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Abstract. Constructing a highly-resolved comprehensive emission dataset for China is challenging due to limited availability 20 

of refined information for parameters in a unified bottom-up framework. Here, by developing an integrated modeling 21 

framework, we harmonized multi-source heterogeneous data including several up-to-date emission inventories at national and 22 

regional scale, and for key species and sources in China, to generate a 0.1° resolution inventory for 2017. By source mapping, 23 

species mapping, temporal disaggregation, spatial allocation and spatial-temporal coupling, different emission inventories are 24 

normalized in terms of source categories, chemical species, and spatiotemporal resolutions. This achieves the coupling of 25 

multi-scale, high-resolution emission inventories with the MEIC (Multi-resolution Emission Inventory for China), forming a 26 

high-resolution INTegrated emission inventory of Air pollutants for China (i.e., INTAC). We find that the INTAC provides 27 

more accurate representations for emission magnitudes and spatiotemporal patterns. In 2017, China’s emissions of SO2, NOx, 28 

CO, NMVOC, NH3, PM10, PM2.5, BC, and OC are 12.3, 24.5, 141.0, 27.9, 9.2, 11.1, 8.4, 1.3 and 2.2 Tg, respectively. The 29 

proportion of point source emissions for SO2, PM10, NOx, PM2.5 increases from 7–19% in MEIC to 48–66% in INTAC, 30 

resulting in improved spatial accuracy, especially mitigating overestimations in densely populated areas. Compared to MEIC, 31 

INTAC reduces mean biases in simulated concentrations of major air pollutants by 2–14 μg/m³ across 74 cities against ground 32 

observations. The enhanced model performance by INTAC is particularly evident at finer grid resolutions. Our new dataset is 33 

accessible at http://meicmodel.org.cn/intac, and it will provide a solid data foundation for fine-scale atmospheric research and 34 

air quality improvement. 35 

36 
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1 Introduction 37 

In recent years, China has achieved remarkable progress in improving air quality and public health through the active 38 

implementation of clean air policies (Liu et al., 2020; Xiao et al., 2022; Zhang and Geng, 2019; Zhang et al., 2019a). To further 39 

unlock the potential of targeted clean air actions, there is an urgent need for an accurate and detailed depiction for emissions, 40 

encompassing their magnitudes and spatial-temporal patterns. Developing a reliable highly-resolved emission inventory for 41 

China is also crucial for studies of atmospheric chemistry and climate change (Cheng et al., 2021a; Geng et al., 2021; Zhang 42 

et al., 2019a).  43 

The construction of high-resolution emission inventories for China poses significant challenges due to the diversity and 44 

complexity of emission sources and technology distributions. Additionally, the limited availability of localized measurements 45 

for emission factors (EFs) and source profiles, along with exact location of the emission facilities, further compounds the 46 

difficulties (Li et al., 2017a). The widely-used bottom-up approach involves the establishment of a unified framework that 47 

encompasses source categories, chemical speciation processes, spatial-temporal allocation profiles and emission estimation 48 

methods (An et al., 2021; Huang et al., 2021). However, achieving both wide coverage and high accuracy in compiling an 49 

emission inventory for China through this approach remains a formidable task for individual research institutions. 50 

Comprehensive national-scale emission inventories developed using the unified framework typically provide extensive 51 

coverage of space, species and sectors (Li et al., 2017a; Li et al., 2023b), but tend to exhibit limitations in spatial accuracy (Wu 52 

et al., 2021; Zhao et al., 2015; Zheng et al., 2021; Zhou et al., 2017b). Previous studies have indicated that the spatial allocation 53 

in large-scale emission inventories rely on spatial proxies (e.g., population, road networks) rather than latitude-longitude 54 

coordinates of emission sources due to the unavailability of extensive spatial information (Li et al., 2017b; Zhang et al., 2009). 55 

The assumption of a linear correlation between emissions and spatial proxies might lead to an overestimation of emissions in 56 

urban areas, especially at scales finer than 0.25° (Wu et al., 2021; Zheng et al., 2021; Zheng et al., 2017). Biases introduced 57 

by the proxy-based method are found to be propagated as the grid size diminishes, resulting in uncertainties for chemical 58 

transport models (CTMs) (Zheng et al., 2021; Zheng et al., 2017).  59 

Emission inventories focused on a specific region (An et al., 2021; Huang et al., 2021; Liu et al., 2018), sector (Chen et al., 60 

2016; Deng et al., 2020; Zhou et al., 2017a) or key species (Huang et al., 2012b; Li et al., 2021; Wang et al., 2023) under the 61 

aforementioned unified framework demonstrate enhanced accuracy, but fail to achieve comprehensive coverage. These 62 

inventories assimilate substantial detailed foundational data from various statistical dataset, on-site measurements or surveys 63 

to represent real-world emission magnitudes, including energy consumption, removal efficiencies, and localized speciation 64 

profile (An et al., 2021; Huang et al., 2021; Liu et al., 2018). Innovative data, such as measurements from continuous emission 65 

monitoring systems (Bo et al., 2021; Tang et al., 2023; Wu et al., 2022), or methodologies like process-based models (Kang 66 

et al., 2016; Zhao et al., 2020) are implemented to enable a more accurate characterization of complex emission dynamics. 67 

Facility-level geographic location is incorporated to optimize the representation of spatial patterns (Liu et al., 2015a; Wang et 68 
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al., 2019; Wu et al., 2023). The reliability of these local-scale, sector- or species-specified inventories has been validated 69 

against satellite and ground-based measurements (Liu et al., 2016a; Zhang et al., 2021; Zheng et al., 2019).  70 

The other strategy for developing bottom-up emission inventories is commonly known as the integrated method. This method 71 

consolidates multiple emission datasets for specific regions, species or sectors into a unified product, ensuring extensive 72 

representation (Li et al., 2017b). Taking advantage of existing inventories derived from localized data and advanced methods, 73 

the integrated method facilitates the efficient generation of highly-resolved emission inventories at large scales. However, the 74 

heterogeneity of different emission datasets presents challenges for the fusion, manifested in diverse data formats, sector 75 

categories, species, spatial-temporal resolution. In recent years, there has been growing interest in adopting the integrated 76 

approach to enrich inventories with local insights, particularly at the global  (Crippa et al., 2023; Janssens-Maenhout et al., 77 

2015) and Asian scales (Kurokawa et al., 2013; Li et al., 2023a; Li et al., 2017b; Zhang et al., 2009). Researches on establishing 78 

integrated inventories for China are constrained due to the inherent complexity and challenging accessibility of the data. These 79 

efforts are concentrated in specific regions, such as the Yangtze River Delta (YRD) (An et al., 2021). 80 

In this work, with the support of several research institutions, we use an emission integration model to construct a high-81 

resolution integrated emission inventory at a spatial resolution of 0.1° for China in 2017, denoted as INTAC. The challenges 82 

associated with coupling multi-source heterogeneous data are addressed through the implementation of an inventory 83 

integration framework. Then, leveraging the strengths of inventories enriched with local knowledge, we compile a 84 

comprehensive highly resolved emission product to enhance the accurate representation of emissions from crucial regions, 85 

sectors and species. Finally, the improved accuracy of emission magnitude and spatial distribution is evaluated using 86 

atmospheric chemistry models. 87 

2 Methodology and data 88 

Figure 1 illustrates the schematic diagram of the integration process of INTAC. We collect seven emission inventories—MEIC 89 

developed by Tsinghua University (Li et al., 2017a; Zheng et al., 2018), the industrial point source emission inventory for 90 

China by the MEIC team (Zheng et al., 2021; Zheng et al., 2017), the YRD air pollutant emission inventory led by Nanjing 91 

University (An et al., 2021; Zhou et al., 2017b), the Pearl River Delta (PRD) emission inventory by Jinan University (Huang 92 

et al., 2021; Sha et al., 2021), the open biomass burning emission inventory in China by Peking University (Huang et al., 2012a; 93 

Liu et al., 2015b; Song et al., 2009; Yin et al., 2019) , the shipping emission inventory in East Asia by Tsinghua University 94 

(Liu et al., 2016b; Liu et al., 2019) , and the high-resolution ammonia emission inventory in China (PKU-NH3) by Peking 95 

University (Huang et al., 2012b; Kang et al., 2016). The details of these inventories and the rationale for choosing them will 96 

be described in Sect. 2.1.  97 
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Figure 1: Methodology framework of the INTAC inventory development. 98 

An integration model is then established to merge together emission inventories which have different sectors, species, spatial-99 

temporal resolution and formats (i.e., point, area, and gridded forms). The integration process consists of five steps: source 100 

mapping, species mapping, temporal disaggregation, spatial allocation, and spatial-temporal coupling, as detailed in Sect. 2.2. 101 

Based on the priority order, multi-source emission inventories are assembled at the standardized species, sector, and grid levels, 102 

yielding a standardized data cube. Ultimately, the integrated emission inventory INTAC is created for China, featuring a 103 

resolution of 0.1° on a monthly scale and covering nine air pollutants (i.e., SO2, NOx, CO, NMVOC, NH3, PM10, PM2.5, BC, 104 

OC).  105 

2.1 Components of the integrated emission inventory INTAC 106 

Table 1 lists the essential details about the seven inventories and priority order utilized for integration. Given MEIC’s extensive 107 

coverage across species, sectors, and spatial domains, it functions as the default inventory in our integration, supplementing 108 

the missing data in other inventories. The remaining six inventories can be categorized into three types in sequence: point-109 

source-based inventory (ranked sixth), regional inventories (ranked fifth and fourth), and process-based inventories (ranked 110 

third to first). The point-source-based inventory can directly correct the spatial misallocation of industrial emissions in MEIC 111 

at fine scales (Zheng et al., 2021; Zheng et al., 2017). The regional inventories further enhance local investigations of individual 112 

emission sources and simultaneously refine estimation methods for mobile and area sources (Gu et al., 2023; Zhao et al., 2018; 113 

Zhou et al., 2017b). Process-based inventories typically adopt advanced methods to improve the characterization for emission 114 

processes and parameters specific to particular sectors or species, thereby providing emission totals and distributions that are 115 

more in line with measurements (Huang et al., 2012a; Huang et al., 2012b; Kang et al., 2016; Liu et al., 2016b; Liu et al., 2019; 116 

Liu et al., 2015b; Song et al., 2009; Yin et al., 2019).    117 
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Table 1: List of emission inventories collected in this work. 118 

Priority 

ranking 

Emission inventory and 

developer 
Year Resolution Region Resolution Species 

1 
PKU-NH3 

(Peking University) 

1980–

2017 
Monthly 

Mainland 

China 
0.1° 

NH3 

2 

 

The shipping emission inventory 

for East Asia 

(Tsinghua University) 

2017 Annually East Asia 0.1° SO2/NOx/CO/NMVOC/ 

PM2.5/BC/OC 

3 
The open biomass burning 

emission inventory for China 

(Peking University) 

1980–

2017 
Daily 

Mainland 

China 
~1km 

SO2/NOx/CO/NMVOC/ 

NH3/PM10/PM2.5/BC/OC 

4 The PRD emission inventory 

(Jinan University) 
2017 Monthly PRD 0.05° 

SO2/NOx/CO/NMVOC/ 

NH3/PM10/PM2.5/BC/OC 

5 

The YRD emission inventory 

(Nanjing University/Shanghai 

Academy of Environmental 

Sciences/Jiangsu Provincial 

Academy of Environmental 

Science) 

2017 Annually YRD 0.1° 
SO2/NOx/CO/NMVOC/ 

NH3/PM10/PM2.5/BC/OC 

6 
The industrial point source 

emission inventory for China 

(Tsinghua University) 

2012–

2018 
Monthly 

Mainland 

China 
~1km 

SO2/NOx/CO/NMVOC/ 

NH3/PM10/PM2.5/BC/OC 

7 
MEICv1.3 

(Tsinghua University) 

2008–

2017 
Monthly 

Mainland 

China 
0.25° 

SO2/NOx/CO/NMVOC/ 

NH3/PM10/PM2.5/BC/OC 

 

2.1.1 MEIC 119 

The integrated inventory INTAC is built upon MEIC, a comprehensive database with extensive coverage across time periods, 120 

space, species, and sectors. Developed by Tsinghua University since 2010 (http://meicmodel.org.cn) (Li et al., 2017a; Zheng 121 

et al., 2018), the MEIC provides monthly emissions for air pollutants and CO2 in China from 1990 to the present at a resolution 122 

of 0.25° × 0.25°. It caters to the demand for timely and accurate estimates of atmospheric emissions, gaining widespread 123 

adoption by both domestic and international research institutions. We use 2017 emissions from MEICv1.3 in this study. 124 

MEIC employs several strategies to improve emission estimation parameters. This includes categorizing emission sources 125 

across ~800 sectors, utilizing a technology- and big-data-driven approach for dynamic emission characterization, and 126 
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employing a localized emission factor database (Li et al., 2017a; Zheng et al., 2018). Emission estimates for power, on-road, 127 

and residential sources are enhanced through the use of unit-level data (Liu et al., 2015a), county-level emission estimates 128 

(Zheng et al., 2014), and integration of extensive household surveys (Peng et al., 2019), respectively. MEIC builds an database 129 

encompassing temporal allocation profiles (ranging from yearly to monthly, daily, and hourly) (Li et al., 2017b), spatial 130 

allocation proxies (from province to county, and further to grids) (Geng et al., 2017; Li et al., 2017b; Zheng et al., 2017), and 131 

a speciation framework for NMVOC involving five mechanisms (CB-IV, CB05, SAPRC-07, SAPRC-99, and RADM2) (Li et 132 

al., 2014) (Li et al., 2014) to support the development of model-ready gridded emissions. 133 

Among the seven inventories, MEIC has the lowest priority, and is only considered when the other six cannot provide necessary 134 

emissions for a specific city and source. 135 

2.1.2 The industrial point source emission inventory for China 136 

The proxy-based method used for spatial allocation in MEIC introduces biases in emission mapping, especially at kilometer 137 

scale (Zheng et al., 2021; Zheng et al., 2017). To significantly reduce the uncertainty, we merged an industrial emission 138 

inventory with detailed information on ~100,000 facilities into INTAC. 139 

Compiled by the MEIC team at Tsinghua University for the year 2013 (Zheng et al., 2021) and updated by them for 2017, this 140 

point-based inventory combines three databases investigated under the guidance of the Chinese government, offering a 141 

comprehensive overview of industrial facilities. It includes details on the locations, activity rates, production technology, end-142 

of-pipe pollution control devices, and other parameters. It is worth noting that the facility-level activity data were corrected 143 

using provincial activity data from MEIC as a total constraint to ensure consistency with national totals from statistics (Zheng 144 

et al., 2021). The facility-level, technology-based approach allows for dynamic tracking of emission fluctuations resulting 145 

from technological advancements and tightening emission regulations. Crucially, the use of facility geolocations rather than 146 

relying on spatial proxies like urban population enables the derivation of gridded industrial data at a resolution of ~1 km. This 147 

approach significantly avoids misallocating emissions from rural to urban areas at fine grids, as supported by previous studies 148 

demonstrating its effectiveness in mitigating simulated biases in air pollutant concentrations within densely populated regions 149 

(Zheng et al., 2021). For temporal variations, it employs the same monthly profiles as MEIC, including the production of 150 

various industrial goods or Gross Domestic Product (GDP), as outlined in Li et al. (2017b). The NMVOC speciation also 151 

aligns with the MEIC model. This inventory takes priority over MEIC, indicating that only few industrial sources not covered 152 

in this inventory are substituted with MEIC.  153 

2.1.3 The YRD air pollutant emission inventory 154 

Regional emission inventories within YRD provide a more accurate representation of emissions compared to the national-155 

scale MEIC, as proven by ground and satellite observations (Yang and Zhao, 2019; Zhang et al., 2021; Zhao et al., 2017a; 156 

Zhao et al., 2018; Zhao et al., 2020; Zhou et al., 2017b). This improvement is attributed to the avoidance of outdated or non-157 

localized emission calculation parameters, commonly present in large-scale inventories like MEIC. Here, we merge the 2017 158 
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YRD air pollutant emission inventory into INTAC to achieve state-of-the-art estimates for rapidly changing emissions over 159 

this core area (An et al., 2021; Gu et al., 2023; Zhou et al., 2017b).  160 

Localized field surveys and measurements greatly enhance the reliability of calculation parameters within the YRD inventory. 161 

Highly-resolved emissions for the power sector are acquired through on-site monitoring with high temporal resolution (Zhang 162 

et al., 2019b), rather than relying on static and outdated average emission factors. Facility-level information (e.g., the removal 163 

efficiencies) obtained from local investigation and a segment-based industrial process method enhances the understanding of 164 

both the quantity and spatial patterns of industrial emissions. Considering meteorological factors and land use conditions 165 

during agricultural processes results in more accurate seasonal and spatial distributions of NH3 emissions. (Zhao et al., 2020). 166 

An investigation of in-use machinery is conducted to capture the seasonal emission patterns from off-road machines (Zhang 167 

et al., 2020). Real-world surveys are performed to determine grain straw ratios and household burning proportions, facilitating 168 

the quantification of emissions from biomass-fueled stoves. The PM2.5 and NMVOC speciation profiles are updated based on 169 

multi-instrument sampling and analysis in both current and previous studies (Huang et al., 2018; Zhao et al., 2017a), satisfying 170 

the needs for simulating PM2.5 chemical components and O3. The YRD inventory is collected with a spatial resolution of 0.1 171 

degree and an annually temporal resolution in this study. Only CB05 VOC species are collected. 172 

2.1.4 The PRD emission inventory 173 

The regional emission inventories within the PRD region have demonstrated enhanced reliability compared to previous studies 174 

(Huang et al., 2021; Sha et al., 2021; Zheng et al., 2012). The PRD emission inventory developed by the Jinan University 175 

captures spatial and temporal variations within the PRD region under emission control policies, serving as a foundation for 176 

supporting air quality modeling (Huang et al., 2021; Sha et al., 2021).  177 

The PRD inventory exhibits notable accuracy improvements, achieved by means of big data-driven estimation methods, 178 

updated spatial-temporal allocations, and localized NMVOC speciation profiles. Gridded hourly open biomass burning 179 

emissions are quantified by fusing the fire radiative power data from three satellites, and hourly shipping emissions are 180 

estimated using high-frequency Automatic Identification System (AIS) records. Thirty-one monthly profiles and ten spatial 181 

proxies are updated to reflect spatial-temporal patterns of emissions influenced by economic growth and energy consumption 182 

structural adjustment. Approximately 90% of industrial emissions are disaggregated using exact locations, and novel proxies 183 

(e.g., farmland production potential) have been developed for several sectors. The NMVOC speciation is carried out through 184 

massive localized measurements and literature reviews, manifested as a collection of 480 NMVOC source profiles across eight 185 

sectors and 380 species. The species relevant to the SAPRC-07 chemical mechanism are collected in this work. Additionally, 186 

the inventory encompasses 800 source categories, placing particular emphasis on incorporating new sectors relevant to VOC 187 

emissions. Activity rates are improved by utilizing extensive field surveys and data mining efforts, involving investigations of 188 

production data for 10,000 industrial plants and the gathering of activity-relevant information for 50 million vehicles. Emission 189 

factors that reflect local context are obtained or revised based on source measurements and latest research findings. These 190 

updates help mitigate uncertainties in emission estimates for the PRD region. The PRD inventory is initially collected at a 191 
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monthly resolution and a spatial resolution of 0.05°, with detailed spatial-temporal allocation proxies outlined in Huang et al. 192 

(2021). 193 

2.1.5 The open biomass burning emission inventory in China 194 

As a significant source of CO2, BC, OC and other pollutants, open biomass burning profoundly influences air quality, climate 195 

change, and human health (Reisen et al., 2013). A case study in summer 2011 for the YRD region revealed that during a severe 196 

haze episode, open biomass burning contributed to 37%, 70%, and 61% of PM2.5, OC, and EC emissions, respectively (Cheng 197 

et al., 2014). To address the absence of this source in MEIC, we integrate a high-resolution open biomass burning emission 198 

inventory by Peking University into INTAC (Huang et al., 2012a; Liu et al., 2015b; Song et al., 2009; Yin et al., 2019).  199 

The inventory applies satellite observations to tackle considerable uncertainties associated with provincial statistical data and 200 

overcome the coarse resolution found in previous studies (Ni et al., 2015). The estimation of biomass consumption in the 201 

inventory is based on the fire radiative energy (FRE) approach, which depends on the energy emitted by fires. This approach 202 

helps reduce the biases introduced by burned areas algorithms, especially for small-scale fires. The inventory utilizes the high 203 

spatial resolution land cover dataset GlobeLand30 derived from multispectral images to classify biomass fuel types. Eventually, 204 

daily emissions from forest, grassland, cropland and shrubland are calculated at a 1-kilometer resolution. The reasonableness 205 

is validated by comparing with other datasets, such as the fourth version of the Global Fire Emissions Database (GFED). The 206 

initially collected inventory lacks model-ready VOC species. 207 

2.1.6 The shipping emission inventory in East Asia 208 

In recent years, maritime trade in the East Asian region has significantly increased (Trade and Development, 2014), resulting 209 

in a surge in shipping emissions with substantial impacts on air quality and climate. Previous studies have indicated that East 210 

Asian shipping emissions accounted for 16% of the global total in 2013. Shipping emissions made a growing contribution to 211 

the rise in annual mean PM2.5 concentrations, reaching levels as high as 5.2 μg/m3 in 2015 (Lv et al., 2018). To address the 212 

omission of this emission source in the MEIC, we integrate the shipping emission inventory in East Asia for 2017 into INTAC 213 

(Liu et al., 2016b; Liu et al., 2019).  214 

The inventory introduces an innovative approach based on comprehensive and dynamic ship activity data. A static dataset of 215 

approximately 66,000 vessels is compiled as a foundation, using information from Lloyd’s Register and China Classification 216 

Society. This dataset encompasses various ship properties, including ship category, hull shape, engine rotational speed, engine 217 

capacity, maximum speed capability, build year, and more. High quality AIS data is used to capture ship activities, 218 

incorporating the Maritime Mobile Service Identification identifier, geographical location, real-time speed, and time-related 219 

information. The AIS data is also employed to generate gridded emissions from shipping at a spatial resolution of 0.1°. The 220 

inventory enhances our comprehension of regional-level shipping emissions and significantly alleviates biases arising from 221 

the misallocation of marine fuels, as observed in global studies (Endresen et al., 2007). The collected shipping inventory 222 

provides emissions at an annual resolution for seven species, including SO2, NOx, CO, NMVOC, PM2.5, BC, and OC. 223 
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2.1.7 PKU-NH3 224 

As a prominent alkaline component in the atmosphere, ammonia plays a crucial role in atmospheric chemistry, terrestrial and 225 

aquatic ecosystems through its participation in atmospheric reactions and deposition processes. This study integrates PKU-226 

NH3, a high-resolution ammonia emission inventory for China developed by Peking University. PKU-NH3 is designed to track 227 

the evolution of NH3 emissions amid the rapid increase in grain and meat production in China over the past few decades 228 

(Huang et al., 2012b; Kang et al., 2016). This inventory offers a better grasp on NH3 emissions in China through the application 229 

of a process-based method and more reliable emission factors, in contrast to previous studies (Kurokawa et al., 2013; Li et al., 230 

2017b). Top-down NH3 inversion through satellite observations provides additional validation for the accuracy of PKU-NH3 231 

(Paulot et al., 2014). 232 

Earlier studies of NH3 emissions commonly used fixed EFs, overlooked some ammonia emission sources, and had coarse 233 

resolutions (Ohara et al., 2007; Streets et al., 2003). Unlike previous approaches, the PKU-NH3 incorporates dynamic and 234 

multifactorial EFs and more comprehensive emissions sources. The determination of emission factors takes into account 235 

various parameters related to local conditions and agricultural practices. When estimating NH3 emissions of synthetic fertilizer 236 

application, the model considers five types of fertilizers, as well as factors such as soil acidity, ambient temperature, fertilizer 237 

application technique and dosage, wind speed, and in-situ measurements of NH3 flux. For livestock waste, NH3 emissions are 238 

calculated using a mass-flow approach across four phases of manure management, considering variables such as animal rearing 239 

types, temperature and wind speed. In addition, NH3 emissions from other small sources are also quantified, including 240 

agricultural soil, nitrogen-fixing crop, crop residue compost, excretion of rural populations, open biomass burning, waste 241 

disposal, gasoline vehicles, diesel vehicles, and industrial processes. The NH3 emissions are allocated from provinces into 0.1° 242 

grids based on spatial proxies such as land cover, rural population, and other relevant indicators. Monthly emission factors 243 

shaped by meteorological conditions are used to calculate NH3 emissions from fertilizer application and livestock source at a 244 

monthly level. 245 

2.2 The integration of multi-source heterogeneous data 246 

In the integration process, seven heterogeneous inventories are first normalized in terms of emission sources, species, spatial-247 

temporal resolutions, and then integrated following a priority order to produce a standardized, highly-resolved data cube.  248 

2.2.1 Source mapping 249 

To merge inventories under a unified emission source classification system, the emission sources in the MEIC model are 250 

categorized into 88 standard sectors for mapping (Table S1). The first-level category comprises 10 subcategories, namely, 251 

stationary combustion, industrial process, mobile source, solvent use, agriculture, dust, biomass burning, storage and 252 

transportation, waste treatment and other sources. These are then further subdivided into 88 second-level sources, which take 253 

industrial classification for national economic activities for reference. For example, the industrial process sector encompasses 254 
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emission sources such as the manufacturing of non-metallic mineral products, manufacturing of chemical fibers, manufacturing 255 

of foods, smelting and pressing of ferrous metals, and more. In the initial step of integration, the sectors in each emission 256 

inventory are mapped to the standardized two-level sources.  257 

2.2.2 Species mapping 258 

Then, non-methane volatile organic compounds (NMVOC), particulate matter (PM), and NOx in each inventory are converted 259 

into model-ready species to support CTMs. The species mapping process is grounded in the chemical species mapping methods 260 

in MEIC model (Li et al., 2017b; Li et al., 2014). The model supports aerosol chemical schemes such as AER05 and AER06. 261 

NOx emissions are allocated to NO and NO2 emissions based on ground observations. The step-by-step NMVOC speciation 262 

framework developed in Li et al. (2014) is employed to generate emissions for various gas-phase chemical mechanisms 263 

commonly used in CTMs, including CB-IV, CB05, SAPRC-07, SAPRC-99 and RADM2. The framework incorporates an 264 

explicit assignment approach and updated profiles based on both local measurements and the SPECIATE database v.4.5. The 265 

sources abundant with oxygenated volatile organic compounds (OVOC) are identified, and the incomplete profiles with 266 

missing OVOC fractions are corrected. The accurate speciation mapping helps reduce uncertainties in model-ready emissions. 267 

For inventories providing speciated VOC emissions for certain mechanisms (e.g., the YRD inventory for CB05, PRD inventory 268 

for SAPRC-07), we directly use their emissions, or alternatively, utilize MEIC’s speciation framework to generate model 269 

species for the five chemical mechanisms. 270 

2.2.3 Temporal disaggregation  271 

The seven emission inventories are collected at different temporal resolutions (Table 1) and need to be temporally allocated to 272 

a unified monthly scale for integration. Monthly emissions from PKU-NH3, the PRD inventory, the industrial point source 273 

inventory and MEIC can be directly used for data merge. Daily-level emissions from the open biomass burning inventory are 274 

aggregated to monthly scales through summation. For annual inventory (e.g., the YRD inventory), sector-specific monthly 275 

profiles derived from the MEIC model are used for disaggregation (Li et al., 2017b). For instance, monthly power generation 276 

data from the National Bureau of Statistics describe variations in monthly power emissions. Industrial production or GDP from 277 

the National Bureau of Statistics are employed to account for monthly emission fluctuations related to industrial heating, 278 

boilers, cement, iron and steel, and other industrial processes. Monthly emission factors calculated by the International Vehicle 279 

Emissions model are applied to on-road vehicles. Considering the insignificant monthly variations of Automatic Identification 280 

System data for marine shipping, the annual shipping emissions are uniformly disaggregated across the months.  281 

2.2.4 Spatial allocation 282 

The seven inventories are in different data formats, including point source and gridded formats at varying resolutions, 283 

necessitating spatial harmonization for integration. Although the industrial point source inventory and the open biomass 284 

burning inventory can accurately pinpoint the specific geographic locations of emission sources, the other five inventories rely 285 
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on numerous spatial proxies to disaggregate emissions into grids, which inevitably introduce uncertainties at very fine 286 

resolutions. Therefore, we re-grid the final product to 0.1° to ensure high level spatial accuracy. Gridded emissions finer than 287 

0.1° resolution are aggregated to 0.1°, which is performed in the open biomass burning inventory and the PRD inventory. For 288 

the industrial point source inventory, latitude and longitude coordinates are employed to directly position them within grid 289 

locations. Area sources in MEIC are allocated to grids using spatial proxies within the MEIC model (Li et al., 2017b). For 290 

instance, industrial sources are assigned to grids based on urban population (Schneider et al., 2009). The road network (Zheng 291 

et al., 2014) serves as a proxy for disaggregating emissions of on-road vehicles, while rural population (Schneider et al., 2009) 292 

is used as the proxy for fertilizer and livestock sources. It’s important to mention that uncertainties may arise at city borders if 293 

emissions from adjacent cities come from different inventories during the integration process. To mitigate biases introduced 294 

by border issues, all emissions at 0.1° resolution are first uniformly downscaled to 1 km in preparation for the spatial-temporal 295 

coupling process, and then re-gridded back to 0.1° for the final product. 296 

2.2.5 Spatial-temporal coupling 297 

Finally, following the procedures outlined in Sections 2.2.1 to 2.2.4, all inventories are preprocessed to a standardized format, 298 

encompassing 88 sectors, various species, a spatial resolution of 1 km, and a monthly temporal resolution. This preprocessing 299 

prepares the inventories for merging, ultimately resulting in the generation of a standardized data cube. 300 

The integration is carried out at source-by-source, species-by-species, and grid-by-grid levels, with the process guided by the 301 

priority order of each inventory (Table 1). MEIC serves as the default inventory in our integration, offering extensive spatial 302 

and species coverage, along with spatial proxies, temporal profiles, and NMVOC speciation methods within the model. The 303 

remaining six emission inventories are assigned a predefined priority order. The industrial point source emission inventory for 304 

China takes precedence over industrial emissions in MEIC, substituting proxy-based spatial allocation with precise 305 

geographical coordinates. This extends the applicability of MEIC from a resolution greater than 0.25° to finer scale (Zheng et 306 

al., 2021; Zheng et al., 2017). To achieve fine-grained emission characterization in critical areas, the YRD and PRD emission 307 

inventory enriched with localized data and advanced methods are incorporated to update emissions in these areas. While MEIC 308 

comprehensively estimates emissions for ~800 source categories in China, there may still be omissions for certain emission 309 

sources. The inclusion of inventories for open biomass burning and East Asian shipping helps partially fill this gap. The PKU-310 

NH3, generated by a process-based model to provide a comprehensive understanding of China’s NH3 sources, is utilized to 311 

replace all NH3 emissions in other inventories. The prioritization is performed city by city. For emissions of a particular species 312 

from a specific emission sector, when multiple inventories overlap in city grids, the estimates from the highest-priority 313 

inventory is selected as the final emissions. Through this step, the integrated inventories are developed based on the configured 314 

output settings, such as map projection and spatial-temporal attributes. 315 
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2.3 Evaluation of the emission inventory using WRF/CMAQ model 316 

We apply Weather Research and Forecasting Version 3.9 (WRFv3.9) and Community Multiscale Air Quality Version 5.2 317 

(CMAQ5.2) as the air quality simulation systems. Two nested simulation domains with horizontal resolutions of 36 and 12 318 

km are used (Fig. S1). The mother domain (172 × 127 cells) covers the entire Chinese mainland and parts of the neighboring 319 

countries, and the nested domain (226 × 241 cells) includes the heavily polluted Eastern China. Four-month (January, April, 320 

July, and October) simulations in 2017 are carried out, with a 7-day spin-up period preceded each month. The vertical 321 

resolution in WRF is set with 45 sigma levels ranging from the surface up to 100 hPa. Subsequently, it is collapsed into 28 322 

layers through the Meteorology-Chemistry Interface Processor (MCIP) before being input into CMAQ.  323 

The configuration of WRF and CMAQ model in this study follows Cheng et al. (2019). The meteorological initial and boundary 324 

conditions for the simulation are provided by the final reanalysis data from the National Centers for Environmental Prediction 325 

(NCEP-FNL, https://rda.ucar.edu/datasets/ds083.2/). The schemes for shortwave radiation, longwave radiation, land surface 326 

processes, boundary layer, cumulus parameterization, and cloud microphysics are selected as the New Goddard scheme (Chou 327 

et al., 1998), RRTM scheme (Mlawer et al., 1997), Pleim–Xiu surface layer scheme (Xiu and Pleim, 2001), ACM2 PLB 328 

scheme (Pleim, 2007), Kain-Fritsch scheme (Kain, 2004), and WSM6 scheme (Hong and Lim, 2006), respectively. 329 

Observational nudging and soil nudging are employed to enhance the meteorological simulation. Regarding CMAQ model, 330 

the chemical mechanisms for gas-phase, aqueous-phase, and aerosol are configured as CB05, the Regional Acid Deposition 331 

Model (RADM), and AERO6, respectively. Photolysis rates are calculated online using the simulated aerosols and ozone 332 

concentrations. Anthropogenic emissions outside China are taken from MIX inventory (Li et al., 2017b). The integrated 333 

inventory INTAC and MEIC are used for comparison within China. Biogenic emissions are calculated using the Model of 334 

Emissions of Gases and Aerosols from Nature version 2.1 (MEGANv2.1), while dust and lightning emissions are not 335 

considered in this study. 336 

The performances of WRF for the meteorological parameters are evaluated against the Integrated Surface Database (ISD) from 337 

the National Climatic Data Center (NCDC) (ftp://ftp.ncdc.noaa.gov/pub/data/noaa/). Evaluation metrics include correlation 338 

coefficient (R), mean bias (MB), root mean square error (RMSE), normalized mean bias (NMB), and normalized mean error 339 

(NME). Table S2 demonstrates good agreement between WRF model results and ground-level observations. Similar 340 

configurations have been also validated in previous studies (Cheng et al., 2019; Cheng et al., 2021a; Cheng et al., 2021b). 341 

CMAQ modeling performance are assessed using hourly observed concentrations of air pollutants obtained from the China 342 

National Environmental Monitoring Center (http://www.cnemc.cn/). 343 
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3 Results 344 

3.1 China’s emission characteristics in 2017 345 

We use the integrated emission inventory to analyze air pollutant emissions in China for the year 2017. Major air pollutant 346 

emissions are estimated as follows: 12.3 Tg SO2, 24.5 Tg NOx, 141.0 Tg CO, 27.9 Tg NMVOC, 9.2 Tg NH3, 11.1 Tg PM10, 347 

8.4 Tg PM2.5, 1.3 Tg BC, and 2.2 Tg OC. The emission data, organized into power, industry, residential, transportation, 348 

agriculture, solvent use, shipping, and open biomass burning sectors, are available for download from 349 

https://doi.org/10.5281/zenodo.10459198 (Wu et al., 2024) and http://meicmodel.org.cn/intac. The following sections will 350 

characterize emissions in detail across sectors, fuel types, and spatial distributions.  351 

3.1.1 By sectors 352 

Table 2 displays emissions specific to power, industry, residential, transportation, agriculture, solvent use, shipping, and open 353 

biomass burning sectors in the INTAC. For pollutants primarily originating from fuel combustion and industrial processes 354 

(e.g., SO2, NOx, CO, PM10, and PM2.5), the power, industry, and transportation sources collectively contribute significantly to 355 

their emissions, ranging from 56% to 83%. Industrial sources take a leading role in various atmospheric pollutants, contributing 356 

more than 30% for SO2, NOx, CO, NMVOC, PM10, and PM2.5 emissions. Due to low combustion efficiency and a lack of 357 

emission control measures, residential sources exhibit a high emission factor for products of incomplete combustion, leading 358 

to 40% of CO emissions, 48% for BC, and 73% for OC. Solvent sources exclusively produce NMVOC emissions, constituting 359 

33% to the overall emissions. The complexity of VOC emission origins is evident in the diverse range of contributing sources. 360 

Agricultural sources dominate NH3 emissions, comprising an 83% share of total emissions. As described in Sect. 2.1.7, the 361 

PKU-NH3 incorporates a wide variety of NH3 sources, providing a more comprehensive understanding of the sectors 362 

contributing to NH3 emissions. Insignificant sources may exert large influence in specific regions or periods, such as during 363 

large wildfires or in cities with heavy traffic. Additionally, the contribution of the supplemented open biomass burning source 364 

cannot be overlooked, especially for OC (7%) and NMVOC (6%). 365 

Figure 2 consolidates 88 standardized emission sources into 25 categories, allowing for a more detailed analysis of sectoral 366 

emission patterns compared to Table 2. Owing to substantial coal use in industrial and power sectors, along with sulfur-rich 367 

ship fuels, prominent contributors to SO2 emissions include power, shipping, stationary combustion, and manufacture of non-368 

metallic mineral products sources, accounting for 15%, 13%, 12%, and 12% respectively to total SO2 emissions. This indicates 369 

that achieving further reductions in SO2 emissions requires the implementation of more energy-efficient end-of-pipe control 370 

measures, and adoption of low-sulfur fuels. The dominant origins of NOx emissions are from the freight truck, power 371 

generation, and shipping sectors, representing 21%, 15%, and 13% of the total emissions. Both freight trucks and vessels 372 

extensively use compression ignition engines, prone to generating NOx emissions under high-temperature and oxygen-rich 373 

conditions. Implementing strict vehicle standards is crucial to effectively reduce NOx emissions from exhaust gases. Coatings, 374 

other industrial processes, and passenger vehicle sources together account for 51% of anthropogenic NMVOC emissions. The 375 
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major contributors to primary PM2.5 emissions include biomass fuel, the manufacture of non-metallic mineral products, and 376 

the smelting and pressing of ferrous metals source, making up 22%, 17%, and 10% of the total emissions, respectively. It’s 377 

noteworthy that the use of biomass fuels (e.g., rice straw, firewood) for cooking or heating in rural areas results in considerable 378 

PM2.5 emissions, especially in provinces like Sichuan, Anhui, Shandong, and Heilongjiang. 379 

 380 

Table 2: Anthropogenic emissions of air pollutants by sectors in the 2017 INTAC inventory for China (Units: Gg). The shipping sector 381 
includes inland waterway sources and the marine vessels. 382 

Sectors SO2 NOx CO NMVOC NH3 PM10 PM2.5 BC OC 

Power 1822 3790 4909 152 14 981 568 6 0 

Industry  6066 8800 52828 8824 249 5603 3620 308 285 

Residential 2361 861 55895 3676 629 3516 3088 606 1649 

Transportation 341 7751 22597 4123 619 533 493 257 95 

Agriculture 0 0 0 0 7609 0 0 0 0 

Solvent 0 0 0 9255 0 0 0 0 0 

Shipping 1642 3077 391 191 2 73 264 43 49 

Open biomass burning 21 215 4403 1659 76 409 355 35 167 

Total 12253 24494 141023 27881 9198 11117 8388 1255 2245 

 

 

Figure 2: Sector-specific distributions of emissions in the 2017 INTAC inventory for China. (a), (b), (c) and (d) represent the sectoral 383 
contributions for SO2, NOx, NMVOC and PM2.5, respectively. The figure only displays the top eight contributing sources, while sources 384 
excluding these are categorized as “other sources”. 385 
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3.1.2 By fuel types 386 

Figure 3 illustrates the proportions of major air pollutant emissions in 2017 for each fuel type. Fossil fuel combustion 387 

significantly dominates the emissions of PM10, PM2.5, CO, BC, SO2, NOx, with proportion ranging from 38% to 80%. The coal 388 

combustion accounts for 56% of SO2 emissions, with power, residential activities and industrial production as the primary 389 

emitter. Meanwhile, petroleum combustion, mainly from marine vessels, constitutes 20% of SO2 emissions. For NOx emissions, 390 

petroleum combustion contributes 48% of the total, predominantly arising from freight trucks (5.2 Tg), marine vessels (3.1 391 

Tg), and passenger vehicles (1.0 Tg). Coal combustion processes, such as power and industrial boiler also result in substantial 392 

NOx emissions (31%). The biomass fuel source causes 53% of OC emissions. Emissions of NMVOC and NH3 are primarily 393 

associated with non-combustion processes. 394 

 

Figure 3: Fuel-specific distributions of major air pollutant emissions in the 2017 INTAC inventory for China. 395 

3.1.3 Spatial distribution 396 

We present the gridded emission maps of major air pollutants in Fig. 4. Emissions from anthropogenic sources in China exhibit 397 

significant spatial heterogeneity. Due to economic growth and industrial activities, air pollutant emissions are primarily 398 

concentrated in the central and eastern regions of China, especially in economically developed urban clusters such as the 399 

Beijing-Tianjin-Hebei (BTH) region, the YRD, the PRD, as well as in regions like Sichuan and Chongqing. These four key 400 
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areas, as depicted in Fig. S2, collectively account for 25%, 33%, 35%, 37%, 30%, 35%, 33%, 27%, and 29% of the national 401 

emissions of SO2, NOx, CO, NMVOC, NH3, PM10, PM2.5, BC, and OC, respectively. Moreover, the emission maps at a fine 402 

spatial resolution of 0.1° × 0.1° present the local variations in emission patterns, identifying numerous hotspots in small areas 403 

and showcasing distinct gradients in emissions. Table 3 shows the provincial-level emissions (except Hong Kong, Macao, and 404 

Taiwan), and a map depicting provincial boundaries is displayed in Fig. S2. The emission levels in specific provinces are 405 

determined by factors such as resource endowments, industrial structure, energy consumption, and emission control measures. 406 

Taking SO2 as an example, the top five provinces are Shanxi, Shandong, Hebei, Guizhou, and Inner Mongolia, collectively 407 

accounting for 36% of the national total SO2 emissions. The Guizhou Province, located in the southwest of China, is 408 

characterized by high-sulfur coal and a relatively gradual implementation of pollution control measures, which result in 409 

elevated SO2 emissions. In other four provinces, large scale heavy industries have led to substantial coal consumption and 410 

correspondingly higher SO2 emissions. Provinces with a less industry-focused economic structure and lower energy 411 

consumption, including Tianjin, Hainan, Qinghai, Beijing, and Tibet, exhibit the lowest SO2 emissions, accounting for 412 

approximately 2% of the national total.  413 

 

Figure 4: Spatial distributions of major air pollutant emissions in the 2017 INTAC inventory for China. 414 
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Table 3: Anthropogenic emissions of air pollutants by provinces in the 2017 INTAC inventory for China (Units: Gg). Emissions from 415 
the shipping emission inventory in East Asia are not included. 416 

Sectors SO2 NOx CO NMVOC NH3 PM10 PM2.5 BC OC 

Anhui 315  846  5955  1089  341  596  443  49  114  

Beijing 26  231  1394  516  36  61  49  7  16  

Chongqing 396  375  2419  564  150  207  158  22  47  

Fujian 161  530  2344  895  149  202  152  22  49  

Gansu 189  351  2221  358  276  163  126  22  42  

Guangdong 430  1566  6897  1268  351  783  356  17  67  

Guangxi 265  434  3578  808  323  355  275  29  83  

Guizhou 652  355  6629  508  236  459  347  76  125  

Hainan 47  95  584  172  57  46  37  5  14  

Hebei 667  1697  11731  1673  523  708  528  88  125  

Heilongjiang 246  822  7034  1419  379  495  403  65  156  

Henan 367  1256  7962  1500  678  620  459  79  108  

Hubei 513  703  6341  1183  358  455  354  68  118  

Hunan 518  633  6802  953  330  481  363  77  122  

Inner Mongolia 594  1211  5747  831  562  459  340  56  89  

Jiangsu 391  1217  8628  1529  498  667  496  50  105  

Jiangxi 179  449  3676  646  209  273  195  28  52  

Jilin 235  652  3973  847  207  307  237  39  76  

Liaoning 459  1200  5835  1316  268  432  325  54  86  

Ningxia 226  327  766  178  79  91  63  7  9  

Qinghai 43  106  598  129  131  59  45  5  8  

Shaanxi 334  549  3781  820  273  294  221  39  68  

Shandong 946  2134  11469  2846  696  897  678  105  150  

Shanghai 114  469  1130  342  29  104  86  15  6  

Shanxi 977  964  6017  756  199  555  415  64  81  

Sichuan 379  777  6362  1478  646  463  371  56  141  

Tianjin 90  333  1434  573  33  81  61  9  12  

Xinjiang 257  608  2639  632  516  218  158  23  32  

Xizang 1  52  149  46  149  15  12  2  5  

Yunnan 332  435  3823  576  398  302  230  38  75  

Zhejiang 293  670  3009  1342  118  270  195  22  22  
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3.2 Improved accuracy of China’s anthropogenic emissions by INTAC 417 

3.2.1 Comparison of emission magnitudes in INTAC with MEIC across sectors and regions 418 

The INTAC inventory improves the representation of anthropogenic air pollutant emissions by incorporating a large number 419 

of industrial point sources, integrating high-resolution regional inventories, and supplementing missing emission sources in 420 

MEIC. Remarkable differences between INTAC and MEIC are illustrated in Fig. 5 across regions and sectors. Compared to 421 

MEIC, the INTAC inventory shows higher level of 16.7%, 11.5%, 10.8%, 11.0%, and 9.1% for SO2, NOx, PM10, PM2.5, and 422 

OC emissions, respectively. However, it indicates lower levels of 6.3% and 10.6% for NMVOC and NH3. CO and BC 423 

emissions exhibit good agreement between the two inventories, with differences lower than 3.9%. In comparison to MEIC, the 424 

supplementary emission sources in INTAC—specifically, open biomass burning and marine shipping—account for the 425 

majority of increased emissions, contributing 95%, 89%, and 74% for SO2, CO, and PM2.5, respectively. Additionally, the 426 

incorporation of PKU-NH3 in INTAC leads to a 21% decrease in NH3 emissions from agricultural sources, while NH3 427 

emissions from residential sources and transportation increase by 99% and 13.1 times, respectively. Such difference in 428 

agricultural sources is mainly caused by the estimates of synthetic fertilizer (Kang et al., 2016), particularly concerning the 429 

treatment of fertilizer types and corresponding emission factors. 430 

 

Figure 5: Inter-comparisons of emission estimates between the INTAC inventory and MEIC. (a) shows the difference by sectors, and 431 
(b) presents the ratio of emissions in INTAC to those in MEIC.   432 
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Many discrepancies between MEIC and INTAC arise from the integration of regional emission inventories. As presented in 433 

Fig. 5b, notable disparities are observed in the YRD and PRD region. Estimates for NOx emissions in the YRD region are 434 

approximately 88% of those derived from the MEIC model. This highlights an enhanced precision attributable to reliable 435 

assessments of denitrification efficiency in power plants and the measured NOx emission factors for both power plants and 436 

boilers within the integrated YRD inventory, as supported by previous research studies (Zhao et al., 2018). INTAC’s estimates 437 

for NMVOC emissions in the YRD region are 26% lower than estimates in MEIC. The overestimation in MEIC mainly results 438 

from the uncertainties of solvent use source, particularly coating and printing and dyeing processes. The integrated YRD 439 

emission inventory employs more accurate calculation parameters for NMVOC, such as statistical data from local city 440 

yearbooks, industry association reports, and apparent consumption of solvents. Furthermore, the speciation profiles of 441 

NMVOC are localized and corrected based on the literature research and measurements. In the PRD region, The NOx emissions 442 

from INTAC are 41% higher than MEIC estimates, with non-road sources and non-metallic mineral products contributing 45% 443 

and 40% to this difference, respectively. The PRD inventory employs a detailed calculation approach for shipping emissions 444 

based on AIS data, in contrast to the simplified approach for inland waterway sources in MEIC. The NOx emissions from 445 

industrial processes of brick and flat glass manufacturing are not considered in MEIC, which is a deficiency that is addressed 446 

in the integrated PRD inventory. INTAC’s NMVOC emissions are approximately 59% of those from MEIC. The disparity is 447 

particularly notable in industrial and solvent use sources, contributing 49% and 35%, respectively, to the observed difference. 448 

In INTAC, nearly half of the VOC emission factors for industrial solvent sources are based on local measurements, and a 449 

preference for raw material-based calculations over product-based ones reduces uncertainty in the estimation. For significant 450 

VOC-emitting sources like cleaning solvents, MEIC employs an emission factor of 1000 g/kg, whereas the PRD inventory 451 

uses 850 g/kg. In the case of oil refineries, the emission factors are 2.76 g/kg for MEIC and 1.82 g/kg for the PRD inventory. 452 

3.2.2 Impact of point source contributions  453 

The most accurate method for obtaining emissions at finer-scale grids relies on spatial allocation based on precise geographical 454 

coordinates. In MEIC, the majority of emission sources are represented as area sources and distributed onto grids using spatial 455 

proxies such as urban population, except for power plants. In contrast, the increased proportion of industrial point source 456 

emissions in INTAC significantly constrains the uncertainties associated with spatial proxies. Figure 6 shows the inter-457 

comparisons of the percentage of point, on-road, and area source emissions between the INTAC and MEIC. Air pollutants, 458 

especially those dominated by industrial combustion sources like SO2, NOx, PM10, and PM2.5, exhibit a significantly higher 459 

proportion of point source emissions within INTAC compared to MEIC. In MEIC, the proportion of point source emissions 460 

for SO2, PM10, NOx, and PM2.5 is 17%, 9%, 19%, and 7%, respectively. However, in the INTAC inventory, these percentages 461 

substantially increase to 66%, 54%, 52%, and 48%, respectively, indicating a more accurate representation of spatial patterns. 462 

For other species with emissions mainly from area sources (e.g., residential and transportation), there are limited improvements 463 

in the proportion of point source emissions in INTAC.  464 
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Figure 6: Inter-comparisons of the percentage of point, on-road, and area source emissions between the INTAC inventory and MEIC.  465 

To further assess the impact of point sources, Figure 7 takes SO2 and YRD region as an example to compare the spatial 466 

emission patterns between INTAC and MEIC. Figures 7c–e reveal that MEIC tends to overestimate emissions in urban centers 467 

and underestimate emissions in rural areas compared to INTAC. Amid economic growth and rapid urbanization, MEIC’s use 468 

of urban population as a proxy for spatial allocation becomes impractical as many factories relocate from city centers to rural 469 

areas. To elucidate the difference between population-based and point-source-based allocation methods in emissions mapping, 470 

we present the cumulative percentage of SO2 emissions in MEIC and INTAC based on descending population orders in Fig. 471 

7f. We use the grid groups where densely populated areas contribute 50% of SO2 emissions in MEIC as an example, and 472 

compare them with the cumulative percentage in INTAC across various grid sizes. The results show that at a resolution of 473 

0.05°, INTAC only accounts for 17% of the emissions, while it reaches to 48% as the grid size increases to 1.0°. This suggests 474 

that at a fine grid scale, MEIC tends to allocate more emissions to densely populated urban areas, while INTAC allocates a 475 

larger proportion to suburban and rural areas, aligning better with the real-world emission spatial patterns. This mitigation of 476 

bias through INTAC is especially notable at finer resolutions. The close cumulative percentage at 1.0° in the two inventories 477 

can be attributed to the fact that urban and suburban areas often fall within the same grid, leading to a decreasing enhancement 478 

in spatial accuracy achieved by INTAC. Figure 7g further presents the correlation between the spatial patterns of SO2 emissions 479 

in INTAC and various spatial proxies. At a resolution of 1.0°, the correlation coefficients between emission distributions and 480 

factors (i.e., road networks, nighttime lights, total population, urban population, and rural population) fall within the range of 481 

0.55 to 0.79. Nevertheless, at a resolution of 0.05°, the correlation coefficients range from 0.05 to 0.13. This indicates that at 482 

higher spatial resolutions, INTAC substantially reduces the bias introduced by spatial proxies in MEIC. 483 
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Figure 7: Spatial pattern analysis of emissions in the INTAC inventory, using SO2 emissions as an example. (a) and (b) display the 484 
spatial distributions of SO2 emissions in MEIC and INTAC, respectively. MEIC emissions have been downscaled from 0.25 degrees to 0.1 485 
degrees for comparison. To compare MEIC and INTAC in details, a zoom-in is applied to the YRD region. (c), (d), and (e) show spatial 486 
distributions of SO2 emissions in MEIC, INTAC and their difference. Circles in (e) represent the center of a city. (f) compares cumulative 487 
percentage of SO2 emissions in the INTAC inventory with those in MEIC across different spatial resolutions. The gridded SO2 emissions, 488 
ranging from resolutions of 0.05° to 1.0°, are cumulated in descending order of populations. The percentage annotations in different colors 489 
indicate the level of accumulated SO2 emissions in INTAC at various spatial resolutions, when SO2 emissions in MEIC reach 50% 490 
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accumulation. (g) shows correlation coefficient between SO2 emissions in the INTAC inventory and multiple spatial proxies at different grid 491 
sizes. 492 

3.3 Improvements on air quality modelling by INTAC 493 

3.3.1 Overall performance in key regions 494 

We conduct simulations using the WRF-CMAQ model driven by INTAC and MEIC separately to evaluate the improvements 495 

in modeled air pollutant concentrations. Table 4 evaluates the simulated emissions in 74 major cities (locations depicted in Fig. 496 

S2) against in-situ observations, with corresponding scatter plots shown in Fig. S3. The INTAC demonstrates an improved 497 

agreement between modeled concentrations and ground-level observations, which benefits from the integrated high resolution 498 

inventories. Compared to MEIC, INTAC leads to a decline in the mean bias of simulated major pollutant concentrations by 2–499 

14 μg/m³, a reduction in the root mean square error by 4–19 μg/m³, and a decrease in the normalized mean error by 4–71%. 500 

This finding indicates that INTAC produces a more accurate characterization of emissions in China overall. Furthermore, 501 

given that atmospheric pollution monitoring stations are mainly located in urban areas in China, the observed differences 502 

suggest that the INTAC can mitigate the overestimation of major pollutant concentrations in urban centers. As discussed in 503 

Sect. 3.2.2, MEIC overestimates emissions in urban areas and underestimates them in rural and suburban areas, consequently 504 

introducing uncertainties into air quality modeling. The improved accuracy in spatial distributions within INTAC significantly 505 

contributes to enhancing the overall accuracy of air pollutant modeling.  506 

Table 4: The discrepancies between simulated SO2, NO2 and PM2.5 concentrations and observed values for 74 major cities at a 507 
resolution of 12 km, using MEIC and INTAC as emission inputs. The statistical metrics used for comparison include R, MB, and RMSE. 508 
The bold font represents the difference of modeling performance between INTAC and MEIC. 509 

Pollutants Inventory MB (μg/m3) RMSE (μg/m3) NME (%) 

SO2 

INTAC 11 30 92 

MEIC 25 49 163 

Difference -14 -19 -71 

NO2 

INTAC 7 22 43 

MEIC 18 31 60 

Difference -11 -9 -17 

PM2.5 

INTAC 6 35 46 

MEIC 8 39 50 

Difference -2 -4 -4 

 

Figure 8 further compares the overall simulation performance between INTAC and MEIC in three key regions (BTH, YRD, 510 

and PRD), with corresponding scatter plots shown from Fig. S4 to S6. Regarding PM2.5 and its precursors, MEIC shows a 511 

considerable mean bias of up to 36 μg/m³ and a root mean square error of up to 59 μg/m³ in key regions. In contrast, INTAC 512 
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demonstrates the maximum MB values of 15 μg/m³ and RMSE values of 40 μg/m³. The correlation coefficients between 513 

simulated and observed concentrations of the three air pollutants are generally lower in MEIC compared to those in INTAC. 514 

The modeling performance driven by INTAC, particularly for short-lived pollutants, experiences significant improvement due 515 

to their strong correlation with spatial distributions of emission sources. Nonetheless, discrepancies between modeled and 516 

observed surface concentrations still exist because of uncertainties from meteorological, physical, and chemical processes 517 

within chemical transport models. Moreover, emission sources such as residential, transportation, agriculture in INTAC are 518 

treated as nonpoint sources, and their allocation to grids using spatial proxies can introduce biases to air quality modeling. It 519 

is noteworthy that simulated ammonium concentrations by INTAC agree better with ground measurements than MEIC (Table 520 

S3). While NH4
+ concentrations are influenced by secondary chemical reactions, the improved model performance still reflects 521 

the benefits from the integration of PKU-NH3. 522 

 

Figure 8: The Comparison of modeling performance across key regions (i.e., BTH, YRD, PRD) when using MEIC and INTAC as 523 
emission inputs, respectively. The statistical metrics used for comparison include R, MB, and RMSE. The regions under comparison 524 
comprise the BTH, YRD, and PRD.  525 

3.3.2 Improvements across different spatial resolutions 526 

To provide a more in-depth assessment of improved spatial patterns in INTAC, Figure 9 categorizes grid cells into different 527 

bins based on their urban population and calculates the ratio of simulated pollutant concentrations to ground observations for 528 

both INTAC and MEIC in each category. The results demonstrate that as urban population increases, the enhanced model 529 

performance of INTAC over MEIC for SO2, NO2 and PM2.5 becomes more evident. Specifically, when the urban population 530 

is less than 50,000, both INTAC and MEIC exhibit a median range of simulated-to-observed concentration ratios close to 1. 531 

However, as the urban population exceeds 550,000, the average range for MEIC widens to 1.4–5.2, whereas it remains within 532 

the range of 0.9–1.0 for INTAC. This indicates a significant improvement in mitigating the overestimation of emissions in 533 

densely populated areas by INTAC. The incorporation of the industrial point source emission inventory for China, along with 534 
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the YRD and PRD emission inventory significantly increases point source shares in INTAC, and thus producing better spatial 535 

representations for real-world emission distributions and smaller simulated deviations. 536 

Model performance differences between MEIC and INTAC are influenced by grid size. Figure 10 presents the comparison 537 

between modeled SO2, NO2 and PM2.5 concentrations against ground observations for 74 major cities at resolutions of 36 and 538 

12 km. Increasing spatial resolution does not lead to a reduction in simulation errors, especially for MEIC. As the horizontal 539 

resolution increases from 36 km to 12 km, the mean biases of simulated SO2, NO2, and PM2.5 concentrations using MEIC as 540 

input show an increase from 37% to 143%, 11% to 46%, and -3% to 15%, respectively, when compared to in-situ observations. 541 

In contrast, the simulation results using INTAC as input exhibit better agreement with ground observations, with mean biases 542 

for SO2, NO2, and PM2.5 increasing from 23% to 64%, -0% to 17%, and 2% to 11%, respectively. This is due to the fact that 543 

the deviations in finer grid cells, whether overestimated or underestimated, tend to cancel out at a coarse spatial resolution. 544 

The decoupling between emission spatial distributions with proxies at finer grids leads to more noticeable biases in air quality 545 

modeling. Therefore, the findings suggest that the INTAC developed in this study can effectively constrain uncertainties in 546 

emissions and the modeling bias, especially at fine spatial scales. The improvement will help tackle emerging challenges in 547 

high-resolution air quality modeling in China. 548 

 

Figure 9: Comparisons of modeling performance between INTAC and MEIC in different ranges of urban population. The 12 km 549 
grids are categorized to different bins according to the urban population residing within each grid. The ratio of simulated pollutant 550 
concentrations (Sim) to observed concentrations (Obs) for major pollutants (SO2, NO2, and PM2.5) are calculated. The boxplot presents the 551 
upper quartile, median (red dot), and lower quartile of the ratios. 552 
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Figure 10: The comparison of modeled air pollutant concentrations and ground observations for 74 cities at 36 and 12 km resolutions, 553 
using MEIC and INTAC as emission inputs, respectively. The black dashed line represents the observational mean, and the annotations 554 
above the bar charts indicate the mean biases between simulated concentrations and the corresponding observed values. 555 

4 Discussion 556 

Both qualitative and quantitative uncertainty assessments are essential components of a comprehensive inventory for policy 557 

or scientific purposes. Approaches such as error propagation and Monte Carlo simulation are commonly used for quantitative 558 

uncertainty analysis in China’s emission inventory (Lu et al., 2011; Streets et al., 2003; Zhao et al., 2011; Zhao et al., 2017b). 559 

However, this study uses an integrated method rather than a unified framework to compile the high resolution emission 560 

inventory for China. Collecting only emission quantities from the seven inventories without detailed calculation parameters 561 

makes it challenging to assess the overall uncertainties of INTAC here. We have summarized the estimated uncertainty range 562 

for components of INTAC in Table 5, where such information is available. Although the uncertainties might be reported for a 563 

year other than 2017, they still provide a rough representation of the uncertainty range in major air pollutant emission estimates 564 

within INTAC. Species such as SO2 and NOx exhibit relatively low uncertainties, benefiting from well-established estimates 565 

for large-scale combustion sources. The considerable uncertainties observed in BC and OC emissions may be attributed to 566 

inaccuracies in the emission factors of the residential sector. Further details regarding the uncertainties of each component 567 

inventory can be found in corresponding literature (An et al., 2021; Huang et al., 2021; Kang et al., 2016; Liu et al., 2016b; 568 

Yin et al., 2019; Zhao et al., 2011). 569 

The uncertainties of INTAC also arise from the integrated process: (1) The emission sectors in all inventories need to be 570 

mapped to the 88 standard sectors first. Due to limited foundational information for an aggregated sector’s disaggregation, this 571 

process may introduce biases for those who initially provide coarser source categories. For example, if an inventory only offers 572 

one aggregated sector for power, which needs to be broken down into four subsectors (i.e., production of power, supply of 573 

power, production of industrial heat power and production of residential heat power). We use the energy consumption for 574 

corresponding sectors from the statistical yearbook as a reference basis for this allocation, which is a relatively reliable method 575 

despite potential deviations. (2) To generate speciated VOC species, sectoral NMVOC emissions in each inventory need to be 576 
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matched to corresponding source profiles from the MEIC model. Discrepancies in emission source mapping can impact the 577 

outcomes, which will be overcome by gathering more detailed sectoral information for each inventory or directly collecting 578 

speciated species in future studies. (3) The INTAC is made publicly available at a monthly scale, given that the majority of its 579 

components are gathered on a monthly or annual scale. The temporal disaggregation to finer resolutions for modeling is 580 

achieved using empirically selected weighting factors in the MEIC model. However, it is noteworthy that the parameters 581 

employed for allocating emissions to daily or hourly scales remain fixed and do not vary over time or region, introducing 582 

additional uncertainties. In the future, we plan to incorporate more advanced data or method (e.g., real-time emission 583 

measurements) to enhance temporal accuracy at finer scales, as indicated in the previous work for the power sector (Wu et al., 584 

2022). (4) The border issue is inevitable when emissions for the same species in two adjacent cities are derived from different 585 

inventories. A typical example is the cities located at the boundary of the YRD or the PRD regions. In the INTAC, we 586 

downscale all emissions to 1 km before spatial-temporal coupling process, thereby mitigating this uncertainty to some extent. 587 

 

Table 5: Uncertainties in the inventory components of INTAC, contingent upon the availability of such information (Unit: %). 588 

Emission 

inventory  

Reporting 

year 
SO2 NOx CO NMVOC NH3 PM10 PM2.5 BC OC References 

PKU-NH3 2012     
-26–

25 
    

(Kang et 

al., 2016) 

The shipping 

emission 

inventory for 

East Asia 

2013 ±4     ±4     ±5     ±4       ±4     ±4   ±4     
(Liu et al., 

2016b) 

The open 

biomass burning 

emission 

inventory for 

China 

2003–

2017 

-67–

67 

-78–

98  

-54–

56 
 

-44–

89 

-74–

84 

-65–

65 

-75–

100 

-74–

81 

(Yin et al., 

2019) 

The PRD 

emission 

inventory 

2017 
-17–

20 

-25–

28  

-30–

39 
-34–50 

-50–

86 

-45–

60 

-43–

62 

-53–

116 

-54–

160 

(Huang et 

al., 2021) 

The YRD air 

pollutant 

emission 

inventory 

2017 
-29–

36 

-28–

33  

-42–

75 
-44–68 

-58–

117 

-36–

62 

-30–

46 
  

(An et al., 

2021) 

2005 
-14–

13 

-13–

37 
   

-14–

45 

-17–

54 

-25–

136 

-40–

121 

(Zhao et 

al., 2011) 

 

The INTAC for 2017 is subject to some limitations: (1) In the integrated method, emissions data for the same city and species 589 

across different sectors may come from different datasets. Similarly, emissions data for different species within the same city 590 

and sector may also originate from different datasets. The utilization of species ratios requires careful consideration in these 591 

cases. (2) Limited resources present a substantial challenge in gathering emission inventories over extended time series from 592 
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diverse research institutions within the scope of this study. Consequently, we exclusively present the INTAC for the year 2017, 593 

with the possibility of extension to other years in subsequent research. 594 

5 Data Availability 595 

Data described in this manuscript can be accessed at Zenodo under https://doi.org/10.5281/zenodo.10459198 (Wu et al., 2024) 596 

and http://meicmodel.org.cn/intac. 597 

6 Concluding remarks 598 

Compiling a comprehensive bottom-up emission inventory for China that achieves both extensive coverage and high resolution 599 

poses a significant challenge. In this work, we construct a 0.1° resolution integrated inventory for 2017 through the fusion of 600 

multi-source emission inventories. An integration model has been developed to effectively couple heterogeneous emission 601 

datasets, aimed at generating a standardized data cube with consistent sectors, species, and spatial-temporal resolution. The 602 

INTAC is created through source mapping, species mapping, temporal disaggregation, spatial allocation and spatial-temporal 603 

coupling. Six representative emission inventories focusing on national and regional scales, as well as key species and sources 604 

in China are merged with MEIC. This integration harnesses the strengths of each inventory, resulting in an improved depiction 605 

of emission totals and spatial distribution patterns for China. 606 

We find that the total emissions of SO2, NOx, CO, NMVOC, NH3, PM10, PM2.5, BC, and OC in INTAC for 2017 are 12.3, 24.5, 607 

141.0, 27.9, 9.2, 11.1, 8.4, 1.3 and 2.2 Tg, respectively. Industrial production serves as the main source of various atmospheric 608 

pollutants. Residential sources contribute over 40% to CO, BC and OC emissions. Apart from agricultural sources, which 609 

account for 83% of NH3 emissions, the contributions from various minor emission sources cannot be overlooked. This study 610 

emphasizes the significance of shipping emissions, particularly in contributing to SO2 (13%) and NOx (13%). Fossil fuel 611 

combustion dominates the emissions of PM10, PM2.5, CO, BC, SO2, and NOx, ranging from 38% to 80%. The enhancement in 612 

emission estimates for China in INTAC is demonstrated by the comparison with MEIC. For instance, the incorporation of 613 

numerous point sources has notably addressed MEIC’s tendency to overestimate emissions in urban centers, particularly at 614 

higher spatial resolutions. In comparison to MEIC, INTAC exhibits a mean bias reduction in simulated concentrations of major 615 

pollutants against ground observations across 74 cities, ranging from 2–14 μg/m³. The improvement in model performance 616 

achieved by INTAC is particularly noticeable at finer spatial resolutions. 617 

Our study offers an efficient framework for creating highly-resolved emission inventory on a large scale. This approach 618 

integrates advantages from previous studies and holds the potential to support policymakers in making well-informed decisions 619 

for improving air quality. In the future, we anticipate the ongoing incorporation of additional emission datasets to offer a more 620 

reliable representation of emissions in China over extended time periods. 621 
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