Supplementary materials of

A China dataset of soil properties for land surface modeling (version 2)

Gaosong Shi et al.

Correspondence to: Wei Shangguan (Email: shgwei@mail.sysu.edu.cn)

List of supplementary materials

1. Figure S1. The frequency distributions of soil properties at 0-5 cm depth Interval.

2. Figure S2. The predicted maps of bulk density (BD) content at multiple depths. (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm; (d) 30-60 cm; (e) 60-100 cm and (f) 100-200 cm depth interval.

3. Figure S3. The predicted maps of sand content at multiple depths. (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm; (d) 30-60 cm; (e) 60-100 cm and (f) 100-200 cm depth interval.

4. Figure S4. The predicted maps of silt content at multiple depths. (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm; (d) 30-60 cm; (e) 60-100 cm and (f) 100-200 cm depth interval.

5. Figure S5. The predicted maps of clay content at multiple depths. (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm; (d) 30-60 cm; (e)

15 60-100 cm and (f) 100-200 cm depth interval.

6. Figure S6. The predicted maps of Rock fragment (gravel) content at multiple depths. (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm;
(d) 30-60 cm; (e) 60-100 cm and (f) 100-200 cm depth interval.

7. Figure S7. The predicted maps of porosity content at multiple depths. (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm; (d) 30-60 cm;
(e) 60-100 cm and (f) 100-200 cm depth interval.

8. Figure S8. The predicted maps of R (Wet) content at multiple depths. (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm; (d) 30-60 cm;
(e) 60-100 cm and (f) 100-200 cm depth interval.

9. Figure S9. The predicted maps of G (Wet) content at multiple depths. (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm; (d) 30-60 cm;
(e) 60-100 cm and (f) 100-200 cm depth interval.

10. Figure S10. The predicted maps of B (Wet) content at multiple depths. (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm; (d) 30-60

25 cm; (e) 60-100 cm and (f) 100-200 cm depth interval.

11. Figure S11. The predicted maps of R (Dry) content at multiple depths. (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm; (d) 30-60 cm; (e) 60-100 cm and (f) 100-200 cm depth interval.

12. Figure S12. The predicted maps of G (Dry) content at multiple depths. (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm; (d) 30-60 cm; (e) 60-100 cm and (f) 100-200 cm depth interval.

30 13. Figure S13. The predicted maps of B (Dry) content at multiple depths. (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm; (d) 30-60 cm; (e) 60-100 cm and (f) 100-200 cm depth interval.

14. Figure S14. The predicted maps of Wet colours at multiple depths. Colour bar shows some representative colours. (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm; (d) 30-60 cm; (e) 60-100 cm and (f) 100-200 cm depth interval.

15. Figure S15. The predicted maps of Dry colours at multiple depths. Colour bar shows some representative colours. (a) 0-5

35 cm; (b) 5-15 cm; (c) 15-30 cm; (d) 30-60 cm; (e) 60-100 cm and (f) 100-200 cm depth interval.

16. Figure S16. The predicted maps of soil pH at multiple depths. (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm; (d) 30-60 cm; (e) 60-100 cm and (f) 100-200 cm depth interval.

17. Figure S17. The predicted maps of soil organic carbon (OC) content at multiple depths. (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm; (d) 30-60 cm; (e) 60-100 cm and (f) 100-200 cm depth interval.

18. Figure S18. The predicted maps of Cation Exchange Capacity (CEC) content at multiple depths. (a) 0-5 cm; (b) 5-15 cm;
(c) 15-30 cm; (d) 30-60 cm; (e) 60-100 cm and (f) 100-200 cm depth interval.

19. Figure S19. The predicted maps of Total N (TN) content at multiple depths. (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm; (d) 30-60 cm; (e) 60-100 cm and (f) 100-200 cm depth interval.

20. Figure S20. The predicted maps of Total P (TP) content at multiple depths. (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm; (d) 30-

45 60 cm; (e) 60-100 cm and (f) 100-200 cm depth interval.

21. Figure S21. The predicted maps of Total K (TK) content at multiple depths. (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm; (d) 30-60 cm; (e) 60-100 cm and (f) 100-200 cm depth interval.

22. Figure S22. The predicted maps of Alkali-hydrolysable N (AN) content at multiple depths. (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm; (d) 30-60 cm; (e) 60-100 cm and (f) 100-200 cm depth interval.

50 23. Figure S23. The predicted maps of Available K (AK) content at multiple depths. (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm;
(d) 30-60 cm; (e) 60-100 cm and (f) 100-200 cm depth interval.

24. Figure S24. The predicted maps of Available P (AP) content at multiple depths. (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm;
(d) 30-60 cm; (e) 60-100 cm and (f) 100-200 cm depth interval.

25. Figure S25. The maps of uncertainty of the soil pH and organic carbon (OC) predictions at 0-5 cm (a, c) and 60-100 cm

55 (b, d) depth interval.

26. Figure S26. Relative importance of predictors for the Quantile Regression Forest model in the spatial predictions of alkalihydrolysable nitrogen (AN), rock fragment (gravel), porosity, total potassium (TK), available potassium (AK), available phosphorus (AP), wet color (R, G, B), and dry color (R, G, B) at the surface layer (0-5 cm). See Table S6 for abbreviations of the environmental covariates.

60 27. Table S1. List of environmental covariates used to characterize soil-forming environments.

28. Table S2. Tuned model parameters for each soil property considered at 0-5 cm depth interval. See Table 1 for abbreviations and units of the soil properties considered.

29. Table S3. Statistical description of soil properties at six depth intervals. Refer to Table 1 for the abbreviations and units of the soil properties interested.

65 **30.** Table S4. Predictive performance of CSDLv2, CSDLv1, SoilGrids 2.0, and HWSD 2.0. Twenty repeats of validation with testing soil profiles for CSDLv2, and validation using all soil profiles for other datasets. See Table 1 for the abbreviations and

units of the soil properties interested.

31. Table S5. Predictive performance of CSDLv2, SoilGrids 2.0, CSDLv2, and HWSD 2.0 based on validation with testing profiles from WoSIS. Refer to Table 1 for the abbreviations and units of the soil properties interested.

70 32. Table S6. Prediction interval coverage probability (PICP) for each soil property at multiple depths. Refer to Table 1 for the abbreviations and units of the soil properties interested.

Figure S1. The frequency distributions of soil properties at 0-5 cm depth Interval.

Figure S2. The predicted maps of bulk density (BD) content at multiple depths. (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm; (d) 30-60 cm; (e) 60-100 cm and (f) 100-200 cm depth interval.

Figure S3. The predicted maps of sand content at multiple depths. (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm; (d) 30-60 cm; (e) 60-100 cm and (f) 100-200 cm depth interval.

Figure S4. The predicted maps of silt content at multiple depths. (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm; (d) 30-60 cm; (e) 60-100 cm and (f) 100-200 cm depth interval.

85 Figure S5. The predicted maps of clay content at multiple depths. (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm; (d) 30-60 cm; (e) 60-100 cm and (f) 100-200 cm depth interval.

Figure S6. The predicted maps of Rock fragment (gravel) content at multiple depths. (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm; (d) 30-60 cm; (e) 60-100 cm and (f) 100-200 cm depth interval.

Figure S7. The predicted maps of porosity content at multiple depths. (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm; (d) 30-60 cm; (e) 60-100 cm and (f) 100-200 cm depth interval.

Figure S8. The predicted maps of R (Wet) content at multiple depths. (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm; (d) 30-60 cm; (e) 60-100 cm and (f) 100-200 cm depth interval.

Figure S9. The predicted maps of G (Wet) content at multiple depths. (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm; (d) 30-60 cm; (e) 60-100 cm and (f) 100-200 cm depth interval.

100 Figure S10. The predicted maps of B (Wet) content at multiple depths. (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm; (d) 30-60 cm; (e) 60-100 cm and (f) 100-200 cm depth interval.

Figure S11. The predicted maps of R (Dry) content at multiple depths. (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm; (d) 30-60 cm; (e) 60-100 cm and (f) 100-200 cm depth interval.

Figure S12. The predicted maps of G (Dry) content at multiple depths. (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm; (d) 30-60 cm; (e) 60-100 cm and (f) 100-200 cm depth interval.

Figure S13. The predicted maps of B (Dry) content at multiple depths. (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm; (d) 30-60 cm; (e) 60-110 100 cm and (f) 100-200 cm depth interval.

Figure S14. The predicted maps of Wet colours at multiple depths. Colour bar shows some representative colours. (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm; (d) 30-60 cm; (e) 60-100 cm and (f) 100-200 cm depth interval.

115 Figure S15. The predicted maps of Dry colours at multiple depths. Colour bar shows some representative colours. (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm; (d) 30-60 cm; (e) 60-100 cm and (f) 100-200 cm depth interval.

Figure S16. The predicted maps of soil pH at multiple depths. (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm; (d) 30-60 cm; (e) 60-100 cm and (f) 100-200 cm depth interval.

Figure S17. The predicted maps of soil organic carbon (OC) content at multiple depths. (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm; (d) 30-60 cm; (e) 60-100 cm and (f) 100-200 cm depth interval.

Figure S18. The predicted maps of Cation Exchange Capacity (CEC) content at multiple depths. (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm; (d) 30-60 cm; (e) 60-100 cm and (f) 100-200 cm depth interval.

Figure S19. The predicted maps of Total N (TN) content at multiple depths. (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm; (d) 30-60 cm; (e) 60-100 cm and (f) 100-200 cm depth interval.

130 Figure S20. The predicted maps of Total P (TP) content at multiple depths. (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm; (d) 30-60 cm; (e) 60-100 cm and (f) 100-200 cm depth interval.

Figure S21. The predicted maps of Total K (TK) content at multiple depths. (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm; (d) 30-60 cm; (e) 60-100 cm and (f) 100-200 cm depth interval.

Figure S22. The predicted maps of Alkali-hydrolysable N (AN) content at multiple depths. (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm; (d) 30-60 cm; (e) 60-100 cm and (f) 100-200 cm depth interval.

Figure S23. The predicted maps of Available K (AK) content at multiple depths. (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm; (d) 30-60 cm; (e) 60-100 cm and (f) 100-200 cm depth interval.

Figure S24. The predicted maps of Available P (AP) content at multiple depths. (a) 0-5 cm; (b) 5-15 cm; (c) 15-30 cm; (d) 30-60 cm; (e) 60-100 cm and (f) 100-200 cm depth interval.

145 Figure S25. The maps of uncertainty of the soil pH and organic carbon (OC) predictions at 0-5 cm (a, c) and 60-100 cm (b, d) depth interval.

Figure S26. Relative importance of predictors for the Quantile Regression Forest model in the spatial predictions of alkalihydrolysable nitrogen (AN), rock fragment (gravel), porosity, total potassium (TK), available potassium (AK), available phosphorus (AP), wet color (R, G, B), and dry color (R, G, B) at the surface layer (0-5 cm). See Table S6 for abbreviations of the environmental covariates.

Factors	Description	Resolution	Source data set
definitions	Description	(m)	Source data set
<mark>Soil (28)</mark>			
			https://www.fao.org/soils-portal/data-hub/soil-
STGHWS ¹	Dominant soil group	5000	maps-and-databases/harmonized-world-soil-
			database-v12/en/
			https://www.fao.org/soils-portal/data-hub/soil-
GVRHWS	Percent coverage Vertisols	1000	maps-and-databases/harmonized-world-soil-
			database-v34/en/
			https://www.fao.org/soils-portal/data-hub/soil-
GUMHWS	Percent coverage Umbrisols	1000	maps-and-databases/harmonized-world-soil-
			database-v33/en/
			https://www.fao.org/soils-portal/data-hub/soil-
GSTHWS	Percent coverage Stagnosols	1000	maps-and-databases/harmonized-world-soil-
			database-v37/en/
			https://www.fao.org/soils-portal/data-hub/soil-
GSNHWS	Percent coverage Solonetz	1000	maps-and-databases/harmonized-world-soil-
			database-v32/en/
			https://www.fao.org/soils-portal/data-hub/soil-
GSCHWS	Percent coverage Solonchaks	1000	maps-and-databases/harmonized-world-soil-
			database-v31/en/
			https://www.fao.org/soils-portal/data-hub/soil-
GRGHWS	Percent coverage Regosols	1000	maps-and-databases/harmonized-world-soil-
			database-v30/en/
			https://www.fao.org/soils-portal/data-hub/soil-
GPZHWS	Percent coverage Podzols	1000	maps-and-databases/harmonized-world-soil-
			database-v29/en/
			https://www.fao.org/soils-portal/data-hub/soil-
GPTHWS	Percent coverage Plinthosols	1000	maps-and-databases/harmonized-world-soil-
			database-v28/en/

Table S1. List of environmental covariates used to characterize soil-forming environments.

Factors	Description	Resolution	Source data set
definitions	Description	(m)	Source data set
	-		https://www.fao.org/soils-portal/data-hub/soil-
GPLHWS	Percent coverage Planosols	1000	maps-and-databases/harmonized-world-soil-
			database-v27/en/
			https://www.fao.org/soils-portal/data-hub/soil-
GLPHWS ¹	Percent coverage Leptosols	1000	maps-and-databases/harmonized-world-soil-
			database-v26/en/
	Darcont coverage		https://www.fao.org/soils-portal/data-hub/soil-
GKSHWS	Kastanozoms	1000	maps-and-databases/harmonized-world-soil-
	Kastanozenis		database-v25/en/
			https://www.fao.org/soils-portal/data-hub/soil-
GHSHWS	Percent coverage Histosols	1000	maps-and-databases/harmonized-world-soil-
			database-v24/en/
	Percent coverage Gypsisols	1000	https://www.fao.org/soils-portal/data-hub/soil-
GGYHWS ¹			maps-and-databases/harmonized-world-soil-
			database-v23/en/
	Percent coverage Gleysols	1000	https://www.fao.org/soils-portal/data-hub/soil-
GGLHWS			maps-and-databases/harmonized-world-soil-
			database-v22/en/
			https://www.fao.org/soils-portal/data-hub/soil-
GFRHWS	Percent coverage Ferralsols	1000	maps-and-databases/harmonized-world-soil-
			database-v20/en/
			https://www.fao.org/soils-portal/data-hub/soil-
GFLHWS	Percent coverage Fluvisols	1000	maps-and-databases/harmonized-world-soil-
			database-v21/en/
			https://www.fao.org/soils-portal/data-hub/soil-
GCRHWS	Percent coverage Cryosols	1000	maps-and-databases/harmonized-world-soil-
			database-v19/en/
			https://www.fao.org/soils-portal/data-hub/soil-
GCMHWS ¹	Percent coverage Cambisols	1000	maps-and-databases/harmonized-world-soil-
			database-v17/en/

Factors	Factors Resolution		Source data set	
definitions	Description	(m)	Source data set	
			https://www.fao.org/soils-portal/data-hub/soil-	
GCLHWS	Percent coverage Calcisols	1000	maps-and-databases/harmonized-world-soil-	
			database-v16/en/	
			https://www.fao.org/soils-portal/data-hub/soil-	
GCHHWS	Percent coverage Chernozems	1000	maps-and-databases/harmonized-world-soil-	
			database-v18/en/	
			https://www.fao.org/soils-portal/data-hub/soil-	
GATHWS	Percent coverage Anthrosols	1000	maps-and-databases/harmonized-world-soil-	
			database-v36/en/	
			https://www.fao.org/soils-portal/data-hub/soil-	
GARHWS	Percent coverage Arenosols	1000	maps-and-databases/harmonized-world-soil-	
			database-v15/en/	
			https://www.fao.org/soils-portal/data-hub/soil-	
GANHWS	Percent coverage Andosols	1000	maps-and-databases/harmonized-world-soil-	
			database-v14/en/	
			https://www.fao.org/soils-portal/data-hub/soil-	
GALHWS	Percent coverage Alisols	1000	maps-and-databases/harmonized-world-soil-	
			database-v35/en/	
			https://www.fao.org/soils-portal/data-hub/soil-	
GACHWS	Percent coverage Acrisols	1000	maps-and-databases/harmonized-world-soil-	
			database-v12/en/	
			https://www.fao.org/soils-portal/data-hub/soil-	
GABHWS	Percent coverage Albeluvisols	1000	maps-and-databases/harmonized-world-soil-	
			database-v13/en/	
BDTICM ¹	Depth to bedrock of China	90	http://globalchange.bnu.edu.cn/research/cdtb.jsp	
Climate (36)				
TYCHOD	Mean Long-term Surface	1000		
TX0MOD'	Temperature Oct/Nov	1000	nttps://modis.gsfc.nasa.gov	
TYNOD	Mean Long-term Surface	1000		
TX5MOD	Temperature Aug/Sep	1000	nttps://modis.gsfc.nasa.gov	

Factors	Description	Resolution	Common data sat
definitions	Description	(m)	Source data set
TX4MOD	Mean Long-term Surface	1000	https://modis.gsfc.pasa.gov
174WOD	Temperature Jun/Jul	1000	https://mouis.gste.nasa.gov
TX3MOD	Mean Long-term Surface	1000	https://modis.gsfc.pasa.gov
17GmOD	Temperature Apr/May	1000	https://https://https://https://https://https://https://https://https://https://https://https://https://https://
TX2MOD	Mean Long-term Surface	1000	https://modis.gsfc.pasa.gov
111211101	Temperature Feb/Mar	1000	https://mous.gsrc.nusu.gov
$TX1MOD^1$	Mean value of the day-time	1000	https://modis.gsfc.pasa.gov
IXIMOD	LST	1000	https://https://https://https://https://https://https://https://https://https://https://https://https://https://
$TNSMOD^1$	Standard deviation Long-term	1000	https://modis.gsfc.pasa.gov
IIIbmob	night surface temperature	1000	https://https://https://https://https://https://https://https://https://https://https://https://https://https://
TNMMOD	Mean value Long-term night	1000	https://modis.gsfc.pasa.gov
INMMOD	surface temperature	1000	https://https://https://https://https://https://https://https://https://https://https://https://https://https://
TNI MOD	Minimum Long-term surface	1000	https://modis.gsfc.pasa.gov
INLINOD	temperature	1000	https://mous.gsrc.nusu.gov
TNHMOD ¹	Maximum Long-term night	1000	https://modis.gsfc.nasa.gov
mmnob	surface temperature	1000	https://inousi.govoniusu.gov
TDSMOD	Standard deviation of day-	1000	https://modis.gsfc.nasa.gov
1251102	time LST	1000	hapon/mousigorenaougov
TDMMOD	Mean Long-term day surface	1000	https://modis.gsfc.nasa.gov
12111102	temperature	1000	helpon, monsiloren asallo i
TDLMOD	Minimum Long-term day	1000	https://modis.gsfc.nasa.gov
122002	surface temperature	1000	helpon, monsilore manifest
TDHMOD	Maximum Long-term day	1000	https://modis.gsfc.nasa.gov
12111102	surface temperature	1000	helpon, monsiloronnomilo i
PX4WCL	Long-term Precipitation	1000	https://www.worldclim.org/
1111102	Aug/Sep/Oct	1000	
PX3WCL	Long-term Precipitation of	1000	https://www.worldclim.org/
	May/Jun/Jul	1000	
PX2WCL	Long-term Precipitation of	1000	https://www.worldelim.org/
I AZ W CL	Feb/Mar/Apr	1000	https://www.wondenm.org/

Factors	Description	Resolution	Source data set		
definitions	Description	(m)	Source data set		
PX1WCL	Long-term precipitation of	1000	https://www.worldclim.org/		
THE WEL	Nov/Dec/Jan	1000	https://www.worldonni.org/		
PREGSM ¹	Mean monthly precipitation	1000	http://chelsa-climate.org/		
	(annual)	1000	http://onoisu chinace.org/		
P12DWD	Monthly precipitation for	5000	http://chelsa-climate.org/		
1120110	December	5000	http://energy		
P11DWD	Mean precipitation of	1000	http://chelsa-climate.org/		
1110000	November	1000	http://onoisu chinace.org/		
P10DWD	Mean precipitation of October	1000	http://chelsa-climate.org/		
PO9DWD	Mean precipitation of	1000	http://chelsa_climate.org/		
10/2012	September	1000	http://enersa-eninate.org/		
P08DWD	Mean precipitation of August	1000	http://chelsa-climate.org/		
P07DWD	Mean precipitation of July	1000	http://chelsa-climate.org/		
P06DWD	Mean precipitation of June	1000	http://chelsa-climate.org/		
P05DWD	Mean precipitation of May	1000	http://chelsa-climate.org/		
P04DWD	Mean precipitation of April	1000	http://chelsa-climate.org/		
P03DWD	Mean precipitation of Mar	1000	http://chelsa-climate.org/		
	Monthly precipitation for	1000	http://chalsa.climata.org/		
1020 000	February	1000	http://encisa-chinace.org/		
	Monthly precipitation for	1000	http://chelsa_climate.org/		
1010 00	January	1000	http://enelsa.ennate.org/		
MODCE ¹	FC	1000	http://journals.plos.org/plosbiology/article?id=10.1		
Model		1000	371/journal.pbio.1002415		
L15IGB	Snow and ice index	1000	https://modis.gsfc.nasa.gov		
INSSRE ¹	Standard deviation Potential	1000	https://www.worldgrids.com		
INSSRE	incoming solar radiation	1000	https://www.wohdghds.com		
INMSRF ¹	Mean potential incoming solar	1000	https://www.worldgrids.com		
INNISICE	radiation	1000	https://www.wondgnus.com		
G22ESA	Permanent snow and ice	1000	1000 http://due.esrin.esa.int/page_globcover.php		
Organisms (50)					

Factors	Resolut		Source data set		
definitions	Description	(m)	Source data set		
	The ratio of Band 5 (near-		https://www.usgs.gov/landsat_missions/landsat_		
$B5/B7^{1}$	infrared) to Band 7 (shortwave	90	collection 2		
	infrared 2) surface reflectance		concetion-2		
	Normalized Difference	00	Calculated from Landsat 8 Collection 2 Level-2		
NDVI	Vegetation Index	90	(LC08C02) on the GEE platform		
NDWI	Normalized Difference Water	00	Calculated from Landsat 8 Collection 2 Level-2		
NDWI	Index	90	(LC08C02) on the GEE platform		
		250	https://modis.gsfc.nasa.gov/data/dataprod/mod09.p		
surk ¹	Surface Reflectance	250	hp		
EVI	Enhanced Vegetation Index	500	Calculated from LC08C02 on the GEE platform		
\mathbf{SAI}^1	Snow Area Index	500	Calculated from LC08C02 on the GEE platform		
LAI^1	Leaf Area Index	90	Calculated from LC08C02 on the GEE platform		
NPP	Net Primary Productivity	500	https://lpdaac.usgs.gov/products/mod17a3hgfv061/		
landuse ¹	Land use type	30	https://www.resdc.cn/DOI/DOI.aspx?DOIID = 54		
CanopyHeight1	Canopy Height	10	https://doi.org/10.3929/ethz-b-000609802		
Sentinel2B2 ¹	Band2 from Sentinel2	90	Derived from Sentinel2 on the GEE platform		
Sentinel2B3	Band3 from Sentinel2	90	Derived from Sentinel2 on the GEE platform		
Sentinel2B4	Band4 from Sentinel2	90	Derived from Sentinel2 on the GEE platform		
Sentinel2B8	Band8 from Sentinel2	90	Derived from Sentinel2 on the GEE platform		
Sentinel2B9	Band9 from Sentinel2	90	Derived from Sentinel2 on the GEE platform		
OA DIVEL	Landsat 8 Collection 2 Level-	00	Derived from LC02C02 on the CEE platform		
QA_FIAEL	2 Pixel Quality Band	90	Derived from EC08C02 on the GEE platform		
OA PADSAT	Radiometric Saturation	90	Dariyad from LC08C02 on the GEE platform		
QA_KADSAT	Quality control	90	Derived from EC08C02 on the GEE platform		
SR_B4^1	Surface Reflectance of Band4	90	Derived from LC08C02 on the GEE platform		
SR_B5	Surface Reflectance of Band5	90	Derived from LC08C02 on the GEE platform		
SR_B6	Surface Reflectance of Band6	90	Derived from LC08C02 on the GEE platform		
SR_B7	Surface Reflectance of Band7	90	Derived from LC08C02 on the GEE platform		
ST_ATRAN	Atmospheric Transmittance	90	Derived from LC08C02 on the GEE platform		
ST_B10	Band 10 Surface Temperature	90	Derived from LC08C02 on the GEE platform		
ST_EMSD	Emissivity standard deviation	90	Derived from LC08C02 on the GEE platform		

Factors	Description	Resolution	Correct dista ant
definitions	Description	(m)	Source data set
ST_TRAD	Thermal Radiance	90	Derived from LC08C02 on the GEE platform
ST_URAD	Downwelled Radiance	90	Derived from LC08C02 on the GEE platform
wc2.1_prec		1000	
$wc2.1_srad^1$	solar radiation (kJ m-2 day-1)	1000	https://worldclim.org/data/worldclim21.html
wc2.1_tavg	average temperature (°C)	1000	https://worldclim.org/data/worldclim21.html
wc2.1_tmax	maximum temperature (°C)	1000	https://worldclim.org/data/worldclim21.html
wc2.1_tmin	minimum temperature (°C)	1000	https://worldclim.org/data/worldclim21.html
wc2.1_prec	precipitation (mm)	1000	https://worldclim.org/data/worldclim21.html
$wc2.1_wind^1$	wind speed (m s-1)	1000	https://worldclim.org/data/worldclim21.html
DANCE0105	Range of Enhanced	1000	http://onlinelibrary.wiley.com/doi/10.1111/geb.123
KANGEUIUJ	Vegetation Index	1000	68/abstract
PDMGPW ¹	Average population density	5000	https://www.worldgrids.com
MA V0105	Maximum of Enhanced	1000	http://onlinelibrary.wiley.com/doi/10.1111/geb.123
MAA0105	Vegetation Index		67/abstract
LCEE10	ESA land cover	200	http://maps.elie.ucl.ac.be/CCI/viewer/download/ES
LCEEIU	ESA laild cover	300	ACCI-LC-PUG-v2.5.pdf
L16IGB	Barren or sparsely vegetated	1000	https://modis.gsfc.nasa.gov
L14IGB	Cropland/natural vegetation mosaic	1000	https://modis.gsfc.nasa.gov
L13IGB	Urban and built-up	1000	https://modis.gsfc.nasa.gov
L12IGB	Croplands index	1000	https://modis.gsfc.nasa.gov
L11IGB	Permanent Wetlands	1000	https://modis.gsfc.nasa.gov
L10IGB	Grasslands	1000	https://modis.gsfc.nasa.gov
L09IGB	Savannas	1000	https://modis.gsfc.nasa.gov
L06IGB	Closed shrublands	1000	https://modis.gsfc.nasa.gov
L05IGB	Mixed forests index	1000	https://modis.gsfc.nasa.gov
L04IGB ¹	Deciduous broadleaf forest	1000	https://modis.gsfc.nasa.gov
L03IGB	Deciduous needleleaf forest	1000	https://modis.gsfc.nasa.gov
L02IGB	Evergreen broadleaf forest	1000	https://modis.gsfc.nasa.gov
L01IGB	Evergreen needleleaf forest	1000	https://modis.gsfc.nasa.gov

Factors	Description	Resolution	Source data set	
definitions		(m)		
GLCJRC	Global Land Cover map for	1000	http://www.globallandcover.com/	
	the year 2000			
GLCESA	Land Cover classes	1000	http://due.esrin.esa.int/page_globcover.php	
GACGEM ¹	Global accessibility map	1000	http://globalaccessibilitymap.com/	
G21ESA	Water bodies	1000	http://due.esrin.esa.int/page_globcover.php	
G20ESA	Bare areas	1000	http://due.esrin.esa.int/page_globcover.php	
CLOEGA	Artificial surfaces and	1000		
GI9ESA	associated areas	1000	http://due.esrin.esa.int/page_giobcover.php	
	Closed to open grassland or			
C L OF C L	woody vegetation on regularly	1000		
G18ESA	flooded or waterlogged soil -	1000	http://due.esrin.esa.int/page_globcover.php	
	Fresh, brackish or saline water			
	Closed broadleaved forest or			
	shrubland permanently			
G17ESA	flooded - Saline or brackish	1000	http://due.esrin.esa.int/page_globcover.php	
	water			
	Closed to open broadleaved			
G16ESA	forest regularly flooded -	1000	http://due.esrin.esa.int/page_globcover.php	
	Fresh or brackish water			
G15ESA	Sparse (<15%) vegetation	1000	http://due.esrin.esa.int/page_globcover.php	
G14ESA	Closed to open shrubland	1000	http://due.esrin.esa.int/page_globcover.php	
G12IGB	Land cover types for 2012	1000	https://modis.gsfc.nasa.gov	
G11IGB	Land cover types for 2011	1000	https://modis.gsfc.nasa.gov	
	Mosaic forest or shrubland /			
G11ESA	grassland	1000	http://due.esrin.esa.int/page_globcover.php	
G10IGB	Land cover types for 2010	1000	https://modis.gsfc.nasa.gov	
	Closed to open mixed			
G10ESA	broadleaved and needleleaved	1000	http://due.esrin.esa.int/page_globcover.php	
	forest			
	Open needleleaved deciduous			
G09ESA	or evergreen forest	1000	http://due.esrin.esa.int/page_globcover.php	

Factors definitions	Description	Resolution (m)	Source data set	
COSESA	Closed needleleaved	1000	http://dua.acrip.aca.int/paga_glabacuar.php	
GUSESA	evergreen forest	1000	http://due.estin.esa.ini/page_gioocover.php	
COTESA	Open broadleaved deciduous	1000	http://dua.acrin.aca.int/paga_glabaayar.php	
GUIESA	forest/woodland	1000	http://due.esini.esa.ini/page_gioocover.php	
	Closed to open broadleaved			
G05ESA	evergreen or semi-deciduous	1000	http://due.esrin.esa.int/page_globcover.php	
	forest			
G04IGB	Land cover types for 2004	1000	https://modis.gsfc.nasa.gov	
G04ESA	Mosaic vegetation / cropland	1000	http://due.esrin.esa.int/page_globcover.php	
G03ESA	Mosaic cropland / vegetation	1000	http://due.esrin.esa.int/page_globcover.php	
G02IGB	Land cover types for 2002	1000	https://modis.gsfc.nasa.gov	
G02ESA	Rainfed croplands	1000	http://due.esrin.esa.int/page_globcover.php	
G01IGB	Land cover types for 2001	1000	https://modis.gsfc.nasa.gov	
G01ESA	Post-flooding or irrigated	1000	http://dua.acrip.aca.int/paga_glabaayar.php	
	croplands (or aquatic)		http://duc.esim.esa.in/page_gioteover.php	
EVSMOD	Standard deviation MODIS	1000	https://modia.gafa.paga.gov	
EVSNIOD	Enhanced Vegetation Index	1000	https://modis.gsic.nasa.gov	
EVMMODI	Mean MODIS Enhanced	1000	https://modis.gsfc.pasa.gov	
EVMMOD	Vegetation Index	1000	https://modis.gsrc.nasa.gov	
EVENNESS	Evenness of Enhanced	1000	http://onlinelibrary.wiley.com/doi/10.1111/geb.123	
EVENINESS	Vegetation Index	1000	66/abstract	
ENTRODY	Disorderliness of Enhanced	1000	http://onlinelibrary.wiley.com/doi/10.1111/geb.123	
ENTROPY	Vegetation Index	1000	65/abstract	
COVER	Land cover of 2010	300	http://www.sciencemag.org/content/342/6160/850	
TEDECO	T	250	https://landscape12.arcgis.com/arcgis/rest/services/	
TERECO ²	Terrestrial Ecosystems	250	World_Terrestrial_Ecosystems/ImageServer	
Relief (13)				
L3POBI	Physiographic landform units	1000	https://www.worldgrids.com	
	(SCALA project)			
DEM ¹	Land surface elevation	90	https://hydro.iis.u-	
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			tokyo.ac.jp/~yamadai/MERIT_DEM/	

Factors	Resolution		Source data set	
definitions	Description	(m)	Source data set	
slope ¹	Terrain slope	- 90	Derived from DEM	
DEM and	Local downslopa Curvatura	00	http://hydro.iis.u-	
DEWI_CIU	Local downslope Curvature	90	tokyo.ac.jp/~yamadai/MERIT_DEM/	
DEM or	Logal unclong Currenturg	00	http://hydro.iis.u-	
DEM_CIU	Local upsiope Curvature	90	tokyo.ac.jp/~yamadai/MERIT_DEM/	
DEM or	Downslope Curreture	00	http://hydro.iis.u-	
DEM_CIV	Downslope Curvature	90	tokyo.ac.jp/~yamadai/MERIT_DEM/	
DEM dum	Deviation from Mean Value	00	http://hydro.iis.u-	
DEM_dviii	(surface roughness) x9	90	tokyo.ac.jp/~yamadai/MERIT_DEM/	
DEM dum2	Deviation from Mean Value	00	http://hydro.iis.u-	
DEM_dvIII2	(surface roughness) x13	90	tokyo.ac.jp/~yamadai/MERIT_DEM/	
DEM mm	Melton Ruggedness Number	90	http://hydro.iis.u-	
DEM_mm			tokyo.ac.jp/~yamadai/MERIT_DEM/	
	Negative Topographic	00	http://hydro.iis.u-	
DEM_liopii	Openness	90	tokyo.ac.jp/~yamadai/MERIT_DEM/	
	Positive Topographic	00	http://hydro.iis.u-	
DEM_popu	Openness	20	tokyo.ac.jp/~yamadai/MERIT_DEM/	
DEM prof	Profile Curvature	00	http://hydro.iis.u-	
DEM_prof		90	tokyo.ac.jp/~yamadai/MERIT_DEM/	
DEM to:	Topographic Desition Index	00	http://hydro.iis.u-	
DEM_tpi	ropographic Position Index	90	tokyo.ac.jp/~yamadai/MERIT_DEM/	
DEM turil	Topographia Watness Index	00	http://hydro.iis.u-	
DEM_tw1	ropographic wetness index	90	tokyo.ac.jp/~yamadai/MERIT_DEM/	
DEMhf	Multiresolution Index of	00	http://hydro.iis.u-	
DEM_V01	Valley Bottom Flatness	90	tokyo.ac.jp/~yamadai/MERIT_DEM/	
Parent material				
<mark>(2)</mark>				
			USGS Geosciences and Environmental Change	
RTMUSG15 ¹	Rock type	250	Science Center (GECSC) based on the Global	
KIMUSGI5'		230	Lithological Map database v1.1 (GLiM, Hartmann	

	Factors definitions	Description	Resolution (m)	Source data set
	SEDDEP	Average soil and sedimentary deposit thickness	1000	https://www.ornl.gov/
	Other (2)			
		MODIS LAI based soil		
	SMKMOD	productive area mask of the	5000	https://modis.gsfc.nasa.gov
		world		
	LMTGSH ¹	Land mask based on GSHHS	1000	https://www.worldgrids.com
155 <u>1</u>	¹ variables used in the modeling of soil organic carbon content at 0-5 cm depth interval.			

Property	Number of covariates	mtry	nodesize
рН	32	9	10
Sand	27	10	8
Silt	27	10	8
Clay	27	10	9
BD	25	11	10
OC	26	9	10
Gravel	25	12	8
AN	29	17	13
TN	26	16	10
CEC	25	9	10
Porosity	29	11	15
TK	41	17	12
TP	38	11	15
AK	43	17	11
AP	42	19	12
R (Wet)	36	12	13
G (Wet)	35	11	12
B (Wet)	35	11	13
R (Dry)	33	12	13
G (Dry)	33	12	12
B (Dry)	33	10	13

Table S2. Tuned model parameters for each soil property considered at 0-5 cm depth interval. See Table 1 for abbreviations and units of the soil properties considered.

Depth interval (cm)	Number	Max	Min	Mean	SD	CV	Skewness	Kurtosis
рН								
0-5	9623	10.59	2.64	7.12	1.28	0.18	-0.48	-0.71
5-15	9632	10.53	2.66	7.14	1.27	0.18	-0.49	-0.71
15-30	9596	10.61	2.76	7.21	1.25	0.17	-0.54	-0.64
30-60	9288	10.50	2.99	7.28	1.25	0.17	-0.61	-0.56
60-100	7711	10.36	2.97	7.33	1.26	0.17	-0.66	-0.56
100-200	2584	10.28	2.94	7.61	1.23	0.16	-1.02	0.15
sand								
0-5	8743	102.63	0.00	40.26	21.18	0.53	0.36	-0.51
5-15	8152	99.99	0.00	40.12	21.01	0.52	0.30	-0.56
15-30	8122	99.99	0.02	39.23	21.13	0.54	0.36	-0.51
30-60	7844	101.84	0.02	38.70	22.03	0.57	0.40	-0.57
60-100	6389	101.33	0.00	37.93	22.88	0.60	0.47	-0.56
100-200	2127	101.82	0.22	37.01	23.18	0.63	0.62	-0.33
silt								
0-5	8926	96.45	0.00	40.60	15.88	0.39	-0.07	-0.20
5-15	8324	95.23	0.00	40.18	15.34	0.38	-0.02	-0.13
15-30	8300	92.53	0.00	39.90	15.29	0.38	-0.05	-0.19
30-60	8018	97.19	0.00	39.36	15.73	0.40	-0.01	-0.21
60-100	6562	102.40	0.00	39.52	16.38	0.41	0.01	-0.16
100-200	2207	100.57	0.00	41.14	17.74	0.43	-0.08	-0.27
clay								
0-5	9142	100.00	0.04	19.23	11.01	0.57	1.06	1.70
5-15	8539	100.00	0.08	19.70	11.20	0.57	1.02	1.44
15-30	8509	100.00	0.03	20.91	11.95	0.57	1.01	1.35
30-60	8225	100.00	0.00	22.02	13.02	0.59	0.96	1.20
60-100	6748	100.00	0.00	22.79	13.78	0.60	0.90	0.92
100-200	2302	84.67	0.04	22.16	13.35	0.60	0.96	1.22
BD								

160	Table S3. Statistical description of soil properties at six depth intervals. Refer to Table 1 for the abbreviations and units of the soil
	properties interested.

Depth interval (cm)	Number	Max	Min	Mean	SD	CV	Skewness	Kurtosis
0-5	1531	2.21	0.14	1.24	0.20	0.16	-0.69	2.84
5-15	1556	2.18	0.18	1.26	0.19	0.15	-0.80	2.97
15-30	1551	2.12	0.18	1.34	0.19	0.14	-1.10	3.47
30-60	1362	2.10	0.34	1.40	0.19	0.13	-1.05	3.52
60-100	955	2.60	0.26	1.43	0.19	0.13	-0.94	4.27
100-200	331	2.13	0.54	1.44	0.19	0.13	-0.72	4.48
OC								
0-5	9758	41.99	0.00	2.26	3.13	1.39	4.67	30.98
5-15	9164	61.83	0.00	2.03	2.78	1.37	5.67	55.93
15-30	9147	52.10	0.00	1.45	2.12	1.47	7.93	105.75
30-60	8811	43.07	0.00	0.97	1.72	1.77	10.57	165.14
60-100	7156	47.56	0.00	0.70	1.55	2.20	13.90	266.53
100-200	2306	45.22	0.00	0.54	1.83	3.35	15.04	271.28
gravel								
0-5	1994	97.42	0.00	20.10	18.25	0.91	1.14	0.69
5-15	2041	95.00	0.00	20.42	18.27	0.89	1.10	0.60
15-30	2016	95.00	0.00	22.99	19.86	0.86	0.95	0.18
30-60	1911	95.33	0.00	25.64	21.19	0.83	0.78	-0.25
60-100	1288	94.11	0.00	26.15	21.25	0.81	0.73	-0.36
100-200	163	87.90	0.02	22.68	21.21	0.93	1.10	0.53
AN								
0-5	3447	1295.31	0.90	145.04	142.00	0.98	2.71	9.75
5-15	3447	1279.89	0.95	132.51	124.07	0.94	2.82	11.79
15-30	3410	1326.79	1.12	99.77	96.81	0.97	4.04	28.29
30-60	3151	1425.23	0.65	68.43	77.99	1.14	6.36	67.66
60-100	2270	1010.77	0.62	51.85	58.11	1.12	6.48	73.97
100-200	516	1043.52	0.62	41.87	64.90	1.55	9.69	127.43
TN								
0-5	9446	2.46	0.00	0.19	0.20	1.09	3.67	19.26
5-15	9239	2.46	0.00	0.17	0.18	1.06	4.01	24.93
15-30	9219	2.46	0.00	0.13	0.14	1.09	5.58	53.87

Depth interval (cm)	Number	Max	Min	Mean	SD	CV	Skewness	Kurtosis
30-60	8816	2.49	0.00	0.09	0.11	1.24	8.26	111.67
60-100	7037	2.46	0.00	0.07	0.10	1.38	9.57	142.33
100-200	2219	1.79	0.00	0.05	0.09	1.69	11.89	179.87
CEC								
0-5	6624	123.89	0.16	14.94	10.65	0.71	2.57	11.74
5-15	6627	124.86	0.52	14.53	9.86	0.68	2.47	11.76
15-30	6595	125.40	0.29	13.59	8.96	0.66	2.62	14.92
30-60	6213	116.03	0.22	12.71	8.35	0.66	2.27	11.12
60-100	4809	105.11	0.34	12.21	8.29	0.68	2.54	14.79
100-200	1539	102.90	0.28	12.36	8.00	0.65	2.14	13.08
ТР								
0-5	8229	12.43	0.00	0.08	0.17	1.98	54.57	3808.42
5-15	8229	12.61	0.00	0.08	0.17	2.00	56.58	4081.97
15-30	8193	14.58	0.00	0.08	0.18	2.34	68.24	5468.62
30-60	7822	15.93	0.00	0.07	0.19	2.73	75.01	6237.73
60-100	6160	16.12	0.00	0.07	0.21	3.21	68.67	5123.50
100-200	1882	0.66	0.00	0.06	0.05	0.79	3.55	24.01
porosity								
0-5	734	74.86	32.11	52.14	6.49	0.12	0.35	0.76
5-15	734	74.15	30.57	51.41	6.15	0.12	0.41	0.80
15-30	732	78.23	28.42	49.01	6.07	0.12	0.81	1.89
30-60	659	77.09	22.44	47.40	6.14	0.13	0.83	2.61
60-100	469	78.85	22.91	46.60	6.02	0.13	0.69	2.87
100-200	196	79.42	23.72	45.92	6.64	0.14	0.52	4.08
ТК								
0-5	6729	5.24	0.02	1.95	0.67	0.34	0.05	1.17
5-15	6728	5.24	0.03	1.95	0.66	0.34	0.04	1.16
15-30	6698	5.23	0.03	1.95	0.66	0.34	0.03	1.11
30-60	6360	5.02	0.02	1.95	0.68	0.35	0.03	1.02
60-100	4978	6.16	0.00	1.93	0.70	0.36	0.09	1.06
100-200	1344	5.13	0.00	1.93	0.63	0.32	0.18	1.99

Depth interval (cm)	Number	Max	Min	Mean	SD	CV	Skewness	Kurtosis
AK								
0-5	4984	6405.52	1.00	153.36	183.92	1.20	16.29	490.56
5-15	4990	7440.15	0.92	143.03	170.30	1.19	19.89	747.11
15-30	4951	7803.84	1.00	116.92	151.66	1.30	28.23	1350.57
30-60	4605	6986.45	1.00	99.69	139.19	1.40	28.28	1318.20
60-100	3494	6047.12	0.98	94.69	140.06	1.48	24.32	954.11
100-200	937	861.81	1.75	99.71	84.75	84.75	0.85	3.43
AP								
0-5	4932	398.99	0.10	9.41	13.48	1.43	10.02	208.71
5-15	4934	443.53	0.10	8.76	13.16	1.50	12.68	323.74
15-30	4889	587.27	0.10	6.39	11.85	1.85	26.22	1193.62
30-60	4485	185.08	0.02	4.87	7.74	1.59	8.59	125.29
60-100	3351	235.83	0.03	4.73	8.80	1.86	11.63	227.95
100-200	882	74.62	0.06	4.53	7.11	1.57	4.89	33.14
R (wet)								
0-5	2889	265.92	40.00	139.34	38.89	0.28	-0.06	-0.14
5-15	2940	259.30	23.80	140.47	37.19	0.26	-0.08	-0.16
15-30	2929	256.22	26.33	147.65	34.28	0.23	-0.16	0.07
30-60	2808	256.67	15.27	156.04	34.23	0.22	-0.23	0.39
60-100	2365	261.15	161.39	34.83	34.83	0.22	-0.20	0.28
100-200	801	261.06	53.26	167.02	34.08	0.20	-0.19	0.04
G (wet)								
0-5	2889	266.35	21.00	117.25	37.87	0.32	0.07	-0.12
5-15	2940	255.00	21.00	117.78	36.20	0.31	0.05	-0.23
15-30	2929	255.00	21.00	122.59	33.20	0.27	0.02	-0.17
30-60	2809	255.00	18.09	128.73	33.25	0.26	0.03	-0.06
60-100	2365	257.89	19.81	133.05	33.87	0.25	0.01	-0.29
100-200	801	206.33	40.92	135.84	32.06	0.24	-0.14	-0.41
B (wet)								
0-5	2887	269.35	0.05	92.40	37.61	0.41	0.10	0.02
5-15	2939	255.00	0.02	92.17	36.03	0.39	0.06	-0.20

Depth interval (cm)	Number	Max	Min	Mean	SD	CV	Skewness	Kurtosis
15-30	2828	255.00	7.84	93.58	34.48	0.39	-0.02	-0.49
30-60	2808	255.00	0.51	96.13	36.14	0.38	-0.00	-0.32
60-100	2364	258.83	4.36	98.33	38.14	0.39	-0.06	-0.45
100-200	800	198.68	10.25	98.26	36.66	0.37	-0.21	-0.58
R (dry)								
0-5	1738	265.58	8.00	145.12	36.70	0.25	-0.14	0.05
5-15	1769	256.63	8.00	145.90	34.62	0.24	-0.16	0.07
15-30	1757	236.48	8.00	151.26	32.21	0.21	-0.17	0.19
30-60	1714	251.16	8.00	158.01	33.28	0.21	-0.20	0.38
60-100	1502	257.89	8.00	163.92	33.97	0.21	-0.34	0.57
100-200	665	263.26	8.00	170.09	33.48	0.20	-0.38	0.80
G (dry)								
0-5	1738	267.41	8.00	120.71	36.16	0.30	0.12	0.11
5-15	1769	256.95	8.00	121.01	34.17	0.28	0.10	0.03
15-30	1757	219.37	8.00	124.52	31.78	0.26	0.09	-0.17
30-60	1714	250.37	8.00	128.70	32.81	0.25	0.06	-0.22
60-100	1502	258.48	8.00	133.33	34.06	0.26	-0.03	-0.31
100-200	665	267.38	8.00	133.33	34.06	0.26	-0.03	-0.31
B (dry)								
0-5	1732	269.53	8.00	94.91	37.06	0.39	0.24	0.34
5-15	1768	257.30	5.61	94.34	35.32	0.37	0.17	0.08
15-30	1756	213.47	8.00	95.35	33.29	0.35	0.06	-0.42
30-60	1713	249.42	8.00	96.26	34.41	0.37	0.05	-0.42
60-100	1502	259.21	8.00	99.22	38.33	0.39	0.04	-0.39
100-200	668	268.45	8.00	103.70	38.75	0.37	-0.07	-0.26

CV: coefficient of variation; SD: standard deviation;

Table S4. Predictive performance of CSDLv2, CSDLv1, SoilGrids 2.0, and HWSD 2.0. Twenty repeats of validation with testing soil profiles for CSDLv2, and validation using all soil profiles for other datasets. See Table 1 for the abbreviations and units of the soil properties interested.

	Depth		CSDLv2			CSDLv	1	SoilGrids 2.0			HWSD 2.0		
Property	interval	MEC	RMSE	ME	MEC	RMSE	ME	MEC	RMSE	ME	MEC	RMSE	ME
	0-5	0.57	2.04	0.03	0.16	2.86	-0.51	0.24	2.72	1.11	0.04	3.38	-0.50
	5-15	0.56	1.82	0.02	0.13	2.60	-0.46	0.46	2.05	0.08	0.03	3.05	-1.15
00	15-30	0.45	1.51	0.01	0.12	2.11	-0.36	0.40	1.64	0.03	0.04	2.29	-0.82
UC	30-60	0.40	1.28	0.01	0.10	1.76	-0.26	0.34	1.38	0.01	0.02	1.83	-0.51
	60-100	0.25	1.30	0.01	0.08	1.64	-0.23	0.20	0.54	-0.01	0.03	1.61	-0.36
	100-200	0.23	0.41	0.03	0.07	1.82	-0.32	0.13	1.70	0.04	0.03	1.58	-0.21
	0-5	0.49	12.97	0.06	0.13	19.43	-6.31	0.45	13.46	0.36	0.04	21.12	-7.27
	5-15	0.51	12.72	0.11	0.06	18.82	-5.63	0.48	13.07	0.55	0.03	21.63	-6.47
	15-30	0.52	13.68	0.09	0.09	20.77	-5.23	0.49	14.18	-0.13	0.03	23.17	-9.60
gravel	30-60	0.50	14.85	0.09	0.06	21.83	5.35	0.47	15.37	-0.06	0.03	23.99	-10.69
	60-100	0.47	15.25	0.14	0.05	22.45	2.91	0.43	15.86	-0.07	0.03	24.47	-8.93
	100-200	0.35	14.84	0.03	0.04	23.34	-3.97	0.30	16.60	2.66	0.05	23.43	-8.13
	0-5	0.53	96.32	1.48	0.14	131.81	-11.55	-	-	-	-	-	-
	5-15	0.52	84.08	1.28	0.14	114.91	-10.35	-	-	-	-	-	-
A NI	15-30	0.37	73.85	0.71	0.09	92.90	-6.05	-	-	-	-	-	-
AIN	30-60	0.33	62.78	0.96	0.02	78.46	-3.38	-	-	-	-	-	-
	60-100	0.25	48.92	0.74	0.02	59.46	-6.55	-	-	-	-	-	-
	100-200	0.24	20.41	-0.11	0.01	98.61	-8.46	-	-	-	-	-	-
	0-5	0.44	0.15	0.00	0.19	0.18	-0.03	0.14	0.23	0.13	0.04	2.46	-0.79
	5-15	0.40	0.14	0.00	0.17	0.17	-0.03	0.31	0.15	0.01	0.02	2.50	-1.46
TN	15-30	0.28	0.12	0.00	0.08	0.14	-0.03	0.21	0.13	0.01	0.02	2.27	-1.48
111	30-60	0.18	0.06	0.00	0.01	0.02	-0.02	0.13	0.11	0.00	0.02	2.33	-1.44
	60-100	0.25	0.04	0.00	0.01	0.10	-0.02	0.08	0.09	-0.00	0.03	2.45	-1.48
	100-200	0.20	0.02	0.00	0.01	0.09	-0.03	0.02	0.09	0.00	0.02	2.92	-1.56
	0-5	0.34	8.49	0.16	0.07	10.23	-1.27	0.17	11.55	5.58	0.02	12.37	1.73
	5-15	0.33	7.90	0.15	0.06	9.51	-1.22	0.16	10.27	4.01	0.02	11.02	0.69
CEC	15-30	0.28	7.44	0.13	0.04	9.10	-1.17	0.14	9.91	4.50	0.03	9.23	0.52
	30-60	0.27	7.01	0.12	0.03	8.47	-1.23	0.13	9.69	4.80	0.03	8.87	0.58
	60-100	0.24	7.05	0.14	0.05	8.79	1.30	0.10	9.73	4.97	0.02	8.86	0.73

	100-200	0.25	6.86	0.06	0.08	8.91	1.42	0.11	9.70	4.86	0.02	8.45	1.09
	0-5	0.29	0.05	0.00	0.01	0.17	-0.02	-	-	-	-	-	-
	5-15	0.30	0.05	0.00	0.01	0.15	-0.01	-	-	-	-	-	-
ТР	15-30	0.29	0.05	0.00	0.02	0.15	-0.02	-	-	-	-	-	-
11	30-60	0.25	0.05	0.00	0.01	0.19	-0.02	-	-	-	-	-	-
	60-100	0.23	0.05	0.00	0.02	0.12	-0.02	-	-	-	-	-	-
	100-200	0.23	0.04	0.00	0.01	0.07	-0.04	-	-	-	-	-	-
	0-5	0.28	5.47	-0.02	0.03	6.48	-0.03	-	-	-	-	-	-
	5-15	0.27	5.22	-0.03	0.01	6.11	-0.36	-	-	-	-	-	-
porosity	15-30	0.23	5.02	-0.00	0.02	6.01	-0.31	-	-	-	-	-	-
porosity	30-60	0.20	3.95	0.01	0.01	6.28	-0.07	-	-	-	-	-	-
	60-100	0.21	2.70	-0.00	0.01	6.58	0.08	-	-	-	-	-	-
	100-200	0.15	3.94	0.14	0.01	7.02	0.12	-	-	-	-	-	-
	0-5	0.25	0.56	0.00	0.01	0.67	-0.07	-	-	-	-	-	-
	5-15	0.26	0.55	0.00	0.01	0.67	-0.07	-	-	-	-	-	-
ТK	15-30	0.27	0.55	0.00	0.00	0.66	-0.05	-	-	-	-	-	-
IK	30-60	0.25	0.57	0.00	0.00	0.67	-0.04	-	-	-	-	-	-
	60-100	0.22	0.61	0.00	0.00	0.71	-0.06	-	-	-	-	-	-
	100-200	0.16	0.50	-0.00	0.00	2.12	-0.08	-	-	-	-	-	-
	0-5	0.27	110.72	1.22	0.03	181.65	-24.17	-	-	-	-	-	-
	5-15	0.24	102.74	1.27	0.02	168.75	-23.75	-	-	-	-	-	-
ΔΚ	15-30	0.24	83.50	1.10	0.02	150.73	-20.54	-	-	-	-	-	-
AI	30-60	0.21	76.76	0.98	0.01	140.83	-17.93	-	-	-	-	-	-
	60-100	0.16	79.33	1.46	0.01	142.55	-20.97	-	-	-	-	-	-
	100-200	0.12	70.70	0.61	0.00	182.79	-42.54	-	-	-	-	-	-
	0-5	0.14	9.58	0.26	0.09	11.86	-3.37	-	-	-	-	-	-
۸D	5-15	0.13	8.84	0.23	0.07	11.03	-3.21	-	-	-	-	-	-
	15-30	0.12	6.77	0.19	0.07	8.57	-2.18	-	-	-	-	-	-
AI	30-60	0.10	5.81	0.08	0.09	7.74	-1.84	-	-	-	-	-	-
	60-100	0.12	6.20	0.08	0.06	9.04	-1.93	-	-	-	-	-	-
	100-200	0.12	6.16	0.07	0.00	20.47	-5.64	-	-	-	-	-	-

"-" indicates that the soil property was not mapped or not included in the dataset.

Due (Depth	CSDLv2				CSDLv1		1	SoilGrids 2	.0	HWSD 2.0		
Property	interval	MEC	RMSE	ME	MEC	RMSE	ME	MEC	RMSE	ME	MEC	RMSE	ME
	0-5	0.84	0.57	0.15	0.64	0.84	0.08	0.87	0.51	0.14	0.51	0.99	-0.17
	5-15	0.85	0.54	0.14	0.66	0.81	0.08	0.88	0.49	0.14	0.52	0.97	-0.02
	15-30	0.84	0.56	0.10	0.29	1.16	-0.37	0.87	0.49	0.13	0.57	0.93	-0.04
рн	30-60	0.85	0.52	0.11	0.66	0.80	0.05	0.87	0.50	0.10	0.58	0.91	-0.06
	60-100	0.85	0.53	0.12	0.67	0.80	0.46	0.87	0.51	0.10	0.58	0.91	-0.07
	100-200	0.84	0.38	-0.03	0.61	0.90	0.10	0.86	0.53	0.13	0.61	0.92	0.04
	0-5	0.79	9.81	-2.36	0.03	24.10	-9.98	0.75	10.71	-5.46	0.01	21.44	-2.76
	5-15	0.82	9.21	-2.02	0.05	23.63	-9.69	0.78	10.05	-5.03	0.06	21.44	-3.81
aand	15-30	0.83	9.11	-1.33	0.04	23.59	-8.92	0.81	9.39	-4.26	0.06	21.03	-2.96
sand	30-60	0.83	9.24	-1.22	0.03	23.90	-9.01	0.82	9.41	-4.16	0.12	20.80	-2.11
	60-100	0.84	9.36	-1.57	0.04	23.91	-8.83	0.79	10.47	-4.51	0.10	21.50	-1.83
	100-200	0.79	10.77	-3.16	0.01	26.70	-9.99	0.75	11.99	-5.98	0.01	23.16	-3.37
	0-5	0.72	7.56	3.47	0.03	19.25	11.27	0.68	8.24	3.53	0.05	15.45	2.78
	5-15	0.74	7.23	3.17	0.04	18.93	11.02	0.73	7.65	3.05	0.06	15.19	1.46
.17	15-30	0.78	6.66	2.89	0.03	19.00	11.08	0.76	7.13	2.85	0.07	14.93	0.94
SIIt	30-60	0.76	6.95	3.09	0.04	18.75	10.88	0.73	7.50	3.05	0.07	14.75	1.30
	60-100	0.73	7.42	3.18	0.05	18.37	10.04	0.71	7.91	3.17	0.07	14.95	1.27
	100-200	0.74	7.75	3.14	0.04	18.53	9.23	0.72	8.10	3.62	0.05	16.67	2.16
	0-5	0.74	5.51	0.15	0.07	11.84	-1.48	0.71	6.66	2.33	0.05	12.01	0.54
	5-15	0.78	5.10	0.12	0.11	11.74	-1.75	0.75	6.24	2.11	0.04	12.19	2.86
aları	15-30	0.78	5.21	-0.35	0.12	12.62	-2.81	0.79	6.21	1.66	0.14	12.33	2.65
clay	30-60	0.82	5.36	-0.69	0.17	13.14	-2.45	0.83	5.98	1.22	0.20	12.71	1.08
	60-100	0.85	5.74	-0.61	0.20	13.34	-2.16	0.82	6.31	1.21	0.21	13.18	0.31
	100-200	0.83	6.21	0.07	0.18	13.61	0.48	0.79	7.01	2.42	0.14	13.71	0.72
	0-5	0.63	19.88	1.43	0.08	31.19	-5.26	0.58	22.34	9.97	0.04	35.46	-3.31
	5-15	0.53	24.48	0.55	0.03	35.18	-5.42	0.35	30.79	-0.17	0.04	38.59	-10.02
00	15-30	0.46	19.08	0.08	0.02	25.87	-3.24	0.58	17.71	0.31	0.05	28.69	-6.77
UC	30-60	0.36	9.37	1.24	0.11	7.40	-0.87	0.33	6.09	1.15	0.10	8.14	-2.39
	60-100	0.22	6.62	1.26	0.04	4.26	-0.46	0.20	4.71	0.93	0.11	5.35	-1.12
	100-200	0.16	9.01	1.37	0.10	10.09	-2.09	0.15	7.64	1.15	0.11	5.38	-0.20
·	0-5	0.23	7.03	4.85	0.09	9.28	4.86	0.24	6.08	5.12	0.07	10.30	3.25
CEC	5-15	0.25	5.80	3.98	0.07	9.20	3.21	0.22	6.10	4.56	0.05	11.22	4.37
	15-30	0.25	5.89	4.16	0.07	9.19	3.02	0.23	5.89	5.22	0.04	11.56	4.82

Table S5. Predictive performance of CSDLv2, SoilGrids 2.0, CSDLv2, and HWSD 2.0 based on validation with testing profiles from170WoSIS. Refer to Table 1 for the abbreviations and units of the soil properties interested.

	30-60	0.28	5.34	4.05	0.12	8.10	2.51	0.25	5.92	5.11	0.07	9.89	2.89
	60-100	0.25	5.62	4.13	0.09	9.25	4.82	0.21	6.01	4.72	0.06	11.02	3.22
	100-200	0.24	6.42	4.72	0.06	9.32	4.20	0.22	6.13	4.89	0.03	12.68	4.93
	0-5	0.50	1.53	-0.14	0.21	1.93	-0.42	0.44	2.23	0.06	0.26	1.93	-0.34
	5-15	0.53	1.37	-0.11	0.22	1.77	-0.37	0.52	1.46	-0.05	0.17	1.89	-0.77
TN	15-30	0.49	1.05	-0.03	0.33	1.20	-0.25	0.61	0.95	0.01	0.44	1.13	-0.49
110	30-60	0.34	1.05	0.02	0.33	1.05	-0.14	0.58	0.87	0.01	0.70	0.74	-0.22
	60-100	0.30	0.91	0.05	0.26	0.94	-0.13	0.40	0.88	0.02	0.67	0.66	-0.08
	100-200	0.13	0.54	0.03	0.19	0.64	-0.28	0.21	0.52	0.05	0.26	0.61	-0.02
	0-5	0.68	0.14	-0.01	0.20	0.28	0.05	0.63	0.14	-0.01	0.26	0.34	0.15
	5-15	0.73	0.13	-0.01	0.12	0.27	0.04	0.67	0.12	-0.00	0.21	0.32	0.17
תם	15-30	0.70	0.13	-0.02	0.01	0.24	0.08	0.72	0.10	0.02	0.23	0.32	0.16
BD	30-60	0.57	0.15	-0.02	0.01	0.22	0.04	0.55	0.16	0.02	0.15	0.29	0.15
	60-100	0.56	0.14	-0.05	0.02	0.20	-0.01	0.55	0.15	0.01	0.05	0.26	0.09
	100-200	0.61	0.11	-0.04	0.11	0.19	-0.02	0.59	0.11	-0.01	0.11	0.23	0.05

property			Depth	interval (cm)		
property	0-5	5-15	15-30	30-60	60-100	100-200
pH	0.90	0.91	0.91	0.91	0.91	0.91
sand	0.90	0.90	0.90	0.90	0.90	0.91
silt	0.91	0.90	0.90	0.90	0.90	0.90
clay	0.90	0.90	0.90	0.90	0.90	0.90
BD	0.90	0.90	0.91	0.89	0.89	0.89
OC	0.90	0.90	0.90	0.90	0.90	0.90
Gravel	0.91	0.90	0.90	0.89	0.90	0.90
AN	0.90	0.90	0.91	0.90	0.90	0.90
TN	0.90	0.91	0.90	0.90	0.90	0.90
CEC	0.90	0.90	0.90	0.90	0.90	0.89
Porosity	0.90	0.89	0.90	0.90	0.90	0.88
ТК	0.90	0.90	0.90	0.90	0.90	0.90
TP	0.90	0.91	0.90	0.90	0.90	0.90
AK	0.90	0.90	0.90	0.90	0.90	0.90
AP	0.90	0.88	0.90	0.91	0.90	0.90
R(wet)	0.90	0.89	0.90	0.90	0.90	0.92
G(wet)	0.90	0.90	0.90	0.91	0.90	0.90
B(wet)	0.90	0.90	0.90	0.90	0.91	0.90
R(dry)	0.90	0.90	0.89	0.90	0.90	0.90
G(dry)	0.90	0.90	0.89	0.90	0.92	0.90
B(dry)	0.90	0.90	0.90	0.91	0.90	0.90

Table S6. Prediction interval coverage probability (PICP) for each soil property at multiple depths. Refer to Table 1 for the abbreviations and units of the soil properties interested.