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Abstract. Monitoring global radiation resources relies on sunshine duration (SD) as a significant 10 

indication, but there is a scarcity of research that have examined high-resolution SD data. This study 11 

established a daily 5-km SD dataset in China from 2016 to 2023 using Himawari’s Advanced Himawari 12 

Imager (AHI) Level 3 shortwave radiation fitted with the Ångström-Prescott model based on time series. 13 

We used ground-measured SD at 2380 Chinese Meteorological Administration (CMA) stations to verify 14 

the accuracy of SD dataset. The results of the testing set indicated that the average correlation coefficient 15 

(R) between the SD from estimation and the ground-measurement is 0.88. We investigated the effects of 16 

wind speed, vapor pressure (VAP), precipitation and aerosol optical depth (AOD) on the estimated 17 

performance of SD, and the results showed that temperature had the greatest effect on SD estimation. We 18 

also found that both too low AOD and too high wind speed also affected the SD estimation on the average 19 

annual scale. This high-resolution SD data can provide important support for accurate radiation resource 20 

assessment in China. The SD dataset is freely accessible at https://doi.org/10.57760/sciencedb.10276 21 

(Zhang et al., 2024). 22 

 23 

1. Introduction 24 

Solar radiation is a major driver of photosynthesis and evapotranspiration, plays an indispensable 25 

role in regulating temperature and supporting agricultural production, and also has effects on 26 

photovoltaic power generation, making it critical to the Earth's ecosystem and to productive human life 27 

(Yu et al., 2022; Feng et al., 2021). Because of the high cost of usingThe solar radiation measured by 28 

radiation observatory can accurately predict solar radiation potential and maintaining ground radiation-29 
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measuring instruments, which are fewerparticipate in climate change and agricultural production model. 30 

Nonetheless, the existing radiation data in China is not validated through terrestrial observations due to 31 

the limited number of less than 200 stations in mainland China and unevenly distributed over short time 32 

spans, there are lacking or unavailable long-term solar radiation data in most areas (Liang et al., 2006; 33 

Zhang et al., 2015). Therefore, it is ) for the expensive upkeep of terrestrial radiation measuring devices, 34 

making precise tracking of high spatiotemporal solar radiation over time difficult to accurately verify the 35 

estimated long-term and high-precision solar radiation indicators with information provided by ground 36 

radiation measurement compared with conventional meteorological measurement (Zhang et al., 2017; 37 

Chukwujindu et al., 2017). 38 

Sunshine duration (SD) is a readily available and cost-effective indicator for monitoring the 39 

condition of global radiation resources, and the variability of which is determined by a combination of 40 

regional factors as well as the solar constant, cloud cover, water vapor, and atmospheric pollutants. SD 41 

is a key elementparameter of solar radiation that affects many areas of human life, such as tourism 42 

activities, planning power plantspotential forecasting (Liu et al., 2022; Qin et al., 2023), climate change 43 

assessment and agricultural production (Ghanghermeh et al., 20222022), in addition, some researchers 44 

have found that changes in SD also affect the probability of human diseases (Chang et al., 2022; Gu et 45 

al., 2019). The SD measured from conventional meteorological observation has the advantages of long 46 

observation time, good continuity, high spatial density and high reliability, andwhich is considered the 47 

best alternative to solar radiation (Xia, 2010). Accurate inversion of SD is therefore an important 48 

reference for agricultural production, solar resource utilization and global climate change analysis. The 49 

Ångström-Prescott model (Angstrom, 2007Ångström, 1924) is the dominant and most widely used 50 

model based on SD and solar radiation. The quadratic and cubic forms of the Ångström-Prescott model 51 

have been improved by researchers and applied to different meteorological conditions (Rietveld, 1978; 52 

Bahel et al., 1987; Chen et al., 2004; Wu et al., 2007; Liu et al., 2012), and other forms of the model (e.g., 53 

logarithmic and exponential) have also been proposed and applied worldwide to estimated SD or solar 54 

radiation (; Ampratwum et al., 1999; Elagib et al 2000). 55 

Studies on SD estimation have mostly been based on limited ground stations (Vivar et al., 2014; 56 

Fan et al., 2018; Yao et al., 2018), while SD is affected by atmospheric conditions, and it is difficult for 57 

a single station to represent this over a large area, so there is a great need for a high-resolution SD data 58 

based on satellite remote sensing for studies on solar radiation. TheCurrently, geostationary and polar-59 
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orbiting satellite data are widely used for high spatiotemporal resolution ground information tracking, 60 

and the Advanced Himawari Imager (AHI) instrument, carried on board the new generation of 61 

geostationary satellites -Himawari-8 and 9 satellite, can be considered to observe and invert solar, has 62 

been widely used for the estimating radiation indicator.indicators different time scales (Damiani et al, 63 

2018; Hou et al., 2020; Letu et al., 2020; Tana et al., 2023). However, despitethere are always biases in 64 

the release of a short-waveAHI radiation product by Himawari, the product does not adequately consider 65 

the effect of aerosols on solardata and those inverted radiation under clear sky, nor does it 66 

considerindicators due to less ground measured stations for validation and the effect of different 67 

susceptibility of remote sensing data to cloud phases onand aerosols, while SD reflects both solar 68 

radiation under cloudyand cloud conditions, and thus the accuracy of solaris well suited for inversion 69 

using remote sensing radiation estimated under heavy aerosol-polluted backgrounds or cloudy sky 70 

conditions is limited.data, we can take advantage of the high spatiotemporal resolution of AHI to estimate 71 

SD.  72 

In this study, we generate a daily SD dataset in China at a spatial resolution of 5-km using Himawari 73 

AHI L3 shortwave radiation data from 2015 to 2023 fitted with Ångström-Prescott model at different 74 

days of year (DOY). We validated and assessed the accuracy of the daily SD data by the ground-measured 75 

SD and other meteorological data (Wind speed, vapor pressure (VAP) and precipitation) at 2380 Chinese 76 

Meteorological Administration (CMA) stations, as well as the aerosol optical depth (AOD) from MODIS.  77 

 78 

2. Data and method 79 

2.1 Remote sensing data 80 

The geostationary meteorological satellites, Himawari, was launched on 7 October 2014 from the 81 

Japan Meteorological Agency (JMA) in Tane Ashima, Japan, with its hypocenter located at 0.0◦N and 82 

140.7◦E, approximately 35,800 km above the land surface. In comparison with other geostationary 83 

satellites, Himawari AHI exhibits superior temporal and spatial resolution, reflection band sensitivity and 84 

accuracy (Zhang et al., 2016). The AHI from Himawari-8 and 9 has 16 spectral channels covering the 85 

visible to infrared range, with wavelengths ranging from 0.47 μm to 13.3 μm, providing a wealth of 86 

spectral information (Bessho et al., 2016; Kim et al., 2018; Yu et al., 2019). The temporal and spatial 87 

resolution of the land surface products provided by Himawari AHI is 10 minutes and 5 km respectively, 88 

which is important for understanding the spatiotemporal variations on short time scales (Sawada et al., 89 



 

4 

 

2019).  90 

In this study, the Himawari AHI level 3 hourly shortwave radiation (5 km resolution) data from 1 91 

January 2016 to 31 December 2023 was used for SD dataset construction, which calculated by 92 

consideringplane-parallel theory and considered the top of atmosphere (TOA) radiation by difference 93 

between the 300-3000 nm incident solar flux absorbedshortwave band and reflected solar radiation by 94 

the atmosphere and the solar flux reflected back to space by the atmosphere and the /land surface (Frouin 95 

et al., 2007). For imagery with a missing This approach assumes that the effects of clouds and clear 96 

atmosphere can be decoupled, which proved to be effective (Dedieu et al., 1987; Frouin and Rachel, 97 

1995). In the event of a one-hour interval of one hour in a daybeing absent from the imagery, linear 98 

interpolation is performedconducted on each pixel of the missing imagery based on the time series, and 99 

for . In instances where the imagery missingis absent for more thana period exceeding one hour, the day 100 

in question is excluded. We calculate the daily average shortwave radiation in China based on China 101 

Standard Time (CST) using this hourly AHI shortwave radiation data. 102 

The MCD19A2 is a MODIS Terra and Aqua combined multi-angle Implementation of Atmospheric 103 

Correction (MAIAC) Land AOD gridded Level 2 product produced daily at 1 km pixel resolution, which 104 

corrected for atmospheric gases and aerosols using a new MAIAC algorithm that is based on a time series 105 

analysis and a combination of pixel- and image-based processing (Lyapustin et al., 2022). In this study, 106 

the daily, monthly and annual AOD at 550 nm in MCD19A2 from 2016 to 2023 were collected using 107 

Google Earth Engine (GEE) (Gorelick et al., 2017). 108 

2.2 Ground Measurements data 109 

 The ground measurements in CMA from 1 July 2015January 2016 to 31 December 2023 used to 110 

perform SD estimation. The spatial coverage of Himawari covers 2380 CMA automatic meteorological 111 

stations in China. The CMA performs quality control of the data, including spatiotemporal consistency 112 

checks and manual corrections and adjustments before releasing the meteorological data (Moradi, 2009; 113 

Tang et al., 2010). Although the quality of the ground-based measurements should have been controlled 114 

before acquisition, there was still a need for a more stringent check on the quality of the data based on 115 

the methodology of daily meteorological data reconstruction from CMA (Zhang et al., 2015). Figure 1 116 

shows the spatial distribution of 2380 meteorological. In this study, daily SD, vapor pressure (VAP), 117 

temperature, wind speed and precipitation from the CMA automatic meteorological stations were used 118 

to fit and validate the grid-dataset as well as to analyze the factors influencing the estimated performance, 119 
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respectively. In this study,, and March-May was classified as spring, June-August as summer, September-120 

November as autumn and December-February as winter. 121 

 122 

 123 

Figure 1. Spatial distribution of the 2380 automatic meteorological stations of the China 124 

Meteorological Administration (CMA). 125 

 126 

2.3 Model overview 127 

The Ångström-Prescott model is an empirical model which based on the relationship between SD 128 

and solar radiation, and is widely used in meteorology and agricultural science. The model was proposed 129 
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by Ångström based on the basis of total solar radiation on clear days and improved by Prescott on the 130 

basis of astronomical radiation (Angstrom, 2007Ångström, 1924) with the following equations: 131 

Rs=(a+b
n

N
)Ra (1) 

where Rs is the total solar radiation reaching the surface, Ra is the astronomical radiation, a and b are 132 

empirical coefficients, n is the actual SD, and N is the maximum SD available. Ra and N counts are 133 

calculated with reference to Liu et al. (2009): 134 

Ra=37.6dr(ωssinφsinδ+cosφcosδsinωs) (2) 

dr=1+0.033cos(
2π

365
DOY) 

(3) 

δ=0.4093sin(
2π

365
DOY-1.39) 

(4) 

ωs=arccos(-tanφtanδ) (5) 

N=
24

π
ωs 

(6) 

where dr is the eccentricity of the Earth's orbit around the Sun, ωs is the angle at sunset, φ is the latitude, 135 

δ is the angle of inclination angle of the sun, and DOY is the days of a year. We considered Himawari 136 

AHI level 3 hourly shortwave radiation as the Rs in this model, and SD of ground-based observation as 137 

a validation of n, and the parameters a and b of Ångström-Prescott model were fitted using the least-138 

squares method. 139 

2.4 Validation 140 

 We divided the original data into a training set (more than 5×106 grid cells during 2017-2022) and 141 

a testing set (2016 and 2023). In order to identify the best Ångström-Prescott model and its corresponding 142 

parameters, the performance of the Ångström-Prescott model on the training set (2017-2022) was 143 

evaluated using a 100-fold cross-validation (CV) approach, using a DOY-based CV strategy. In each 144 

iteration of each DOY, 99 folds were used as the training set and the remaining folds as the validation 145 

set, and the training and validation process was repeated 100 times to obtain the best model parameters 146 

a and b for each DOY. In addition, the 2016 and 2023 ground-based SD data were used as the test data 147 

to evaluate the generalization capability of the best model parameters a and b at each DOY. The specific 148 



 

7 

 

process is shown in Figure 2. pearsonPearson correlation coefficient (R) and root mean square error 149 

(RMSE) were calculated to evaluate the performance of the model. 150 

 151 

Figure2. Detailed process of model cross-validation and testing. 152 

2.5 Methods of spatiotemporal variation analysis 153 

 Empirical orthogonal function (EOF) decomposition is a significant technique used to investigate 154 

the geographical and temporal fluctuations in meteorological characteristics (Zhou et al., 2021). The 155 

variable field can be decomposed into two parts: a spatial function that remains constant across time and 156 

a temporal function that changes exclusively with time, thus the primary spatial and temporal variations 157 

of which are evident in the area with a significant contribution to the variance. The spatial function 158 

component comprises several mutually independent and orthogonal spatial modes, also considered as 159 

eigenvectors. The temporal function part consists of the projection of the spatial modes in time, which is 160 

represented by the time coefficients. We used EOF to analyze spatiotemporal variations of the established 161 

SD dataset in China, then the original variable field information and spatial coefficients is concentrated 162 

in the first few modes. 163 

 164 
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3. Results 165 

3.1 Evaluation of the training data 166 

Figure 3 shows the estimation results of the CV sampling method for all DOYs in the training set 167 

(N=68806), an R value of 0.9695 was obtained for the entire training set, with a corresponding RMSE 168 

value of 1.2h. The measured and inverted SD converge to the 1:1 trend line, but overestimation occurs 169 

in the dense region around 10h. Figure 4 discusses the inverse performance of the different seasons in 170 

the training set separately. The SD is significantly higher in spring and summer than in autumn and winter, 171 

which is more concentrated in the 0h and 10h regions in winter. From Figure 4 it can be seen that in 172 

spring the highest R value is 0.9747 and RMSE value is 1.18h, while in winter the lowest RMSE value 173 

is 1.13h. However, in summer the highest RMSE value is 1.3h, and it is obvious that the estimation in 174 

summer performs the worst when the measured SD is 0h. The measured and inverted SD in spring most 175 

converge to the 1:1 trendline, while overestimation of which occurs in the dense region around 10h in 176 

winter. 177 

Figure 5 shows the optimal Ångström-Prescott model parameters a and b at different DOYs. The 178 

parameter a has an upward parabolic trend with DOY, with a local maximum value of 0.22 at DOY = 179 

306 and a local minimum value of 0.13 at DOY = 351. Parameter b showed a significant "W"-shaped 180 

variation with DOY, with a local maximum value of 0.74 at DOY = 146 and two local minimum values 181 

of 0.66 and 0.63 at DOY = 99 and 351. In general, parameters a and b of Ångström-Prescott model are 182 

characterized by more pronounced seasonal variations. Figure 6 shows the variation of the training set 183 

evaluation indicator (R and RMSE) with DOY. More than half of the DOYs had R values greater than 184 

the overall R value in Figure 3, but there were still 134 days with R values less than 0.97 and a minimum 185 

value of 0.94 at DOY = 193. Meanwhile more than half of the DOYs have RMSE values less than the 186 

overall RMSE values in Figure 3, but there are still 157 days with R values less than 1.2h, and again 187 

there is a maximum value of 2.1h for RMSE at DOY = 193. The evaluation indicator for the training set 188 

were not characterized by significant seasonal variations. 189 
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 190 

 191 

Figure 3. Estimation results of the CV sampling method in training set 192 

 193 
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 194 

 195 

Figure 4. Estimation results of the CV sampling method in training set from different seasons ((a) 196 

spring, (b) summer, (c) autumn, (d) winter). 197 
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 198 

Figure 5. The a and b coefficients of Ångström-Prescott model for different DOYs. 199 

 200 

Figure 6. The correlation coefficients (R) (a) and RMSE (b) of CV sampling method in training set for 201 

different DOYs. 202 

 203 

3.2 Evaluation of the testing data 204 

The different evaluation indicator for the test set (2016 and 2023) are given in Figure 7, respectively. 205 

Figure 7(a) shows the R of 2016 and 2023, with the trends in these two years are essentially the identical, 206 
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with an "M" shape. The average R value for 2016 is 0.88, which is generally consistent with 2023. The 207 

minimum R value of 0.52 in 2023 (DOY=361) was lower than that of 0.60 in 2016 (DOY=21), but both 208 

occurred in winter. The trend of RMSE values for 2016 and 2023 is opposite to the R value, with the 209 

maximum and minimum RMSE values occurring in 2023 at 2.77 (DOY=355) and 1.19 (DOY=106), 210 

respectively. Figures 7(c) and (d) show the estimated performance of the 0 SD (no sunshine for the whole 211 

day) for the CMA meteorological stations in 2016 and 2023. Figure 7(c) shows the estimated mean values 212 

of 0 SD for different DOYs in 2016 and 2023, where the mean value in 2023 (0.49h) is smaller than in 213 

2016 (0.75h), with the maximum and minimum mean values still occurring in 2023 at 3.42 (DOY=211) 214 

and -0.75 (DOY=134), respectively. Figure 7(d) gives the number of estimated SD less than 0 for 215 

different DOYs in 2016 and 2023, of which there were more average daily estimated SDs less than 0 in 216 

2016 than in 2023, at 267/day, with the lowest value also occurring in 2016, at 997 for DOY=294. It can 217 

be seen that theThe bias in the 0SD estimation is linked to the over- and under-representation of its 218 

number. Changing all estimated SD less than 0 to 0 resulted in an improvement in their estimated 219 

performance (Figure 8), with 2016 having a greater improvement than 2023 and having the greatest 220 

improvement with DOY=285. 221 

 222 

 223 

Figure 7. Estimated performance in testing set. 224 
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 225 

Figure 8. Estimated performance by changing all estimated SD less than 0 to 0 in testing set. 226 

 227 

3.3 Effect of different environmental factors on SD estimation 228 

Figure 9 shows the effect of national daily average VAP, precipitation, and temperature (based on 229 

CMA meteorological stations) on estimated performance.R values in Figure 8. The R values (changing 230 

all estimated SD less than 0 to 0 in Figure 8) is exponentially related to both VAP and precipitation, and 231 

VAP has a greater effect on R than precipitation. Meanwhile the estimated performance in 2016 is more 232 

affected by moisture conditions. Temperature has the greatest impact on R, with 2023 being affected to 233 

a greater extent than 2016 (Figure 9 (e, f)). The influences on SD estimation are discussed by 234 

distinguishing the different seasons (Table 1), with VAP, precipitation and temperature having the greatest 235 

influence on R values in autumn and the least in winter. It is worth noting that R in summer were 236 

negatively correlated with VAP and temperature. 237 

Figure 10 and 11 shows the annual average SD form CMA meteorological station and Himawari 238 

estimated SD for 28 September estimation in 2016 (DOY=271, R=0.95),and 2023 respectively, along 239 

with the annual average AOD and wind speed at that moment. The consistency of sites. On an annual 240 

scale, site and estimated SD is strongare in northwest, northbetter consistency in eastern and 241 

northeastnorthern China, while overestimation occursboth years have higher estimates in eastern China. 242 

From Figure 10 (c, d), it can be found that and lower estimates in northwestern and northeastern China, 243 

comparing the excessively low AOD and highimpact factors, higher wind speed in East China affectand 244 

lower AOD in these areas both affected the estimation of SD estimation. 245 
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 246 

 247 

Figure 9. Estimated performance (R values) and different environmental factors (VAP (a, b), 248 

Precipitation (c, d), Temperature (e, f)) correlations in 2016 (a, c and e) and 2023 (b, d and f). 249 

 250 
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Table1. Correlation coefficients between estimated performance and influencing factors in different 251 

seasons (* and ** refer to passing the p < 0.05 and p < 0.01 significance tests, respectively) 252 

Time Influencing Factors 

VAP Precipitation  Temperature 

Spring 0.29* 0.43** 0.31* 

Summer -0.56* 0.28* -0.53** 

Autumn 0.59** 0.46** 0.62** 

Winter 0.28* 0.26** 0.22** 

 253 

 254 
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 255 

Figure 10. Comparison of annual average ground measurement (a) and Himawari (b) SD on 28 256 

Septemberin 2016, giving dailyannual average AOD of 550nm (c) and the wind speed (d). 257 

 258 

Figure 11. Same as Figure 10, but in 2023. 259 

 260 

3.3 Effect of different environmental factors on SD estimation 261 

EOF analysis of mean annual SD grid-data in China from 2015-2023, the spatial variance 262 
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contribution rate of the eigenvectors in the first three EOF modes are shown in Figure 12, where the 263 

explained variance of each mode is 30.44%, 23.47% and 19.0%, respectively, with a cumulative variance 264 

contribution of about 72.91%. The variance contribution rate of mode 1 eigenvectors in Figure 12a 265 

surpasses that of other models, making it the predominant spatial distribution in China. The mode 1 266 

decreases from western to eastern China, the northwest China exhibits extremely low values, but there 267 

are exceptions in Yunnan Province. The mode 2 (Figure 12b) exhibits a dipolar-type of distribution 268 

decreasing from the southern to northeast China, and the mode 3 shows a tri-pole distribution decreasing 269 

from central China to sides. Generally, it can be concluded that the SD decreases from western to northern 270 

China. Figure 12def shows the time coefficients of SD from the first three models in China, the SD time 271 

coefficients of the mode 1 (Figure 12d) shows an increasing trend from 2016 to 2023, with the minimum 272 

time coefficient in 2019 and maximum time coefficient in 2021. It can be seen from Figure 12ef that the 273 

SD time coefficients of the mode 2 and 3 show a decreasing trend, and both are positive in 2016 and 274 

negative in 2019. 275 

 276 

Figures 12. Distribution of eigenvectors contribution rate (a-c) and time coefficients (d-f) for the first 277 
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three modes of SD. 278 

 279 

4. Discussion 280 

There is no explicit remote sensing inversion model for SD as its observation is founded upon the 281 

accumulation of radiation. Consequently, SD datasets were constructed through the spatial interpolation, 282 

which results in the absence of SD datasets that are released with high spatiotemporal resolution. In this 283 

study, a 5km-resolution SD dataset in China from 2016 to 2023 has been established based on time series 284 

using Himawari imagery fitted with Ångström-Prescott model, which previous studies have not been 285 

conducted.  286 

 The time series- based Ångström-Prescott model was used to invert the SD in China, setting the 287 

coefficients of a and b to fixed values for the whole region at different DOYs. However,, while the 288 

suggested coefficients in this study are not comparable with the calibrated coefficients for other regions. 289 

Previous studies on the Ångström-Prescott model have confirmed that it is a reliable tool for estimating 290 

solar energy in practical applications, with no significant dependence of its accuracy on latitude (Paulescu 291 

rtet al., 2016). It has also been confirmed that the model's accuracy has a strong dependence on and 292 

season (Liu et al., 2023) according to the results of the present study (Figure 4-78), the cause of which 293 

can be attributed to differences in the length of day and night in different seasons. This work not only 294 

forms a more accurate evaluation standard for the level of radiation received on the ground, but also 295 

provides a better support for the radiation estimation of surface short-wave radiation in the future by 296 

using the established Ångström-Prescott model, and more conventional meteorological stations will be 297 

established in the future to validate and improve the Ångström-Prescott model based on time-series. A 298 

fact that cannot be ignored is that the number of meteorological observation stations in southwestern 299 

China (especially in the Tibetan Plateau Region) is small and spatially distributed unevenly, and the snow 300 

in the plateau seriously affects the judgement of the reflectance data from the Himawari imagery, and we 301 

will consider the input of the land cover characteristics as the climatological data in the following to 302 

improve this poor performance. 303 

 The 0 SD accounts for It is worth noting that there is a certain proportionbias in the validation of 304 

the training and test data, and the where there is an overestimation at 0SD (Figure 3), may be the strong 305 

light in almost most of the area under a DOY leads to Ångström-Prescott model still needs to be improved 306 

larger parameters and optimized in determining this situation (Figure 7 c, d), which is presumed to be 307 
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due to the low impact of cloudyover-estimation of a very small portion of the image elements that contain 308 

aerosols, clouds and rainy dayseven precipitation. In addition, it also occurred in the test data that the 309 

estimated SD was less than 0 (Figure 7 cd), because the thicker clouds, atmospheric aerosols and water 310 

vapor in majority of the area on the that day did not have much effect on the ground-based SD instrument 311 

(the atmospheric longwave radiation contained in the direct radiation was not affected), but had a 312 

significant effect on the AHI shortwave radiation data, resulting in SD less than 0. After changing the 313 

image elements with SD less than 0 to 0, the validation results are still substantial (Figure 8), indicating 314 

that this part of radiation is essentially less than the threshold for SD observations, resulting in the low 315 

sensitivity of the shortwave bands to the SD estimation. Subsequently (120 W/m2). In conclusion, as our 316 

approach is carried out based on time series, it is unavoidable that we will encounter input data that are 317 

not sensitive to different sky conditions. In the future, the use of relevant physical precipitation models 318 

will be considered to simulate the precipitation process at different times of the day based on the 319 

radiometricradiation data before proceeding. This will enable us to estimate SD, and this aspect of the 320 

Ångström-Prescott model will be improved subsequently. 321 

 In this study we We found that temperature, moisture conditions, wind speed and atmospheric 322 

pollutants all have an effect oninfluence the SD estimation, with temperature having the greatest effect 323 

in temporal variation and wind speed having a stronger effect in spatial variation compared with AOD. 324 

However, we believe that the effects of these environmental factors are not independent, but are the result 325 

of interaction (Tang et al., 2022). In densely populated and economically developed areas (eastern and 326 

southern China), where pollutant levels are higher and increased wind speed accelerates their dispersion, 327 

this regulatory mechanism is enhanced with increasing pollutants (O'Dowd et al., 1993; Wang et al., 328 

2014). An increase or decrease in wind speed affects the rate of diffusion of water vapor and pollutants 329 

in the air, which in turn affects atmospheric transparency and ultimately the SD estimation. However, the 330 

results of the effect of temperature on SD estimation in this study are not consistent with some previous 331 

studies (Tang et al., 2022; Feng et al., 2019; Ren et al., 2017), which suggests that the relationship 332 

between SD and temperature and relative humidity is complex and needs to be further determined in 333 

future studies. 334 

 The EOF method analysis of mean annual SD declare that it decreases from western to northeast 335 

China, which is consistent with the Tang et al. (2022) and Xiong et al. (2020), suggesting that the pattern 336 

of industrial development between western to eastern China is affecting radiation levels to some extent. 337 
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The time coefficients of EOF show that there is a certain degree of increase in SD in recent years, which 338 

is closed to long-term SD analysis from Tang et al. (2022). This trend may be related to global climate 339 

change (Josefsson and Landelius, 2000), because of the variation in wind speeds due to global warming 340 

has resulted in decreased cloud dissipation across mainland China (Xiong et al., 2020). In addition, the 341 

decrease in human activities in recent years (Liu et al., 2020) has also contributed to a weakening of the 342 

urban rain island effect and aerosols (Glantz et al., 2006), and it appears that the latter factor is more 343 

influential from this study. However short-term reductions in human activity cannot become the norm, 344 

and sunshine duration are bound to fluctuating changes due to the acceleration of the hydrological cycle. 345 

 346 

5. Data availability 347 

The SD dataset is freely accessible at https://doi.org/10.57760/sciencedb.10276 (Zhang et al., 2024). 348 

6. Conclusion 349 

We have introduced a newly developed high-resolution dataset, which provides SD in China for the 350 

period 2016–2023. We calculated daily SD by Himawari Level 3 shortwave radiation fitted with the 351 

Ångström-Prescott model based on time series, and used ground-measured SD to evaluate the estimation 352 

performance. The validation of testing data from ground-measured SD gave favorable results, with R 353 

values greater than 0.5 and an average of 0.88 for all days in 2016 and 2023. We also found that 354 

temperature and wind speed dominate the Ångström-Prescott model estimating SD. A future direction 355 

for this study would be to divide the Chinese regions into suitable areas to independently estimate and 356 

synthesize a more accurate daily SD dataset in China. 357 
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