., 2008; Chu and Guo, 2014; Pascolini-Campbell et al., 2022; Fernández-Guisuraga et al., 

2023b). Generally, the pre-NBR tends to decrease as the fire season approaches (Alonso-González and Fernández-García, 2021). 

Thus, with the increase of pre-fire time lag, burn severity is overestimated as the amount of vegetation considered burned is 555 

overestimated. The dNBR tends to decrease with the increase of the post-fire time lag, which leads to an underestimation of burn 

severity. This can result from the fire scars becoming less visible due to environmental and ecological responses such as 

resprouting, especially in Portugal where vegetation tends to regrow within the first month after the fire (Neves et al., 2023) and/or 

via ashes being washed off by rain and wind (Key, 2006; González-Pelayo et al., 2023, 2024).  

Burn severity estimates via different indices reveal varying degrees of post-fire impacts across the landscape (Parks et al., 2014; 560 

Miller and Thode, 2006; Fernández-García et al., 2018). Combining information from multiple indices could offer a more 
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comprehensive understanding of burn severity. Thus, in this atlas, we provided burn severity estimates using four dNBR-derived 

indices. For instance, as can be observed from the provided examples in Fig 6, for the same fires, each of the used indices can 

contribute to better interpretation of burn severity. In summary, dNBR-EVI can be applied to distinguish between “regrowth” and 

“unburned” classes. As RdNBR is more sensitive to vegetation type than dNBR, its tendency to higher pixel values can be 565 

interpreted as low fuel load of vegetation cover (Miller and Thode, 2006) of the chosen fires. However, more in-depth analysis is 

needed to confirm this point. Within these examples, RBR was observed to be more prone to signal saturation. Signal saturation 

of dNBR-derived indices is defined as incapability of indices in measuring very high burn severity with its value reaching a certain 

point where they no longer are capable of discerning subtle differences in burn severity (Veraverbeke et al., 2012). Thus, caution 

should be taken when interpreting the dNBR-derived burn severity maps, as they are subjected to signal saturation (Fernández-570 

García et al., 2018; Santis et al., 2010; Fernández-Guisuraga et al., 2023a), especially RBR. As Moreover, as stated by Fernández-

Guisuraga et al., (2023a) any interpretation of RS burn severity estimates must be accompanied and confirmed with ground truth 

data specifically for relative forms like RdNBR and RBR. This is crucial because burn severity often varies across vertical strata, 

and satellite-derived reflections are differently sensitive to impacts at each layer. Aggregating these impacts into a single metric 

can obscure important ecological details (Fernández-Guisuraga et al., 2023a; Miller and Thode, 2006; Parks et al., 2014; Cansler 575 

and McKenzie, 2012). 

In this atlas, no data regarding the ground burn severity assessment is neither included nor analyzed. The provision of means of 

interpretation of burn severity degrees or classes of our maps is not within the scope of this study. Thus, no classification thresholds 

for any of burn severity indices isare proposed and means of interpretation of burn severity must only align by user’s’ objectives. 

However, As an example of means towards interpretation of burn severity, in this study, the thresholds assigned by EFFIS are 580 

mentioned. The thresholds of EFFIS are assigned only for dNBR index and not for other indices and they are obtained from the 

comparison between dNBR pixel values and ground burn severity estimates considering the dominant environmental and climatic 

conditions within the Mediterranean regions (Llorens et al., 2021). In other studies, based on the correlations between CBI and 

dNBR, RdNBR and RBR, different thresholds have been introduced, however, only for specific parts of the USA (Alonso-González 

and Fernández-García, 2021; Parks et al., 2018). In Spain and specifically in Valencia province, by comparing CBI and dNBR, 585 

RdNBR, and RBR, the classification thresholds for interpretation of these indices have been introduced (Botella-Martínez and 

Fernández-Manso, 2017), which were furthered utilized for interpretation of burn severity estimates by ICNF for fires which 

burned in Monchique and Portimão in Portugal (ICNF, 2021). Moreover, there is a study conducted by Fernández-García et al 

(2022) considering the total number of 23 fires among which only four fires were located in Portugal (Fernández-García et al., 

2022). Although there are studies comparing burn severity observations with estimates, they are isolated and limited and hence, 590 

they cannot be incorporated on large scale, which in our case is the mainland of Portugal. Hence, our maps have all been presented 

in their continuous raw forms and no classifications have been applied to them. We acknowledge the lack of validation as a 

limitation of our atlas, and we encourage conduction of future studies to validate the burn severity estimates of Portuguese Burn 

Severity Atlas.  

Portuguese Burn Severity Atlas can be used as the foundation of many future research projects and presents numerous research 595 

opportunities. With 97 % of burn severity estimates of valid fires from 1984 to 2022, we can confidently state that characterization 

of long-term burn severity patterns (Singleton et al., 2019; Gale and Cary, 2022), burn severity heterogeneity related analyses (Lutz 

et al., 2011; Buonanduci et al., 2023), analysis of isolating burn severity environmental and climate variables (Miller et al., 2009), 

post-fire recovery studies (Oliveira et al., 2011; Alonso-González and Fernández-García, 2021; Whitman et al., 2020) and fire 

consequences studies (Wells et al., 2021; Petratou et al., 2023; Amerh et al., 2022; Vieira et al., 2023; Singh et al., 2022) can be 600 

conducted. Moreover, as suggestions for future research and via this atlas, we can highlight the gap of knowledge in interpretation 
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of RS burn severity estimates especially the relative forms in the Mediterranean regions. Secondly, the most influential burn 

severity drives, both environmental and climatic, are required to be distinguished and accordingly, more informed pre- and post- 

fire management plans should be formed to minimize future fire impacts in Portugal. Last but not least, we encourage the execution 

of trend analysis of burn severity evolution to assess whether the burn severity in the mainland Portugal has changed over the 605 

years. 

5 Data availability  

The maps of Portuguese Burn Severity Atlas can be accessed at  https://doi.org/10.5281/zenodo.12773611 (Jahanianfard et al., 

2025) (Version v2 with corrections to fires before 2001 and inclusion of Landsat-7 estimates for 2012). The annual maps are 

provided in subfolders entitled as the corresponding year. Annual fire perimeters (shapefile) along with a table with details on pair 610 

of images used for each iteration, the confidence, and the offset values of burn severity indices are also stored within these 

subfolders.  

6 Code availability  

The GEE code can be accessed at 

https://code.earthengine.google.com/042de010edb5abdd14247f65a23a6193?noload=truehttps://code.earthengine.google615 

.com/b23081d3643bc46585d73f893b9efdab?noload=true, with the fire data already shared as assets, however, it is necessary to 

have a GEE account to access the code. The code can also be accessed at https://github.com/DinaJahanianfard/Portuguese-Burn-

Severity-Atlas_v2/commit/7aee76ea5b3df0db8cd047a4b8cf6624bf965d50 with no account nor registration needed. 

7 Conclusion  

In this study, a comprehensive Portuguese Burn Severity Atlas was developed spanning from 1984 to 2022, derived from Landsat 620 

satellite imagery (30 m resolution), with the exception of the year 2012, for which MODIS imagery was used.  This atlas contains 

burn severity estimates for 63 %66 % of the 4.924.85 million ha burned between 1984 and 2022, and 97 %97 % of the valid fires, 

with a total burn area of 3.193.18 million ha. The atlas illustrates that Portugal has on average experienced "high" burn severity 

over the study period. 

Through “iteration process”, we expanded the coverage of the atlas, providing burn severity estimates for an additional 14 %12 % 625 

of the valid fire area, totaling 0.440.38 million ha. Furthermore, we developed a semi-automated code in Google Earth Engine 

(GEE) that can be easily updated and modified by users to generate burn severity estimates for any region worldwide, using any 

desired sampling period, with only the requirement of fire data. 

Our findings regarding the relationship between dNBR and time lag indicate that increasing pre-fire time lags result in 

overestimation of burn severity, while increasing post-fire time lags lead to its underestimation.  630 

Analysis of burn severity estimates using different indices reveals distinctive characteristics. Notably, the dNBR-EVI index 

demonstrates potential for distinguishing between "unburned" and "regrowth" classes. RdNBR tends to indicate higher burn 

severity, while RBR shows a tendency toward signal saturation compared to other indices. However, further investigation is 

necessary to validate these findings, particularly in the context of defining thresholds for interpreting burn severity classes in 

Mediterranean regions. 635 

https://doi.org/10.5281/zenodo.12773611
https://github.com/DinaJahanianfard/Portuguese-Burn-Severity-Atlas_v2/commit/7aee76ea5b3df0db8cd047a4b8cf6624bf965d50
https://github.com/DinaJahanianfard/Portuguese-Burn-Severity-Atlas_v2/commit/7aee76ea5b3df0db8cd047a4b8cf6624bf965d50
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Ultimately, the burn severity maps provided in this atlas offer numerous opportunities for research across various disciplines. They 

enable investigations into burn severity heterogeneity, trend analysis, environmental and climatic drivers of burn severity, as well 

as studies related to air and water quality and soil erosion. 

Appendix A - Supporting material for the methods 

 640 

Figure A1 – Fire frequency of valid fires is presented within “Nomenclature of Territorial Units for Statistics” (NUTS2) frontiers 

(Registo Nacional de Dados Geográficos - Direção-Geral do Território (DGT), 2024; Meneses et al., 2018) demonstrating the 

extent of the mainland Portugal and its five regions. 

 

To perform the exploratory analysis on comparability of Landsat-7 and MODIS, dNBR estimates of valid fires of 2012 and 2002 645 

were used with the sum of area of 107,000 ha corresponding to 170 individual fires. The dNBR estimates were resampled to 500 

m via “averaging” approach and the correlation was conducted following Alonso-González and Fernández-García, 2021. Our 

analysis showed that estimates from these two sensors may not be interchangeable due to weak and insignificant correlation 

(Pearson’s correlation coefficient - R = 0.37 and the significance of correlation -P= 0) with estimates of MODIS having a tendency 

towards underestimation of durn severity. Fig A2 represents the obtained results. 650 
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 655 

 

 

 

Figure A2. The relationship between dNBR estimates via Landsat-7 and MODIS sensors are demonstrated via Gaussian kernel 

densities (in panel a) and scatterplot (in panel b) over the sum of area of 107,000 ha and over 170 individual fires burned in 2002 660 
and 2012. Pearson’s correlation coefficient is represented as R in panel b. The red line in panel b represents the linear regression 

performed on pixel-by-pixel correlation obtained via Landsat-7 (dependent variable) versus MODIS (independent variable) 

(R2=0.13 and p-value =0).   
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Iteration 

Scenarios 

Not-

intersected 

preIC & postIC >= 

2 

preIC >= 2 & 

postIC= 1 

postIC>=2 & 

preIC =1 

dNBR_i = preIC(i) + 

postIC(0) 

dNBR_i = preIC(0) + 

postIC(i) 

dNBRT = dNBR_i+dNBR_i  

dNBR1 = preIC(1) + 

postIC(0) 

dNBR2 = preIC(0) + postIC(1) 

Pre- && 

post-

lacking >= 

70 ha && 

intersection 

== false 

i = 1 
Diff_i >= 

70ha || 

dNBR_i == 

0 or i < 5 

i = i+1 

end 

Yes 

No 

intersected 

preIC & postIC >= 

2 

preIC >= 2 & 

postIC= 1 

postIC>=2 & 

preIC =1 

dNBR1 = preIC(1) + postIC(0) 

dNBR2 = preIC(0) + postIC(1) 

Pre- && 

post-lacking 

>= 70 ha && 

intersection 

== true 

dNBR_i = preIC(i) + postIC(i) 

Diff_i = fire – (dNBR_Ref +dNBR_i) 

Diff_i >= 

70ha || 

dNBR_i == 0 

or i < 5 

i = i+1 i = 1 

end 

Yes 

No 

Pre-lacking 

>= 70ha && 

post-lacking 

== 0 

Pre i = 1  

dNBR_i = preIC(i) + postIC(0) 

Diff_i = fire – (dNBR_Ref +dNBR_i) 

Diff_i >= 

70ha || 

dNBR_i == 

0 ||  i < 5 || 

preIC > i 

i = i+1 

end 

Yes 

No 

Pre-

lacking 

==0 && 

post-

lacking 

>= 0 

Post i = 1  

dNBR_i = preIC(0) + postIC(i) 

Diff_i = fire – (dNBR_Ref +dNBR_i) 

Diff_i >= 

70ha || 

dNBR_i == 

0 ||  i < 5 || 

postIC > i 

i = i+1 

end 

Yes 

No 

a) b) 



28 
 

Figure A1A3. Flowchart representing the iteration scenarios. PreIC and PostIC represent the pre- and post-fire image collections 

in GEE and their size or the number of images within each IC is shown (e.g., PreIC <= 3 meaning the number of images within 

this IC is less or equal to 3). All the ICs are sorted from images with the highest SUITABILITY to the lowest and the first image, 

shown as e.g., PostIC(0), is the first image within the sorted post-fire IC with the highest SUITABILITY.  685 
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Figure A2A4. Scenario: not_ intersected - The dNBR estimation for the whole area of this fire (area = 4029 ha, year= 2003, ID= 690 

2904), was obtained through 3 iterations. With changing both the pre- and post-fire images (the first iteration with highest 

SUITABILITY pre-and post-fire images and covering the area of 3730 ha, second iteration with changing the pre-fire image and 

covering the area of 160 ha, and third iteration with changing the post-fire image and covering the area of 165 ha). Panel (i) shows 

the iteration steps while panel (ii) shows the final dNBR and confidence maps of this fire. 

 695 
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Figure A3A5. Scenario: intersected - The dNBR estimation for the whole area of this fire (area = 2071 ha, year= 2003, ID= 2180), 

was obtained through 2 iterations. (the first iteration= pre- and post-fire images with the highest SUITABILITY and covering the 700 

area of 1903 ha, second iteration= second highest pre-and post-fire images and covering the area of 168 ha). Panel (i) shows the 

iteration steps while panel (ii) shows the final dNBR and confidence maps of this fire. 
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Figure A4A6. Scenario: Pre - The dNBR estimation for the whole area of this fire (area = 13770 ha, year=2003, ID= 2933), was 

obtained through 2 iterations. The first iteration with the highest SUITABILITY pre- and post-fire images covering the area of 715 

11631 ha, second iteration with the second highest SUITABILITY pre-fire and the highest SUITABILITY post-fire image and 

covering the area of 2143 ha). Panel (i) shows the iteration steps while panel (ii) shows the final dNBR and confidence maps of 

this fire. 
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Figure A 57. Scenario: Post - The dNBR estimation for the whole area of this fire (area = 8571 ha, year= 2003, and ID=2416), was 725 

obtained through 4 iterations. The first iteration= highest SUITABILITY pre- and post-fire images covering the area of 5568 ha, 

second iteration= the highest SUITABILITY pre-fire and the second highest SUITABILITY post-fire image covering area of 2626 

ha, third iteration= the highest SUITABILITY pre-fire and the third highest SUITABILITY post-fire image covering area of 30 
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ha, and fourth iteration= with the highest SUITABILITY pre-fire image and fourth highest SUITABILITY post-fire image 

covering the area of 347 ha). Panel (i) shows the iteration steps while panel (ii) shows the final dNBR and confidence maps of this 730 

fire. 

Appendix B - Supporting material for the results 

Table B1. Annual table summarizing all data regarding, total area of burned areas, total area of valid burned areas, total area with 

dNBR estimation, and number of all and valid burned areas, and percentages of areas with dNBR estimations.  

Year 

Sum of 

area of 

all fires 

Sum of area of 

valid fires 

Sum of area 

with reference 

dNBR 

Sum of area 

with iterated 

dNBR 

Sum of area 

with dNBR 

estimation 

Area of 

valid to 

all fires 

(%) 

Area with 

dNBR to 

all fires 

(%) 

Area with 

dNBR to 

valid fires 

(%) 

Number all 

fires 

Number 

valid 

fires 

Number 

of valid 

to all 

fires (%) 

Sensor 

1984 116809 19244 16222 2979 19201 16 16 100 1845 27 1.5 Landsat5  

1985 289960 97268 83441 11792 95233 34 33 98 2631 118 4.5 Landsat5  

1986 112168 46885 34948 9309 44257 42 39 94 1536 33 2.1 Landsat5  

1987 137761 54843 29874 17528 47286 40 34 86 1556 46 3.0 Landsat5  

1988 31321 2346 2058 285 2343 7 7 100 656 4 0.6 Landsat5  

1989 204028 79036 58836 19765 78601 39 39 99 2242 88 3.9 Landsat5  

1990 105858 47867 44858 2897 47755 45 45 100 1416 40 2.8 Landsat5  

1991 182190 117960 88125 17976 106101 65 58 90 880 60 6.8 Landsat5  

1992 34222 15123 14009 1074 15083 44 44 100 230 8 3.5 Landsat5  

1993 40239 23400 20124 3177 23301 58 58 100 141 18 12.8 Landsat5  

1994 72005 24018 17207 6040 23247 33 32 97 623 31 5.0 Landsat5  

1995 134474 68551 57492 9283 66775 51 50 97 1750 46 2.6 Landsat5  

1996 92938 31039 24201 6718 30919 33 33 100 1477 32 2.2 Landsat5  

1997 21265 0 0 0 0 0 0 0 755 0 0.0 - 

1998 216147 88365 73861 14302 88163 41 41 100 1837 80 4.4 Landsat5  

1999 67167 13888 10393 3466 13859 21 21 100 1462 14 1.0 Landsat5  

2000 143291 59079 50793 4352 55145 41 38 93 1733 54 3.1 Landsat5  

2001 95936 43981 36140 7195 43335 46 45 99 1349 93 6.9 Landsat5  

2002 130440 74557 61056 12618 73642 57 56 99 1422 163 11.5 Landsat7  

2003 420985 386257 312374 61424 373798 92 89 97 936 188 20.1 Landsat5  

2004 119762 93380 75500 16612 92112 78 77 99 634 97 15.3 Landsat5  

2005 334934 295681 236064 52057 288121 88 86 97 693 326 47.0 Landsat5  

2006 74141 53183 35131 4861 39992 72 54 75 570 96 16.8 Landsat5  

2007 35093 15897 10306 622 10928 45 31 69 379 44 11.6 Landsat5  

2008 9976 3774 3453 320 3773 38 38 100 212 11 5.2 Landsat5  

2009 74796 45085 43396 1378 44774 60 60 99 518 94 18.1 Landsat5  

2010 129767 102403 84433 17132 101565 79 78 99 710 139 19.6 Landsat5  

2011 76993 50788 40386 528 40914 66 53 81 710 120 16.9 Landsat5  

2012 99527 81045 81100 0 81100 81 81 100 560 112 20.0 MODIS 

2013 147692 115391 102105 12518 114623 78 78 99 849 170 20.0 Landsat8  

2014 17174 10233 8068 1996 10064 60 59 98 186 19 10.2 Landsat8  

2015 58272 42683 40239 2216 42455 73 73 99 428 82 19.2 Landsat8  

2016 163881 145884 123440 21073 144513 89 88 99 645 185 28.7 Landsat8  

2017 562557 543673 488664 53793 542457 97 96 100 846 264 31.2 Landsat8  

2018 39912 33838 33503 234 33737 85 85 100 240 25 10.4 Landsat8  

2019 39073 28243 23736 4060 27796 72 71 98 440 64 14.5 Landsat8  

2020 71143 62326 55650 5127 60777 88 85 98 359 72 20.1 Landsat8  

2021 25413 15511 14400 937 15337 61 60 99 379 35 9.2 Landsat8  

2022 193407 164750 129803 33073 162876 85 84 99 2882 142 4.9 Landsat8  

total  4922717 3197475 2665389 440717 3105958 65 63 97 38717 3240 8.4 - 

Year 

Sum of 

area of all 

fires 

Sum of area 

of valid fires 

Sum of 

area with 

reference 

dNBR 

Sum of 

area with 

iterated 

dNBR 

Sum of 

area with 

dNBR 

estimation 

Area of 

valid to all 

fires (%) 

Area with 

dNBR to 

all fires 

(%) 

Area with 

dNBR to 

valid fires 

(%) 

Number all 

fires 

Number 

valid fires 

Number of 

valid to all 

fires (%) 

Sensor 
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1984 116865 51618 47802 3209 51011 44 44 99 1836 210 11.4 Landsat5  

1985 290227 162737 153108 7596 160704 56 55 99 2613 431 16.5 Landsat5  

1986 112360 61493 52595 4992 57587 55 51 94 1533 139 9.1 Landsat5  

1987 137778 14301 14075 96 14171 10 10 99 1553 52 3.3 Landsat5  

1988 31324 9668 9025 385 9410 31 30 97 656 43 6.6 Landsat5  

1989 204048 115744 101781 12858 114639 57 56 99 2242 361 16.1 Landsat5  

1990 105885 50385 48981 1058 50039 48 47 99 1416 123 8.7 Landsat5  

1991 182207 75427 71475 3299 74774 41 41 99 880 155 17.6 Landsat5  

1992 34229 13652 13354 288 13642 40 40 100 230 31 13.5 Landsat5  

1993 40238 26513 23666 2568 26234 66 65 99 141 54 38.3 Landsat5  

1994 72013 32189 30510 1304 31814 45 44 99 623 112 18.0 Landsat5  

1995 134458 66381 59234 6813 66047 49 49 99 1749 150 8.6 Landsat5  

1996 92936 45971 41140 4388 45528 49 49 99 1477 149 10.1 Landsat5  

1997 21263 4027 3863 74 3937 19 19 98 755 24 3.2 Landsat5  

1998 216161 130206 114702 14138 128840 60 60 99 1831 322 17.6 Landsat5  

1999 67179 28048 25703 1695 27398 42 41 98 1462 86 5.9 Landsat5  

2000 143291 65957 63502 1212 64714 46 45 98 1733 182 10.5 Landsat5  

2001 95936 43981 36140 7195 43335 46 45 99 1349 93 6.9 Landsat5  

2002 130440 74557 61056 12618 73642 57 56 99 1422 163 11.5 Landsat7  

2003 420985 386257 312374 61424 373798 92 89 97 936 188 20.1 Landsat5  

2004 119762 93380 75500 16612 92112 78 77 99 634 97 15.3 Landsat5  

2005 334934 295681 236064 52057 288121 88 86 97 693 326 47 Landsat5  

2006 74141 53183 35131 4861 39992 72 54 75 570 96 16.8 Landsat5  

2007 35093 15897 10306 622 10928 45 31 69 379 44 11.6 Landsat5  

2008 9976 3774 3453 320 3773 38 38 100 212 11 5.2 Landsat5  

2009 74796 45085 43396 1378 44774 60 60 99 518 94 18.1 Landsat5  

2010 129767 102403 84433 17132 101565 79 78 99 710 139 19.6 Landsat5  

2011 76993 50788 40386 528 40914 66 53 81 710 120 16.9 Landsat5  

2012 99527 81045 

81100 0 81100 

81 

81 100 

560 112 20 

MODIS 

24230 12793 37023 37 46 Landsat7  

2013 147692 115391 102105 12518 114623 78 78 99 849 170 20 Landsat8  

2014 17174 10233 8068 1996 10064 60 59 98 186 19 10.2 Landsat8  

2015 58272 42683 40239 2216 42455 73 73 99 428 82 19.2 Landsat8  

2016 163881 145884 123440 21073 144513 89 88 99 645 185 28.7 Landsat8  

2017 562557 543673 488664 53793 542457 97 96 100 846 264 31.2 Landsat8  

2018 39912 33838 33503 234 33737 85 85 100 240 25 10.4 Landsat8  

2019 39073 28243 23736 4060 27796 72 71 98 440 64 14.5 Landsat8  

2020 71143 62326 55650 5127 60777 88 85 98 359 72 20.1 Landsat8  

2021 25413 15511 14400 937 15337 61 60 99 379 35 9.2 Landsat8  

2022 115134 95100 73327 20147 93474 83 81 98 1786 76 4.3 Landsat8  

 735 
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Figure B1. The annual variability of pre- and post-fire time lags in unit of days are presented, both from the first and second to 

fourth iterations. Negative values represent pre- fire time lags and positive ones show post-fire time lags. No data is presented for 

1997 (no valid fire data). 
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