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 9 

Abstract. Monitoring global radiation resources relies on sunshine duration (SD) as a significant 10 

indication, but there is a scarcity of research that have examined high-resolution SD data. This study 11 

established a daily 5-km SD dataset in China from 2016 to 2023 using Himawari’s Advanced Himawari 12 

Imager (AHI) Level 3 shortwave radiation fitted with the Ångström-Prescott model based on time series. 13 

We used ground-measured SD at 2380 Chinese Meteorological Administration (CMA) stations to verify 14 

the accuracy of SD dataset. The results of the testing set indicated that the average correlation coefficient 15 

(R) between the SD from estimation and the ground-measurement is 0.88. We investigated the effects of 16 

wind speed, vapor pressure (VAP), precipitation and aerosol optical depth (AOD) on the estimated 17 

performance of SD, and the results showed that temperature had the greatest effect on SD estimation. We 18 

also found that both too low AOD and too high wind speed also affected the SD estimation. This high-19 

resolution SD data can provide important support for accurate radiation resource assessment in China. 20 

The SD dataset is freely accessible at https://doi.org/10.57760/sciencedb.10276 (Zhang et al., 2024). 21 

 22 

1. Introduction 23 

Solar radiation is a major driver of photosynthesis and evapotranspiration, plays an indispensable 24 

role in regulating temperature and supporting agricultural production, and also has effects on 25 

photovoltaic power generation, making it critical to the Earth's ecosystem and to productive human life 26 

(Yu et al., 2022; Feng et al., 2021). Because of the high cost of using and maintaining ground radiation-27 

measuring instruments, which are fewer than 200 in mainland China and unevenly distributed over short 28 

time spans, there are lacking or unavailable long-term solar radiation data in most areas (Liang et al., 29 

https://doi.org/10.5194/essd-2024-303
Preprint. Discussion started: 20 September 2024
c© Author(s) 2024. CC BY 4.0 License.



2 

 

2006; Zhang et al., 2015). Therefore, it is difficult to accurately verify the estimated long-term and high-30 

precision solar radiation indicators with information provided by ground radiation measurement 31 

compared with conventional meteorological measurement (Zhang et al., 2017; Chukwujindu et al., 2017). 32 

Sunshine duration (SD) is a readily available and cost-effective indicator for monitoring the 33 

condition of global radiation resources, and the variability of which is determined by a combination of 34 

regional factors as well as the solar constant, cloud cover, water vapor, and atmospheric pollutants. SD 35 

is a key element of solar radiation that affects many areas of human life, such as tourism activities, 36 

planning power plants and agricultural production (Ghanghermeh et al., 2022). The SD measured from 37 

conventional meteorological observation has the advantages of long observation time, good continuity, 38 

high spatial density and high reliability, and is considered the best alternative to solar radiation (Xia, 39 

2010). Accurate inversion of SD is therefore an important reference for agricultural production, solar 40 

resource utilization and global climate change analysis. The Ångström-Prescott model (Angstrom, 2007) 41 

is the dominant and most widely used model based on SD and solar radiation. The quadratic and cubic 42 

forms of the Ångström-Prescott model have been improved by researchers and applied to different 43 

meteorological conditions (Rietveld, 1978; Bahel et al., 1987; Chen et al., 2004; Wu et al., 2007; Liu et 44 

al., 2012), and other forms of the model (e.g., logarithmic and exponential) have also been proposed and 45 

applied worldwide to estimated SD or solar radiation (Ampratwum et al., 1999; Elagib et al 2000). 46 

Studies on SD estimation have mostly been based on limited ground stations (Vivar et al., 2014; 47 

Fan et al., 2018; Yao et al., 2018), while SD is affected by atmospheric conditions, and it is difficult for 48 

a single station to represent this over a large area, so there is a great need for a high-resolution SD data 49 

based on satellite remote sensing for studies on solar radiation. The Advanced Himawari Imager (AHI) 50 

instrument, carried on board the Himawari-8 and 9 satellite, can be considered to observe and invert solar 51 

radiation indicator. However, despite the release of a short-wave radiation product by Himawari, the 52 

product does not adequately consider the effect of aerosols on solar radiation under clear sky, nor does it 53 

consider the effect of different cloud phases on solar radiation under cloudy conditions, and thus the 54 

accuracy of solar radiation estimated under heavy aerosol-polluted backgrounds or cloudy sky conditions 55 

is limited. 56 

In this study, we generate a daily SD dataset in China at a spatial resolution of 5-km using Himawari 57 

AHI L3 shortwave radiation data from 2015 to 2023 fitted with Ångström-Prescott model at different 58 

days of year (DOY). We validated and assessed the accuracy of the daily SD data by the ground-measured 59 
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SD and other meteorological data (Wind speed, vapor pressure (VAP) and precipitation) at 2380 Chinese 60 

Meteorological Administration (CMA) stations, as well as the aerosol optical depth (AOD) from MODIS.  61 

 62 

2. Data and method 63 

2.1 Remote sensing data 64 

The geostationary meteorological satellites, Himawari, was launched on 7 October 2014 from the 65 

Japan Meteorological Agency (JMA) in Tane Ashima, Japan, with its hypocenter located at 0.0◦N and 66 

140.7◦E, approximately 35,800 km above the land surface. The AHI from Himawari-8 and 9 has 16 67 

spectral channels covering the visible to infrared range, with wavelengths ranging from 0.47 μm to 13.3 68 

μm, providing a wealth of spectral information (Bessho et al., 2016; Kim et al., 2018; Yu et al., 2019). 69 

The temporal resolution of the land surface products provided by Himawari AHI is 10 minutes, which is 70 

important for understanding the spatiotemporal variations on short time scales (Sawada et al., 2019).  71 

In this study, the Himawari AHI level 3 hourly shortwave radiation (5 km resolution) data from 1 72 

January 2016 to 31 December 2023 was used for SD dataset construction, which calculated by 73 

considering the difference between the 300-3000 nm incident solar flux absorbed by the atmosphere and 74 

the solar flux reflected back to space by the atmosphere and the surface (Frouin et al., 2007). For imagery 75 

with a missing interval of one hour in a day, linear interpolation is performed on each pixel of the missing 76 

imagery based on the time series, and for imagery missing for more than one hour the day is excluded. 77 

We calculate the daily average shortwave radiation in China based on China Standard Time (CST) using 78 

this hourly shortwave radiation data. 79 

The MCD19A2 is a MODIS Terra and Aqua combined multi-angle Implementation of Atmospheric 80 

Correction (MAIAC) Land AOD gridded Level 2 product produced daily at 1 km pixel resolution, which 81 

corrected for atmospheric gases and aerosols using a new MAIAC algorithm that is based on a time series 82 

analysis and a combination of pixel- and image-based processing (Lyapustin et al., 2022). In this study, 83 

the daily, monthly and annual AOD at 550 nm in MCD19A2 from 2016 to 2023 were collected using 84 

Google Earth Engine (GEE) (Gorelick et al., 2017). 85 

2.2 Ground Measurements data 86 

 The ground measurements in CMA from 1 July 2015 to 31 December 2023 used to perform SD 87 

estimation. The spatial coverage of Himawari covers 2380 CMA automatic meteorological stations in 88 

China. The CMA performs quality control of the data, including spatiotemporal consistency checks and 89 
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manual corrections and adjustments before releasing the meteorological data (Moradi, 2009; Tang et al., 90 

2010). Although the quality of the ground-based measurements should have been controlled before 91 

acquisition, there was still a need for a more stringent check on the quality of the data based on the 92 

methodology of daily meteorological data reconstruction from CMA (Zhang et al., 2015). Figure 1 shows 93 

the spatial distribution of 2380 meteorological. In this study, daily SD, vapor pressure (VAP), temperature, 94 

wind speed and precipitation from the CMA automatic meteorological stations were used to fit and 95 

validate the grid-dataset as well as to analyze the factors influencing the estimated performance, 96 

respectively. In this study, March-May was classified as spring, June-August as summer, September-97 

November as autumn and December-February as winter. 98 

 99 

Figure 1. Spatial distribution of the 2380 automatic meteorological stations of the China 100 

Meteorological Administration (CMA). 101 

 102 

2.3 Model overview 103 

The Ångström-Prescott model is an empirical model which based on the relationship between SD 104 

and solar radiation, and is widely used in meteorology and agricultural science. The model was proposed 105 

by Ångström on the basis of total solar radiation on clear days and improved by Prescott on the basis of 106 

astronomical radiation (Angstrom, 2007) with the following equations: 107 

Rs=(a+b
n

N
)Ra 

(1) 

where Rs is the total solar radiation reaching the surface, Ra is the astronomical radiation, a and b are 108 
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empirical coefficients, n is the actual SD, and N is the maximum SD available. Ra and N counts are 109 

calculated with reference to Liu et al. (2009): 110 

Ra=37.6dr(ωssinφsinδ+cosφcosδsinωs) (2) 

dr=1+0.033cos(
2π

365
DOY) 

(3) 

δ=0.4093sin(
2π

365
DOY-1.39) 

(4) 

ωs=arccos(-tanφtanδ) (5) 

N=
24

π
ωs 

(6) 

where dr is the eccentricity of the Earth's orbit around the Sun, ωs is the angle at sunset, φ is the latitude, 111 

δ is the angle of inclination of the sun, and DOY is the days of a year. We considered Himawari AHI 112 

level 3 hourly shortwave radiation as the Rs in this model, and SD of ground-based observation as a 113 

validation of n, and the parameters a and b of Ångström-Prescott model were fitted using the least-squares 114 

method. 115 

2.4 Validation 116 

 We divided the original data into a training set (more than 5×106 grid cells during 2017-2022) and 117 

a testing set (2016 and 2023). In order to identify the best Ångström-Prescott model and its corresponding 118 

parameters, the performance of the Ångström-Prescott model on the training set (2017-2022) was 119 

evaluated using a 100-fold cross-validation (CV) approach, using a DOY-based CV strategy. In each 120 

iteration of each DOY, 99 folds were used as the training set and the remaining folds as the validation 121 

set, and the training and validation process was repeated 100 times to obtain the best model parameters 122 

a and b for each DOY. In addition, the 2016 and 2023 ground-based SD data were used as the test data 123 

to evaluate the generalization capability of the best model parameters a and b at each DOY. The specific 124 

process is shown in Figure 2. pearson correlation coefficient (R) and root mean square error (RMSE) 125 

were calculated to evaluate the performance of the model. 126 
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 127 

Figure2. Detailed process of model cross-validation and testing. 128 

 129 

3. Results 130 

3.1 Evaluation of the training data 131 

Figure 3 shows the estimation results of the CV sampling method for all DOYs in the training set 132 

(N=68806), an R value of 0.9695 was obtained for the entire training set, with a corresponding RMSE 133 

value of 1.2h. The measured and inverted SD converge to the 1:1 trend line, but overestimation occurs 134 

in the dense region around 10h. Figure 4 discusses the inverse performance of the different seasons in 135 

the training set separately. The SD is significantly higher in spring and summer than in autumn and winter, 136 

which is more concentrated in the 0h and 10h regions in winter. From Figure 4 it can be seen that in 137 

spring the highest R value is 0.9747 and RMSE value is 1.18h, while in winter the lowest RMSE value 138 

is 1.13h. However, in summer the highest RMSE value is 1.3h, and it is obvious that the estimation in 139 

summer performs the worst when the measured SD is 0h. The measured and inverted SD in spring most 140 

converge to the 1:1 trendline, while overestimation of which occurs in the dense region around 10h in 141 

winter. 142 
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Figure 5 shows the optimal Ångström-Prescott model parameters a and b at different DOYs. The 143 

parameter a has an upward parabolic trend with DOY, with a local maximum value of 0.22 at DOY = 144 

306 and a local minimum value of 0.13 at DOY = 351. Parameter b showed a significant "W"-shaped 145 

variation with DOY, with a local maximum value of 0.74 at DOY = 146 and two local minimum values 146 

of 0.66 and 0.63 at DOY = 99 and 351. In general, parameters a and b of Ångström-Prescott model are 147 

characterized by more pronounced seasonal variations. Figure 6 shows the variation of the training set 148 

evaluation indicator (R and RMSE) with DOY. More than half of the DOYs had R values greater than 149 

the overall R value in Figure 3, but there were still 134 days with R values less than 0.97 and a minimum 150 

value of 0.94 at DOY = 193. Meanwhile more than half of the DOYs have RMSE values less than the 151 

overall RMSE values in Figure 3, but there are still 157 days with R values less than 1.2h, and again 152 

there is a maximum value of 2.1h for RMSE at DOY = 193. The evaluation indicator for the training set 153 

were not characterized by significant seasonal variations. 154 

 155 

Figure 3. Estimation results of the CV sampling method in training set 156 

 157 
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 158 

Figure 4. Estimation results of the CV sampling method in training set from different seasons ((a) 159 

spring, (b) summer, (c) autumn, (d) winter). 160 

 161 

Figure 5. The a and b coefficients of Ångström-Prescott model for different DOYs. 162 
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 163 

Figure 6. The correlation coefficients (R) (a) and RMSE (b) of CV sampling method in training set for 164 

different DOYs. 165 

 166 

3.2 Evaluation of the testing data 167 

The different evaluation indicator for the test set (2016 and 2023) are given in Figure 7, respectively. 168 

Figure 7(a) shows the R of 2016 and 2023, with the trends in these two years are essentially the identical, 169 

with an "M" shape. The average R value for 2016 is 0.88, which is generally consistent with 2023. The 170 

minimum R value of 0.52 in 2023 (DOY=361) was lower than that of 0.60 in 2016 (DOY=21), but both 171 

occurred in winter. The trend of RMSE values for 2016 and 2023 is opposite to the R value, with the 172 

maximum and minimum RMSE values occurring in 2023 at 2.77 (DOY=355) and 1.19 (DOY=106), 173 

respectively. Figures 7(c) and (d) show the estimated performance of the 0 SD (no sunshine for the whole 174 

day) for the CMA meteorological stations in 2016 and 2023. Figure 7(c) shows the estimated mean values 175 

of 0 SD for different DOYs in 2016 and 2023, where the mean value in 2023 (0.49h) is smaller than in 176 

2016 (0.75h), with the maximum and minimum mean values still occurring in 2023 at 3.42 (DOY=211) 177 

and -0.75 (DOY=134), respectively. Figure 7(d) gives the number of estimated SD less than 0 for 178 

different DOYs in 2016 and 2023, of which there were more average daily estimated SDs less than 0 in 179 

2016 than in 2023, at 267/day, with the lowest value also occurring in 2016, at 997 for DOY=294. It can 180 

be seen that the bias in the 0SD estimation is linked to the over- and under-representation of its number. 181 
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Changing all estimated SD less than 0 to 0 resulted in an improvement in their estimated performance 182 

(Figure 8), with 2016 having a greater improvement than 2023 and having the greatest improvement with 183 

DOY=285. 184 

 185 

 186 

Figure 7. Estimated performance in testing set. 187 

 188 

Figure 8. Estimated performance by changing all estimated SD less than 0 to 0 in testing set. 189 

 190 

3.3 Effect of different environmental factors on SD estimation 191 

Figure 9 shows the effect of national daily average VAP, precipitation, and temperature (based on 192 

CMA meteorological stations) on estimated performance. The R values (changing all estimated SD less 193 

than 0 to 0 in Figure 8) is exponentially related to both VAP and precipitation, and VAP has a greater 194 

effect on R than precipitation. Meanwhile the estimated performance in 2016 is more affected by 195 
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moisture conditions. Temperature has the greatest impact on R, with 2023 being affected to a greater 196 

extent than 2016 (Figure 9 (e, f)). The influences on SD estimation are discussed by distinguishing the 197 

different seasons (Table 1), with VAP, precipitation and temperature having the greatest influence on R 198 

values in autumn and the least in winter. It is worth noting that R in summer were negatively correlated 199 

with VAP and temperature. 200 

Figure 10 shows the CMA meteorological station and Himawari estimated SD for 28 September 201 

2016 (DOY=271, R=0.95), along with the AOD and wind speed at that moment. The consistency of sites 202 

and estimated SD is strong in northwest, north and northeast China, while overestimation occurs in 203 

eastern China. From Figure 10 (c, d), it can be found that the excessively low AOD and high wind speed 204 

in East China affect the estimation of SD. 205 

 206 

Figure 9. Estimated performance (R values) and different environmental factors (VAP (a, b), 207 

Precipitation (c, d), Temperature (e, f)) correlations in 2016 (a, c and e) and 2023 (b, d and f). 208 

 209 

Table1. Correlation coefficients between estimated performance and influencing factors in different 210 

seasons (* and ** refer to passing the p < 0.05 and p < 0.01 significance tests, respectively) 211 

Time Influencing Factors 

VAP Precipitation  Temperature 
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Spring 0.29* 0.43** 0.31* 

Summer -0.56* 0.28* -0.53** 

Autumn 0.59** 0.46** 0.62** 

Winter 0.28* 0.26** 0.22** 

 212 

 213 

Figure 10. Comparison of ground measurement (a) and Himawari (b) SD on 28 September 2016, 214 

giving daily AOD of 550nm (c) and the wind speed (d). 215 

 216 

4. Discussion 217 

In this study, a 5km-resolution SD dataset in China from 2016 2023 has been established based on 218 

time series using Himawari imagery fitted with Ångström-Prescott model, which previous studies have 219 

not been conducted.  220 

 The time series-based Ångström-Prescott model was used to invert the SD in China, setting the 221 

coefficients of a and b to fixed values for the whole region at different DOYs. However, the suggested 222 

coefficients in this study are not comparable with the calibrated coefficients for other regions. Previous 223 

studies on the Ångström-Prescott model have confirmed that it is a reliable tool for estimating solar 224 

energy in practical applications, with no significant dependence of its accuracy on latitude (Paulescu rt 225 

al., 2016). It has also been confirmed that the model's accuracy has a strong dependence on and season 226 
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(Liu et al., 2023) according to the results of the present study (Figure 4-7), the cause of which can be 227 

attributed to differences in the length of day and night in different seasons. This work not only forms a 228 

more accurate evaluation standard for the level of radiation received on the ground, but also provides a 229 

better support for the estimation of surface short-wave radiation in the future by using the established 230 

Ångström-Prescott model, and more conventional meteorological stations will be established in the 231 

future to validate and improve the Ångström-Prescott model based on time-series. A fact that cannot be 232 

ignored is that the number of meteorological observation stations in southwestern China (especially in 233 

the Tibetan Plateau Region) is small and spatially distributed unevenly, and the snow in the plateau 234 

seriously affects the judgement of the reflectance data from the Himawari imagery, and we will consider 235 

the input of the land cover characteristics as the climatological data in the following to improve this poor 236 

performance. 237 

 The 0 SD accounts for a certain proportion of the data, and the Ångström-Prescott model still needs 238 

to be improved and optimized in determining this situation (Figure 7 c, d), which is presumed to be due 239 

to the low impact of cloudy and rainy days on the shortwave radiation observations, resulting in the low 240 

sensitivity of the shortwave bands to the SD estimation. Subsequently, the use of relevant physical 241 

precipitation models will be considered to simulate the precipitation process at different times of the day 242 

based on the radiometric data before proceeding to estimate SD. 243 

 In this study we found that temperature, moisture conditions, wind speed and atmospheric pollutants 244 

all have an effect on the SD estimation, with temperature having the greatest effect in temporal variation 245 

and wind speed having a stronger effect in spatial variation compared with AOD. However, we believe 246 

that the effects of these environmental factors are not independent, but are the result of interaction (Tang 247 

et al., 2022). In densely populated and economically developed areas (eastern and southern China), where 248 

pollutant levels are higher and increased wind speed accelerates their dispersion, this regulatory 249 

mechanism is enhanced with increasing pollutants (O'Dowd et al., 1993; Wang et al., 2014). An increase 250 

or decrease in wind speed affects the rate of diffusion of water vapor and pollutants in the air, which in 251 

turn affects atmospheric transparency and ultimately the SD estimation. However, the results of the effect 252 

of temperature on SD estimation in this study are not consistent with some previous studies (Tang et al., 253 

2022; Feng et al., 2019; Ren et al., 2017), which suggests that the relationship between SD and 254 

temperature and relative humidity is complex and needs to be further determined in future studies. 255 

5. Data availability 256 
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The SD dataset is freely accessible at https://doi.org/10.57760/sciencedb.10276 (Zhang et al., 2024). 257 

6. Conclusion 258 

We have introduced a newly developed high-resolution dataset, which provides SD in China for the 259 

period 2016–2023. We calculated daily SD by Himawari Level 3 shortwave radiation fitted with the 260 

Ångström-Prescott model based on time series, and used ground-measured SD to evaluate the estimation 261 

performance. The validation of testing data from ground-measured SD gave favorable results, with R 262 

values greater than 0.5 and an average of 0.88 for all days in 2016 and 2023. We also found that 263 

temperature and wind speed dominate the Ångström-Prescott model estimating SD. A future direction 264 

for this study would be to divide the Chinese regions into suitable areas to independently estimate and 265 

synthesize a more accurate daily SD dataset in China. 266 
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