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Abstract. Accurate and high-resolution spatial soil information is crucial for efficient and sustainable land use, management, and 

conservation. Since the establishment of digital soil mapping (DSM) and the GlobalSoilMap working group, significant advances 10 

have been made in spatial soil information globally. However, accurately predicting soil variation over large and complex areas 

with limited samples remains a challenge, especially for China, which has diverse soil landscapes. To address this challenge, we 

utilized 11,209 representative multi-source legacy soil profiles (including the Second National Soil Survey of China, World Soil 

Information Service, First National Soil Survey of China, and regional databases) and high-resolution soil-forming environment 

characterization. Using advanced Quantile Regression Forest algorithms and a high-performance parallel computing strategy, we 15 

developed comprehensive maps of 23 soil physical, chemical and fertility properties at six standard depth layers from 0 to 2 meters 

in China with a 90 m spatial resolution (China dataset of soil properties for land surface modeling version 2, CSDLv2). Data-

splitting and independent samples validation strategies were employed to evaluate the accuracy of the predicted maps quality. The 

results showed that the predicted maps were significantly more accurate and detailed compared to traditional soil type linkage 

methods (i.e., CSDLv1, the first version of the dataset), SoilGrids 2.0, and HWSD 2.0 products, effectively representing the spatial 20 

variation of soil properties across China. The prediction accuracy of most soil properties at the 0-5 cm depth interval ranged from 

good to moderate, with Model Efficiency Coefficients for most soil properties ranging from 0.75 to 0.32 during data-splitting 

validation and from 0.88 to 0.25 during independent sample validation. The wide range between the 5% lower and 95% upper 

prediction limits may indicate substantial room for improvement in current predictions. The relative importance of environmental 

covariates in predictions varied with soil properties and depth, indicating the complexity of interactions among multiple factors in 25 

the soil formation processes. As the soil profiles used in this study mainly originate from the Second National Soil Survey of China 

during 1970s and 1980s, they could provide new perspectives of soil changes together with existing maps based on 2010s soil 

profiles. The findings make important contributions to the GlobalSoilMap project and can also be used for regional Earth system 

modeling and land surface modeling to better represent the role of soil in hydrological and biogeochemical cycles in China. This 

dataset is freely available and can be accessed at https://doi.org/10.11888/Terre.tpdc.301235 (Shi et al, 2024). 30 
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1 Introduction 

Soil plays a pivotal role in earth's systems, facilitating the cycling of water, energy, and carbon across varying temporal and 

spatial scales. Its significance lies in regulating ecosystems by providing vital nutrients to living organisms, storing and cycling 

water, heat, carbon, and essential nutrients, and serving as a medium for vegetation growth and structural support (Chaney et al., 

2019; Crow et al., 2012). Soil data are essential for land surface models (LSMs), which form a part of Earth system models (ESMs) 35 

(Dai et al., 2019b; Luo et al., 2016). The diverse range of soil properties and their precise representation are crucial for robust land 

surface modeling, influencing various environmental, agricultural, and ecological assessments. There is an urgent need for detailed, 

accurate, and up-to-date soil information to develop solutions for these challenges and to inform decision-making related to natural 

resource management (Dai et al., 2019b). 

In recent years, the national and global maps of soil properties have gained significant traction in research (Arrouays et al., 40 

2017), with a surge of studies focusing on mapping one or more soil properties at high resolutions such as 90 meters spanning 

various countries. These include large-scale endeavors in Australia (Grundy et al., 2015; Viscarra Rossel et al., 2015), France (Chen 

et al., 2023; Mulder et al., 2016), Chile (Dinamarca et al., 2023; Padarian et al., 2017), Japan (Yamashita et al., 2024) and the United 

States (Ramcharan et al., 2018; Thompson et al., 2020). Chaney et al., (2019) even developed 30 m probabilistic maps of soil 

properties across the United States. Denmark has also developed national maps of soil texture at a finer 30 m resolution (Adhikari 45 

et al., 2013). Additionally, broader-scale resolution maps, ranging from 250 to 5000 m, have also been investigated at the national 

level, exemplified by Brazil's (Gomes et al., 2019), and expanded to continental scales including Africa (Hengl et al., 2015, 2021) 

and Europe (Heuvelink et al., 2016), and ultimately to global levels such as Global Soil Dataset for use in Earth system models 

(GSDE, Shangguan et al., 2014), Harmonized World Soil Database version 2.0 (HWSD 2.0, FAO & IIASA, 2023), SoilGrids 2.0, 

(Poggio et al., 2021). 50 

Shangguan et al., (2013) pioneered the development of a comprehensive soil characteristics dataset specifically designed for 

land surface modeling over China (i.e., China Soil Dataset for Land Surface Modelling, CSDL, the first version dataset of this study). 

This dataset, based on 8,979 legacy soil profiles and the soil map of China (1:1,000,000), employs the conventional polygon linkage 

method (Batjes, 1995, 2002; Shangguan et al., 2012) to develop soil physical properties, chemical properties and fertility. It provides 

a spatial resolution of 30 arc-second (about 1 km at equator) and includes over 20 properties at 8 vertical soil depths (Shangguan et 55 

al., 2013). The dataset has been successfully applied in various fields. Despite its significant contributions to regional land surface 

modeling and geoscientific research, over time, several issues and shortcomings have been identified. First, while the dataset utilized 

soil profiles solely from the Second National Soil Survey of China (1979-1985), there is now a broader array of available soil 

profiles, including those from the World Soil Information Service (WoSIS, (Batjes et al., 2020)), regional database (Shangguan et 

al., 2012) and the First National Soil Survey of China (National Soil Survey Office, 1964). The integration of these soil profiles 60 

promises to substantially enhance the spatial representation and coverage of the dataset. Second, this dataset relies on the traditional 

polygon linkage method based on soil transformation rules (Shangguan et al., 2013, 2014), where results heavily depend on the 

accuracy of soil classification maps and are estimated as the average of a soil class or polygon, leading to discontinuous spatial 

estimates. The emergence of digital soil mapping (DSM) techniques (Mcbratney et al., 2003), particularly the success of machine 
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learning in large-scale spatial prediction (Hengl et al., 2017; Poggio et al., 2021; Yan et al., 2020), presents a methodological 65 

advancement for this study. Recent studies indicate that advanced machine learning models often outperform simpler ones, with the 

size of the sample also emerging as a crucial factor influencing model performance (Padarian et al., 2020). Considering these 

advancements and the recognition of limitations in the existing dataset, there is a compelling rationale for pursuing a new version 

that addresses these challenges leveraging more soil profiles and contemporary mapping technologies. 

For China, mapping datasets encompassing one or multiple soil properties have already been developed. Liang et al., (2019) 70 

and Chen et al., (2019) both developed high-resolution grid maps across China based on about 5,000 legacy soil profiles collected 

from the Second National Soil Survey of China, providing more detailed information for areas with spatial heterogeneity. However, 

Liang et al. (2019) focused solely on spatial estimates for soil organic carbon in the topsoil (0-20cm layer), while Chen et al. (2019) 

concentrated solely on spatial estimates for soil pH in the same layer. Both studies lack estimations for other soil property variables 

and deeper soil layers. Approximately 4,000 legacy soil profiles were utilized by (Zhou et al., 2019a) to develop a high-resolution 75 

national-scale dataset for total nitrogen in the topsoil (0-20 cm layer) with a 90 m resolution using machine learning methods. 

Similarly, Song et al., (2020) used over 5,000 soil profiles from the 2010s to produce high-resolution maps of soil organic carbon 

at six standard depths (0-5, 5-15, 15-30, 30-60, 60-100, and 100-200 cm) across China, achieving explained variances ranging from 

0.16 to 0.57. Besides, Liu et al., (2022a) also employed machine learning methods to develop China's inaugural high-resolution 

national soil information grid dataset at a 90-meter resolution, utilizing soil samples from the most recent national soil specie survey 80 

(2009-2019). This dataset has significantly contributed to soil management, agricultural production, hydrological modeling, 

ecological development, and climate change mitigation. However, the study solely relied on a constrained set of about 4,500 soil 

profiles collected during the recent national soil survey, generating national grid maps for only some fundamental soil properties. 

The limitations stem from the absence of more comprehensive national grid maps for soil properties, such as Available phosphorous 

(AP), Available potassium (AK), Alkali-hydrolysable nitrogen (AN), porosity, and others, imposing constraints on applications that 85 

necessitate a broader spectrum of soil properties information. Additionally, there are abundant legacy soil profiles stored in global 

or regional databases (e.g., WoSIS, (Batjes et al., 2020)). These legacy soil profiles serve as a primary data source for digital soil 

mapping (Lagacherie et al., 2024; Song et al., 2020; Yang et al., 2022). For China, the Second National Soil Survey serves as a 

significant source of legacy soil profiles, offering valuable insights into soil properties and characteristics (Shangguan et al., 2013). 

Therefore, these rich legacy soil profile data should be fully utilized, as they better reflect historical mapping results, providing a 90 

new perspective for studying temporal changes in soil properties (Song et al., 2020). 

This paper aims to develop a new version of CSDL (CSDLv2), with comprehensive soil physical properties, chemical 

properties for China at a 90 m resolution. This work builds on its previous version (hereafter referred as CSDLv1, Shangguan et al., 

2013), integrating advanced machine learning algorithms, multi-source soil profile samples, and various high-resolution 

environmental covariates related to soil formation. Specifically, the novelty of the second edition dataset developed in this study, 95 

compared to the first edition, is manifested in the following aspects: 

1. integration of multi-source soil profile samples, including soil profiles from the Second National Soil Survey of China 

(Shangguan et al., 2013), the World Soil Information Service (Batjes et al., 2020), the First National Soil Survey of China 

https://doi.org/10.5194/essd-2024-299
Preprint. Discussion started: 29 August 2024
c© Author(s) 2024. CC BY 4.0 License.



4 

(National Soil Survey Office, 1964), and regional databases (Shangguan et al., 2012), enhancing the spatial representation 

of soil profiles, instead of only data from the Second National Soil Survey of China in CSDLv1; 100 

2. application of up-to-date machine learning methods, replacing conventional soil polygon linkage method; 

3. accuracy improvement and enhanced resolution from the original 1 km to 90 meters; and  

4. quantification of prediction uncertainty using Quantile Regression Forests (Meinshausen, 2006) instead of quality control 

information without explicitly uncertainty estimates in CSDLv1. 

Additionally, the novelty of the second edition dataset compared to existing datasets lies in two main aspects: on one hand, a 105 

larger number of soil profiles were utilized in this study; on the other hand, this study developed over 20 comprehensive soil property 

variables, while most current research focuses on mapping a few basic soil properties. 

2 Materials and Methods 

The workflow of this study is shown in Fig. 1. Four main processes are involved in this framework: 

1. Incorporating in-situ values of multiple soil profiles and overlaying them with covariates to generate a regression matrix 110 

for modeling 

2. Using cross-validation to obtain optimal modeling parameters 

3. Fitting prediction models based on the regression matrix 

4. Applying spatial prediction models using high-resolution covariates and comparing predictions with existing maps using 

data-splitting and independent samples validation. 115 

2.1 Study area and soil profiles  

2.1.1 Study area 

China, located in East Asia along the west coast of the Pacific Ocean, extends from 73°33' to 135°05' E longitude and from 

3°51' to 53°33' N latitude, covering an east-west distance of about 5,000 km and featuring a continental coastline exceeding 18,000 

km. The terrain of China exhibits a distinctive "ladder" pattern, with higher elevations in the west descending to lower elevations in 120 

the east. Mountains, plateaus, and hills comprise about 67% of the land area, while basins and plains make up the remaining 33% 

(Qin et al., 2016). China's topography is highly complex, encompassing an array of landforms such as extensive mountain ranges, 

vast plateaus, fertile plains, and deep basins. This diverse landscape is further complicated by a range of climatic zones determined 

by variations in temperature, precipitation, and altitude. These zones include temperate, subtropical, and tropical climates, with the 

temperate zone being the largest (Fan et al., 2016). Given the complexity and diversity of China's geographical and climatic 125 

conditions, the study of soil properties mapping across this vast nation is of paramount importance. 
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2.1.2 Soil profiles 

Typical soil profiles representing main soil-landscapes were collected from four data sources: Second National Soil Survey of 

China (SNSSC, (National Soil Survey Office, 1996)), World Soil Information Service (WoSIS, (Batjes et al., 2020)), regional 

datasets (Shangguan et al., 2012), and First National Soil Survey of China (FNSSC, (National Soil Survey Office, 1964)). A total 130 

of 11,209 soil profiles were gathered, with distribution details as follows: 8,979 from SNSSC, 1,540 from WoSIS database, 614 

from regional datasets, and 76 from FNSSC. Their spatial distribution is illustrated in Fig. 1, with different colors representing each 

data source. The soil property variables considered in this study are listed in Table 1. SNSSC, conducted primarily between 1979 

and 1985, provided the majority of soil profiles, although coordinates were approximated due to GPS limitations at the time, 

impacting mapping accuracy (Lagacherie et al., 2024). Shi et al. (2024) improved the location accuracy of soil profiles in SNSSC 135 

by aligning detailed profile descriptions with environmental covariates. WoSIS, managed by the International Soil Reference and 

Information Centre (ISRIC), is a comprehensive global database that consolidates soil profile data from various sources under a 

common standard (Batjes et al., 2020). These data are standardized and harmonized to facilitate global soil research and enhance 

the accuracy of digital soil mapping efforts. It is worth noting that WoSIS contains soil profiles from the SNSSC. The following 

approach was employed to determine and eliminate potentially duplicate soil profiles in the WoSIS database that may overlap with 140 

those in the SNSSC: soil profiles were considered duplicates if they had identical depths of soil horizons or included at least three 

identical depths, exhibited similar soil property values, and had close geographic coordinates (latitude and longitude). Consequently, 

101 duplicate soil profiles were removed from the WoSIS database, leaving 1,540 soil profiles for this study. The regional dataset 

was collected from five areas in 2008 and 2009 (Shangguan et al., 2012). FNSSC, initiated in 1958, laid the foundation for China's 

soil science database and agricultural soil classification. The probability density distribution of topsoil (0-5 cm) properties from 145 

different data sources is provided in Fig. S1. To align with international soil mapping standards, a continuous depth function using 

equal-area splines was applied to horizon data, defining six standard layers (0-5, 5-15, 15-30, 30-60, 60-100, and 100-200 cm). 

Detailed descriptions of the equal-area splines can be found in Bishop et al. (1999) and Liu et al. (2022a). 

2.2 Environmental covariates 

Following the SCORPAN (soil, climate, organisms, topography, parent material, age and space) concept (Mcbratney et al., 150 

2003), over 150 environmental covariates associated with soil formation were collected to investigate the spatial distribution of soil 

properties for this work. A summary of some high-resolution covariates was provided in Table 2, while the complete list can be 

found in Table S1. These environmental covariates offer information on the factors related to soil properties. 

Relief covariates primarily were derived from the MERIT Digital Elevation Model (DEM) dataset (https://hydro.iis.u-

tokyo.ac.jp/~yamadai/MERIT_DEM/), a high-precision global DEM with a resolution of 3 arc-seconds (~90 m at the equator), 155 

vertically referenced to the EGM96 geoid and horizontally referenced to the World Geodetic System 1984 (Yamazaki et al., 2019). 

This dataset serves as an improved spaceborne DEM that significantly reduces the major error components found in other DEMs 

such as NASA's SRTM3 DEM, and Viewfinder Panoramas DEM (Li et al., 2023). Based on this DEM, other relief covariates such 

as slope, aspect, plan curvature, profile curvature, and terrain wetness index were calculated using SAGA GIS (Conrad et al., 2015). 
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Organism covariates were primarily sourced from six datasets: The Landsat 8 Collection 2 Level 2 (LC08C02), MODIS, 160 

GLOBELLAND30, the Global Accessibility Map, and GlobCover. L8C2L2 is an advanced satellite data product released by the 

United States Geological Survey (USGS). Landsat 8, part of the Landsat satellite series, is specifically designed for Earth observation 

and monitoring. Collection 2 represents an updated version of Landsat data products, incorporating various improvements and 

enhancements. High-resolution data such as NDVI, NDWI, Band 5, and Band 7 with 90m spatial resolution were obtained from this 

database via the Google Earth Engine (GEE) platform. MODIS data offers an efficient method for monitoring biosphere changes 165 

and understanding Earth's climate system, available at a spatial resolution of 1 km. GLOBELLAND30, a significant achievement 

from China's global and local land cover remote sensing mapping and technology research project, provides comprehensive global 

land surface coverage at a 30 m resolution. The Global Accessibility Map illustrates urban and rural population gradients at a 1 km 

resolution over the years 2000 to present. Developed by the European Space Agency, the GlobCover dataset provides a global land 

cover map at a 1 km resolution. 170 

Climate factors were chiefly obtained from the MODIS, WorldClim, and CHELSA-climate datasets (DAAC, 2018; Karger et 

al., 2020), primarily offering at a 1 km spatial resolution and covering the years 1970-2000. Soil factors, i.e., soil classifications, 

were mainly derived from the Harmonized World Soil Database also available at a 1 km spatial resolution (Nachtergaele et al., 

2012). Parent material factors were represented by the depth to bedrock maps and a lithological map (Yan et al., 2020). 

All environmental covariates were reprojected to a unified coordinate reference system, specifically Goode’s homolosine 175 

projection applied to the World Geodetic System (WGS) 1984 projection. This projection was chosen as it is the most effective at 

minimizing distortions over land among the equal-area projections available in open-source software (Moreira De Sousa et al., 

2019). Additionally, the nearest interpolation and bilinear interpolation algorithms were applied to the subtype data (e.g., vegetation 

type) and continuous variables, respectively, to resample these environmental covariates to a raster cell size of 90 m resolution for 

spatial modeling and map prediction. 180 

Considering the substantial number of available environmental covariates, those with an absolute Pearson correlation 

coefficient of less than 0.05 with the target variable were excluded. Subsequently, redundant covariates with a Pearson correlation 

coefficient greater than 0.8 with any other covariate were removed to eliminate autocorrelation among them. For each pair of 

environmental covariates with a correlation exceeding this threshold, only the first one in alphabetical order was retained for the 

modeling phase (Poggio et al., 2021). This process reduced the initial number of environmental covariates to approximately 80 185 

layers. 

In this study, the Recursive Feature Elimination (RFE) method was implemented using the sklearn.feature_selection package 

in Python, which offers a balanced approach between accuracy and computational efficiency. RFE is a robust technique, widely 

recognized for its efficacy in selecting optimal covariate sets for regression tree models (Gomes et al., 2019). The RFE process 

begins by fitting a model that includes all environmental factors, evaluating its performance, and ranking the covariates based on 190 

their importance. The least significant factors are systematically eliminated, followed by re-fitting the model and reassessing 

performance. This iterative procedure continues until the pool is reduced to a set between zero and the total number of environmental 

covariates. This method relies on out-of-bag (OOB) cross-validation, making it a reliable selection approach for models such as 

https://doi.org/10.5194/essd-2024-299
Preprint. Discussion started: 29 August 2024
c© Author(s) 2024. CC BY 4.0 License.



7 

random forests, even though it does not test every possible combination of covariates (Nussbaum et al., 2018). The RFE process is 

independently conducted on each subset, leveraging the default hyperparameters of the random forest algorithm as provided by the 195 

RandomForestRegressor package in Python. The optimal subset of variables is identified when further iterations no longer yield 

improvements in model performance, defined by the minimization of the loss function. For this study, the OOB root-mean-square 

error (RMSE) was used as the loss function. The ultimate set of covariates was identified as the combination that minimized the 

loss function. The aforementioned analysis was executed for all target variables and depths. For instance, with surface (0-5 cm) soil 

organic carbon, 35 environmental covariates remained for analysis after the filtering process (Fig. 3), and marked with a superscript 200 

"1" in Table S1. 

2.3 Digital soil mapping 

2.3.1 Spatial prediction and uncertainty 

The Quantile Regression Forest (QRF) model was employed to evaluate the statistical relationship between each soil property 

at six layers and environmental covariates. The QRF algorithm, introduced by Meinshausen, (2006), is an ensemble machine 205 

learning model that utilizes tree structures and bootstrapping techniques to create a collection of tree models. Each tree is developed 

from a learning set generated by repeatedly sampling calibration samples through bootstrapping, with node splits influenced by a 

randomly selected subset of covariates. The final prediction value at each predetermined quantile is obtained by averaging the 

predicted values from all trees. Building on the foundation of Random Forests (RF, (Breiman, 2001)), QRF algorithm present a 

novel approach to enhancing regression tree performance (Koenker, 2005). In RF, averaging across multiple tree-based models 210 

results in more accurate predictions compared to using a single regression tree. The QRF not only provides a precise approximation 

of the conditional mean 𝐸(𝑌|𝑋 = 𝑥), but it also offers insights into the full conditional distribution of the dependent variable. 

Consequently, conditional quantiles can be inferred using QRF algorithm, which is a generalization of RF. The conditional 

distribution of 𝑌  given 𝑋 = 𝑥  is defined as 𝐹(𝑦|𝑋 = 𝑥) = 𝑃(𝑌 ≤ 𝑦|𝑋 = 𝑥) . To estimate 𝐹(𝑦|𝑋 = 𝑥) , a weighted empirical 

cumulative distribution function is considered: 215 

�̂�(𝑦|𝑋 = 𝑥) = ∑ 𝑤𝑖(𝑥, 𝜃)𝑌{𝑌≤𝑦}
𝑛
𝑖=1            (1) 

The tree-based model developed using QRF algorithm follows the RF methodology. However, unlike RF, where only the mean 

of the observations within each node is retained, the QRF approach preserves the values of all observations within each node. This 

comprehensive set of observations in each node is utilized to derive the quantiles, which are subsequently used to construct 

prediction intervals. These intervals serve as a measure of the prediction uncertainty, providing a more detailed understanding of 220 

the conditional distribution of the target variable. Additionally, the uncertainty estimates evaluated by QRF are likely more accurate 

and interpretable than those derived from regression kriging, particularly in areas with sparse samples (Liu et al., 2022a). 

Furthermore, QRF is capable of handling complex non-linear relationships and multivariate interactions, offering high predictive 

power (Gyamerah et al., 2020). This distinguishing advantage sets QRF apart from other machine learning algorithms (Liu et al., 

2022b). 225 
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The selection of hyper-parameters, specifically the number of randomly selected variables from all predictors (max_features) 

and the minimum node size (min_samples_leaf), plays a crucial role in determining the performance of the RF model. These hyper-

parameters significantly influence the model's predictive accuracy. Other parameters, such as the number of trees (n_estimators), 

were not optimized during the RF's training process. To address potential overfitting concerns, the values of max_features and 

min_samples_leaf were fine-tuned using a 10-fold cross-validation method. This approach involved randomly dividing the entire 230 

dataset into ten folds. One-tenth of these sub-datasets was utilized as the validation sample, while the remaining sub-datasets were 

applied for training the QRF model. This tuning was conducted using the gridded direct search approach, with max_features 

explored within the range of [1, 30] at single intervals, and min_samples_leaf within the range of [5, 30] at intervals of five. In this 

study, the aforementioned hyperparameter search was conducted for each of the six soil depth layers for every soil property. These 

hyperparameters were then used for modeling and spatial prediction of the corresponding soil property variables at their respective 235 

depths. To maintain brevity, Table S2 presents the tuned model hyper-parameters for each soil property considered at the 0-5 cm 

depth interval. 

The relative importance of covariates in the trained QRF model was assessed to investigate the impact of environmental factors 

on spatial variations of soil properties. This importance was determined by evaluating the influence of each covariate on the model's 

prediction performance. The relative importance of each covariate was quantified using the increase in mean square error 240 

(%IncMSE), a metric derived from permuting the values of a covariate to remove its information content. By comparing the model's 

accuracy before and after permutation, it was possible to determine how crucial each covariate was in predicting soil properties. A 

higher %IncMSE indicated a greater importance of the covariate, signifying that its presence substantially contributed to the model's 

predictive accuracy. This relative importance allows for a detailed analysis of how different environmental factors control spatial 

variations in soil properties, providing valuable insights for digital soil mapping. 245 

Mapping China, covers approximately 9.6 million km², at 90 m resolution requires more than 109 pixels for each soil property 

at each depth, posing a considerable challenge. Due to the extensive geographic coverage and high-resolution requirements in soil 

mapping for this study, predicting each soil property at a specific depth involves a substantial volume of data, with environmental 

covariates data reaching up to 470 GB. Faced with such extensive data processing demands, conventional single-machine resources 

often prove inadequate and challenging to cope with. Therefore, to overcome the memory limitations imposed by high-resolution 250 

mapping and enhance the computational efficiency of spatial prediction, we implemented parallel computing. Initially, we 

partitioned environmental covariates into distinct 1°×1° blocks. Using the finalized model, a single core performed spatial 

predictions within each block. Leveraging multiple cores processing, we simultaneously handled multiple blocks, significantly 

accelerating spatial predictions. Upon acquiring the outcomes for every block, we utilized image mosaicking to seamlessly integrate 

these outputs, ultimately assembling the comprehensive map of various soil properties and depths across China. All the experiments 255 

are performed on a Linux server with Intel Core (TM) i9-10980XE, 3.00GHz×64 CPU, 512 GB RAM (Random Access Memory) 

and two NVIDIA RTX A5000 graphics cards. All scripts were written in the open-source Python programming environment with 

Python version 3.11.4 (https://www.python.org/) using PyCharm with version 2024.3.28. The "RandomForestQuantileRegressor" 
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package was employed for model construction. The optimization of the model was performed using "scikit-learn" library, while the 

"gdal" and "matplotlib" packages were utilized for data processing and visualization, respectively. 260 

Using the selected environmental covariates from the aforementioned feature engineering, the constructed model was applied 

to compute four different values at every 90 m pixel across all standard depth layers (0-5, 5-15, 15-30, 30-60, 60-100, and 100-200 

cm) specified by GlobalSoilMap (Arrouays et al., 2014) over China, capturing the conditional distribution: the mean, 0.05 quantile 

(𝑞0.05), median (0.50 quantile, 𝑞0.50), and 0.95 quantile (𝑞0.95). The mean value was used to generate the national gridded soil maps, 

which constitutes the final soil properties dataset product. The calculated median, along with the 0.05 and 0.95 quantiles, was used 265 

to estimate uncertainty. Uncertainty was expressed as the upper and lower limits of a 90% prediction interval, represented by the 

empirical distribution's 0.05 and 0.95 quantiles, respectively. Furthermore, to facilitate comparison, the prediction interval relative 

to the median (𝑞0.50) was used as an indicator of uncertainty (Liang et al., 2019; Liu et al., 2022a). A higher ratio for a pixel indicates 

greater uncertainty in the predicted value for that location (Poggio et al., 2021). 

2.3.2 Evaluation criteria 270 

To validate the performance of QRF model for generating CSDLv2, two validation methods were employed to ensure that the 

CSDLv2 product has low errors in both spatial and vertical depth scales against in-situ values. The first method involved randomly 

selecting 10% of the multi-source soil profiles as test samples, while the remaining 90% were used for training the model (i.e., data-

splitting). The second method took the WoSIS dataset as an external independent validation dataset, with the rest of the data used 

for model training (i.e., independent samples). Based on the training soil profiles, these two validation approaches were implemented 275 

to assess the accuracy performance of predictive mapping for each soil property at various depths. Three statistics, namely, 

Modelling Efficiency Coefficient (MEC, (Krause et al., 2005)), root mean square prediction error (RMSE), and mean prediction 

error (ME) were calculated to evaluate the models' predictive performance. They were calculated as follows: 

𝑀𝐸𝐶 = 1 −
∑ (𝑧(𝑠𝑖)−�̂�(𝑠𝑖))

2𝑁
𝑖=1

∑ (𝑧(𝑠𝑖)−�̅�)2𝑁
𝑖=1

，           (2) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ 𝜀(𝑠𝑖)

2𝑁
𝑖=1 ，           (3) 280 

𝑀𝐸 =
1

𝑁
∑ 𝜀(𝑠𝑖)

𝑁
𝑖=1             (4) 

, where 𝑧 represents the observed soil variable, �̂� is the predicted soil variable at location 𝑠𝑖 (i = 1, …, N; 𝑠𝑖 ∈ ℘ ), and N is the total 

number of population units in the study area ℘. Regard the prediction error as the difference between the observed (𝑧) and predicted 

(�̂�) values of a soil property at the ith spatial location, denoted by 𝜀(𝑠𝑖) = 𝑧(𝑠𝑖) − �̂�(𝑠𝑖). To guarantee the accuracy and reliability 

of our results, we performed 20 repetitions of 10-fold cross-validation and calculated the mean and standard deviation of the 285 

measurements. 

The soil property maps predicted in this study were compared to three existing soil map datasets. The first dataset is SoilGrids 

2.0, accessible at https://soilgrids.org/, which has a 250-m resolution (Poggio et al., 2021). It represents an advancement over 
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previous global soil properties maps, known as SoilGrids250m (Hengl et al., 2017), incorporating the up-to-date machine learning 

methods and benefiting from the expanded availability of standardized soil profile data worldwide, along with environmental 290 

covariates (Poggio et al., 2021). The second dataset is CSDLv1 with a resolution of 1 km (Shangguan et al., 2013), accessible at 

http://globalchange.bnu.edu.cn. Lastly, we considered the Harmonized World Soil Database v2.0 (HWSD 2.0), known for its soil 

property maps created via a soil type linkage method, available at https://www.fao.org/soils-portal/data-hub/soil-maps-and-

databases/harmonized-world-soil-database-v20/en/. The HWSD 2.0 has been synthesized by integrating regional and national soil 

data globally (FAO & IIASA, 2023). To quantify the enhancement of our predictions over existing soil maps, we calculated the 295 

relative improvement (𝑅𝐼) using both MEC and RMSE metrics, employing the following equations: 

𝑅𝐼𝑀𝐸𝐶 =
𝑀𝐸𝐶𝐶𝑆𝐷𝐿𝑣2 − 𝑀𝐸𝐶𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔

 𝑀𝐸𝐶𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔
           (5) 

𝑅𝐼𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 − 𝑅𝑀𝑆𝐸𝐶𝑆𝐷𝐿𝑣2

𝑅𝑀𝑆𝐸𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔
           (6) 

, where 𝑅𝐼𝑀𝐸𝐶  and 𝑅𝐼𝑅𝑀𝑆𝐸 denote the relative improvement concerning 𝑀𝐸𝐶  and 𝑅𝑀𝑆𝐸 , respectively. 𝑀𝐸𝐶𝑛𝑒𝑤 and 

𝑅𝑀𝑆𝐸𝑛𝑒𝑤represent the accuracy statistics for predictions in this study, while 𝑀𝐸𝐶𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔  and 𝑅𝑀𝑆𝐸𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 signify the accuracy 300 

statistics for the existing soil maps. An 𝑅𝐼 > 0 denotes CSDLv2 outperforms the existing soil maps. 

Considering the unavoidable impact of various error sources on any model for DSM, it is essential to quantify the associated 

mapping uncertainty (Yan et al., 2020). To evaluate uncertainty, the prediction interval coverage probability (PICP) was employed 

based on the randomly held-back soil profile test samples. PICP represents the proportion of observations at each depth encapsulated 

by the corresponding prediction interval (Li et al., 2023). In this study, the prediction interval was estimated using the 305 

aforementioned QRF model. If the uncertainty estimates are reasonably defined, the PICP should yield an estimate of 90% for a 90% 

(or 0.9) prediction interval. A PICP significantly greater than 0.9 suggests that the uncertainty has been underestimated, whereas a 

PICP significantly less than 0.9 indicates that it has been overestimated (Liu et al., 2020; Poggio et al., 2021).  

3 Results 

3.1 Statistical analysis 310 

The probability density distributions of topsoil (0-5 cm) properties from different data sources are shown in Fig. S1, with 

different colors representing different data sources. If a color representing a data source is absent in some probability density 

distribution charts, it indicates that the soil property is not available from that data source. As observed in Fig. S1, the probability 

density distributions of soil properties from multiple sources exhibit a generally similar trend, with minor differences that enhance 

the representativeness of the soil profile samples. The abundance of soil profile data allows for a more detailed characterization of 315 

spatial variations in soil properties, particularly in a large and topographically diverse country like China (Liu et al., 2022a). 

Descriptive statistical analyses of soil properties across six standard depths are presented in Table S3. For most soil property 

variables at multiple depths, there is an extensive amount of soil profile data. Different soil properties exhibit varying trends with 
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depth, accompanied by a large range and variation (see coefficient of variation). Overall, the average concentrations of most soil 

property variables tend to decrease with increasing depth (e.g., OC, TN), showing positive skewness distributions. Regarding the 320 

homogeneity of variance, Levene’s test yielded p-values greater than 0.05 between data from any soil property, indicating no 

statistically significant differences between samples from different depths. 

3.2 Predictive performance 

After training and optimization, the effectiveness of the QRF model was evaluated. Using the test set, the model's prediction 

accuracy across multiple depths was assessed under two validation methods: Table 3 and Table S4 presents the predictive 325 

performance using a data-splitting strategy, where 10% of aggregated soil profiles were randomly partitioned as the test set. This 

validation of CSDLv2 was compared with the validation of the three existing soil map datasets using all soil profiles in this study. 

Table S5 displays the model's performance when modeling soil profiles from remaining data sources, validated independently using 

WoSIS data. 

Overall, model performance varied depending on soil properties. The mean ME values were nearly zero, indicating that the 330 

predictions were generally unbiased. Soil pH was predicted with the highest accuracy, with MEC performance ranging from 0.75 

to 0.68 across depths in the data-splitting validation strategy. That is to say that more than 68% of the pH variation can be explained 

and the predicted values are in good agreement with the in-situ values. This result is consistent with previous studies (Chen et al., 

2019; Hu et al., 2024; Lu et al., 2023). The mean MEC values for sand and clay content were slightly higher than those for silt 

content, indicating that sand and clay are slightly more predictable than silt. As soil depth increased, MEC values showed a 335 

decreasing trend, while RMSE values increased, indicating a vertical decline in the predictability of soil texture. This trend is similar 

to the findings of Liu et al., (2020). The model's predictive performance at the 5-15 cm depth interval was better than at the 0-5 cm 

depth interval, with higher MEC values and lower RMSE values. The prediction accuracy for OC was relatively high, with 

approximately 60% of the variation in soil surface (0-5 cm) OC explained in both data-splitting and independent validation methods. 

This performance surpasses the accuracy reported in related literature for OC prediction (Liang et al., 2019; Padarian et al., 2017). 340 

The prediction accuracy for soil properties content such as BD, gravel, TN, CEC, TK, and TP is higher at depths less than 30 cm. 

These models can explain 30% to 60% of the variation in these soil properties, with accuracy comparable to that reported in related 

studies (Mulder et al., 2016; Ramcharan et al., 2018). 

The model's performance varied with soil depth. For most soil property variables, including OC, TN, and BD, predictive 

accuracy decreased significantly with increasing depth. In contrast, the accuracy for CEC, gravel content, and TK only slightly 345 

declined. This decrease in accuracy for deeper layers has been noted in previous studies on soil organic carbon prediction (Mulder 

et al., 2016; Padarian et al., 2017), primarily because most environmental covariates predominantly characterize surface conditions, 

leading to weaker correlations with deeper soil layers (Liu et al., 2020). Conversely, the prediction accuracy for soil pH value 

slightly improved with increasing depth. This may be partially attributed to the greater stability of these properties in subsurface 

layers at a broad scale, resulting in more stable responses to regional covariates (Liu et al., 2020). This observation aligns with the 350 

findings of Padarian et al., (2017). Additionally, independent samples validation is an effective approach to assess the validity of 

https://doi.org/10.5194/essd-2024-299
Preprint. Discussion started: 29 August 2024
c© Author(s) 2024. CC BY 4.0 License.



12 

models and has been utilized in multiple studies (Lamichhane et al., 2019). Table S5 summarizes the model's predictive performance 

based on independent validation and compares it with other data products. These results also demonstrate the reliability of the 

predictive model. 

3.3 Spatial patterns 355 

Fig. 5 illustrates the maps of soil physical properties, chemical properties, and fertility at the soil surface (0-5 cm) over China 

at 90 m resolution. The spatial distribution of the complete soil properties (as listed in Table 1) can be found in the Fig S2-24. The 

gross pattern for all soil properties at multiple depths is clear. 

As shown in Fig. 5(a), the pH values (H2O) in the topsoil range from 4.3 to 9.8. Soils south of 30°N are predominantly acidic 

to strongly acidic, while those in the northern and northwestern regions are mostly basic or strongly basic. In some southern 360 

mountainous and northeastern forested areas, soils appear to be acidic (pH < 7.2). In certain northern regions, especially in desert 

areas, soils are alkaline (pH > 7.2). This distribution aligns with the common understanding that areas with low precipitation tend 

to have alkaline soils, whereas areas with high precipitation tend to have acidic soils. 

For BD, as shown in Fig. 5(b). Overall, northern regions tend to have higher bulk density due to low organic matter content 

and frequent agricultural activities. Southern regions generally have lower bulk density owing to higher organic matter content and 365 

looser soil particles. Northwest arid regions exhibit high bulk density, while the Qinghai-Tibet Plateau has low bulk density. 

Southeastern coastal areas show significant variation in bulk density, heavily influenced by land use practices. 

For OC, as shown in Fig. 5(c). The OC content decreases from southeast to northwest, corresponding with the influence of the 

southeast monsoon. The highest OC levels are found in the peatlands and forested areas of the southeastern Tibetan mountains and 

the forested regions of northeast China, where human activities are minimal. In contrast, lower OC values are observed in the 370 

northern and northwestern regions, particularly in the deserts. OC content is closely related to climatic conditions and land use 

practices (Zhang et al., 2023b; Zhou et al., 2019b). Areas with high precipitation and good vegetation cover have higher OC levels, 

while areas with low precipitation and poor vegetation cover have lower OC levels. 

The mean predicted maps of soil texture (clay, silt, and sand contents) at different depths across China are shown in Fig 5(e)-

(h), respectively. Overall, clay content was predicted to be low in the northern and northwestern regions, while higher in the southern 375 

regions. The lowest clay content was found in the deserts of the northwest, and the highest in the Yunnan-Guizhou Plateau. 

Relatively higher clay content was observed in some southern provinces such as Guangdong and Guangxi. Silt content was predicted 

to be high in the Loess Plateau and eastern China, while it was lower in the deserts of the northern and northwestern regions. These 

findings were consistent with previous studies (Liu et al., 2020). The predicted soil texture patterns fit well with the general 

characteristics and distribution of known Chinese soils (Gong et al., 2014). 380 

For CEC, the spatial distribution of surface CEC is shown in Fig 5(j). CEC represents the total amount of exchangeable cations 

that soil can absorb, serving as a crucial indicator of soil fertility, nutrient retention capacity, and buffering capacity, thereby 

influencing plant growth. Lower CEC value indicate that the soil can store fewer nutrients. The CEC levels are closely related to 

soil type, climatic conditions, and land use practices (Beillouin et al., 2022). Generally, soils with higher clay and organic matter 
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content have higher CEC values compared to those with sand or silt. Fig 5(j) indicates that higher surface soil CEC values are found 385 

in the Qinghai-Tibet Plateau and the peat and forest regions in the northeast (i.e., high-biomass or low-leaching areas). Lower CEC 

values are observed in the southeastern regions and the arid and semi-arid areas in the north, with the lowest CEC values found in 

desert areas. The relatively low CEC in the southeastern regions is attributed to higher temperatures and rainfall, leading to strong 

leaching loss of exchangeable substances. 

The spatial distribution of TK, TP, and AK are shown in Fig.5(l), Fig.5(m), Fig.5(n), respectively. Sedimentary rocks in 390 

Southwest China are abundant in phosphorus, leading to relatively higher TP levels in soils derived from these rocks. In contrast, 

South China's soils typically exhibit lower TP levels due to extensive weathering and leaching. Alpine regions with significant 

organic matter accumulation are predicted to have relatively high TP content. The concentrations of both TK and AK diminish 

generally from north to south, despite their distribution patterns are rather different. Low levels of TK are found in tropical regions, 

whereas high levels are located in the Qinghai-Tibet Plateau and northeastern China. High values of AK are dispersed throughout 395 

western Tibetan Plateau. The spatial patterns of the variables of interest listed in Table 1 at multiple depths can be found in the 

supplementary materials. These spatial distributions are consistent with those reported in other similar studies (Hu et al., 2024; Liu 

et al., 2022a, Poggio et al., 2021). 

3.4 Uncertainty 

Table S6 lists the all PICP values for different soil properties at multiple depths, calculated based on randomly held-back test 400 

samples. For a 90% (or 0.9) confidence interval, 90% of the observations are expected to fall within the predicted lower and upper 

limits. It can be seen that the PICP values for all soil properties at six standard depths are very close to 90%, indicating that the 

predicted lower and upper limits estimated by the QRF method are appropriate. In other words, the uncertainty estimates are largely 

reliable. It was observed that different soil properties exhibit distinct spatial patterns of prediction uncertainty, but different depths 

of the same soil property show similar patterns. Fig. S25 shows the uncertainty maps for soil OC and pH predictions at 0-5 cm and 405 

60-100 cm depths interval as examples. For OC, regions with relatively simple terrain, such as deserts, the North China Plain, and 

the Northeast Plain, exhibit lower uncertainty. In contrast, the central Qinghai-Tibet Plateau and western Inner Mongolia, where 

sampling is sparse and OC content is low, show higher uncertainty. The Altai region, with its complex terrain and diverse landscape 

types, also exhibits relatively high uncertainty. For soil pH, regions with high prediction uncertainty are found in Southwest China, 

where samples are sparse in complex soil landscapes. 410 

3.5 Relative importance of predictors 

The relative importance of environmental covariates for soil properties prediction at the 0-5 cm depth interval is shown in Fig. 

6 and Fig. S26, displaying only the top 15 most important environmental covariates. Overall, organisms type accounts for a 

significant proportion among different categories of environmental factors. There are variations in the relative importance of 

environmental covariates across different soil property variables.  415 
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For soil pH, in the optimal QRF model, the climate factor (eg. MODCF) was identified as the most important variable, with an 

importance exceeding 30%, significantly higher than other covariates. The leaf area index (LAI) ranks second in relative importance. 

Previous studies have also indicated that LAI is a key factor in predicting soil pH (Sun et al., 2023). Other environmental covariates 

had relatively smaller contributions. In terms of covariates types, organisms factors accounted for 50% of the contribution to soil 

pH prediction, followed by relief factors (23.9%) and climate factors (17.4%). 420 

For OC content, terrestrial ecosystems (TERECO) and climate factors (MODCF) are the most important covariates, followed 

by depth to bedrock and elevation (DEM). Shallow bedrock typically results in thinner soil layers, which limit soil development and 

the accumulation of organic carbon. In contrast, deeper bedrock allows for thicker soil layers, providing more space and time for 

OC accumulation. DEM can indirectly reflect differences in land use and vegetation types, which can also affect the distribution of 

OC content. This indicates that the prediction of soil organic carbon is influenced by multiple factors. Many studies have shown 425 

that organisms factors (e.g., landuse) is the most important predictor (Gomes et al., 2019). 

For sand prediction, elevation and Mean Annual Cloud Frequency (MODCF) rank as the top two most important covariates in 

the QRF model. Altitude primarily affects soil through gravitational and erosional processes, which transport fine particles and leave 

behind coarse particles (Li et al., 2023). This is evident in the relatively higher sand content in most mountainous areas compared 

to adjacent lowland regions. Thermal processes drive physical weathering, while wind, water, and terrain govern erosion processes, 430 

predominantly shaping the distribution patterns of sand in China. 

For silt prediction, climate-related factors (e.g., TNSMOD, MODCF, and wc2.1_srad) are the most important covariates. Apart 

from climate, terrain factors (e.g., DEM, DEM_vbf, and slope) also play crucial roles in silt prediction. Terrain features largely 

determine gravitational and hydraulic conditions, thereby influencing the erosion, redistribution, and sorting processes of soil 

particles. This observation is consistent with previous studies (Hengl et al., 2017), indicating that climate data can enhance the 435 

predictive performance of soil texture models. 

For clay prediction, organic matter (e.g., TERECO) ranks as the most important environmental covariate, followed by climatic 

variable wc2.1_srad. Terrain-related variables (e.g., DEM, DEM_popn, and slope) rank second in importance overall, exerting their 

influence by controlling local moisture and thermal conditions, as well as redistributing terrain material (Liu et al., 2020). Other 

studies have similarly shown that vegetation indices, rock type, bioclimatic zones, and agricultural indices can help characterize 440 

changes in soil clay content (Ge et al., 2019; Hengl et al., 2017). It is worth noting that these discussions are unrelated to soil 

formation processes but rather assess changes in soil clay content. This may be because they overlap with parts of the soil clay 

profile, thus influencing their importance. 

For CEC prediction, the most important covariate is terrestrial ecosystems (i.e. TERECO). Plant roots can alter the chemical 

environment of the soil by secreting organic acids and other substances, which influence the dissolution and reprecipitation processes 445 

of soil minerals. These changes can affect the soil's CEC. Shiri et al., (2017) have mainly discussed the relationships between soil 

carbon content and organic carbon, clay content, and particle size. 
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4 Discussion 

4.1 Comparison with previous products 

Table 3, S4 and S5 present the accuracy assessments of our predictions (i.e., CSDLv2), CSDLv1 (Shangguan et al., 2013), 450 

SoilGrid 2.0 (Poggio et al., 2021), and HWSD 2.0 (FAO & IIASA, 2023) at six standard depth intervals using data-splitting 

validation and independent sample validation methods, respectively. Table 3 lists the validation accuracy of selected soil properties 

using the data-splitting validation method, while Table S4 provides the complete accuracy assessments for all soil properties of 

interest. Table S5 identifies the variables for which the WoSIS database can serve as independent samples. Overall, our predictions, 

whether using data-splitting validation or independent sample validation, achieved relatively higher MEC values and lower RMSE 455 

values across multiple depths for most target variables, demonstrating much greater accuracy than existing soil property maps (FAO 

& IIASA, 2023; Poggio et al., 2021; Shangguan et al., 2013; Song et al., 2020; Zhou et al., 2019b). Specifically, using data-splitting 

validation as an example, our predictions for pH showed an improvement in MEC by 15%-19% and a reduction in RMSE by 11%-

14% compared to SoilGrid 2.0. For other soil properties (OC, BD, TN, CEC), the prediction MEC improved by 11%-800% and 

RMSE reduced by 8%-78%. Compared to CSDLv1, our prediction performance for pH improved by 50%-162% in MEC and 460 

reduced by 31%-33% in RMSE, while for other soil properties (OC, BD, TN, CEC), the prediction MEC improved by 132%-840% 

and RMSE reduced by 17%-100%. Compared to HWSD 2.0, the prediction performance showed the greatest improvement in MEC 

and the most significant reduction in RMSE. The ME values indicated that SoilGrid 2.0 significantly overestimated TN content, 

whereas CSDLv1 and HWSD 2.0 underestimated it. Additionally, in the independent validation (Table S5), across predictions of 

various soil properties at different depths, this study demonstrates overall predictive performance that is comparable to or better 465 

than SoilGrid 2.0, even though SoilGrid 2.0 used all the soil profiles of WoSIS in its production. Moreover, it shows superior 

performance compared to CSDLv1 and HWSD 2.0. 

Such a national-scale publication of soil maps hides most of the details. Nevertheless, because the soil properties are predicted 

at a 90 m resolution, portions of the maps can be enlarged to reveal increasingly detailed information up to the limit of that resolution. 

Using the example of surface (0-5 cm) OC content, Fig. 4 shows a visual comparison within a window in western Sichuan Province 470 

(102.92°-104.08°E and 30.92°-32.08°N). This window corresponds to the red window in Fig. 1. The comparison is between the 

dataset developed in this study (CSDLv2) and the widely used SoilGrid 2.0, CSDLv1, and HWSD 2.0. The OC map produced in 

this study clearly reveals spatial variability with local morphology and provides more detailed information than the other three maps. 

Moreover, the CSDLv2 and SoilGrid 2.0 datasets, both products of advanced digital soil mapping techniques, exhibit notably higher 

OC content compared to the other two datasets generated through the linkage method across the majority of this region. This finding 475 

aligns well with our understanding of the area's environmental conditions: the cold climate at high elevations (Fig.4 a), coupled with 

extensive forest and grassland covers (Fig.4 b), creates an ideal setting for the accumulation of OC in the soil. Therefore, the fine 

soil property map with a spatial resolution of 90 m can better present the spatial variability of soil properties in related research, 

which can aid precision agriculture and soil management. 

To characterize the spatial pattern differences between CSDLv2 and CSDLv1, Fig. 7 (a, c, e) illustrates the spatial difference 480 

maps of OC, sand, and clay predictions in CSDLv2 subtracted by those in CSDLv1 as an example. For OC, the differences are 
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mainly observed in the Tibetan Plateau, Yunnan-Guizhou Plateau, and Northeast Plain, where OC content is higher in CSDLv2 than 

in CSDLv1. For sand, CSDLv2 shows relatively lower sand content in desert and semi-desert areas (e.g., Taklamakan Desert), while 

relatively higher sand content is observed in southern coastal regions. For clay, an opposite trend to sand is observed. The possible 

cause of these differences may be attributed to the linkage method used in developing CSDLv1, which averaged all soil profiles for 485 

a given soil type or soil polygon, neglecting local spatial variation in soil properties. Additionally, as shown in Fig. 4, the two 

datasets derived by DSM technology (i.e., CSDLv2 and SoilGrid 2.0) had similar spatial pattern and higher values than the other 

two, indicating an underestimation of OC content by the linkage method in this region. The scatter plots in Fig 7 (b, d, f) show the 

comparison between CSDLv2, CSDLv1, and the observed data. From the bivariate kernel density estimates and correlation 

coefficients, it is evident that CSDLv2 has a stronger correlation with the observed data. It can also be seen that the scatter points 490 

for CSDLv1, based on the linkage method, are more dispersed, whereas the scatter points for CSDLv2, based on DSM technology, 

are more concentrated. Compared to CSDLv2, CSDLv1 had a significant underestimation of OC and both significant overestimation 

and underestimation of sand and clay. This may be due to the better fitting ability of DSM technology with available data, but it 

tends to be more "conservative" in spatial extrapolation, potentially smoothing the properties of certain regions. On the whole, 

CSDLv2 provides a more accurate estimation of soil properties than CSDLv1, thus it may have significant influences on land surface 495 

modeling due to their large differences in spatial distribution. The impact of the new soil dataset instead of the old version and the 

world soil datasets will need further studies by running a land surface model (Li, et al., 2020). 

Based on the experimental results and analysis, compared to CSDLv1, the main advantages of CSDLv2 include the following 

aspects: First, CSDLv2's spatial resolution is 90 m, an improvement over CSDLv1's 1 km resolution. This addresses the long-

standing issue of lacking detailed and accurate soil information and enhances modeling of energy, water, and momentum processes 500 

in the land surface model. Second, high-resolution environmental covariates related to soil formation were used with advanced 

machine learning algorithms, replacing traditional soil transformation rules. In recent years, digital soil mapping technology has 

made significant progress, particularly with the success of machine learning in large-scale spatial predictions (Poggio et al., 2021). 

Numerous studies have shown that advanced machine learning models typically have better predictive performance than simpler 

models (Yan et al., 2020). Third, an RGB soil systems (i.e., red, green and blue) of soil color has been added, resolving the 505 

inconvenience of only having the Munsell color system in the first edition dataset. Finally, global validation was conducted using 

data-splitting and independent samples, and prediction uncertainty was quantitatively provided using QRF, rather than merely 

offering quality control information. Compared to other related data products: CSDLv2 encompasses more than 20 comprehensive 

soil physical properties, chemical properties, and fertility, whereas most existing studies focus on mapping one or several 

fundamental soil properties, lacking comprehensive soil properties data set products (Liang et al., 2019; Chen et al., 2019; Zhou et 510 

al., 2019a; Liu et al., 2022a; Liu et al., 2020). For instance, AN serves as an indicator of soil fertility, reflecting the potential release 

of organic nitrogen and ammonium nitrogen in the soil. AK reflects the potassium available for plant uptake, which is crucial for 

plant growth and development. The extensive soil information has significant applications across various fields. Additionally, 

another advantage of CSDLv2 over both CSDLv1 and other related data products is that a large number of soil profile samples from 
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different data sources were collected, enhancing the spatial representativeness of the soil profiles. Sample size is a critical factor 515 

affecting model performance (Padarian et al., 2020). 

4.2 Potential applications of CSDLv2 

The national-scale high-resolution soil property maps developed in this study have significant potential for applications in land 

surface modeling and Earth system modeling. These models simulate interactions between the land surface, atmosphere, and 

biosphere, making accurate representation of soil properties essential for improving model performance and predictions. For 520 

instance, soil pH is crucial for nutrient solubility, while CEC indicates fertility and nutrient retention capacity in land surface 

modeling. In biogeochemical process modelling with land surface modeling, OC, TN, and TP are key parameters and prognostic 

variables. These soil nutrients can be calculated by running models for thousands of years until an equilibrium state is reached, a 

process known as model "spin-up." (Dai et al., 2019b; Shangguan et al., 2013). However, the non-linear feedbacks in biogeochemical 

cycles make such "spin-up" time-consuming and less reliable for initializing soil nutrients. Therefore, this dataset can also serve as 525 

an important benchmark for initial or calibration variables. 

Currently, many soil properties are not yet utilized in land surface model simulations, with only soil texture, OC, gravel and 

BD being primarily used. However, more soil properties can theoretically be employed as initial variables in Earth system modeling. 

Each soil property plays an important role in both Earth system modeling and land surface modeling, and although some properties 

are not yet used, they hold significant potential for future applications. For example, soil albedo is significantly correlated with the 530 

Munsell soil color value (hue, value, chroma). In some Earth system models, parameters derived from pedotransfer functions are 

used directly as inputs rather than being calculated within the models. 

Moreover, CSDLv2 offers extensive possibilities for research and applications across various fields, including climate change 

research and carbon cycling (Chen et al., 2023), as well as precision agriculture (Piikki et al., 2017). Regarding soil pH, for 

agricultural departments and farmers, fine mapping of soil pH holds significant value in local and field land use planning and 535 

management, as different crops exhibit optimal growth in soils with varying pH ranges (Hu et al., 2024). For instance, rice thrives 

best in soils with pH levels between 6.0 and 7.5, whereas peanuts prefer soils with pH levels between 5.6 and 6.0. Thus, precise soil 

pH maps provide essential information for agricultural zoning and management. Furthermore, due to the widespread applicability 

of soil information, CSDLv2 also holds potential applications in numerous other fields. 

4.3 Limitations and Outlook 540 

Some advances have been made in this study, but several limitations still need to be addressed in future efforts. First, remote 

sensing imagery has been used globally for soil property mapping (Guo et al., 2022; Xia and Zhang, 2022). With the advancement 

of remote sensing technology, more and more high-spatial-resolution free data have become available. For example, Xia and Zhang 

(2022) found that using high-spatial-resolution GF-2 imagery improved soil property prediction accuracy compared to medium-

resolution imagery (e.g., Landsat 8 and Sentinel-2 imagery). Therefore, future digital soil mapping work can focus more on 545 
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integrating high-resolution remote sensing products, which can enable models to capture the complex statistical relationships 

between soil properties and the environmental covariates at fine scales (Mulder et al., 2016). 

Secondly, soil is a three-dimensional volume with property variability in all three dimensions. In this study, the vertical 

dimension of soil variability was modeled using spline interpolation. It is noteworthy that smoothing spline interpolation 

standardizes soil layer data, which is not error-free, but due to the lack of a "true" depth function for each soil profile (vertically 550 

dense samples), the standardization error cannot be quantitatively estimated (Liu et al., 2022a). Recent publications have considered 

observation depth as a covariate (Hengl et al., 2017; Nauman and Duniway, 2019), creating a "3D" model, but some studies indicate 

that this approach may be overly simplistic or lead to consistency issues in the predicted depth sequences (Ma et al., 2021). This 

might be true for local datasets, where short-range spatial variability and vertical variability have similar magnitudes (Poggio et al., 

2021). Further research is needed to assess the impact of using depth as a covariate on national datasets and models. Additionally, 555 

alternatives such as "3D" models or geostatistical models utilizing 3D spatial autocorrelation are worth exploring. 

Thirdly, in this study, approximately 150 covariates related to soil properties, topography, climate, biomes, lithology, soil 

management, and existing soil maps were collected. By removing inter-variable correlations and using recursive feature elimination, 

approximately 40 optimal variables were selected to map soil properties across the country. However, the original environmental 

variables with a resolution of 90 meters did not play a significant role in variable selection or importance ranking. Several reasons 560 

may explain this. First, many studies have confirmed that soil properties (e.g., soil pH) are highly correlated with lithology (e.g., 

soil group and parent material) and climatic factors, especially at large scales (Hu et al., 2024; Lu et al., 2023). However, fine and 

reliable maps of these factors are typically unavailable, especially at large spatial scales. Therefore, when introducing these factors 

to map soil properties, coarse-resolution raster data (e.g., 1 km) often have to be used (Liu et al., 2022a; Lu et al., 2023). Secondly, 

in this study, some covariates (e.g., elevation, and slope) with an original resolution of 90 meters are highly correlated with soil 565 

properties (e.g., soil pH). However, these factors are also highly correlated with other factors such as mean annual temperature and 

mean annual precipitation (Guo et al., 2022). These factors were removed by the recursive feature elimination algorithm when 

selecting the optimal variables because they were highly correlated with the already retained existing variables. This also led to the 

relatively lower importance of these factors in contributing to the models for soil properties (e.g., soil pH). Therefore, the final maps 

of soil properties with a 90-meter resolution in this study will be useful for practical decision-making. In future work, introducing 570 

fine-resolution environmental covariates is expected to improve mapping accuracy. 

Last but not least, this study utilized multi-sources of soil profiles from defferent periods to produce static maps of soil 

properties, neglecting the time variation of soil properties such as OC. With most soil profiles from the SNSSC, the maps of CSDLv2 

majorly represent the status of soil in 1980s. Together with maps based on 2010s soil profiles (Liu et al., 2022a), they could provide 

new perspectives for studying temporal changes in soil properties. However, more efforts are needed to model the temporal change 575 

of soil properties with more time slices, especially for those soil properties which may change in short term, In this aspect, the 

undergoing Third National Soil Survey of China and other legacy soil profiles should be exploited to map time series of soil 

properties using spatial-temporal modelling technology. 
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5 Data and code availability 

All resources of Quantile Random Forest model, including training and testing code is publicly available at 580 

https://github.com/shgsong/CSDLv2, The soil maps in this study for six depth layers (0-5, 5-15, 15-30, 30-60, 60-100, and 100-200 

cm) at 90 m spatial resolution across China are openly accessible: https://doi.org/10.11888/Terre.tpdc.301235 or 

https://cstr.cn/18406.11.Terre.tpdc.301235 (Shi et al., 2024). To meet the varying spatial resolution requirements of different 

applications, CSDLv2 offers versions with 90 m, 1 km, and 10 km resolutions. The dataset is provided in raster format, available in 

both Network Common Data Form 4 (NetCDF4) and GeoTIFF (GTiff) formats. 585 

6 Conclusions 

The second version of the high-resolution national soil information grid for China was developed in this study, utilizing a vast 

number of multi-source legacy soil profile samples and advanced machine learning techniques, as a replacement for the first version 

dataset. This version includes over 20 soil physical properties, chemical properties and fertility, with prediction maps for each soil 

property covering six standard depths (0-5, 5-15, 15-30, 30-60, 60-100, and 100-200 cm). By combining Quantile Random Forest 590 

with currently available high-resolution environmental covariates, the spatial variations of soil properties across China and at 

different depths can be effectively predicted. Overall, all the soil property maps performed well, accurately representing the spatial 

variations of soil properties. Under both data-splitting and independent samples schemes, CSDLv2 generally outperformed other 

gridded soil property products, including CSDLv1, SoilGrid 2.0, and HWSD 2.0. CSDLv2 exhibited more reasonable spatial 

patterns and provided more spatial details compared to other soil products. Furthermore, as this dataset is primarily based on legacy 595 

soil profiles from the Second National Soil Survey of China, it serves as a valuable complement to maps based on 2010s soil profiles, 

providing new perspectives for studying temporal changes in soil properties. These prediction maps also contribute to China's input 

to the GlobalSoilMap project and can be used for various hydrological, ecological analyses, and regional earth system modeling, 

especially for applications requiring high-resolution soil property maps. Future work can improve soil property mapping by 

employing advanced deep learning methods and incorporating more observations, particularly in regions with sparse samples like 600 

western China. 
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Table 1. List of Information of Soil Profiles Data 

Soil property 
Acrony

m 
Units Description Maps 

Bulk density BD g/cm3 Bulk density of the fine earth fraction oven dry Figure S2 

Sand sand % Gravimetric percentage of sand (2-0.05mm) in the fine earth fraction of the soil Figure S3 

Silt silt % Gravimetric percentage of silt (0.05-0.02mm) in the fine earth fraction of the soil Figure S4 

Clay clay % Gravimetric percentage of clay (< 0.02mm) in the fine earth fraction of the soil Figure S5 

Rock fragment gravel g/100g Volumetric content of fragments  2 mm in the whole soil Figure S6 

Porosity prosity cm3/cm3 Volume fraction of void space (pores) in a material Figure S7 

Wet color 

R (Wet) 

G (Wet) 

B (Wet) 

- RGB quantified soil color for wet soil 

Figure S8 

Figure S9 

Figure S10 

Dry color 

R (Dry) 

G (Dry) 

B (Dry) 

- RGB quantified soil color for dry soil 

Figure S11 

Figure S12 

Figure S13 

Wet color 

Hue, 

value, 

chroma 

- 
Soil color of wet soil is represented by the Munsell notation with three 

dimensions: hue, value, and chroma 
Figure S14 

Dry color 

Hue, 

value, 

chroma 

- 
Soil color of dry soil is represented by the Munsell notation with three 

dimensions: hue, value, and chroma 
Figure S15 

pH value (H2O) pH - Negative common logarithm of the activity of hydronium ions (H+) in water Figure S16 

Soil organic carbon OC g/100g Gravimetric content of organic carbon in the fine earth fraction Figure S17 

Cation exchange 

capacity 
CEC me/100g Capacity of the fine earth fraction to hold exchangeable cations Figure S18 

Total nitrogen TN g/100g 
Total nitrogen in soil, comprising organic, inorganic, and ammonium nitrogen, 

among other forms 
Figure S19 

Total phosphorus TP g/100g 
Total phosphorus in soil includes all phosphorus compounds, both organic and 

inorganic, irrespective of their plant availability. 
Figure S20 

Total potassium TK g/100g 
Total potassium in a soil sample comprises both exchangeable (plant-available) 

and non-exchangeable forms. 
Figure S21 

Alkali-hydrolysable 

nitrogen 
AN mg/kg 

Total amount of nitrogen released from soil through alkali treatment (i.e. sodium 

hydroxide or potassium hydroxide) 
Figure S22 

Available potassium AK mg/kg Portion of potassium in the soil that is readily accessible for plant uptake Figure S23 

Available 

phosphorous 
AP mg/kg 

Fraction of phosphorus in the soil that is soluble in a chemical extract and 

readily accessible for plant uptake. 
Figure S24 
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Table 2. Summary of the main high-resolution environmental covariates. For the complete list of soil forming factors, see Table S1. 

Factors definitions Description 
Resolution 

(m) 
Source 

BDTICM Depth to bedrock of China 90 http://globalchange.bnu.edu.cn/research/cdtb.jsp 

B5/B7 

The ratio of Band 5 (near-

infrared) to Band 7 (shortwave 

infrared 2) surface reflectance 

90 
https://www.usgs.gov/landsat-missions/landsat-

collection-2 

NDVI 
Normalized Difference 

Vegetation Index 
90 

Calculated from Landsat 8 Collection 2 Level-2 

(LC08C02) on the GEE platform 

NDWI 
Normalized Difference Water 

Index 
90 Calculated from LC08C02 on the GEE platform 

surR Surface Reflectance 250 https://modis.gsfc.nasa.gov/data/dataprod/mod09.php 

EVI Enhanced Vegetation Index 90 Calculated from LC08C02 on the GEE platform 

SAI Snow Area Index 90 Calculated from LC08C02 on the GEE platform 

NPP Net Primary Productivity 500 https://lpdaac.usgs.gov/products/mod17a3hgfv061/ 

CanopyHeight Canopy Height 10 https://doi.org/10.3929/ethz-b-000609802 

landcover Land cover 30 http://www.sciencemag.org/content/342/6160/850 

Sentinel2B2/B3/B4/8/9 Band2, 3, 8, 9 from Sentinel2 30 Derived from Sentinel2 on the GEE platform 

QA_PIXEL 
Landsat 8 Collection 2 Level-2 

Pixel Quality Band 
90 Derived from LC08C02 on the GEE platform 

QA_RADSAT 
Radiometric Saturation Quality 

control 
90 Derived from LC08C02 on the GEE platform 

SR_B4/B5/B6/B7 
Surface Reflectance of Band4, 5, 

6, and Band7  
90 Derived from LC08C02 on the GEE platform 

ST_ATRAN Atmospheric Transmittance 90 Derived from LC08C02 on the GEE platform 

ST_B10 Band 10 Surface Temperature 90 Derived from LC08C02 on the GEE platform 

ST_EMSD Emissivity standard deviation 90 Derived from LC08C02 on the GEE platform 

ST_TRAD Thermal Radiance 90 Derived from LC08C02 on the GEE platform 

ST_URAD Downwelled Radiance 90 Derived from LC08C02 on the GEE platform 

DEM Land surface elevation 90 
https://hydro.iis.u-

tokyo.ac.jp/~yamadai/MERIT_DEM/ 

slope Terrain slope 90 Derived from DEM 

Land use Land use type 30 https://www.resdc.cn/DOI/DOL.aspx?DOIID=54 

RTMUSG15 Rock type 250 https://doi.pangaea.de/10.1594/PANGAEA.788537 
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Table 3. Predictive performance of selected soil properties in CSDLv2, CSDLv1, SoilGrids 2.0, and HWSD 2.0. Twenty repeats of 10-fold 805 
cross-validation with testing soil profiles for CSDLv2, and validation using all soil profiles for other datasets. Refer to Table S4 for the 

complete predictive performance of the soil properties considered. See Table 1 for the abbreviations and units of the soil properties 

interested. 

Property Depth interval 
CSDLv2 CSDLv1 SoilGrids 2.0 HWSD 2.0 

MEC RMSE ME MEC RMSE ME MEC RMSE ME MEC RMSE ME 

pH 

0-5 0.69 0.70 0.00 0.48 0.92 -0.03 0.60 0.79 -0.15 0.35 1.03 -0.28 

5-15 0.70 0.68 0.00 0.50 0.90 -0.02 0.61 0.77 -0.12 0.36 1.02 -0.13 

15-30 0.70 0.68 0.00 0.26 1.21 -0.41 0.60 0.77 -0.16 0.38 1.03 -0.15 

30-60 0.68 0.70 -0.00 0.43 0.94 -0.04 0.59 0.78 -0.15 0.38 1.02 -0.17 

60-100 0.68 0.70 0.00 0.44 0.94 0.04 0.59 0.78 -0.14 0.39 1.01 -0.18 

100-200 0.75 0.60 0.00 0.53 0.84 -0.05 0.63 0.70 -0.09 0.52 0.87 -0.08 

sand 

0-5 0.67 12.15 0.05 0.19 22.19 -2.24 0.60 13.08 -1.84 0.20 21.84 2.38 

5-15 0.71 11.23 0.06 0.18 21.90 -2.28 0.62 11.87 -1.93 0.19 21.43 1.40 

15-30 0.71 11.41 0.05 0.15 22.58 -1.67 0.62 11.85 -1.71 0.14 21.89 2.63 

30-60 0.69 12.16 0.06 0.13 23.26 -1.31 0.59 12.68 -1.80 0.12 22.57 3.68 

60-100 0.68 12.85 0.04 0.11 23.22 -1.30 0.51 13.53 -1.94 0.10 23.45 4.03 

100-200 0.64 13.72 0.02 0.10 24.22 -1.42 0.49 14.59 -1.88 0.09 24.11 3.98 

silt 

0-5 0.61 9.81 0.02 0.11 16.78 2.02 0.55 10.54 -0.58 0.10 17.38 -4.44 

5-15 0.65 8.99 -0.00 0.13 16.31 2.29 0.58 9.22 -0.33 0.10 16.90 -5.55 

15-30 0.67 8.76 0.00 0.13 16.29 2.12 0.60 9.02 -0.51 0.09 17.30 -6.46 

30-60 0.63 9.49 0.00 0.11 16.55 1.76 0.57 9.68 -0.41 0.10 17.53 -6.36 

60-100 0.62 10.08 0.00 0.10 17.05 1.49 0.55 10.34 -0.33 0.10 18.07 -6.15 

100-200 0.64 10.60 0.01 0.09 17.94 0.70 0.54 11.25 -0.99 0.11 19.14 -5.15 

clay 

0-5 0.63 6.74 0.01 0.12 11.23 0.21 0.52 7.60 2.49 0.12 11.14 2.06 

5-15 0.67 6.50 0.01 0.09 11.28 0.03 0.58 7.18 2.36 0.09 11.89 4.23 

15-30 0.68 6.83 0.01 0.10 11.83 0.61 0.60 7.40 2.28 0.09 12.78 3.95 

30-60 0.68 7.36 0.02 0.09 12.78 0.14 0.61 7.89 2.22 0.13 13.20 2.70 

60-100 0.68 7.79 0.02 0.07 13.43 -0.28 0.61 8.33 2.21 0.12 13.65 1.97 

100-200 0.63 7.96 0.03 0.06 13.00 0.86 0.55 8.67 2.74 0.12 13.06 0.91 

BD 

0-5 0.62 0.12 0.00 0.12 0.20 0.01 0.53 0.13 0.01 0.02 0.27 0.15 

5-15 0.63 0.11 0.00 0.15 0.19 0.01 0.57 0.12 0.01 0.01 0.29 0.18 

15-30 0.60 0.11 -0.00 0.11 0.19 0.01 0.54 0.13 0.01 0.01 0.27 0.12 

30-60 0.55 0.12 -0.00 0.10 0.19 -0.01 0.53 0.13 -0.00 0.01 0.24 0.10 

60-100 0.57 0.12 -0.00 0.10 0.19 -0.01 0.51 0.13 -0.01 0.02 0.24 0.07 

100-200 0.47 0.13 0.00 0.05 0.22 0.02 0.42 0.13 -0.01 0.02 0.24 0.07 
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Figure 1. Spatial distribution of the 11,209 soil profiles collected from various data sources in this study: black dots indicate the Second 810 
National Soil Survey of China (Second survey), green dots correspond to World Soil Information Service (WoSIS), orange dots denote 

regional data, and red dots represent the First National Soil Survey of China (First survey). The red window indicates the area selected 

for visualizing the spatial patterns of soil properties. 
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Figure 2. The statistical framework for developing national-scale soil properties mapping in this study. 815 
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Figure 3. Example of the loss function (RMSE) used in the Recursive Feature Elimination (RFE) step of covariates' selection for surface 

(0-5 cm) soil organic carbon. 
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Figure 4. Surface (0-5cm) soil organic carbon (OC) maps derived from our predictions (CSDLv2), SoilGrid 2.0, CSDLv1, and HWSD 2.0, 820 
respectively, in a selected area (102.92-104.08E and 30.92-32.08N) located in Sichuan Province. This selected area corresponds to the 

red window shown in Figure 1. The spatial resolutions are 90 m for CSDLv2, 250 m for SoilGrid 2.0, and 1 km for both CSDLv1 and 

HWSD 2.0. 
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Figure 5. The predicted maps of soil properties considered at 0-5 cm depth interval. (a) pH (H2O); (b) bulk density (BD); (c) soil organic 825 
carbon (OC); (d) total nitrogen (TN); (e,f,g) soil texture(sand, silt ,clay); (h) Alkali-hydrolysable N (AN); (i) Rock fragment (gravel); (j) 

cation exchange capacity (CEC); (k) porosity; (l) total potassium (TK); (m) total phosphorus (TP); (n) Available potassium (AK); (o) 

Available phosphorous (AP); (p,q,r) Wet color (R, G, B); (s,t,u) Dry color (R, G, B). (v) and (w) represent the dry and wet colors in the 

Munsell color system, respectively. See Figures S2-S24 in the appendix for the predicted maps of soil properties at all depth intervals. 
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 830 

Figure 6. Relative importance of predictors for the Quantile Regression Forest model in the spatial predictions of soil pH, bulk density 

(BD), soil organic carbon (OC), soil texture (sand, silt, clay), total nitrogen (TN), cation exchange capacity (CEC), and total phosphorus 

(TP) at the surface layer (0-5 cm). For other surface soil properties interested, including alkali-hydrolysable nitrogen (AN), rock fragment 

(gravel), porosity, total potassium (TK), available potassium (AK), available phosphorus (AP), wet color (R, G, B), and dry color (R, G, 

B), see Figure S26. Refer to Table S1 in the appendix for abbreviations of the environmental covariates. 835 
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Figure 7. Differences in predicted maps of soil organic carbon (a), sand (c), and clay (e) between CSDLv2 and CSDLv1 at the 0-5 cm depth 

interval and the corresponding scatter plots (b, d, f) indicating how well the predictions of CSDLv2 and CSDLv1 match the observations. 

The red and blue circles are bivariate kernel density estimates. 840 
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