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Abstract. Constructing a highly-resolved comprehensive emission dataset for China is challenging due to limited availability 20 

of refined information for parameters in a unified bottom-up framework. Here, by developing an integrated modeling 21 

framework, we harmonized multi-source heterogeneous data including several up-to-date emission inventories at national and 22 

regional scale, and for key species and sources in China, to generate a 0.1° resolution inventory for 2017. By source mapping, 23 

species mapping, temporal disaggregation, spatial allocation and spatial-temporal coupling, different emission inventories are 24 

normalized in terms of source categories, chemical species, and spatiotemporal resolutions. This achieves the coupling of 25 

multi-scale, high-resolution emission inventories with the MEIC (Multi-resolution Emission Inventory for China), forming a 26 

high-resolution INTegrated emission inventory of Air pollutants for China (i.e., INTAC). We find that the INTAC provides 27 

more accurate representations for emission magnitudes and spatiotemporal patterns. In 2017, China’s emissions of SO2, NOx, 28 

CO, NMVOC, NH3, PM10, PM2.5, BC, and OC are 12.3, 24.5, 141.0, 27.9, 9.2, 11.1, 8.4, 1.3 and 2.2 Tg, respectively. The 29 

proportion of point source emissions for SO2, PM10, NOx, PM2.5 increases from 7–19% in MEIC to 48–66% in INTAC, 30 

resulting in improved spatial accuracy, especially mitigating overestimations in densely populated areas. Compared to MEIC, 31 

INTAC reduces mean biases in simulated concentrations of major air pollutants by 2–14 μg/m³ across 74 cities against ground 32 

observations. The enhanced model performance by INTAC was particularly evident at finer grid resolutions. Our new dataset 33 

is accessible at http://meicmodel.org.cn/intac, and it will provide a solid data foundation for fine-scale atmospheric research 34 

and air quality improvement. 35 

36 
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1 Introduction 37 

In recent years, China has achieved remarkable progress in improving air quality and public health through the active 38 

implementation of clean air policies (Liu et al., 2020; Xiao et al., 2022; Zhang and Geng, 2019; Zhang et al., 2019a). To further 39 

unlock the potential of targeted clean air actions, there is an urgent need for an accurate and detailed depiction for emissions, 40 

encompassing their magnitudes and spatial-temporal patterns. Developing a reliable highly-resolved emission inventory for 41 

China is also crucial for studies of atmospheric chemistry and climate change (Cheng et al., 2021a; Geng et al., 2021; Zhang 42 

et al., 2019a).  43 

The construction of high-resolution emission inventories for China poses significant challenges due to the diversity and 44 

complexity of emission sources and technology distributions. Additionally, the limited availability of localized measurements 45 

for emission factors (EFs) and source profiles, along with exact location of the emission facilities, further compounds the 46 

difficulties (Li et al., 2017a). The widely-used bottom-up approach involves the establishment of a unified framework that 47 

encompasses source categories, chemical speciation processes, spatial-temporal allocation profiles and emission estimation 48 

methods (An et al., 2021; Huang et al., 2021). However, achieving both wide coverage and high accuracy in compiling an 49 

emission inventory for China through this approach remains a formidable task for individual research institutions. 50 

Comprehensive national-scale emission inventories developed using the unified framework typically provide extensive 51 

coverage of space, species and sectors (Li et al., 2017a; Li et al., 2023b), but tend to exhibit limitations in spatial accuracy (Wu 52 

et al., 2021; Zhao et al., 2015; Zheng et al., 2021; Zhou et al., 2017b). Previous studies have indicated that the spatial allocation 53 

in large-scale emission inventories rely on spatial proxies (e.g., population, road networks) rather than latitude-longitude 54 

coordinates of emission sources due to the unavailability of extensive spatial information (Li et al., 2017b; Zhang et al., 2009). 55 

The assumption of a linear correlation between emissions and spatial proxies might lead to an overestimation of emissions in 56 

urban areas, especially at scales finer than 0.25° (Wu et al., 2021; Zheng et al., 2021; Zheng et al., 2017). Biases introduced 57 

by the proxy-based method are found to be propagated as the grid size diminishes, resulting in uncertainties for chemical 58 

transport models (CTMs) (Zheng et al., 2021; Zheng et al., 2017).  59 

Emission inventories focused on a specific region (An et al., 2021; Huang et al., 2021; Liu et al., 2018), sector (Chen et al., 60 

2016; Deng et al., 2020; Zhou et al., 2017a) or key species (Huang et al., 2012b; Li et al., 2021; Wang et al., 2023) under the 61 

aforementioned unified framework demonstrate enhanced accuracy, but fail to achieve comprehensive coverage. These 62 

inventories assimilate substantial detailed foundational data from various statistical dataset, on-site measurements or surveys 63 

to represent real-world emission magnitudes, including energy consumption, removal efficiencies, and localized speciation 64 

profile (An et al., 2021; Huang et al., 2021; Liu et al., 2018). Innovative data, such as measurements from continuous emission 65 

monitoring systems (Bo et al., 2021; Tang et al., 2023; Wu et al., 2022), or methodologies like process-based models (Kang 66 

et al., 2016; Zhao et al., 2020) are implemented to enable a more accurate characterization of complex emission dynamics. 67 

Facility-level geographic location is incorporated to optimize the representation of spatial patterns (Liu et al., 2015a; Wang et 68 



3 

 

al., 2019; Wu et al., 2023). The reliability of these local-scale, sector- or species-specified inventories has been validated 69 

against satellite and ground-based measurements (Liu et al., 2016a; Zhang et al., 2021; Zheng et al., 2019).  70 

The other strategy for developing bottom-up emission inventories is commonly known as the integrated method. This method 71 

consolidates multiple emission datasets for specific regions, species or sectors into a unified product, ensuring extensive 72 

coverage (Li et al., 2017b). Taking advantage of existing inventories derived from localized data and advanced methods, the 73 

integrated method facilitates the efficient generation of highly-resolved emission inventories at large scales. However, the 74 

heterogeneity of different emission datasets presents challenges for the fusion, manifested in diverse data formats, sector 75 

categories, species, spatial-temporal resolution. In recent years, there has been growing interest in adopting the integrated 76 

approach to enrich inventories with local insights, particularly at the global  (Crippa et al., 2023; Janssens-Maenhout et al., 77 

2015) and Asian scales (Kurokawa et al., 2013; Li et al., 2023a; Li et al., 2017b; Zhang et al., 2009). Researches on establishing 78 

integrated inventories for China are constrained due to the inherent complexity and challenging accessibility of the data. These 79 

efforts are concentrated in specific regions, such as the Yangtze River Delta (YRD) (An et al., 2021). 80 

In this work, with the support of several research institutions, we use an emission integration model to construct a high-81 

resolution integrated emission inventory at a spatial resolution of 0.1° for China in 2017, denoted as INTAC. The challenges 82 

associated with coupling multi-source heterogeneous data are addressed through the implementation of an inventory 83 

integration framework. Then, leveraging the strengths of inventories enriched with local knowledge, we compile a 84 

comprehensive highly resolved emission product to enhance the accurate representation of emissions from crucial regions, 85 

sectors and species. Finally, the improved accuracy of emission magnitude and spatial distribution is evaluated using 86 

atmospheric chemistry models. 87 

2 Methodology and data 88 

Figure 1 illustrates the schematic diagram of the integration process of INTAC. We collect seven emission inventories—MEIC 89 

developed by Tsinghua University (Li et al., 2017a; Zheng et al., 2018), the industrial point source emission inventory for 90 

China by the MEIC team (Zheng et al., 2021; Zheng et al., 2017), the YRD air pollutant emission inventory led by Nanjing 91 

University (An et al., 2021; Zhou et al., 2017b), the Pearl River Delta (PRD) emission inventory by Jinan University (Huang 92 

et al., 2021; Sha et al., 2021), the open biomass burning emission inventory in China by Peking University (Huang et al., 2012a; 93 

Liu et al., 2015b; Song et al., 2009; Yin et al., 2019) , the shipping emission inventory in East Asia by Tsinghua University 94 

(Liu et al., 2016b; Liu et al., 2019) , and the high-resolution ammonia emission inventory in China (PKU-NH3) by Peking 95 

University (Huang et al., 2012b; Kang et al., 2016). The details of these inventories and the rationale for choosing them will 96 

be described in Sect. 2.1.  97 
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Figure 1: Methodology framework of the INTAC inventory development. 98 

An integration model is then established to merge together emission inventories with different sectors, species, spatial-temporal 99 

resolution and formats (i.e., point, area, and gridded forms). The integration process consists of five steps: source mapping, 100 

species mapping, temporal disaggregation, spatial allocation, and spatial-temporal coupling, as detailed in Sect. 2.2. Based on 101 

the priority order, multi-source emission inventories are assembled at the standardized species, sector, and grid levels, yielding 102 

a standardized data cube. Ultimately, the integrated emission inventory INTAC is created for China, featuring a resolution of 103 

0.1° on a monthly scale and covering nine air pollutants (i.e., SO2, NOx, CO, NMVOC, NH3, PM10, PM2.5, BC, OC).  104 

2.1 Components of the integrated emission inventory INTAC 105 

Table 1 lists the essential details about the seven inventories and priority order utilized for integration. Given MEIC’s extensive 106 

coverage across species, sectors, and spatial domains, it functions as the default inventory in our integration, supplementing 107 

the missing data in other inventories. The remaining six inventories can be categorized into three types in sequence: point-108 

source-based inventory (ranked sixth), regional inventories (ranked fifth and fourth), and process-based inventories (ranked 109 

third to first). The point-source-based inventory can directly correct the spatial misallocation of industrial emissions in MEIC 110 

at fine scales (Zheng et al., 2021; Zheng et al., 2017). The regional inventories further enhance local investigations of individual 111 

emission sources and simultaneously refine estimation methods for mobile and area sources (Gu et al., 2023; Zhao et al., 2018; 112 

Zhou et al., 2017b). Process-based inventories typically adopt advanced methods to improve the characterization for emission 113 

processes and parameters specific to particular sectors or species, thereby providing emission totals and distributions that are 114 

more in line with measurements (Huang et al., 2012a; Huang et al., 2012b; Kang et al., 2016; Liu et al., 2016b; Liu et al., 2019; 115 

Liu et al., 2015b; Song et al., 2009; Yin et al., 2019).    116 
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Table 1: List of emission inventories collected in this work. 117 

Priority 

ranking 

Emission inventory and 

developer 
Year Resolution Region Resolution Species 

1 
PKU-NH3 

(Peking University) 

1980–

2017 
Monthly 

Mainland 

China 
0.1° 

NH3 

2 

 

The shipping emission inventory 

for East Asia 

(Tsinghua University) 

2017 Annually East Asia 0.1° SO2/NOx/CO/NMVOC/ 

PM2.5/BC/OC 

3 
The open biomass burning 

emission inventory for China 

(Peking University) 

1980–

2017 
Daily 

Mainland 

China 
~1km 

SO2/NOx/CO/NMVOC/ 

NH3/PM10/PM2.5/BC/OC 

4 The PRD emission inventory 

(Jinan University) 
2017 Monthly PRD 0.05° 

SO2/NOx/CO/NMVOC/ 

NH3/PM10/PM2.5/BC/OC 

5 

The YRD emission inventory 

(Nanjing University/Shanghai 

Academy of Environmental 

Sciences/Jiangsu Provincial 

Academy of Environmental 

Science) 

2017 Annually YRD 0.1° 
SO2/NOx/CO/NMVOC/ 

NH3/PM10/PM2.5/BC/OC 

6 
The industrial point source 

emission inventory for China 

(Tsinghua University) 

2012–

2018 
Monthly 

Mainland 

China 
~1km 

SO2/NOx/CO/NMVOC/ 

NH3/PM10/PM2.5/BC/OC 

7 
MEICv1.3 

(Tsinghua University) 

2008–

2017 
Monthly 

Mainland 

China 
0.25° 

SO2/NOx/CO/NMVOC/ 

NH3/PM10/PM2.5/BC/OC 

 

2.1.1 MEIC 118 

The integrated inventory INTAC is built upon MEIC, a comprehensive database with extensive coverage across time periods, 119 

space, species, and sectors. Developed by Tsinghua University since 2010 (http://meicmodel.org.cn) (Li et al., 2017a; Zheng 120 

et al., 2018), the MEIC provides monthly emissions for air pollutants and CO2 in China from 1990 to the present at a resolution 121 

of 0.25° × 0.25°. It caters to the demand for timely and accurate estimates of atmospheric emissions, gaining widespread 122 

adoption by both domestic and international research institutions. We use 2017 emissions from MEIC v1.3 in this study. 123 

MEIC employs several strategies to improve emission estimation parameters. This includes categorizing emission sources 124 

across ~800 sectors, utilizing a technology- and big-data-driven approach for dynamic emission characterization, and 125 
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employing a localized emission factor database (Li et al., 2017a; Zheng et al., 2018). Emission estimates for power, on-road, 126 

and residential sources are enhanced through the use of unit-level data (Liu et al., 2015a), county-level emission estimates 127 

(Zheng et al., 2014), and integration of extensive household surveys (Peng et al., 2019), respectively. MEIC builds an database 128 

encompassing temporal allocation profiles (ranging from yearly to monthly, daily, and hourly) (Li et al., 2017b), spatial 129 

allocation proxies (from province to county, and further to grids) (Geng et al., 2017; Li et al., 2017b; Zheng et al., 2017), and 130 

a speciation framework for NMVOC involving five mechanisms (CB-IV, CB05, SAPRC-07, SAPRC-99, and RADM2) (Li et 131 

al., 2014) (Li et al., 2014) to support the development of model-ready gridded emissions. 132 

Among the seven inventories, MEIC has the lowest priority, and is only considered when the other six cannot provide necessary 133 

emissions for a specific city and source. 134 

2.1.2 The industrial point source emission inventory for China 135 

The proxy-based method used for spatial allocation in MEIC introduces biases in emission mapping, especially at kilometer 136 

scale (Zheng et al., 2021; Zheng et al., 2017). To significantly reduce the uncertainty, we merged an industrial emission 137 

inventory with detailed information on ~100,000 facilities into INTAC. 138 

Compiled by Tsinghua University for the year 2013 (Zheng et al., 2021) and updated by the MEIC team for 2017, this point-139 

based inventory combines three databases investigated under the guidance of the Chinese government, offering a 140 

comprehensive overview of industrial facilities. It includes details on locations, activity rates, production technology, end-of-141 

pipe pollution control devices, and other parameters. It is worth noting that the facility-level activity data was corrected using 142 

provincial activity data from MEIC as a total constraint to be consistent with national totals from statistics (Zheng et al., 2021). 143 

The facility-level, technology-based approach allows for dynamic tracking of emission fluctuations resulting from 144 

technological advancements and tightening emission regulations. Crucially, the use of facility geolocations rather than relying 145 

on spatial proxies like urban population enables the derivation of gridded industrial data at a resolution of ~1 km. This approach 146 

significantly avoids misallocating emissions from rural to urban areas at fine grids, as supported by previous studies 147 

demonstrating its effectiveness in mitigating simulated biases in air pollutant concentrations within densely populated regions 148 

(Zheng et al., 2021). For temporal variations, it employs the same monthly profiles as MEIC, including the production of 149 

various industrial goods or Gross Domestic Product (GDP), as outlined in Li et al. (2017b). The NMVOC speciation also 150 

aligns with the MEIC model. This inventory takes priority over MEIC, indicating that only few industrial sources not covered 151 

in this inventory are substituted with MEIC.  152 

2.1.3 The YRD air pollutant emission inventory 153 

Regional emission inventories in YRD provide a more accurate representation of emissions compared to the national-scale 154 

MEIC, as proven by ground and satellite observations (Yang and Zhao, 2019; Zhang et al., 2021; Zhao et al., 2017a; Zhao et 155 

al., 2018; Zhao et al., 2020; Zhou et al., 2017b). This improvement is attributed to the avoidance of outdated or non-localized 156 

emission calculation parameters, commonly present in large-scale inventories like MEIC. Here, we merge the 2017 YRD air 157 
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pollutant emission inventory into INTAC for state-of-the-art estimates for rapidly changing emissions over this core area (An 158 

et al., 2021; Gu et al., 2023; Zhou et al., 2017b).  159 

Localized field surveys and measurements greatly enhance the reliability of calculation parameters within the YRD inventory. 160 

Highly-resolved emissions for the power sector are acquired through on-site monitoring with high temporal resolution (Zhang 161 

et al., 2019b), rather than relying on static and outdated average emission factors. Facility-level information (e.g., the removal 162 

efficiencies) obtained from local investigation and a segment-based industrial process method enhances the understanding of 163 

both the quantity and spatial patterns of industrial emissions. Considering meteorological factors and land use conditions 164 

during agricultural processes results in more accurate seasonal and spatial distributions of NH3 emissions. (Zhao et al., 2020). 165 

An investigation of in-use machinery is conducted to capture the seasonal emission patterns from off-road machines (Zhang 166 

et al., 2020). Real-world surveys are performed to determine grain straw ratios and household burning proportions, facilitating 167 

the quantification of emissions from biomass-fueled stoves. The PM2.5 and NMVOC speciation profiles are updated based on 168 

multi-instrument sampling and analysis in both current and previous studies (Huang et al., 2018; Zhao et al., 2017a), satisfying 169 

the needs for simulating PM2.5 chemical components and O3. The YRD inventory is collected with a spatial resolution of 0.1 170 

degree and an annually temporal resolution in this study. Only CB05 VOC species are collected. 171 

2.1.4 The PRD emission inventory 172 

The regional emission inventories in the PRD region have demonstrated enhanced reliability compared to previous studies 173 

(Huang et al., 2021; Sha et al., 2021; Zheng et al., 2012). The PRD emission inventory in this study captures spatial and 174 

temporal variations within the PRD region under emission control policies, serving as a foundation for supporting air quality 175 

modeling (Huang et al., 2021; Sha et al., 2021).  176 

The PRD inventory exhibits notable accuracy improvements, achieved through big data-driven estimation methods, updated 177 

spatial-temporal allocations, and localized NMVOC speciation profiles. Gridded hourly open biomass burning emissions are 178 

quantified by fusing the fire radiative power data from three satellites, and hourly shipping emissions are estimated using high-179 

frequency Automatic Identification System (AIS) records. Thirty-one monthly profiles and ten spatial proxies are updated to 180 

reflect spatial-temporal patterns of emissions influenced by economic growth and energy consumption adjustment. 181 

Approximately 90% of industrial emissions are disaggregated using exact locations, and novel proxies (e.g., farmland 182 

production potential) have been developed for several sectors. The NMVOC speciation is carried out through massive localized 183 

measurements and literature reviews, manifested as a collection of 480 NMVOC source profiles across eight sectors and 380 184 

species. The species relevant to the SAPRC-07 chemical mechanism are collected in this work. Additionally, the inventory 185 

encompasses 800 source categories, placing particular emphasis on incorporating new sectors relevant to VOC emissions. 186 

Activity rates are improved through extensive field surveys and data mining efforts, involving investigations of production 187 

data for 10,000 industrial plants and the gathering of activity-relevant information for 50 million vehicles. Emission factors 188 

that reflect local context are obtained or revised based on source measurements and latest research findings. These updates 189 
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help mitigate uncertainties in emission estimates for the PRD region. The PRD inventory is initially collected at a monthly 190 

resolution and a spatial resolution of 0.05°, with detailed spatial-temporal allocation proxies outlined in Huang et al. (2021). 191 

2.1.5 The open biomass burning emission inventory in China 192 

As a significant source of CO2, BC, OC and other pollutants, open biomass burning profoundly influences air quality, climate 193 

change, and human health (Reisen et al., 2013). A case study in summer 2011 for the YRD region revealed that during a severe 194 

haze episode, open biomass burning contributed to 37%, 70%, and 61% of PM2.5, OC, and EC emissions, respectively (Cheng 195 

et al., 2014). To address the absence of this source in MEIC, we integrate a high-resolution open biomass burning emission 196 

inventory from Peking University into INTAC (Huang et al., 2012a; Liu et al., 2015b; Song et al., 2009; Yin et al., 2019).  197 

The inventory applies satellite observations to tackle considerable uncertainties tied to provincial statistical data and overcome 198 

the coarse resolution found in previous studies (Ni et al., 2015). The estimation of biomass consumption in the inventory is 199 

based on the fire radiative energy (FRE) approach, which depends on the energy emitted by fires. This approach helps reduce 200 

the biases introduced by burned areas algorithms, especially for small-scale fires. The inventory utilizes the high spatial 201 

resolution land cover dataset GlobeLand30 derived from multispectral images to classify biomass fuel types. Eventually, daily 202 

emissions from forest, grassland, cropland and shrubland are calculated at a 1-kilometer resolution. The reasonableness is 203 

validated by comparing with other datasets, such as the fourth version of the Global Fire Emissions Database. The initially 204 

collected inventory lacks model-ready VOC species. 205 

2.1.6 The shipping emission inventory in East Asia 206 

In recent years, maritime trade in the East Asian region has significantly increased (Trade and Development, 2014), resulting 207 

in a surge in shipping emissions with substantial impacts on air quality and climate. Previous studies have indicated that East 208 

Asian shipping emissions accounted for 16% of the global total in 2013. Shipping emissions made a growing contribution to 209 

the rise in annual mean PM2.5 concentrations, reaching levels as high as 5.2 μg/m3 in 2015 (Lv et al., 2018). To address the 210 

omission of this emission source in the MEIC, we integrate the shipping emission inventory in East Asian for 2017 into INTAC 211 

(Liu et al., 2016b; Liu et al., 2019).  212 

The inventory introduces an innovative approach based on comprehensive and dynamic ship activity data. A static dataset of 213 

approximately 66,000 vessels is compiled as a foundation, using information from Lloyd’s Register and China Classification 214 

Society. This dataset encompasses various ship properties, including ship category, hull shape, engine rotational speed, engine 215 

capacity, maximum speed capability, build year, and more. High quality AIS data is used to capture ship activities, 216 

incorporating the Maritime Mobile Service Identification identifier, geographical location, real-time speed, and time-related 217 

information. The AIS data is also employed to generate gridded emissions from shipping at a spatial resolution of 0.1°. The 218 

inventory enhances our comprehension of regional-level shipping emissions and significantly alleviates biases arising from 219 

the misallocation of marine fuels, as observed in global studies (Endresen et al., 2007). The collected shipping inventory 220 

provides emissions at an annually resolution for seven species, including SO2, NOx, CO, NMVOC, PM2.5, BC, and OC. 221 
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2.1.7 PKU-NH3 222 

As a prominent alkaline component in the atmosphere, ammonia plays a crucial role in atmospheric chemistry, terrestrial and 223 

aquatic ecosystems through its participation in atmospheric reactions and deposition processes. This study integrates PKU-224 

NH3, a high-resolution ammonia emission inventory for China developed by Peking University. PKU-NH3 is designed to track 225 

the evolution of NH3 emissions amid the rapid increase in grain and meat production in China over the past few decades 226 

(Huang et al., 2012b; Kang et al., 2016). This inventory offers a better grasp on NH3 emissions in China through the application 227 

of a processed-based method and more reliable emission factors, in contrast to previous studies (Kurokawa et al., 2013; Li et 228 

al., 2017b). Top-down NH3 inversion through satellite observations provides additional validation for the accuracy of PKU-229 

NH3 (Paulot et al., 2014). 230 

Earlier studies of NH3 emissions commonly used fixed EFs, overlooked some ammonia emission sources, and had coarse 231 

resolutions (Ohara et al., 2007; Streets et al., 2003). Unlike previous approaches, the PKU-NH3 incorporates dynamic and 232 

multifactorial EFs and more comprehensive emissions sources. The determination of emission factors takes into account 233 

various parameters related to local conditions and agricultural practices. When estimating NH3 emissions of synthetic fertilizer 234 

application, the model considers five types of fertilizers, as well as factors such as soil acidity, ambient temperature, fertilizer 235 

application technique and dosage, wind speed, and in-situ measurements of NH3 flux. For livestock waste, NH3 emissions are 236 

calculated using a mass-flow approach across four phases of manure management, considering variables such as animal rearing 237 

types, temperature and wind speed. In addition, NH3 emissions from other small sources are also quantified, including 238 

agricultural soil, nitrogen-fixing crop, crop residue compost, excretion of rural populations, open biomass burning, waste 239 

disposal, gasoline vehicles, diesel vehicles, and industrial processes. The NH3 emissions are allocated from provinces into 0.1° 240 

grids based on spatial proxies such as land cover, rural population, and other relevant indicators. Monthly emission factors 241 

shaped by meteorological conditions are used to calculate NH3 emissions from fertilizer application and livestock source at a 242 

monthly level. 243 

2.2 The integration of multi-source heterogeneous data 244 

In the integration process, seven heterogeneous inventories are first normalized in terms of emission sources, species, spatial-245 

temporal resolutions, and then integrated following a priority order to produce a standardized, highly-resolved data cube.  246 

2.2.1 Source mapping 247 

To merge inventories under a unified emission source classification system, the emission sources in the MEIC model are 248 

categorized into 88 standard sectors for mapping (Table S1). The first-level category comprises 10 subcategories, namely, 249 

stationary combustion, industrial process, mobile source, solvent use, agriculture, dust, biomass burning, storage and 250 

transportation, waste treatment and other sources. These are then further subdivided into 88 second-level sources, which take 251 

industrial classification for national economic activities for reference. For example, the industrial process sector encompasses 252 
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emission sources such as the manufacturing of non-metallic mineral products, manufacturing of chemical fibers, manufacturing 253 

of foods, smelting and pressing of ferrous metals, and more. In the initial step of integration, the sectors in each emission 254 

inventory are mapped to the standardized two-level sources.  255 

2.2.2 Species mapping 256 

Then, non-methane volatile organic compounds (NMVOC), particulate matter (PM), and NOx in each inventory are converted 257 

into model-ready species to support CTMs. The species mapping process is grounded in the chemical species mapping methods 258 

in MEIC model (Li et al., 2017b; Li et al., 2014). The model supports aerosol chemical schemes such as AER05 and AER06. 259 

NOx emissions are allocated to NO and NO2 emissions based on ground observations. The step-by-step NMVOC speciation 260 

framework developed in Li et al. (2014) is employed to generate emissions for various gas-phase chemical mechanisms 261 

commonly used in CTMs, including CB-IV, CB05, SAPRC-07, SAPRC-99 and RADM2. The framework incorporates an 262 

explicit assignment approach and updated profiles based on both local measurements and the SPECIATE database v.4.5. The 263 

sources abundant with oxygenated volatile organic compounds (OVOC) are identified, and the incomplete profiles with 264 

missing OVOC fractions are corrected. The accurate speciation mapping helps reduce uncertainties in model-ready emissions. 265 

For inventories providing speciated VOC emissions for certain mechanisms (e.g., the YRD inventory for CB05, PRD inventory 266 

for SAPRC-07), we directly use their emissions, or alternatively, utilize MEIC’s speciation framework to generate model 267 

species for the five chemical mechanisms. 268 

2.2.3 Temporal disaggregation  269 

The seven emission inventories are collected at different temporal resolutions (Table 1) and need to be temporally allocated to 270 

a unified monthly scale for integration. Monthly emissions from PKU-NH3, the PRD inventory, the industrial point source 271 

inventory and MEIC can be directly used for data merge. Daily-level open biomass burning emission inventory for China is 272 

aggregated to monthly scales through summation. For annually inventory (e.g., the YRD inventory), sector-specific monthly 273 

profiles derived from the MEIC model are used for disaggregation (Li et al., 2017b). For instance, monthly power generation 274 

data from the National Bureau of Statistics describe variations in monthly power emissions. Industrial production or GDP from 275 

the National Bureau of Statistics are employed to account for monthly emission fluctuations related to industrial heating, 276 

boilers, cement, iron and steel, and other industrial processes. Monthly emission factors calculated by the International Vehicle 277 

Emissions model are applied to on-road vehicles. Considering the insignificant monthly variations of Automatic Identification 278 

System data for marine shipping, the annual shipping emissions are uniformly disaggregated across the months.  279 

2.2.4 Spatial allocation 280 

The seven inventories are in different data formats, including point source and gridded formats at varying resolutions, 281 

necessitating spatial harmonization for integration. Although the industrial point source inventory and the open biomass 282 

burning inventory can accurately pinpoint the specific geographic locations of emission sources, the other five inventories rely 283 
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on numerous spatial proxies to disaggregate emissions into grids, which inevitably introduce uncertainties at very fine 284 

resolutions. Therefore, we re-grid the final product to 0.1° to ensure high level spatial accuracy. Gridded emissions finer than 285 

0.1° resolution are aggregated to 0.1°, which is performed in the open biomass burning inventory and the PRD inventory. For 286 

the industrial point source inventory, latitude and longitude coordinates are employed to directly position them within grid 287 

locations. Area sources in MEIC are allocated to grids using spatial proxies within the MEIC model (Li et al., 2017b). For 288 

instance, industrial sources are assigned to grids based on urban population (Schneider et al., 2009). The road network (Zheng 289 

et al., 2014) serves as a proxy for disaggregating emissions of on-road vehicles, while rural population (Schneider et al., 2009) 290 

is used as the proxy for fertilizer and livestock sources. It’s important to mention that uncertainties may arise at city borders if 291 

emissions from adjacent cities come from different inventories during the integration process. To mitigate biases introduced 292 

by border issues, all emissions at 0.1° resolution are first uniformly downscaled to 1 km for the spatial-temporal coupling 293 

process, and then re-gridded back to 0.1° for the final product. 294 

2.2.5 Spatial-temporal coupling 295 

Finally, following the procedures outlined in Sections 2.2.1 to 2.2.4, all inventories are preprocessed to a standardized format, 296 

encompassing 88 sectors, various species, a spatial resolution of 1 km, and a monthly temporal resolution. This preprocessing 297 

prepares the inventories for merging, ultimately resulting in the generation of a standardized data cube. 298 

The integration is carried out at source-by-source, species-by-species, and grid-by-grid levels, with the process guided by the 299 

priority order of each inventory (Table 1). MEIC serves as the default inventory in our integration, offering extensive spatial 300 

and species coverage, along with spatial proxies, temporal profiles, and NMVOC speciation methods within the model. The 301 

remaining six emission inventories are assigned a predefined priority order. The industrial point source emission inventory for 302 

China takes precedence over industrial emissions in MEIC, substituting proxy-based spatial allocation with precise 303 

geographical coordinates. This extends the applicability of MEIC from a resolution greater than 0.25° to finer scale (Zheng et 304 

al., 2021; Zheng et al., 2017). To achieve fine-grained emission characterization in critical areas, the YRD and PRD emission 305 

inventory enriched with localized data and advanced methods are incorporated to update emissions in these areas. While MEIC 306 

comprehensively estimates emissions for ~800 source categories in China, there may still be omissions for certain emission 307 

sources. The inclusion of inventories for open biomass burning and East Asian shipping helps partially fill this gap. The PKU-308 

NH3, generated by a process-based model to provide a comprehensive understanding of China’s NH3 sources, is utilized to 309 

replace all NH3 emissions in other inventories. The prioritization is performed city by city. For emissions of a particular species 310 

from a specific emission sector, when multiple inventories overlap in city grids, the estimates from the highest-priority 311 

inventory is selected as the final emissions. Through this step, the integrated inventories are developed based on the configured 312 

output settings, such as map projection and spatial-temporal attributes. 313 



12 

 

2.3 Evaluation of the emission inventory using WRF/CMAQ model 314 

We apply Weather Research and Forecasting Version 3.9 (WRFv3.9) and Community Multiscale Air Quality Version 5.2 315 

(CMAQ5.2) as the air quality simulation systems. Two nested simulation domains with horizontal resolutions of 36 and 12 316 

km are used (Fig. S1). The mother domain (172 × 127 cells) covers the entire China and parts of the neighboring countries, 317 

and the nested domain (226 × 241 cells) includes the heavily polluted Eastern China. Four-month (January, April, July, and 318 

October) simulations in 2017 is carried out, with a 7-day spin-up period preceded each month. The vertical resolution in WRF 319 

is set with 45 sigma levels ranging from the surface up to 100 hPa. Subsequently, it is collapsed into 28 layers through the 320 

Meteorology-Chemistry Interface Processor (MCIP) before being input into CMAQ.  321 

The configuration of WRF and CMAQ model in this study follows Cheng et al. (2019). The meteorological initial and boundary 322 

conditions for the simulation are provided by the final reanalysis data from the National Centers for Environmental Prediction 323 

(NCEP-FNL, https://rda.ucar.edu/datasets/ds083.2/). The schemes for shortwave radiation, longwave radiation, land surface 324 

processes, boundary layer, cumulus parameterization, and cloud microphysics are selected as the New Goddard scheme (Chou 325 

et al., 1998), RRTM scheme (Mlawer et al., 1997), Pleim–Xiu surface layer scheme (Xiu and Pleim, 2001), ACM2 PLB 326 

scheme (Pleim, 2007), Kain-Fritsch scheme (Kain, 2004), and WSM6 scheme (Hong and Lim, 2006), respectively. 327 

Observational nudging and soil nudging are employed to enhance the meteorological simulation. Regarding CMAQ model, 328 

the chemical mechanisms for gas-phase, aqueous-phase, and aerosol are configured as CB05, the Regional Acid Deposition 329 

Model (RADM), and AERO6, respectively. Photolysis rates are calculated online using the simulated aerosols and ozone 330 

concentrations. Anthropogenic emissions outside China are taken from MIX inventory (Li et al., 2017b). The integrated 331 

inventory INTAC and MEIC are used for comparison within China. Biogenic emissions are calculated using the Model of 332 

Emissions of Gases and Aerosols from Nature version 2.1 (MEGANv2.1), while dust and lightning emissions are not 333 

considered in this study. 334 

The performances of WRF for the meteorological parameters are evaluated against the Integrated Surface Database (ISD) from 335 

the National Climatic Data Center (NCDC) of the National Climate Data Center (ftp://ftp.ncdc.noaa.gov/pub/data/noaa/). 336 

Evaluation metrics include correlation coefficient (R), mean bias (MB), root mean square error (RMSE), normalized mean 337 

bias (NMB), and normalized mean error (NME). Table S2 demonstrates good agreement between WRF model results and 338 

ground-level observations. Similar configurations have been also validated in previous studies (Cheng et al., 2019; Cheng et 339 

al., 2021a; Cheng et al., 2021b). CMAQ modeling results are assessed using hourly observed concentrations of air pollutants 340 

obtained from the China National Environmental Monitoring Center (http://www.cnemc.cn/). 341 
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3 Results 342 

3.1 China’s emission characteristics in 2017 343 

We utilized the integrated emission inventory to analyze pollutant emissions in China for the year 2017. Major air pollutant 344 

emissions were estimated as follows: 12.3 Tg SO2, 24.5 Tg NOx, 141.0 Tg CO, 27.9 Tg NMVOC, 9.2 Tg NH3, 11.1 Tg PM10, 345 

8.4 Tg PM2.5, 1.3 Tg BC, and 2.2 Tg OC. The emission data, organized into power, industry, residential, transportation, 346 

agriculture, solvent use, shipping, and open biomass burning sectors, are available for download from 347 

https://doi.org/10.5281/zenodo.10459198 (Wu et al., 2024) and http://meicmodel.org.cn/intac. The following sections will 348 

characterize emissions in detail across sectors, fuel types, and spatial distributions.  349 

3.1.1 By sectors 350 

Table 2 displays emissions specific to power, industry, residential, transportation, agriculture, solvent use, shipping, and open 351 

biomass burning sectors in the integrated emission inventory INTAC. For pollutants primarily originating from fuel 352 

combustion and industrial processes (e.g., SO2, NOx, CO, PM10, and PM2.5), the power, industry, and transportation sources 353 

make a significant contribution to their emissions, ranging from 56% to 83%. Industrial sources take a leading role in various 354 

atmospheric pollutants, contributing more than 30% for SO2, NOx, CO, NMVOC, PM10, and PM2.5 emissions. Due to low 355 

combustion efficiency and a lack of emission control measures, residential sources exhibit a high emission factor for products 356 

of incomplete combustion, leading to 40% of CO emissions, 48% for BC, and 73% for OC. Solvent sources exclusively 357 

produce NMVOC emissions, constituting 33% to the overall emissions. The complexity of VOC emission origins is evident 358 

in the diverse range of contributing sources. Agricultural sources dominate NH3 emissions, comprising an 83% share of total 359 

emissions. As described in Sect. 2.1.7, the PKU-NH3 incorporates a wide variety of NH3 sources, providing a more 360 

comprehensive understanding of the sectors contributing to NH3 emissions. Insignificant sources may exert large influence in 361 

specific regions or periods, such as during large wildfires or in cities with heavy traffic. Additionally, the contribution of the 362 

supplemented open biomass burning source cannot be overlooked, especially for OC (7%) and NMVOC (6%). 363 

Figure 2 consolidates 88 standardized emission sources into 25 categories, allowing for a more detailed analysis of sectoral 364 

emission patterns compared to Table 2. Owing to substantial coal use in industrial and power sectors, along with sulfur-rich 365 

ship fuels, prominent contributors to SO2 emissions include power, shipping, stationary combustion, and manufacture of non-366 

metallic mineral products sources, accounting for 15%, 13%, 12%, and 12% respectively to total SO2 emissions. This indicates 367 

that achieving further reductions in SO2 emissions will require the implementation of more energy-efficient, end-of-pipe 368 

control measures, and adoption of low-sulfur fuels. The dominant origins of NOx emissions are from the freight truck, power 369 

generation, and shipping sectors, representing 21%, 15%, and 13% of the total emissions. Both freight trucks and vessels 370 

extensively use compression ignition engines, prone to generating NOx emissions under high-temperature and oxygen-rich 371 

conditions. Implementing strict vehicle standards is crucial to effectively reduce NOx emissions from exhaust gases. Coatings, 372 

other industrial processes, and passenger vehicle sources constitute 51% of anthropogenic NMVOC emissions. The major 373 
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contributors to primary PM2.5 emissions include biomass fuel, the manufacture of non-metallic mineral products, and the 374 

smelting and pressing of ferrous metals source, making up 22%, 17%, and 10% of the total emissions, respectively. It’s 375 

noteworthy that the use of biomass fuels (e.g., rice straw, firewood) for cooking or heating in rural areas results in considerable 376 

PM2.5 emissions, especially in provinces like Sichuan, Anhui, Shandong, and Heilongjiang. 377 

 378 

Table 2: Anthropogenic emissions of air pollutants by sectors in the 2017 INTAC inventory for China (Units: Gg).  379 

Sectors SO2 NOx CO NMVOC NH3 PM10 PM2.5 BC OC 

Power 1822 3790 4909 152 14 981 568 6 0 

Industry  6066 8800 52828 8824 249 5603 3620 308 285 

Residential 2361 861 55895 3676 629 3516 3088 606 1649 

Transportation 341 7751 22597 4123 619 533 493 257 95 

Agriculture 0 0 0 0 7609 0 0 0 0 

Solvent 0 0 0 9255 0 0 0 0 0 

Shipping 1642 3077 391 191 2 73 264 43 49 

Open biomass burning 21 215 4403 1659 76 409 355 35 167 

Total 12253 24494 141023 27881 9198 11117 8388 1255 2245 

 

 

Figure 2: Sector-specific distributions of emissions in the 2017 INTAC inventory for China. (a), (b), (c) and (d) represent the sectoral 380 
contributions for SO2, NOx, NMVOC and PM2.5, respectively. The figure only displays the top eight contributing sources, while sources 381 
excluding these are categorized as “other sources”. 382 
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3.1.2 By fuel types 383 

Figure 3 illustrates the proportions of major air pollutant emissions in 2017 for each fuel type. Fossil fuel combustion 384 

significantly dominates the emissions of PM10, PM2.5, CO, BC, SO2, NOx, with proportion ranging from 38% to 80%. The coal 385 

combustion accounts for 56% of SO2 emissions, with power, residential activities and industrial production as the primary 386 

emitter. Meanwhile, petroleum combustion, mainly from marine vessels, constitutes 20% of SO2 emissions. For NOx emissions, 387 

petroleum combustion contributes 48% of the total, predominantly arising from freight trucks (5.2 Tg), marine vessels (3.1 388 

Tg), and passenger vehicles (1.0 Tg). Coal combustion processes, such as power (3.6 Tg) and industrial boiler (2.2 Tg) also 389 

result in substantial NOx emissions (31%). The biomass fuel source causes 53% of OC emissions. Emissions of NMVOC and 390 

NH3 are primarily associated with non-combustion processes. 391 

 

Figure 3: Fuel-specific distributions of major air pollutant emissions in the 2017 INTAC inventory for China. 392 

3.1.3 Spatial distribution 393 

We present the gridded emission maps of major air pollutants in Fig. 4. Emissions from anthropogenic sources in China exhibit 394 

significant spatial heterogeneity. Due to economic growth and industrial activities, air pollutant emissions are primarily 395 

concentrated in the central and eastern regions of China, especially in economically developed urban clusters such as the 396 

Beijing-Tianjin-Hebei (BTH) region, the YRD, the PRD, as well as in regions like Sichuan and Chongqing. These four key 397 
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areas, as depicted in Fig. S2, collectively account for 26%, 34%, 35%, 37%, 35%, 33%, 27%, 27%, and 29% of the national 398 

emissions of SO2, NOx, CO, NMVOC, NH3, PM10, PM2.5, BC, and OC, respectively. Moreover, the emission maps at a fine 399 

spatial resolution of 0.1° × 0.1° present the local variations in emission patterns, identifying numerous hotspots in small areas 400 

and showcasing distinct gradients in emissions. Table 3 shows the provincial-level emissions (except Hong Kong, Macao, and 401 

Taiwan), and a map depicting provincial boundaries is displayed in Fig. S2. The emission levels in specific provinces are 402 

determined by factors such as resource endowments, industrial structure, energy consumption, and emission control measures. 403 

Taking SO2 as an example, the top five provinces are Shanxi, Shandong, Hebei, Guizhou, and Inner Mongolia, collectively 404 

accounting for 36% of the national total SO2 emissions. The Guizhou Province, located in the southwest of China, is 405 

characterized by high-sulfur coal and a relatively gradual implementation of pollution control measures, which results in 406 

elevated SO2 emissions. In other four provinces, large scale heavy industries have led to substantial coal consumption and 407 

correspondingly higher SO2 emissions. Provinces with a less industry-focused economic structure and lower energy 408 

consumption, including Tianjin, Hainan, Qinghai, Beijing, and Tibet, exhibit the lowest SO2 emissions, accounting for 409 

approximately 2% of the national total.  410 

 

Figure 4: Spatial distributions of major air pollutant emissions in the 2017 INTAC inventory for China. 411 
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Table 3: Anthropogenic emissions of air pollutants by provinces in the 2017 INTAC inventory for China (Units: Gg). The shipping 412 
emission inventory in East Asia is not included. 413 

Sectors SO2 NOx CO NMVOC NH3 PM10 PM2.5 BC OC 

Anhui 319 850 5968 1094 340 603 447 50 116 

Beijing 27 232 1397 519 36 62 50 7 16 

Chongqing 401 377 2424 566 149 210 160 22 48 

Fujian 162 532 2349 899 149 204 153 22 49 

Gansu 191 353 2225 359 276 165 127 22 42 

Guangdong 435 1573 6912 1274 351 793 359 17 68 

Guangxi 268 436 3586 811 323 359 277 29 84 

Guizhou 660 357 6643 510 236 464 350 76 127 

Hainan 48 95 586 172 57 47 37 5 15 

Hebei 675 1704 11756 1681 522 717 532 88 126 

Heilongjiang 249 825 7049 1426 378 501 407 65 158 

Henan 371 1262 7979 1507 677 628 463 79 109 

Hubei 519 706 6355 1188 357 461 357 68 119 

Hunan 524 635 6817 958 329 487 366 77 123 

Inner Mongolia 601 1217 5760 834 561 465 343 56 90 

Jiangsu 395 1222 8646 1536 497 675 500 50 106 

Jiangxi 181 451 3684 649 209 277 197 28 53 

Jilin 238 655 3982 851 207 310 240 39 77 

Liaoning 464 1205 5848 1322 268 437 328 54 88 

Ningxia 228 329 767 179 79 92 63 7 9 

Qinghai 44 107 599 130 131 60 45 5 8 

Shaanxi 338 551 3789 824 273 297 223 39 69 

Shandong 957 2144 11494 2859 694 907 684 105 152 

Shanghai 116 471 1133 344 29 106 87 16 6 

Shanxi 989 968 6030 759 199 561 419 64 82 

Sichuan 384 781 6375 1485 644 468 374 56 143 

Tianjin 91 335 1437 575 33 82 62 9 12 

Xinjiang 260 610 2645 635 515 220 160 23 32 

Xizang 1 52 150 46 149 15 12 2 5 

Yunnan 335 437 3831 579 397 305 232 38 76 

Zhejiang 297 672 3016 1348 118 274 197 23 22 
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3.2 Improved accuracy of China’s anthropogenic emissions by INTAC 414 

3.2.1 Comparison of emission magnitudes in INTAC with MEIC across sectors and regions 415 

The INTAC inventory improves the representation of anthropogenic air pollutant emissions by incorporating a large number 416 

of industrial point sources, integrating high-resolution regional inventories, and supplementing missing emission sources in 417 

MEIC. Remarkable differences between INTAC and MEIC are illustrated in Fig. 5 across regions and sectors. Compared to 418 

MEIC, the INTAC inventory shows higher level of 16.7%, 11.5%, 10.8%, 11.0%, and 9.1% for SO2, NOx, PM10, PM2.5, and 419 

OC emissions, respectively. However, it indicates lower levels of 6.3% and 10.6% for NMVOC and NH3. CO and BC 420 

emissions exhibit good agreement between the two inventories, with differences lower than 3.9%. In comparison to MEIC, the 421 

supplementary emission sources in INTAC—specifically, open biomass burning and marine shipping—account for the 422 

majority of increased emissions, contributing 95%, 89%, and 74% for SO2, CO, and PM2.5, respectively. Additionally, the 423 

incorporation of PKU-NH3 in INTAC leads to a 21% decrease in NH3 emissions from agricultural sources, while NH3 424 

emissions from residential sources and transportation increase by 99% and 13.1 times, respectively. Such difference in 425 

agricultural sources is mainly caused by the estimates of synthetic fertilizer (Kang et al., 2016), particularly concerning the 426 

treatment of fertilizer types and corresponding emission factors. 427 

 

Figure 5: Inter-comparisons of emission estimates between the INTAC inventory and MEIC. (a) shows the difference by sectors, and 428 
(b) presents the ratio of emissions in INTAC to those in MEIC.   429 
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Many discrepancies between MEIC and INTAC arise from the integration of regional emission inventories. As presented in 430 

Fig. 5b, notable disparities are observed in the YRD and PRD region. Estimates for NOx emissions in the YRD region are 431 

approximately 88% of those derived from the MEIC model. This highlights an enhanced precision attributable to reliable 432 

assessments of denitrification efficiency in power plants and the measured NOx emission factors for both power plants and 433 

boilers within the integrated YRD inventory, as supported by previous research studies (Zhao et al., 2018). INTAC’s estimates 434 

for NMVOC emissions from the YRD region are 26% lower than estimates in MEIC. The overestimation in MEIC mainly 435 

results from the uncertainties of solvent use source, particularly coating and printing and dyeing processes. The integrated 436 

YRD emission inventory employs more accurate calculation parameters, such as statistical data from local city yearbooks, 437 

industry association reports, and apparent consumption of solvents. Furthermore, the speciation profiles of NMVOC are 438 

localized and corrected based on the literature research and measurements. In the PRD region, The NOx emissions from INTAC 439 

are 41% higher than MEIC estimates, with non-road sources and non-metallic mineral products contributing 45% and 40% to 440 

this difference, respectively. The PRD inventory employs a detailed calculation approach for shipping emissions based on AIS 441 

data, in contrast to the simplified approach for inland waterway sources in MEIC. The NOx emissions from industrial processes 442 

of brick and flat glass manufacturing are not considered in MEIC, which is a deficiency that is addressed in the integrated PRD 443 

inventory. INTAC’s NMVOC emissions are approximately 59% of those from MEIC. The disparity is particularly notable in 444 

industrial and solvent use sources, contributing 49% and 35%, respectively, to the observed difference. In INTAC, nearly half 445 

of the VOC emission factors for industrial solvent sources are based on local measurements, and a preference for raw material-446 

based calculations over product-based ones reduces uncertainty in the estimation. For significant VOC-emitting sources like 447 

cleaning solvents, MEIC employs an emission factor of 1000 g/kg, whereas the PRD inventory uses 850 g/kg. In the case of 448 

oil refineries, the emission factors are 2.76 g/kg for MEIC and 1.82 g/kg for the PRD inventory. 449 

3.2.2 Impact of point source contributions  450 

The most accurate method for obtaining emissions at finer-scale grids relies on spatial allocation based on precise geographical 451 

coordinates. In MEIC, the majority of emission sources are represented as area sources and distributed onto grids using spatial 452 

proxies such as urban population, except for power plants. In contrast, the increased proportion of industrial point source 453 

emissions in INTAC significantly constrains the uncertainties associated with spatial proxies. Figure 6 shows the inter-454 

comparisons of percentage of point, on-road, and area source emissions between the INTAC and MEIC. Air pollutants, 455 

especially those dominated by industrial combustion sources like SO2, NOx, PM10, and PM2.5, exhibit a significantly higher 456 

proportion of point source emissions within INTAC compared to MEIC. In MEIC, the proportion of point source emissions 457 

for SO2, PM10, NOx, and PM2.5 is 17%, 9%, 19%, and 7%, respectively. However, in the INTAC inventory, these percentages 458 

substantially increase to 66%, 54%, 52%, and 48%, respectively, indicating a more accurate representation of spatial patterns. 459 

For other species with emissions mainly from area sources (e.g., residential and transportation), there are limited improvements 460 

in the proportion of point source emissions in INTAC.  461 
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Figure 6: Inter-comparisons of percentage of point, on-road, and area source emissions between the INTAC inventory and MEIC.  462 

To further assess the impact arising from point sources, Figure 7 takes SO2 and YRD region as an example to compare the 463 

spatial emission patterns between INTAC and MEIC. Figures 7c–e reveal that MEIC tends to overestimate emissions in urban 464 

centers and underestimate emissions in rural areas compared to INTAC. Amid economic growth and rapid urbanization, 465 

MEIC’s use of urban population as a proxy for spatial allocation becomes impractical as many factories relocate from city 466 

centers to rural areas. To elucidate the difference between population-based and point-source-based allocation methods in 467 

emissions mapping, we present the cumulative percentage of SO2 emissions in MEIC and INTAC based on descending 468 

population orders in Fig. 7f. We use the grid groups where densely populated areas contribute 50% of SO2 emissions in MEIC 469 

as an example, comparing them with the cumulative percentage in INTAC across various grid sizes. The results indicate that 470 

at a resolution of 0.05°, INTAC only accounts for 17% of the emissions, while it reaches to 48% as the grid size increases to 471 

1.0°. This suggests that at a fine grid scale, MEIC tends to allocate more emissions to densely populated urban areas, while 472 

INTAC allocates a larger proportion to suburban and rural areas, aligning better with the real-world emission spatial patterns. 473 

This mitigation of bias through INTAC is especially notable at finer resolutions. The close cumulative percentage at 1.0° in 474 

the two inventories can be attributed to the fact that urban and suburban areas often fall within the same grid, leading to a 475 

decreasing enhancement in spatial accuracy achieved by INTAC. Figure 7g further presents the correlation between the spatial 476 

patterns of SO2 emissions in INTAC and various spatial proxies. At a resolution of 1.0°, the correlation coefficients between 477 

emission distributions and factors (i.e., road networks, nighttime lights, total population, urban population, and rural population) 478 

fall within the range of 0.55 to 0.79. Nevertheless, at a resolution of 0.05°, the correlation coefficients range from 0.05 to 0.13. 479 

This indicates that at higher spatial resolutions, INTAC substantially reduces the bias introduced by spatial proxies in MEIC. 480 
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Figure 7: Spatial pattern analysis of emissions in the INTAC inventory, using SO2 emissions as an example. (a) and (b) display the 481 
spatial distributions of SO2 emissions in MEIC and INTAC, respectively. MEIC emissions have been downscaled from 0.25 degrees to 0.1 482 
degrees for comparison. To compare MEIC and INTAC in details, a zoom-in is applied to the YRD region. (c), (d), and (e) show spatial 483 
distributions of SO2 emissions in MEIC, INTAC and their difference. Circles in (e) represent the center of a city. (f) compares cumulative 484 
percentage of SO2 emissions in the INTAC inventory with those in MEIC across different spatial resolutions. The gridded SO2 emissions, 485 
ranging from resolutions of 0.05° to 1.0°, are cumulated in descending order of populations. The percentage annotations in different colors 486 
indicate the level of accumulated SO2 emissions in INTAC at various spatial resolutions when SO2 emissions in MEIC reach 50% 487 



22 

 

accumulation. (g) shows correlation coefficient between SO2 emissions in the INTAC inventory and multiple spatial proxies at different grid 488 
sizes. 489 

3.3 Improvements on air quality modelling by INTAC 490 

3.3.1 Overall performance in key regions 491 

We conduct simulations using the WRF-CMAQ model driven by INTAC and MEIC separately to evaluate the improvements 492 

in modeled air pollutant concentrations. Table 4 evaluates the simulated emissions in 74 major cities (locations depicted in Fig. 493 

S2) against in-situ observations, with corresponding scatter plots shown in Fig. S3. The INTAC demonstrates an improved 494 

agreement between modeled concentrations and ground-level observations, which benefits from the integrated high resolution 495 

inventories. Compared to MEIC, INTAC leads to a decline in the mean bias of simulated major pollutant concentrations by 2–496 

14 μg/m³, a reduction in the root mean square error by 4–19 μg/m³, and a decrease in the normalized mean error by 4–71%. 497 

This finding indicates that INTAC produces a more accurate characterization of emissions in China overall. Furthermore, 498 

given that atmospheric pollution monitoring stations are mainly located in urban areas in China, the observed differences 499 

suggest that the INTAC can mitigate the overestimation of major pollutant concentrations in urban centers. As discussed in 500 

Sect. 3.2.2, MEIC overestimates emissions in urban areas and underestimates them in rural and suburban areas, consequently 501 

introducing uncertainties into air quality modeling. The improved accuracy in spatial distributions within INTAC significantly 502 

contributes to enhancing the overall accuracy of air pollutant modeling.  503 

Table 4: The discrepancies between simulated SO2, NO2 and PM2.5 concentrations and observed values for 74 major cities at a 504 
resolution of 12 km, using MEIC and INTAC as emission inputs. The statistical metrics used for comparison include R, MB, and RMSE. 505 
The bold font represents the difference of modeling performance between INTAC and MEIC. 506 

Pollutants Inventory MB (μg/m3) RMSE (μg/m3) NME (%) 

SO2 

INTAC 11 30 92 

MEIC 25 49 163 

Difference -14 -19 -71 

NO2 

INTAC 7 22 43 

MEIC 18 31 60 

Difference -11 -9 -17 

PM2.5 

INTAC 6 35 46 

MEIC 8 39 50 

Difference -2 -4 -4 

 

Figure 8 further compares the overall simulation performance between INTAC and MEIC in three key regions (BTH, YRD, 507 

and PRD), with corresponding scatter plots shown from Fig. S4 to S6. Regarding PM2.5 and its precursors, MEIC shows a 508 

considerable mean bias of up to 36 μg/m³ and a root mean square error of up to 59 μg/m³ in key regions. In contrast, INTAC 509 
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demonstrates the maximum MB values of 15 μg/m³ and RMSE values of 40 μg/m³. The correlation coefficients between 510 

simulated and observed concentrations of the three air pollutants are generally lower in MEIC compared to those in INTAC. 511 

The modeling performance driven by INTAC, particularly for short-lived pollutants, experiences significant improvement due 512 

to their strong correlation with spatial distributions of emission sources. Nonetheless, discrepancies between modeled and 513 

observed surface concentrations still exist because of uncertainties from meteorological, physical, and chemical processes 514 

within chemical transport models. Moreover, emission sources such as residential, transportation, agriculture in INTAC are 515 

treated as nonpoint sources, and their allocation to grids using spatial proxies can introduce biases to air quality modeling. It 516 

is noteworthy that simulated ammonium concentrations by INTAC agree better with ground measurements than MEIC (Table 517 

S3). While NH4
+ concentrations are influenced by secondary chemical reactions, the improved model performance still reflects 518 

the benefits from the integration of PKU-NH3. 519 

 

Figure 8: The Comparison of modeling performance across key regions (i.e., BTH, YRD, PRD) when using MEIC and INTAC as 520 
emission inputs, respectively. The statistical metrics used for comparison include R, MB, and RMSE. The regions under comparison 521 
comprise the BTH, YRD, and PRD.  522 

3.3.2 Improvements across different spatial resolutions 523 

To provide a more in-depth assessment of improved spatial patterns in INTAC, Figure 9 categorizes grid cells into different 524 

bins based on their urban population and calculates the ratio of simulated pollutant concentrations to ground observations for 525 

both INTAC and MEIC in each category. The results demonstrate that as urban population increases, the enhanced model 526 

performance of INTAC over MEIC for SO2, NO2 and PM2.5 becomes more evident. Specifically, when the urban population 527 

is less than 50,000, both INTAC and MEIC exhibit a median range of simulated-to-observed concentration ratios close to 1. 528 

However, as the urban population exceeds 550,000, the average range for MEIC widens to 1.4–5.2, whereas it remains within 529 

the range of 0.9–1.0 for INTAC. This indicates a significant improvement in mitigating the overestimation of emissions in 530 

densely populated areas by INTAC. This indicates that the overestimation of emissions in densely populated areas, caused by 531 

proxy-based methods in MEIC, introduces uncertainties into chemical transport models. The incorporation of the industrial 532 
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point source emission inventory for China, along with the YRD and PRD emission inventory significantly increases point 533 

source shares in INTAC, and thus producing better spatial representations for real-world emission distributions and smaller 534 

simulated deviations. 535 

Model performance differences between MEIC and INTAC are influenced by grid size. Figure 10 presents the comparison 536 

between modeled SO2, NO2 and PM2.5 concentrations against ground observations for 74 major cities at resolutions of 36 and 537 

12 km. "Increasing spatial resolution does not lead to a reduction in simulation errors, especially for MEIC. As the horizontal 538 

resolution increases from 36 km to 12 km, the mean biases of simulated SO2, NO2, and PM2.5 concentrations using MEIC show 539 

an increase from 37% to 143%, 11% to 46%, and -3% to 15%, respectively, when compared to in-situ observations. In contrast, 540 

the simulation results using INTAC exhibit better agreement with ground observations, with mean biases for SO2, NO2, and 541 

PM2.5 increasing from 23% to 64%, -0% to 17%, and 2% to 11%, respectively. This is due to the fact that the deviations in 542 

finer grid cells, whether overestimated or underestimated, tend to cancel out at a coarse spatial resolution. The decoupling 543 

between emission spatial distributions with proxies at finer grids leads to more noticeable biases in air quality modeling. 544 

Therefore, the findings suggest that the INTAC developed in this study can effectively constrain uncertainties in emissions 545 

and the modeling bias, especially at fine spatial scales. The improvement will help tackle emerging challenges in high-546 

resolution air quality modeling in China. 547 

 

Figure 9: Comparisons of modeling performance between INTAC and MEIC in different ranges of urban population. The 12 km 548 
grids are categorized to different bins according to the urban population residing within each grid. The ratio of simulated pollutant 549 
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concentrations (Sim) to observed concentrations (Obs) for major pollutants (SO2, NO2, and PM2.5) are calculated. The boxplot presents the 550 
upper quartile, median (red dot), and lower quartile of the ratios. 551 

 

Figure 10: The comparison of modeled air pollutant concentrations and ground observations for 74 cities at 36 and 12 km resolutions, 552 
using MEIC and INTAC as emission inputs, respectively. The black dashed line represents the observational mean, and the annotations 553 
above the bar charts indicate the mean biases between simulated concentrations and the corresponding observed value. 554 

4 Discussion 555 

Qualitative or quantitative uncertainty assessment is a necessary element of a complete inventory for policy or scientific 556 

purposes. Approaches such as error propagation and Monte Carlo simulation are commonly used for quantitative uncertainty 557 

analysis in China’s emission inventory (Lu et al., 2011; Streets et al., 2003; Zhao et al., 2011; Zhao et al., 2017b). However, 558 

this study uses an integrated method rather than a unified framework to compile a comprehensive high resolution emission 559 

inventory for China. Collecting only emission quantities from the seven inventories without detailed calculation parameters 560 

makes it challenging to assess the overall uncertainties of INTAC here. We have summarized the estimated uncertainty range 561 

for components of INTAC in Table 5, where such information is available. Although the uncertainties might be reported for a 562 

year other than 2017, they still provide a rough representation of the uncertainty range in major air pollutant emission estimates 563 

within INTAC. Species such as SO2 and NOx exhibit relatively low uncertainties, benefiting from well-established estimates 564 

for large-scale combustion sources. The considerable uncertainties observed in BC and OC emissions may be attributed to 565 

inaccuracies in the emission factors of the residential sector. Further details regarding the uncertainties of each component 566 

inventory can be found in corresponding literature (An et al., 2021; Huang et al., 2021; Kang et al., 2016; Liu et al., 2016b; 567 

Yin et al., 2019; Zhao et al., 2011). 568 

The uncertainties of INTAC also arise from the integrated process: (1) The emission source categories are based on the MEIC 569 

model, and sectors in other inventories need to be mapped to the 88 standard sectors first. Due to limited foundational 570 

information for an aggregated sector’s disaggregation, this process may introduce biases for those who initially provide coarser 571 

source categories. For example, if an inventory only offers one aggregated sector for power, which needs to be broken down 572 

into four subsectors (i.e., production of power, supply of power, production of industrial heat power and production of 573 
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residential heat power). We use the energy consumption for corresponding sectors from the statistical yearbook as a reference 574 

basis for this allocation, which is a relatively reliable method despite potential deviations. (2) To generate speciated VOC 575 

species, sectoral NMVOC emissions in each inventory need to be matched to corresponding source profiles from the MEIC 576 

model. Discrepancies in emission source mapping can impact the outcomes, which will be overcome by gathering more 577 

detailed sectoral information for each inventory or directly collecting speciated species in future studies. (3) The INTAC is 578 

made publicly available at a monthly scale, given that the majority of its components are gathered on a monthly or annual 579 

scale. The temporal disaggregation to finer resolutions for modeling is achieved using empirically selected weighting factors 580 

in the MEIC model. However, it is noteworthy that the parameters employed for allocating emissions to daily or hourly scales 581 

remain fixed and do not vary over time or region, introducing additional uncertainties. In the future, we plan to incorporate 582 

more advanced data or method (e.g., real-time emission measurements) to enhance temporal accuracy at finer scales, as 583 

indicated in the previous work for the power sector (Wu et al., 2022). (4) The border issue is inevitable when emissions for the 584 

same species in two adjacent cities are derived from different inventories. A typical example is the cities located at the boundary 585 

of the YRD or the PRD regions. In the INTAC, we downscale all emissions to 1 km before spatial-temporal coupling process, 586 

thereby mitigating this uncertainty to some extent. 587 

 

Table 5: Uncertainties in the inventory components of INTAC, contingent upon the availability of such information (Unit: %). 588 

Emission 

inventory  

Reporting 

year 
SO2 NOx CO NMVOC NH3 PM10 PM2.5 BC OC References 

PKU-NH3 2012     
-26–

25 
    

(Kang et 

al., 2016) 

The shipping 

emission 

inventory for 

East Asia 

2013 ±4     ±4     ±5     ±4       ±4     ±4   ±4     
(Liu et al., 

2016b) 

The open 

biomass burning 

emission 

inventory for 

China 

2003–

2017 

-67–

67 

-78–

98  

-54–

56 
 

-44–

89 

-74–

84 

-65–

65 

-75–

100 

-74–

81 

(Yin et al., 

2019) 

The PRD 

emission 

inventory 

2017 
-17–

20 

-25–

28  

-30–

39 
-34–50 

-50–

86 

-45–

60 

-43–

62 

-53–

116 

-54–

160 

(Huang et 

al., 2021) 

The YRD air 

pollutant 

emission 

inventory 

2017 
-29–

36 

-28–

33  

-42–

75 
-44–68 

-58–

117 

-36–

62 

-30–

46 
  

(An et al., 

2021) 

2005 
-14–

13 

-13–

37 
   

-14–

45 

-17–

54 

-25–

136 

-40–

121 

(Zhao et 

al., 2011) 
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The INTAC for 2017 is subject to some limitations: (1) The integrated method yields emissions data across various sectors 589 

from different datasets for the same city and species, or emissions in different species from different datasets for the same city 590 

and sector. The utilization of species ratios requires careful consideration in these cases. (2) Limited resources present a 591 

substantial challenge in gathering emission inventories over extended time series from diverse research institutions within the 592 

scope of this study. Consequently, we exclusively present the INTAC for the year 2017, with the possibility of extension to 593 

other years in subsequent research. 594 

5 Data Availability 595 

Data described in this manuscript can be accessed at Zenodo under https://doi.org/10.5281/zenodo.10459198 (Wu et al., 2024) 596 

and http://meicmodel.org.cn/intac. 597 

6 Concluding remarks 598 

Compiling a comprehensive bottom-up emission inventory for China that encompasses both extensive coverage and high 599 

resolution poses a significant challenge. In this work, we construct a 0.1° resolution integrated inventory for 2017 through the 600 

fusion of multi-source emission inventories. An integration model has been developed to effectively couple heterogeneous 601 

emission datasets, aimed at generating a standardized data cube with consistent sectors, species, and spatial-temporal resolution. 602 

The INTAC is created through source mapping, species mapping, temporal disaggregation, spatial allocation and spatial-603 

temporal coupling. Six representative emission inventories focusing on national and regional scales, as well as key species and 604 

sources in China are merged with MEIC. This integration harnesses the strengths of each inventory, resulting in an improved 605 

depiction of emission totals and spatial distribution patterns for China. 606 

We find that the total emissions of SO2, NOx, CO, NMVOC, NH3, PM10, PM2.5, BC, and OC in INTAC for 2017 are 12.3, 24.5, 607 

141.0, 27.9, 9.2, 11.1, 8.4, 1.3 and 2.2 Tg, respectively. Industrial production serves as the main source of various atmospheric 608 

pollutants. Residential sources contribute over 40% to CO, BC and OC emissions. Apart from agricultural sources, which 609 

account for 83% of NH3 emissions, the contributions from various minor emission sources cannot be overlooked. This study 610 

emphasizes the significance of shipping emissions, particularly in contributing to SO2 (13%) and NOx (13%). Fossil fuel 611 

combustion dominates the emissions of PM10, PM2.5, CO, BC, SO2, and NOx, ranging from 38% to 80%. The enhancement in 612 

emission estimates for China in INTAC is demonstrated by the comparison with MEIC. For instance, the incorporation of 613 

numerous point sources has notably addressed MEIC’s tendency to overestimate emissions in urban centers, particularly at 614 

higher spatial resolutions. In comparison to MEIC, INTAC exhibits a mean bias reduction in simulated concentrations of major 615 

pollutants against ground observations across 74 cities, ranging from 2–14 μg/m³. The improvement in model performance 616 

achieved by INTAC is particularly noticeable at finer spatial resolutions. 617 
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Our study offers an efficient framework for creating highly-resolved emission inventory on a large scale. This approach 618 

integrates advantages from previous studies and holds the potential to support policymakers in making well-informed decisions 619 

for improving air quality. In the future, we anticipate the ongoing incorporation of additional emission datasets to offer a more 620 

reliable representation of emissions in China over extended time periods. 621 

Supplement 622 

The supplement related to this article has six figures and three tables. 623 

Author contributions 624 

Nana Wu, Guannan Geng and Qiang Zhang designed the study. Nana Wu developed the INTAC emission inventory and 625 

conducted chemical transport modeling. Junyu Zheng, Yu Song, Huan Liu, Yu Zhao, Ying Zhou and Qinren Shi provided the 626 

emission inventories for the integration. Ruochong Xu helped with the data analysis. Shigan Liu compiled the chemical 627 

transport model. Xiaodong Liu contributed to the design of computer programmes for the integration model. The manuscript 628 

was written by Nana Wu and Guannan Geng, and it was revised and discussed by all coauthors. 629 

Competing interests 630 

The authors declare that they have no conflict of interest. 631 

Acknowledgements 632 

This work was supported by the National Natural Science Foundation of China (Grant No. 92044303), the National Key R&D 633 

program of China (Grant No. 2022YFC3700605), and the Major Project of High Resolution Earth Observation System (Grant 634 

No. 30-Y60B01-9003-22/23). We thank Zhijiong Huang, Junchi Wang, Mingxu Liu, Wenling Liao, Chen Gu for their 635 

contributions to the handling and transfer of the emission inventories for the integration. 636 

References 637 

An, J., Huang, Y., Huang, C., Wang, X., Yan, R., Wang, Q., Wang, H., Jing, S., Zhang, Y., Liu, Y., Chen, Y., Xu, C., Qiao, L., Zhou, M., 638 
Zhu, S., Hu, Q., Lu, J., and Chen, C.: Emission inventory of air pollutants and chemical speciation for specific anthropogenic sources based 639 
on local measurements in the Yangtze River Delta region, China, Atmos. Chem. Phys., 21, 2003-2025, 10.5194/acp-21-2003-2021, 2021. 640 
Bo, X., Jia, M., Xue, X., Tang, L., Mi, Z., Wang, S., Cui, W., Chang, X., Ruan, J., Dong, G., Zhou, B., and Davis, S. J.: Effect of strengthened 641 
standards on Chinese ironmaking and steelmaking emissions, Nature Sustainability, 4, 811-820, 10.1038/s41893-021-00736-0, 2021. 642 
Chen, H., Huang, Y., Shen, H., Chen, Y., Ru, M., Chen, Y., Lin, N., Su, S., Zhuo, S., Zhong, Q., Wang, X., Liu, J., Li, B., and Tao, S.: 643 
Modeling temporal variations in global residential energy consumption and pollutant emissions, Applied Energy, 184, 820-829, 644 
https://doi.org/10.1016/j.apenergy.2015.10.185, 2016. 645 

https://doi.org/10.1016/j.apenergy.2015.10.185


29 

 

Cheng, J., Su, J., Cui, T., Li, X., Dong, X., Sun, F., Yang, Y., Tong, D., Zheng, Y., Li, Y., Li, J., Zhang, Q., and He, K.: Dominant role of 646 
emission reduction in PM2.5 air quality improvement in Beijing during 2013–2017: a model-based decomposition analysis, Atmos. Chem. 647 
Phys., 19, 6125-6146, 10.5194/acp-19-6125-2019, 2019. 648 
Cheng, J., Tong, D., Liu, Y., Bo, Y., Zheng, B., Geng, G., He, K., and Zhang, Q.: Air quality and health benefits of China’s current and 649 
upcoming clean air policies, Faraday Discussions, 226, 584-606, 10.1039/D0FD00090F, 2021a. 650 
Cheng, J., Tong, D., Liu, Y., Yu, S., Yan, L., Zheng, B., Geng, G., He, K., and Zhang, Q.: Comparison of Current and Future PM2.5 Air 651 
Quality in China Under CMIP6 and DPEC Emission Scenarios, Geophysical Research Letters, 48, e2021GL093197, 652 
https://doi.org/10.1029/2021GL093197, 2021b. 653 
Cheng, Z., Wang, S., Fu, X., Watson, J. G., Jiang, J., Fu, Q., Chen, C., Xu, B., Yu, J., Chow, J. C., and Hao, J.: Impact of biomass burning 654 
on haze pollution in the Yangtze River delta, China: a case study in summer 2011, Atmos. Chem. Phys., 14, 4573-4585, 10.5194/acp-14-655 
4573-2014, 2014. 656 
Chou, M.-D., Suarez, M. J., Ho, C.-H., Yan, M. M. H., and Lee, K.-T.: Parameterizations for Cloud Overlapping and Shortwave Single-657 
Scattering Properties for Use in General Circulation and Cloud Ensemble Models, Journal of Climate, 11, 202-214, 10.1175/1520-658 
0442(1998)011<0202:PFCOAS>2.0.CO;2, 1998. 659 
Crippa, M., Guizzardi, D., Butler, T., Keating, T., Wu, R., Kaminski, J., Kuenen, J., Kurokawa, J., Chatani, S., Morikawa, T., Pouliot, G., 660 
Racine, J., Moran, M. D., Klimont, Z., Manseau, P. M., Mashayekhi, R., Henderson, B. H., Smith, S. J., Suchyta, H., Muntean, M., Solazzo, 661 
E., Banja, M., Schaaf, E., Pagani, F., Woo, J. H., Kim, J., Monforti-Ferrario, F., Pisoni, E., Zhang, J., Niemi, D., Sassi, M., Ansari, T., and 662 
Foley, K.: The HTAP_v3 emission mosaic: merging regional and global monthly emissions (2000–2018) to support air quality modelling 663 
and policies, Earth Syst. Sci. Data, 15, 2667-2694, 10.5194/essd-15-2667-2023, 2023. 664 
Deng, F., Lv, Z., Qi, L., Wang, X., Shi, M., and Liu, H.: A big data approach to improving the vehicle emission inventory in China, Nature 665 
Communications, 11, 2801, 10.1038/s41467-020-16579-w, 2020. 666 
Endresen, Ø., Sørgård, E., Behrens, H. L., Brett, P. O., and Isaksen, I. S. A.: A historical reconstruction of ships' fuel consumption and 667 
emissions, Journal of Geophysical Research: Atmospheres, 112, https://doi.org/10.1029/2006JD007630, 2007. 668 
Geng, G., Zhang, Q., Martin, R. V., Lin, J., Huo, H., Zheng, B., Wang, S., and He, K.: Impact of spatial proxies on the representation of 669 
bottom-up emission inventories: A satellite-based analysis, Atmospheric Chemistry and Physics, 17, 4131-4145, 2017. 670 
Geng, G., Zheng, Y., Zhang, Q., Xue, T., Zhao, H., Tong, D., Zheng, B., Li, M., Liu, F., Hong, C., He, K., and Davis, S. J.: Drivers of PM2.5 671 
air pollution deaths in China 2002–2017, Nature Geoscience, 10.1038/s41561-021-00792-3, 2021. 672 
Gu, C., Zhang, L., Xu, Z., Xia, S., Wang, Y., Li, L., Wang, Z., Zhao, Q., Wang, H., and Zhao, Y.: High-resolution regional emission inventory 673 
contributes to the evaluation of policy effectiveness: a case study in Jiangsu Province, China, Atmos. Chem. Phys., 23, 4247-4269, 674 
10.5194/acp-23-4247-2023, 2023. 675 
Hong, S. Y. and Lim, J.-O. J.: The WRF Single-Moment 6-Class Microphysics Scheme (WSM6), Asia-pacific Journal of Atmospheric 676 
Sciences, 42, 129-151, 2006. 677 
Huang, C., Hu, Q., Wang, H., Qiao, L., Jing, S. a., Wang, H., Zhou, M., Zhu, S., Ma, Y., Lou, S., Li, L., Tao, S., Li, Y., and Lou, D.: 678 
Emission factors of particulate and gaseous compounds from a large cargo vessel operated under real-world conditions, Environmental 679 
Pollution, 242, 667-674, https://doi.org/10.1016/j.envpol.2018.07.036, 2018. 680 
Huang, X., Li, M., Li, J., and Song, Y.: A high-resolution emission inventory of crop burning in fields in China based on MODIS Thermal 681 
Anomalies/Fire products, Atmospheric Environment, 50, 9-15, https://doi.org/10.1016/j.atmosenv.2012.01.017, 2012a. 682 
Huang, X., Song, Y., Li, M., Li, J., Huo, Q., Cai, X., Zhu, T., Hu, M., and Zhang, H.: A high-resolution ammonia emission inventory in 683 
China, Global Biogeochemical Cycles, 26, GB1030, 2012b. 684 
Huang, Z., Zhong, Z., Sha, Q., Xu, Y., Zhang, Z., Wu, L., Wang, Y., Zhang, L., Cui, X., Tang, M., Shi, B., Zheng, C., Li, Z., Hu, M., Bi, L., 685 
Zheng, J., and Yan, M.: An updated model-ready emission inventory for Guangdong Province by incorporating big data and mapping onto 686 
multiple chemical mechanisms, Science of The Total Environment, 769, 144535, https://doi.org/10.1016/j.scitotenv.2020.144535, 2021. 687 
Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Dentener, F., Muntean, M., Pouliot, G., Keating, T., Zhang, Q., Kurokawa, J., 688 
Wankmüller, R., Denier van der Gon, H., Kuenen, J. J. P., Klimont, Z., Frost, G., Darras, S., Koffi, B., and Li, M.: HTAP_v2.2: a mosaic of 689 
regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution, Atmos. Chem. Phys., 15, 11411-690 
11432, 10.5194/acp-15-11411-2015, 2015. 691 
Kain, J. S.: The Kain–Fritsch Convective Parameterization: An Update, Journal of Applied Meteorology, 43, 170-181, 10.1175/1520-692 
0450(2004)043<0170:TKCPAU>2.0.CO;2, 2004. 693 
Kang, Y., Liu, M., Song, Y., Huang, X., Yao, H., Cai, X., Zhang, H., Kang, L., Liu, X., Yan, X., He, H., Zhang, Q., Shao, M.,  and Zhu, T.: 694 
High-resolution ammonia emissions inventories in China from 1980 to 2012, Atmos. Chem. Phys., 16, 2043-2058, 10.5194/acp-16-2043-695 
2016, 2016. 696 
Kurokawa, J., Ohara, T., Morikawa, T., Hanayama, S., Janssens-Maenhout, G., Fukui, T., Kawashima, K., and Akimoto, H.: Emissions of 697 
air pollutants and greenhouse gases over Asian regions during 2000–2008: Regional Emission inventory in ASia (REAS) version 2, 698 
Atmospheric Chemistry and Physics,13,21(2013-11-13), 13, 2013. 699 
Li, B., Chen, L., Shen, W., Jin, J., Wang, T., Wang, P., Yang, Y., and Liao, H.: Improved gridded ammonia emission inventory in China, 700 
Atmos. Chem. Phys., 21, 15883-15900, 10.5194/acp-21-15883-2021, 2021. 701 

https://doi.org/10.1029/2021GL093197
https://doi.org/10.1029/2006JD007630
https://doi.org/10.1016/j.envpol.2018.07.036
https://doi.org/10.1016/j.atmosenv.2012.01.017
https://doi.org/10.1016/j.scitotenv.2020.144535


30 

 

Li, M., Kurokawa, J., Zhang, Q., Woo, J. H., Morikawa, T., Chatani, S., Lu, Z., Song, Y., Geng, G., Hu, H., Kim, J., Cooper, O. R., and 702 
McDonald, B. C.: MIXv2: a long-term mosaic emission inventory for Asia (2010-2017), EGUsphere, 2023, 1-45, 10.5194/egusphere-2023-703 
2283, 2023a. 704 
Li, M., Liu, H., Geng, G., Hong, C., Liu, F., Song, Y., Tong, D., Zheng, B., Cui, H., Man, H., Zhang, Q., and He, K.: Anthropogenic emission 705 
inventories in China: a review, National Science Review, 4, 834-866, 10.1093/nsr/nwx150, 2017a. 706 
Li, M., Zhang, Q., Kurokawa, J. I., Woo, J. H., He, K., Lu, Z., Ohara, T., Song, Y., Streets, D. G., Carmichael, G. R., Cheng, Y., Hong, C., 707 
Huo, H., Jiang, X., Kang, S., Liu, F., Su, H., and Zheng, B.: MIX: a mosaic Asian anthropogenic emission inventory under the international 708 
collaboration framework of the MICS-Asia and HTAP, Atmos. Chem. Phys., 17, 935-963, 10.5194/acp-17-935-2017, 2017b. 709 
Li, M., Zhang, Q., Streets, D. G., He, K. B., Cheng, Y. F., Emmons, L. K., Huo, H., Kang, S. C., Lu, Z., Shao, M., Su, H., Yu, X., and Zhang, 710 
Y.: Mapping Asian anthropogenic emissions of non-methane volatile organic compounds to multiple chemical mechanisms, Atmos. Chem. 711 
Phys., 14, 5617-5638, 10.5194/acp-14-5617-2014, 2014. 712 
Li, S., Wang, S., Wu, Q., Zhang, Y., Ouyang, D., Zheng, H., Han, L., Qiu, X., Wen, Y., Liu, M., Jiang, Y., Yin, D., Liu, K., Zhao, B., Zhang, 713 
S., Wu, Y., and Hao, J.: Emission trends of air pollutants and CO2 in China from 2005 to 2021, Earth Syst. Sci. Data, 15, 2279-2294, 714 
10.5194/essd-15-2279-2023, 2023b. 715 
Liu, F., Beirle, S., Zhang, Q., Dörner, S., He, K., and Wagner, T.: NOx lifetimes and emissions of cities and power plants in polluted 716 
background estimated by satellite observations, Atmos. Chem. Phys., 16, 5283-5298, 10.5194/acp-16-5283-2016, 2016a. 717 
Liu, F., Zhang, Q., Tong, D., Zheng, B., Li, M., Huo, H., and He, K. B.: High-resolution inventory of technologies, activities, and emissions 718 
of coal-fired power plants in China from 1990 to 2010, Atmos. Chem. Phys., 15, 13299-13317, 10.5194/acp-15-13299-2015, 2015a. 719 
Liu, H., Fu, M., Jin, X., Shang, Y., Shindell, D., Faluvegi, G., Shindell, C., and He, K.: Health and climate impacts of ocean-going vessels 720 
in East Asia, Nature Climate Change, 6, 1037-1041, 10.1038/nclimate3083, 2016b. 721 
Liu, H., Meng, Z.-H., Lv, Z.-F., Wang, X.-T., Deng, F.-Y., Liu, Y., Zhang, Y.-N., Shi, M.-S., Zhang, Q., and He, K.-B.: Emissions and 722 
health impacts from global shipping embodied in US–China bilateral trade, Nature Sustainability, 2, 1027-1033, 10.1038/s41893-019-0414-723 
z, 2019. 724 
Liu, H., Wu, B., Liu, S., Shao, P., Liu, X., Zhu, C., Wang, Y., Wu, Y., Xue, Y., Gao, J., Hao, Y., and Tian, H.: A regional high-resolution 725 
emission inventory of primary air pollutants in 2012 for Beijing and the surrounding five provinces of North China, Atmospheric 726 
Environment, 181, 20-33, https://doi.org/10.1016/j.atmosenv.2018.03.013, 2018. 727 
Liu, J., Zheng, Y., Geng, G., Hong, C., Li, M., Li, X., Liu, F., Tong, D., Wu, R., Zheng, B., He, K., and Zhang, Q.: Decadal changes in 728 
anthropogenic source contribution of PM2.5 pollution and related health impacts in China, 1990–2015, Atmos. Chem. Phys., 20, 7783-7799, 729 
10.5194/acp-20-7783-2020, 2020. 730 
Liu, M., Song, Y., Yao, H., Kang, Y., Li, M., Huang, X., and Hu, M.: Estimating emissions from agricultural fires in the North China Plain 731 
based on MODIS fire radiative power, Atmospheric Environment, 112, 326-334, https://doi.org/10.1016/j.atmosenv.2015.04.058, 2015b. 732 
Lu, Z., Zhang, Q., and Streets, D. G.: Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996–2010, Atmos. 733 
Chem. Phys., 11, 9839-9864, 10.5194/acp-11-9839-2011, 2011. 734 
Lv, Z., Liu, H., Ying, Q., Fu, M., Meng, Z., Wang, Y., Wei, W., Gong, H., and He, K.: Impacts of shipping emissions on PM2.5 pollution 735 
in China, Atmos. Chem. Phys., 18, 15811-15824, 10.5194/acp-18-15811-2018, 2018. 736 
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S. A.: Radiative transfer for inhomogeneous atmospheres: RRTM, 737 
a validated correlated-k model for the longwave, Journal of Geophysical Research: Atmospheres, 102, 16663-16682, 738 
https://doi.org/10.1029/97JD00237, 1997. 739 
Ni, H., Han, Y., Cao, J., Chen, L. W. A., Tian, J., Wang, X., Chow, J. C., Watson, J. G., Wang, Q., Wang, P., Li, H., and Huang, R.-J.: 740 
Emission characteristics of carbonaceous particles and trace gases from open burning of crop residues in China, Atmospheric Environment, 741 
123, 399-406, https://doi.org/10.1016/j.atmosenv.2015.05.007, 2015. 742 
Ohara, T., Akimoto, H., Kurokawa, J., Horii, N., Yamaji, K., Yan, X., and Hayasaka, T.: An Asian emission inventory of anthropogenic 743 
emission sources for the period 1980&ndash;2020, Atmos. Chem. Phys., 7, 4419-4444, 10.5194/acp-7-4419-2007, 2007. 744 
Paulot, F., Jacob, D. J., Pinder, R. W., Bash, J. O., Travis, K., and Henze, D. K.: Ammonia emissions in the United States, European Union, 745 
and China derived by high-resolution inversion of ammonium wet deposition data: Interpretation with a new agricultural emissions inventory 746 
(MASAGE_NH3), Journal of Geophysical Research: Atmospheres, 119, 4343-4364, https://doi.org/10.1002/2013JD021130, 2014. 747 
Peng, L., Zhang, Q., Yao, Z., Mauzerall, D. L., Kang, S., Du, Z., Zheng, Y., Xue, T., and He, K.: Underreported coal in statistics: A survey-748 
based solid fuel consumption and emission inventory for the rural residential sector in China, Applied Energy, 235, 1169-1182, 749 
https://doi.org/10.1016/j.apenergy.2018.11.043, 2019. 750 
Pleim, J. E.: A Combined Local and Nonlocal Closure Model for the Atmospheric Boundary Layer. Part I: Model Description and Testing, 751 
Journal of Applied Meteorology and Climatology, 46, 1383-1395, 10.1175/JAM2539.1, 2007. 752 
Reisen, F., Meyer, C. P., and Keywood, M. D.: Impact of biomass burning sources on seasonal aerosol air quality, Atmospheric Environment, 753 
67, 437-447, https://doi.org/10.1016/j.atmosenv.2012.11.004, 2013. 754 
Schneider, A., Friedl, M. A., and Potere, D.: A new map of global urban extent from MODIS satellite data, Environmental Research Letters, 755 
4, 044003, 10.1088/1748-9326/4/4/044003, 2009. 756 

https://doi.org/10.1016/j.atmosenv.2018.03.013
https://doi.org/10.1016/j.atmosenv.2015.04.058
https://doi.org/10.1029/97JD00237
https://doi.org/10.1016/j.atmosenv.2015.05.007
https://doi.org/10.1002/2013JD021130
https://doi.org/10.1016/j.apenergy.2018.11.043
https://doi.org/10.1016/j.atmosenv.2012.11.004


31 

 

Sha, Q., Zhu, M., Huang, H., Wang, Y., Huang, Z., Zhang, X., Tang, M., Lu, M., Chen, C., Shi, B., Chen, Z., Wu, L., Zhong, Z., Li, C., Xu, 757 
Y., Yu, F., Jia, G., Liao, S., Cui, X., Liu, J., and Zheng, J.: A newly integrated dataset of volatile organic compounds (VOCs) source profiles 758 
and implications for the future development of VOCs profiles in China, Sci Total Environ, 793, 148348, 10.1016/j.scitotenv.2021.148348, 759 
2021. 760 
Song, Y., Liu, B., Miao, W., Chang, D., and Zhang, Y.: Spatiotemporal variation in nonagricultural open fire emissions in China from 2000 761 
to 2007, Global Biogeochemical Cycles, 23, GB2008, https://doi.org/10.1029/2008GB003344, 2009. 762 
Streets, D. G., Bond, T. C., Carmichael, G. R., Fernandes, S. D., Fu, Q., He, D., Klimont, Z., Nelson, S. M., Tsai, N. Y., Wang, M. Q., Woo, 763 
J. H., and Yarber, K. F.: An inventory of gaseous and primary aerosol emissions in Asia in the year 2000, Journal of Geophysical Research: 764 
Atmospheres, 108, https://doi.org/10.1029/2002JD003093, 2003. 765 
Tang, L., Jia, M., Yang, J., Li, L., Bo, X., and Mi, Z.: Chinese industrial air pollution emissions based on the continuous emission monitoring 766 
systems network, Scientific Data, 10, 153, 10.1038/s41597-023-02054-w, 2023. 767 
Trade, U. N. C. o. and Development: Review of Maritime Transport 2014, United Nations, https://doi.org/10.18356/5a566ab1-en, 2014. 768 
Wang, W., Khanna, N., Lin, J., and Liu, X.: Black carbon emissions and reduction potential in China: 2015-2050, Journal of environmental 769 
management, 329, 117087, 10.1016/j.jenvman.2022.117087, 2023. 770 
Wang, X., Lei, Y., Yan, L., Liu, T., Zhang, Q., and He, K.: A unit-based emission inventory of SO2, NOx and PM for the Chinese iron and 771 
steel industry from 2010 to 2015, Science of The Total Environment, 676, 18-30, https://doi.org/10.1016/j.scitotenv.2019.04.241, 2019. 772 
Wu, N., Geng, G., Qin, X., Tong, D., Zheng, Y., Lei, Y., and Zhang, Q.: Daily Emission Patterns of Coal-Fired Power Plants in China Based 773 
on Multisource Data Fusion, ACS Environmental Au, 2, 363-372, 10.1021/acsenvironau.2c00014, 2022. 774 
Wu, N., Geng, G., Xu, R., Liu, S., Liu, X., Shi, Q., Zhou, Y., Zhao, Y., Liu, H., Song, Y., Zheng, J., and Zhang, Q.: INTAC: a high-resolution 775 
INTegrated emission inventory of Air pollutants for China in 2017 [Data set], Zenodo, https://doi.org/10.5281/zenodo.10459198, 2024. 776 
Wu, N., Geng, G., Yan, L., Bi, J., Li, Y., Tong, D., Zheng, B., and Zhang, Q.: Improved spatial representation of a highly resolved emission 777 
inventory in China: evidence from TROPOMI measurements, Environmental Research Letters, 16, 084056, 10.1088/1748-9326/ac175f, 778 
2021. 779 
Wu, Q., Han, L., Li, S., Wang, S., Cong, Y., Liu, K., Lei, Y., Zheng, H., Li, G., Cai, B., and Hao, J.: Facility-Level Emissions and Synergistic 780 
Control of Energy-Related Air Pollutants and Carbon Dioxide in China, Environmental Science & Technology, 57, 4504-4512, 781 
10.1021/acs.est.2c07704, 2023. 782 
Xiao, Q., Geng, G., Xue, T., Liu, S., Cai, C., He, K., and Zhang, Q.: Tracking PM2.5 and O3 Pollution and the Related Health Burden in 783 
China 2013–2020, Environmental Science & Technology, 56, 6922-6932, 10.1021/acs.est.1c04548, 2022. 784 
Xiu, A. and Pleim, J. E.: Development of a Land Surface Model. Part I: Application in a Mesoscale Meteorological Model, Journal of 785 
Applied Meteorology, 40, 192-209, 10.1175/1520-0450(2001)040<0192:DOALSM>2.0.CO;2, 2001. 786 
Yang, Y. and Zhao, Y.: Quantification and evaluation of atmospheric pollutant emissions from open biomass burning with multiple methods: 787 
a case study for the Yangtze River Delta region, China, Atmos. Chem. Phys., 19, 327-348, 10.5194/acp-19-327-2019, 2019. 788 
Yin, L., Du, P., Zhang, M., Liu, M., Xu, T., and Song, Y.: Estimation of emissions from biomass burning in China (2003–2017) based on 789 
MODIS fire radiative energy data, Biogeosciences, 16, 1629-1640, 10.5194/bg-16-1629-2019, 2019. 790 
Zhang, J., Liu, L., Zhao, Y., Li, H., Lian, Y., Zhang, Z., Huang, C., and Du, X.: Development of a high-resolution emission inventory of 791 
agricultural machinery with a novel methodology: A case study for Yangtze River Delta region, Environmental Pollution, 266, 115075, 792 
https://doi.org/10.1016/j.envpol.2020.115075, 2020. 793 
Zhang, Q. and Geng, G.: Impact of clean air action on PM2.5 pollution in China, Science China Earth Sciences, 62, 1845-1846, 794 
10.1007/s11430-019-9531-4, 2019. 795 
Zhang, Q., Streets, D. G., Carmichael, G. R., He, K. B., Huo, H., Kannari, A., Klimont, Z., Park, I. S., Reddy, S., Fu, J. S., Chen, D., Duan, 796 
L., Lei, Y., Wang, L. T., and Yao, Z. L.: Asian emissions in 2006 for the NASA INTEX-B mission, Atmos. Chem. Phys., 9, 5131-5153, 797 
10.5194/acp-9-5131-2009, 2009. 798 
Zhang, Q., Zheng, Y., Tong, D., Shao, M., Wang, S., Zhang, Y., Xu, X., Wang, J., He, H., Liu, W., Ding, Y., Lei, Y., Li, J., Wang, Z., Zhang, 799 
X., Wang, Y., Cheng, J., Liu, Y., Shi, Q., Yan, L., Geng, G., Hong, C., Li, M., Liu, F., Zheng, B., Cao, J., Ding, A., Gao, J., Fu, Q., Huo, J., 800 
Liu, B., Liu, Z., Yang, F., He, K., and Hao, J.: Drivers of improved PM2.5 air quality in China from 2013 to 2017, Proc Natl Acad Sci U S 801 
A, 116, 24463-24469, 10.1073/pnas.1907956116, 2019a. 802 
Zhang, Y., Bo, X., Zhao, Y., and Nielsen, C. P.: Benefits of current and future policies on emissions of China's coal-fired power sector 803 
indicated by continuous emission monitoring, Environmental Pollution, 251, 415-424, https://doi.org/10.1016/j.envpol.2019.05.021, 2019b. 804 
Zhang, Y., Zhao, Y., Gao, M., Bo, X., and Nielsen, C. P.: Air quality and health benefits from ultra-low emission control policy indicated 805 
by continuous emission monitoring: a case study in the Yangtze River Delta region, China, Atmos. Chem. Phys., 21, 6411-6430, 806 
10.5194/acp-21-6411-2021, 2021. 807 
Zhao, Y., Mao, P., Zhou, Y., Yang, Y., Zhang, J., Wang, S., Dong, Y., Xie, F., Yu, Y., and Li, W.: Improved provincial emission inventory 808 
and speciation profiles of anthropogenic non-methane volatile organic compounds: a case study for Jiangsu, China, Atmos. Chem. Phys., 809 
17, 7733-7756, 10.5194/acp-17-7733-2017, 2017a. 810 
Zhao, Y., Nielsen, C. P., Lei, Y., McElroy, M. B., and Hao, J.: Quantifying the uncertainties of a bottom-up emission inventory of 811 
anthropogenic atmospheric pollutants in China, Atmos. Chem. Phys., 11, 2295-2308, 10.5194/acp-11-2295-2011, 2011. 812 

https://doi.org/10.1029/2008GB003344
https://doi.org/10.1029/2002JD003093
https://doi.org/10.18356/5a566ab1-en
https://doi.org/10.1016/j.scitotenv.2019.04.241
https://doi.org/10.5281/zenodo.10459198
https://doi.org/10.1016/j.envpol.2020.115075
https://doi.org/10.1016/j.envpol.2019.05.021


32 

 

Zhao, Y., Qiu, L. P., Xu, R. Y., Xie, F. J., Zhang, Q., Yu, Y. Y., Nielsen, C. P., Qin, H. X., Wang, H. K., Wu, X. C., Li, W. Q., and Zhang, 813 
J.: Advantages of a city-scale emission inventory for urban air quality research and policy: the case of Nanjing, a typical industrial city in 814 
the Yangtze River Delta, China, Atmos. Chem. Phys., 15, 12623-12644, 10.5194/acp-15-12623-2015, 2015. 815 
Zhao, Y., Xia, Y., and Zhou, Y.: Assessment of a high-resolution NOX emission inventory using satellite observations: A case study of 816 
southern Jiangsu, China, Atmospheric Environment, 190, 135-145, https://doi.org/10.1016/j.atmosenv.2018.07.029, 2018. 817 
Zhao, Y., Yuan, M., Huang, X., Chen, F., and Zhang, J.: Quantification and evaluation of atmospheric ammonia emissions with different 818 
methods: a case study for the Yangtze River Delta region, China, Atmos. Chem. Phys., 20, 4275-4294, 10.5194/acp-20-4275-2020, 2020. 819 
Zhao, Y., Zhou, Y., Qiu, L., and Zhang, J.: Quantifying the uncertainties of China's emission inventory for industrial sources: From national 820 
to provincial and city scales, Atmospheric Environment, 165, 207-221, https://doi.org/10.1016/j.atmosenv.2017.06.045, 2017b. 821 
Zheng, B., Cheng, J., Geng, G., Wang, X., Li, M., Shi, Q., Qi, J., Lei, Y., Zhang, Q., and He, K.: Mapping anthropogenic emissions in China 822 
at 1 km spatial resolution and its application in air quality modeling, Science Bulletin, 66, 612-620, 10.1016/j.scib.2020.12.008, 2021. 823 
Zheng, B., Huo, H., Zhang, Q., Yao, Z. L., Wang, X. T., Yang, X. F., Liu, H., and He, K. B.: High-resolution mapping of vehicle emissions 824 
in China in 2008, Atmospheric Chemistry and Physics, 14, 9787-9805, 10.5194/acp-14-9787-2014, 2014. 825 
Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J., Yan, L., Zhang, Y., Zhao, H., Zheng, Y., He, K., 826 
and Zhang, Q.: Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions, Atmos. Chem. Phys., 18, 827 
14095-14111, 10.5194/acp-18-14095-2018, 2018. 828 
Zheng, B., Zhang, Q., Tong, D., Chen, C., Hong, C., Li, M., Geng, G., Lei, Y., Huo, H., and He, K.: Resolution dependence of uncertainties 829 
in gridded emission inventories: a case study in Hebei, China, Atmos. Chem. Phys., 17, 921-933, 10.5194/acp-17-921-2017, 2017. 830 
Zheng, H., Cai, S., Wang, S., Zhao, B., and Hao, J.: Development of a unit-based industrial emission inventory in the Beijing–Tianjin–Hebei 831 
region and resulting improvement in air quality modeling, Atmospheric Chemistry and Physics, 19, 3447-3462, 2019. 832 
Zheng, J., He, M., Shen, X., Yin, S., and Yuan, Z.: High resolution of black carbon and organic carbon emissions in the Pearl River Delta 833 
region, China, Science of The Total Environment, 438, 189-200, https://doi.org/10.1016/j.scitotenv.2012.08.068, 2012. 834 
Zhou, Y., Xing, X., Lang, J., Chen, D., Cheng, S., Wei, L., Wei, X., and Liu, C.: A comprehensive biomass burning emission inventory with 835 
high spatial and temporal resolution in China, Atmospheric Chemistry and Physics, 17, 2839-2864, 2017a. 836 
Zhou, Y., Zhao, Y., Mao, P., Zhang, Q., Zhang, J., Qiu, L., and Yang, Y.: Development of a high-resolution emission inventory and its 837 
evaluation and application through air quality modeling for Jiangsu Province, China, Atmos. Chem. Phys., 17, 211-233, 10.5194/acp-17-838 
211-2017, 2017b. 839 
 

https://doi.org/10.1016/j.atmosenv.2018.07.029
https://doi.org/10.1016/j.atmosenv.2017.06.045
https://doi.org/10.1016/j.scitotenv.2012.08.068

