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Abstract. This data paper outlines the development and the structure of a new synthetic dataset (SD) 10 

within theforwithin an extended optical domain, encompassing inherent and apparent optical properties 

(IOPs-AOPs) alongside associated optically active constituents (OACs). The bioBio-optical modeling 

benefited from knowledge and data accumulated over the past three decades, resulting on a 

comprehensive dataset of in situ IOPs, including diverse water typologies, and enabling the imposition of 

rigorous quality standards and the definition of novel . Consequently, the bio-optical relationships 15 

delineated herein that represent are valuable significant contributions to the fieldon their own. 

 Employing the Hydrolight scalar radiative transfer equation solver, we generated above-surface and 

submarine light fields across the specified spectral range at a “true” hyperspectral resolution (1 nm), 

covering the ultraviolet down to 350 nmbetween 350 nm and 800 nm at 1 nm steps were generated, 

therefore facilitating algorithm development and assessment for present and forthcoming hyperspectral 20 

satellite missions. A condensed smaller version of the dataset tailored, delivered  toat twelve Sentinel-3 

OLCI bands (400 nm to 753 nm), was craftedalso produced, targeting multispectral sensor algorithm 

research. Derived AOPs encompass an array of above- and below-surface reflectances, diffuse attenuation 

coefficients, and average cosines and the Q-factor. 

 The dataset is distributed in 5000 files, each file encapsulating a specific IOP scenario, ensuring sufficient 25 

data volume for each represented water type represented. A unique feature of our dataset lies in the 

calculation of AOPs are resolved across the complete range of solar and viewing zenith and azimuthal 
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angles as per the Hydrolight default quadrants, amounting to 1300 angular combinations. This 

comprehensive directional coverage caters to studies investigating signal directionality, previously 

lacking sufficient reference data. The dataset is publicly available for anonymous retrieval via the FAIR 30 

repository Zenodo at https://doi.org/10.5281/zenodo.11637178 (Pitarch and Brando, 2024). 

1. Introduction and review 

1.1 Background 

Marine optics studies the light that is measured by an optical radiometers, whether installed in the water 

or above the surface. The optical signal is conveniently formulated in terms of apparent optical properties 35 

(AOPs), which are normalized quantities, less dependent on the intensity of the incident light than the 

radiances or irradiances from which they originate. The most notable AOP is the remote-sensing 

reflectance (𝑅𝑟𝑠), defined as the water-leaving radiance (𝐿𝑤) per unit of above-water planar downwelling 

irradiance (𝐸𝑠), and retrievable from satellite observations after atmospheric correction. Other quantities 

like diffuse attenuation coefficients and, average cosines and the Q-factor find applications in marine 40 

optics too (Mobley, 1994).  

AOPs are used linked to retrieve the concentrations of optically active water constituents (OACs), 

commonly. Such OACs have historically been marine phytoplankton and other suspended and dissolved 

substances. Phytoplankton is typically quantified in terms of the the chlorophyll concentration (C). A 

andll the othernon-living materials solids suspended in the water can be grouped in the non-algal particles 45 

(NAP), quantified by their concentration (N), though different splits of the particulate material are 

possible, such as particles of organic and inorganic origin, for example. Dissolved substances, optically 

categorized as colored dissolved organic matter (CDOM), are not commonly given in terms of mass 

concentration units, but in terms of the absorption coefficient spectrum, commonly at 440 nm (Y, or 

𝑎𝑔(440)). 50 

It is possible to develop eEmpirical algorithms can be developed to invert any of the OACs from measured 

AOPs by developing finding statistical relationships from between matched AOP and OAC data (IOCCG, 

2006). This approach, although sometimes operationally robust and mechanistically meaningful, hampers 

https://doi.org/10.5281/zenodo.11637178
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progress in understanding the optical influence of OACs, which is given by the inherent optical properties 

(IOPs), namely the absorption and scattering coefficients. As such, tThe IOPs can be mathematically 55 

linked to the OACs with the so-called bio-optical relationships, and to the AOPs through the radiative 

transfer equation, therefore hence being a mathematical bridge between the AOPs and the OACs (Mobley, 

1994). 

The OACs are the independent variables that drive the generation of a synthetic dataset (SD). They can 

be a single quantity like C (IOCCG, 2006;Loisel et al., 2023), typically chosen for open sea conditions, 60 

or or, alternatively, a triplet formed by C, N and Y (Nechad et al., 2015) or other combination, . The first 

case is typically chosen for open sea conditions, whereas the second is theusually the choice for optically 

complex waters. 

 More variables give more flexibility but bio-optical relationships must be established for all of them to 

derive theIn eEither case, relationships between the IOPs and the OACs must be set to model the radiant 65 

field, relationships between the IOPs and the OACs must be set. Statistical Rrelationships between C and 

IOPs have been already studied for decades (Bricaud et al., 1998;Loisel and Morel, 1998;Morel and 

Maritorena, 2001). Much less is known about N and Y, and in particular, in optically complex waters, 

where there is no known relationship between the OACs, but alsowith the additional problem that their 

bio-optical properties are much more regionally variable. Nevertheless, in the last two decades, fractional 70 

information there are notable bio-optical studies ion Australian waters (Blondeau-Patissier et al., 

2009;Cherukuru et al., 2016;Blondeau-Patissier et al., 2017), European waters (Tilstone et al., 

2012;Martinez-Vicente et al., 2010;Astoreca et al., 2012), South-African lakes (Matthews and Bernard, 

2013) and North-American coastal waters (Aurin et al., 2010;Le et al., 2013;Le et al., 2015), and other 

localized areas, have contributed to a significant increase in the understanding of the bio-optics in 75 

optically complex waters. 

Assuming an unpolarized submarine light field, IOPs consist of the wavelength (𝜆)-dependent absorption 

coefficient (𝑎) and the volume scattering function (VSF; symbol 𝛽), which can be broken down to the 

contribution of the single OACs. For the setup used in this SD, consisting of phytoplankton, NAP and 

dissolved matter, the IOPs break down as in eq. (1), which includes the contribution by seawater itself 80 

and assumes that dissolved material does not significantly scatter light in the optical domain: 
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{
𝑎(𝜆) = 𝑎𝑤(𝜆) + 𝑎𝑝ℎ(𝜆) + 𝑎𝑁𝐴𝑃(𝜆) + 𝑎𝑔(𝜆)

𝛽(Ψ, 𝜆) = 𝛽𝑤(Ψ, 𝜆) + 𝛽𝑝ℎ(Ψ, 𝜆) + 𝛽𝑁𝐴𝑃(Ψ, 𝜆) 
 (1) 

This breakdown in eq. (1) also assumes that that dissolved material does not significantly scatter light in 

the optical domain. One can note that, fFor radiative transfer purposes, it is the total absorption coefficient 

𝑎 the relevant quantity. Instead, scattering, described by 𝛽 ,the VSF is resolved as a function of the 85 

scattering angle (Ψ). This creates a varying balance of the single contributors to scattering as their 

respective variabilities with Ψ are different. Specifically, Tthe main distinctionstrongest differences are 

regards  between water and the other particulate materials. 

Because of the technical difficulties in measuring angularly-resolved scattering, most Commonly, optical 

theory deals with angular integrals of the VSF, that are much more commonly measured with commercial 90 

instrumentation. If itthe VSF is integrated across the backward hemisphere, one obtains the backscattering 

coefficient (𝑏𝑏), whereas if one integrates across all directions, one obtains the scattering coefficient (𝑏). 

The total light attenuation along a direction is quantified with the beam attenuation coefficient (𝑐 = 𝑎 +

𝑏),. 𝑐 is arguably the most measured IOP in all optics history and its bio-optics has been studied for many 

decades, as opposed to 𝑏 and especially 𝑏𝑏, whose measurements are much scarcer and more recent. 𝑐 95 

keepsing the same additive property for each constituent, as shown inhence eq. (2).: 

{

𝑏𝑏(𝜆) = 𝑏𝑏𝑤(𝜆) + 𝑏𝑏,𝑝ℎ(𝜆) + 𝑏𝑏,𝑁𝐴𝑃(𝜆)

𝑏(𝜆) = 𝑏𝑤(𝜆) + 𝑏𝑝ℎ(𝜆) + 𝑏𝑁𝐴𝑃(𝜆)

𝑐(𝜆) = 𝑐𝑤(𝜆) + 𝑐𝑝ℎ(𝜆) + 𝑐𝑁𝐴𝑃(𝜆) + 𝑎𝑔(𝜆)

 (2) 

Given a certain constituent, whether phytoplankton or NAP, its VSF is normalized by its scattering 

coefficient to obtain the phase function (PF) as in eq. (3): 

𝛽𝑥 =
𝛽𝑥

𝑏𝑥
, 𝑥 = 𝑝ℎ or 𝑁𝐴𝑃 (3) 100 

As shown by eq. (3), the This normalization removes the variation of scale due to particle concentration 

so that the PF is a specific characteristic of the given particle type. For radiative transfer calculations, the 

PF must be set a priori for each OAC. That can be a measured phase function (He et al., 2017), but more 

commonly from a family of simulated functions after electromagnetic scattering calculations (Morel et 

al., 2002;Fournier and Forand, 1994). In particular for the later case, Mobley et al. (2002) arranged an 105 
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mathematical equation to select, one PF from the whole Fournier-Forand PF family based ongiven the 

backscattering ratio, defined as in eq. (4): 

B𝑥 =
𝑏𝑏,𝑥

𝑏𝑥
, 𝑥 = 𝑝ℎ or 𝑁𝐴𝑃 (4) 

Despite the fact that the bio-optical modelling for this datasetSD decomposes scattering considers the 

separate phytoplanktonic and non-algal parts individually, their scattering and attenuation coefficients 110 

cannot be measured separately Ionly nstead, there is literature on bio-optical relationships involving their 

“particle” aggregates as in eq. (5):  can be measured for scattering: 

{

𝑏𝑏𝑝(𝜆) = 𝑏𝑏,𝑝ℎ(𝜆) + 𝑏𝑏,𝑁𝐴𝑃(𝜆)

𝑏𝑝(𝜆) = 𝑏𝑝ℎ(𝜆) + 𝑏𝑁𝐴𝑃(𝜆)

𝑐𝑝(𝜆) = 𝑐𝑝ℎ(𝜆) + 𝑐𝑁𝐴𝑃(𝜆)

 (5) 

Consideration of particle scattering and backscattering will be needed in a part of the bio-optical 

modelling, as well as in the comparison to in situ data. 115 

Bulk For absorption and attenuation are also commonly measured, that, after removing the water 

baselines, become, comparison of model to data is often made for  the “non-water” aggregates, which 

includes the dissolved and particulate contributionscomponents, as in eq. (6): 

{
𝑎𝑛𝑤(𝜆) = 𝑎𝑝ℎ(𝜆) + 𝑎𝑁𝐴𝑃(𝜆) + 𝑎𝑔(𝜆)

𝑐𝑛𝑤(𝜆) = 𝑐𝑝ℎ(𝜆) + 𝑐𝑁𝐴𝑃(𝜆) + 𝑐𝑔(𝜆)
 (6) 

 120 

In order to develop new updated bio-optical relationships and remote sensing algorithms, there is a need 

for large datasets of concomitant OAC-IOP-AOP datasets data across a range of data values, seasons and 

geographical locations, with fully characterized uncertainties. However, but despite a broader 

accessibility to field- and laboratory-based IOP instrumentation, current data availability and quality is 

notare below what was expected twenty-five years ago, when instrumentation became commercially 125 

available. Open access OAC-IOP-AOP measurements datasets are scarce, strongly concentrated in some 

areas and without characterized uncertainties. 

Studying the relationships between the IOPs and AOPs allows to build semianalytical models of ocean 

color: these are simplified algebraic expressions of a desired AOP as a function of the IOPs, and they are 
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needed to make retrieval of IOPs from AOPs feasible. Given the absence of publicly available matched 130 

IOP-AOP data across a range of water types, and with characterized uncertainties 

 Given this absence of data, it has been a common choice to develop synthetic datasets (SDs) for optical 

studies (IOCCG, 2006;Nechad et al., 2015;Loisel et al., 2023). SDs fill the gaps in the data ranges, and 

tTheir IOP-AOP relationships can be considered error-free, as they are derived from the solution of the 

radiative transfer equation, yet this exact relationship does not confer validity to the SD per se, as the 135 

IOPs resulting from bio-optical modelling could be unrealistic, which has solid physical foundation. SDs 

have a history of applications to algorithm the development of algorithm,s of ranging levels ofvarying 

complexity, from the semianalytical algorithms (Lee et al., 2002) to a complex neural networks for the 

MERIS Case 2 water algorithm (Doerffer and Schiller, 2007).  If different As such, SDs are very powerful 

to develop simplified IOP-AOP relationships. In a pioneering work, Gordon et al. (1988) proposed that 140 

the underwater irradiance reflectance (R) could be modelled as a second-degree polynomial of a 

parameter “X” that, translating to today’s notation, was equivalent to 
𝑏𝑏

𝑎+𝑏𝑏
. They used Monte Carlo 

modelling to generate a synthetic dataset of matched IOPs and the irradiance reflectance R. This approach 

has been followed since then by many authors, proposing other analytical expressions and changing the 

fitted variables, but essentially the approach remains the one by Gordon, with variations. If different sun-145 

view geometries are considered for the output AOPs given an IOP setup, the bidirectional aspects of the 

AOPs such as the diffuse attenuation coefficient (Lee et al., 2013) or the reflectance can be studied (Morel 

and Gentili, 1993, 1996;Morel et al., 2002;Park and Ruddick, 2005;Lee et al., 2011) can be studied and 

analytical models for these variations can be proposed. 

New and forthcoming hyperspectral satellite ocean color sensors, such as NASA’s PACE or ESA’s 150 

CHIME are fostering research on Other applications of SDs are related to algorithm development and 

testing. Matched values of the variable of interest and the input data to be retrieved from (usually an AOP) 

are used as training data to develop an algorithm. This can be from a simple analytical expression, like 

the retrieval of non-water absorption at a green band from 𝑅𝑟𝑠 in the quasi-analytical algorithm (Lee et 

al., 2002). At the other end of the algorithm complexity, Doerffer and Schiller (2007) elaborated their 155 

MERIS Case 2 water algorithm using an ad-hoc synthetic dataset. 
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Hyperspectral datasets can be used to develop inherently hyperspectral algorithms, that may potentially 

retrieve additionalmore information from the oceans than classical multispectral sensors. For this reason, 

iIt is considered importantthen timely to produce a hyperspectral SD, that covers relevant spectral ranges 

of the aforementioned sensors, for a globally representative range of water types.  160 

In the absence of hyperspectral ocean color data,An important application of hyperspectral SDs is to 

address the questioncan help to understand of and they are also useful to study how much information is 

embedded in some key bands of multispectral sensors. In this respect, Talone et al. (2024) used a 

preliminary version of this SD to propose a hyperspectral 𝑅𝑟𝑠 reconstruction scheme from AERONET-

OC data, in order to validate satellite derived hyperspectral radiometric products, confirming the validity 165 

of the reconstruction in large portions of the visible spectrum with constrained uncertainties. 

1.2 Existing synthetic datasets 

The usage of nNumerical models for computing light fields has have been used for common practice for 

several decades already (Mobley et al., 1993). In a pioneering work, Gordon et al. (1988) proposed that 

the underwater irradiance reflectance ( 𝑅 ) could be modelled as a second-degree polynomial of a 170 

parameter “X” that, translating to today’s notation, was equivalent to 
𝑏𝑏

𝑎+𝑏𝑏
. To verify their hypothesis and 

to calculate the polynomial fit, they used Monte Carlo modelling to generate a synthetic dataset of 

matched IOPs and 𝑡ℎ𝑒 𝑖𝑟𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒 𝑅. This approach has been followed since then by many 

authors, proposing other analytical expressions and changing the fitted variables, but essentially the 

approach remains the one by Gordon, with variations. Some researchers authors have developed internal 175 

codes (D’Alimonte et al., 2010) while some others have released them to the public (Chami et al., 

2015;Rozanov et al., 2014). By far, the most popular code in the marine optics community has been 

Hydrolight (formerly from Sequoia Scientific, Inc., now from Numerical Optics, Ltd.), which is available 

upon purchase. Its popularity is due toarises from, on one hand, the convenient data input management of 

data input, which allows the simulation of every possible case study in ocean optics with relative ease, 180 

and the data output, which includes the full array of radiometric quantities and AOPs needed. Its 

prevalence in the field is such that all datasetSDs reviewed in this paper, as well as the one presented here, 
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were generated with Hydrolight. It is therefore of importance that support and further development of 

Hydrolight is ensured for the future. 

Most of previously developed were developed to fit a given investigation and were not released to the 185 

public.  This article only considers those SDs that were publicly released. Only their main characteristics 

will be mentioned, especially those relevant forto the new synthetic datasetSD that we are presenting. 

1.2.1 The IOCCG dataset 

The first and the most cited of the datasetSDs in this small review is the IOCCG datasetSD (IOCCG, 

2006). The release of this datasetSD came at a time where the study of bio-optical relationships and the 190 

development of algorithms was at its all-time peak high (e.g., Twardowski et al., 2001;Loisel and Morel, 

1998;Morel and Maritorena, 2001;Lee et al., 2002). It is a datasetSD for testing and development of in-

water algorithms in open and oceanic waters. . 

As such, tThe single independent variable of thethat drives IOP variability is the chlorophyll concentration 

(C), for concentrations betweenranging from 0.03 and to 30 mg m-3. Phytoplankton absorption Bbio-195 

optical modelling uses a database of real Pphytoplankton absorption spectra (𝑎𝑝ℎ) spectra measured in 

the fieldis the only actually measured IOP that is used, coming from a database of in situ absorption 

spectra (𝑎𝑝ℎ). Given a C value, a random 𝑎𝑝ℎ is chosen within the database, and it is scaled by a factor, 

so that the scaled 𝑎𝑝ℎ(440) verifies the an average relationship of the latter to C given by Bricaud et al. 

(1995), given by 𝑎𝑝ℎ(440) = 𝐴(440)𝐶𝐸(440). Notably, the chosen 𝑎𝑝ℎ belongs to a subset of 𝑎𝑝ℎ spectra 200 

associated to C values within a short narrow range of the given C. This choice implies assuming that 𝑎𝑝ℎ 

spectra that are related to very different concentrations are not only different in magnitude, but also in 

shape. 

The rest of bio-optical relationships are set after (mostly) published relationships, with the addition of 

some randomness, that tries to models some the spread around the mean relationship, attributed to natural 205 

causes, that areand not captured by these average equations. While that choice is a positive feature of the 

datasetSD, many parameterizations appear arbitrary. 

The volume scattering function VSF is modelled after splitting the particulate matter in phytoplankton 

and all non-algal (non-pigmented) particlesNAP. The former scatters light following a Fournier-Forand 
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phase function of fixed 𝐵𝑝ℎ = 0.01, whereas the latter scatters light according to the average Petzold 210 

phase function, 𝐵𝑝ℎ𝑁𝐴𝑃 = 0.0183. This is identified as a major limitation for this dataset, as there are a 

number of concerns on the Petzold phase function that will be detailed below. 

Radiances were generatedare available from 400 nm to 800 nm every 10 nm for the nadir view direction, 

and for two sun zenith angles (0 and 30 º). 

1.2.2 The Coastcolour CoastColour dataset 215 

The Coastcolour CoastColour synthetic datasetSD (Nechad et al., 2015) was generated in the framework 

of an ESA project, aimed at the evaluation of algorithms in for coastal waters. The project included the 

compilation of large amounts of in situ data, but the patchiness in the geographical and data range 

distributions and the disparity of measurement techniques, without quantified uncertainties, made evident 

the need of a synthetic datasetSD that focused in such areas and associated data ranges. 220 

The datasetSD is driven by three OACs: phytoplankton, NAP and CDOM. The non-water substances 

were divided into phytoplankton, “mineral particles” and CDOM. This, in principle, ignores the 

contribution of non-algal particles of biological origin, but in practice, their “mineral particles” 

compartment de facto stands for “non-algal particles”. 5000 triplets of their respective concentrations 

(C,N,Y) were randomly generated. Although not documented in their paper, these three constituents show 225 

some degree of linear crossed correlation, which a feature that is seen in in situ datasets when these 

variables span across a large range. This choice also mechanistically avoids the generation of many 

unrealistic 𝑅𝑟𝑠  spectra coming from unrealistic (C,N,Y) triplets. The OACs are related to the IOPs 

according to some bio-optical relationships. The non-water substances were divided into phytoplankton, 

“mineral particles” and CDOM. This, in principle, ignores the contribution of non-algal particles of 230 

biological origin, but in practice, their “mineral particles” compartment de facto stands for “non-algal 

particles”. 

Bio-optical modelling relationships are based on average parameters and regression equations from 

literature, without randomization strategies to mimic ignoring the natural variability. For example, 

phytoplankton absorption was is modelled by simply applying the average “A” and “E” power law 235 

coefficients by Bricaud et al. (1995) at 440 nm for a given chlorophyllC, which ignores phytoplankton 
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diversity and makes all 5000 modelled 𝑅𝑟𝑠 to have the same average pigment features. Furthermore, all 

spectral slopes as well as the “mineral particles” specific absorption and scattering coefficients at 

reference bands are set constant. Overall, these bio-optical choices create an optical uniformity that results 

in artificially fictitiously tight relationships between various IOPs or between IOPs and AOPs, as well as 240 

their ratios. This bio-optical modelling can, potentially misleading the users about the performance of any 

algorithm that is evaluated. 

  

Following the IOCCG approach, angular scattering wasis modelled by assuming a Fournier-Forand phase 

function for phytoplankton and the average Petzold phase function for NAP, with fixed backscattering 245 

ratios for both. 

The datasetSD delivers the absorption coefficient divided in the total non-water component and the 

phytoplankton absorption. To separate CDOM and NAP absorption, the users need to generate CDOM 

spectra with from the reported value at a given wavelength and the CDOM spectral slope. 

Following the IOCCG approach, angular scattering was modelled by assuming a Fournier-Forand phase 250 

function for phytoplankton and the average Petzold phase function for NAP, with fixed backscattering 

ratios for both. 

AOPs were generated with Hydrolightare given from 350 nm to 900 nm every 5 nm, for the sun zenith 

angles 0, 40º and 60º, and the single nadir-viewing angle for radiances. 

1.2.3 Loisel’s dataset 255 

Loisel’s datasetSD (Loisel et al., 2023) is mainly characterized by its intention effort to compensate the 

disproportionate in situ data density from coasts and continental shelfs with respect to the open oceans, 

which instead represent cover a much larger area. According to them, this issuesSuch disproportion in 

other datasets may have a biasing effect when synthetic datasets are used to developing optical algorithms 

based on AOP vs. IOP relationships, especially when the underlying goal is to represent a broad range of 260 

IOPs encountered within the global ocean. In this regard, Loisel’s SD benefits from satellite-retrieved 

IOPs over the global oceans were organized in histograms, which were used as guides to “trim” the 
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histograms of the in situ data histograms, so that the data distributions in the datasetSD would closely 

match the global ones. 

Bio-optical modelling follows the IOCCG approach with modifications. IOP variability is driven by 265 

chlorophyll concentration only. Bio-optical modelling follows the IOCCG approach with modifications, 

thus choosingand  phytoplankton absorption is taken randomly from a pool of real spectra, and then 

scaledand giving some randomness to the relationships to mimic the bio-optical variability found in 

nature(1995). The CDOM and NAP spectral slopes were are given random values within a largewide 

uniform distributions. This choice is preferrable to assigning them a fixed values, althoughyet which 270 

might have beensome level of constrain ned with available in situ data pools appeared possible instead. . 

Angular scattering of phytoplankton was is modelled with a fixed Fournier-Forand phase function of 

𝐵𝑝ℎ = 0.01. There is, however, evidence (Whitmire et al., 2010) that 𝐵𝑝ℎ  varies across an order of 

magnitude. In Hydrolight, 𝐵𝑝ℎ is used to choose the phase function, which, for a given 𝑏𝑝ℎ, implicitly 

determines 𝑏𝑏,𝑝ℎ and therefore, the amplitude of the signal. This detail is important when one seeks to 275 

replicate relationships of 𝑏𝑏𝑝 to other IOPs that are found in measured data. 

 NAP scattering was is modelled as a spectral power law. Its angular scattering incorporates one 

innovation respect to the previous datasetSDs by dropping the Petzold phase function and using instead 

a Fournier-Forand function of 𝐵𝑁𝐴𝑃 = 0.018, with such 𝐵𝑁𝐴𝑃 close to the average Petzold value, but with 

a more realisticn angular variation that better resembles measured VSFs much more closely (Sullivan and 280 

Twardowski, 2009). 

Output AOPs are given between the range 350 nm – 750 nm in steps of 5 nm. Several versions of the 

datasetSD are available for various combinations of inelastic scattering being or not considered. Notably, 

this datasetSD provides the data output at several depths. Simulations are made for the sun zenith angles 

0,  285 

30º and 60º, and the single nadir-viewing angle for radiances. All data is are compiled in a single netCDF 

file for each type of simulation. 



12 

 

1.3 Creating a new dataset 

The This brief review of existing synthetic datasetSDs has identified limitations in bio-optical modeling, 

emphasizing the critical need for meticulous refinement in order to derive meaningful radiance outputs 290 

from radiative transfer simulations. Such issues  that can be summarized in: 

(1) Overly simplified bio-optical parameters: spectral slopes, specific absorption or scattering at a 

reference wavelength, are often set as static values, typically derived from averaging mostly 

coming from datasets averages, thereby masking the optical diversity inherent within them. In this 

new datasetSD, we address this limitation by considering the variability of each optical parameter 295 

across available datasets and exploring their prediction predictability as a function of other 

parameters. 

(2) An absence of constraints between absorption and scattering for of a given water constituent 

(OAC) such as phytoplankton or non-algal particles (NAP): it is evident that absorption and 

scattering of a given AOC should must exhibit statistical correlations due to their association with 300 

the same type of particles, but it seems is the rule that both properties are modelled independently, 

potentially resulting in absorption-scattering pairs that do not accurately reflect the characteristics 

of naturally occurring particles. In this datasetSD, we address this issue by leveraging in-situ data 

to constrain the modeling of both phytoplankton and NAP. This approach ensures that the 

corresponding absorption-scattering pairs align with all experimental evidence in statistical terms. 305 

(3) Re-useExtrapolation of bio-optical relationships: a published relationship between two quantities 

is applied to different ones. For example, the average relationship between chlorophyll and particle 

scattering by Loisel and Morel (1998) has been used to model phytoplankton scattering, which is 

only a fraction of the total scattering. 

(4) Limited validation of bio-optical models: some statistical relationships are presented without 310 

evidence. In situ using accessible in situ data is crucial. With new open-access datasets, there 

arises an  offer an opportunity to assess historical bio-optical relationships while also fostering the 

development of new ones, and such potential . To our opinion, such data has not been yet fully 

utilizeddeveloped. 
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(5) Limited spectral coverage of the blue-UV: in view of present and future satellite missions, it is 315 

desirable to generate datasetSDs that at least cover the range from 350 nm. 

(6) Limited directional AOP output: published datasetSDs focus on the nadir viewing direction, for a 

few sun zenith angles. However, the light field is inherently directional, and ignoring directionality 

introduces errors in remote sensing algorithms. In consonance with a renewed impetus of optical 

studies that address the problem of directionalityHere, we it is aimed at generating a fully 320 

directional datasetSD, accounting for all possible sun and view geometries, in consonance with a 

renewed impetus view of optical studies that address the problem of directionality. 

2. Spectral IOPs data mining and reductionIn situ data and bio-optical modelling 

The generation of bio-optical relationships needs support by in situ data, and a high quality is required, 

to be confident enough that the relationships that are found within the data are neither biased nor spurious. 325 

Unfortunately, processing details are often lacking, and data are seldom provided with an uncertainty 

estimate. It was nevertheless is, however, assumed that the practitionersdata providers, based on their 

experience, followed best practices . Indeed,as most of these data come were collected in the framework 

of optical studies funded after the funding of projects by space agencies that involve related studies, and 

we believe that the groups that were involved were confident enough in the quality of the data before 330 

sharing. Still, data was selected based on the usage of appropriate instrumentation and processing, when 

such information was available. Furthermore, selection criteria was rather aggressive, based on shape and 

fitness indices, overall providing confidence on the final retained data. 

1.4 In situ data 

1.52.1 Phytoplankton absorption 335 

Phytoplankton absorption 𝑎𝑝ℎ is the only IOP that is not modelled as a simple analytical function due to 

itshas a  complex spectral shape, which determines the small scale spectral features of derived related 

radiometric variableAOPs. For this reason, it is important to select high-quality 𝑎𝑝ℎ data, suitable as input 

for radiative transfer simulations. Since the purpose of these data is to feed the simulations, they do not 

need to be geo-referenced nor matched to any other variable. However,For this datasetSD, it was required 340 
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that 𝑎𝑝ℎ  data was collected sampled at or close to the surface of the water column, as bio-optical 

relationships involving phytoplankton seem to vary depending on the vertical layer (Bricaud et al., 

1995;Loisel and Morel, 1998). In terms of spectral range, a condition for data selection was imposed that 

𝑎𝑝ℎdata should be giveninclude has to be given at at least the range from 350 nm to 800 nm, which was 

a quite limiting requirement for the lower limit, as in most cases, 𝑎𝑝ℎ is provided down to 400 nm or 380 345 

nm.  

Data were searched from the database SeaBaSS, providing many spectra, though a significant amount of 

them with anomalous spectral patterns. A first screening of the data identified many noisy and biased 

spectra. As a first baseline correction, the residual NIR value, which was estimated as the average 𝑎𝑝ℎ 

between 780 nm and 800 nm, was subtracted. Then, aA PANGAEA search was performed. It delivered 350 

many excellent spectra instead, collected in seven Polastern cruises (Soppa et al., 2013a;Liu et al., 2019b, 

c;Bracher, 2019;Bracher et al., 2021k;Bracher et al., 2021f;Bracher and Taylor, 2021), one Sonne cruise 

(Bracher et al., 2021l) and one Heincke cruise (Bracher et al., 2021c). The PACE dataset (Casey et al., 

2020) was also used, in particular by data from the PI Schaeffer and from the Biosope cruise. In this latter 

case, the spectral range requirement was relaxed, allowing a maximum wavelength coverage of 750 nm, 355 

in order to keep some necessary low-end 𝑎𝑝ℎ that were very necessary for their representativity of the 

lowest 𝑎𝑝ℎ in the worldthe clearest waters. At the Then, to increase the high end of the range, Dr. A. 

Castagna’s dataset on Belgian coastal and inland waters (Castagna et al., 2022) was used. Their published 

𝑎𝑝ℎ was only available until from 380 nm, so ADr. Castagna kindly made reprocessed available the 𝑎𝑝ℎ 

spectra especially processed for this investigation down to 350 nm especially for this investigation, though 360 

expressing some methodological concerns about the data accuracy in the UV. Finally, a new CNR small 

dataset from a recent cruise (publication in preparation) has was also been included in the global dataset. 

Data quality among databases varied greatly, from generally poor within SeaBaSS to the carefully 

produced Castagna’s spectra. In terms of selection and processing and selection, As a first baseline 

correction, the residual NIR value, which was estimated as the average 𝑎𝑝ℎ between 780 nm and 800 nm 365 

(between 740 nm and 750 nm for Biosope), was subtracted. Given the high amount of data in total, it was 

preferred to apply rather aggressive filter selection criteria. Spectra were smoothed with an 11 nm 
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rectangular moving window to eliminate random noise introduced by the spectro-photometers. A relative 

noise parameter was calculated as the standard deviation of the difference between the unfiltered and the 

filtered 𝑎𝑝ℎ, divided by a guess of the chlorophyll concentration based on 𝑎𝑝ℎ(665) (details below)after 370 

Bricaud et al. (1995). Spectra were retained if this noise parameter was lower than 0.002, except for the 

Biosope dataset, where the threshold was relaxed and raised at to 0.004 in order to keep some low-end 

𝑎𝑝ℎ that were very necessary for their representativity of the lowest 𝑎𝑝ℎ in the world. Additionally, the 

absolute value of the second derivative with respect to the wavelength, |𝑎𝑝ℎ
′′ |, was calculated as a measure 

of spectral noise.  and spectra with The the 90th percentile of |𝑎𝑝ℎ
′′ | between 350 nm and 800 nm was 375 

stored. Only spectra having this percentile lower than 0.0032 were selected. 

Further exclusion selection criteria were applied based on the spectral shapes. We defined the following 

indexes: 

 

𝑚𝑈𝑉 = min{𝑎𝑝ℎ(𝜆 ∈ [350 nm, 450 nm])}

𝑀𝑈𝑉 = max{𝑎𝑝ℎ(𝜆 ∈ [350 nm, 450 nm])}

𝑀𝐺 = max{𝑎𝑝ℎ(𝜆 ∈ [550 nm, 560 nm])}

𝐼𝐶𝐻𝐿 = max{𝑎𝑝ℎ(𝜆 ∈ [650 nm, 700 nm])} − min{𝑎𝑝ℎ(𝜆 ∈ [650 nm, 700 nm])}

 (771) 

Therefore, the following selection thresholds were applied to the indexes in eq. (7), that which were 380 

chosen based on experience so that clearly anomalous spectra would be discarded yet trying not to 

penalize natural variability. These were 𝑚𝑈𝑉/𝐼𝐶𝐻𝐿  > 0.1 , 𝑀𝑈𝑉/𝐼𝐶𝐻𝐿 < 6  and 𝑀𝐺/𝑀𝐶𝐻𝐿 < 2 . In 

particular, the thresholds involving the UV discarded many spectra that raised excessively in the UV, 

likely consequence of insufficient bleaching of the filtered sample, or that tended to zero or even negative 

values instead. At the green range, it was assumed that the spectrum shall present a valley or at least a 385 

value that is not much larger than the chlorophyll peak. . 

Finally, Other than these thresholds, some spectra exhibited secondary peaks very distant from 676 nm, 

which was likely a sign of spectral misalignment. Therefore, it was required that such peak was between 

670 nm and 681 nm for inclusion. 

All the filtering procedures led to the selection of 3025 high quality 𝑎𝑝ℎ spectra, representing a very wide 390 

range of values and water types. 



16 

 

1.5.12.2 CDOM absorption 

CDOM absorption at 440 nm (𝑎𝑔(440) or 𝑌) is one of the three independent variables of the bio-optical 

modelling. Its value is therefore given. Still, such value needs to be propagated to the whole The full 

spectrum is covered by assuming a spectral variation, modelled here as the usual exponential shape. The 395 

value of the spectral slope 𝑆𝑔 and its potential relation to 𝑎𝑔(440) must be determined after bio-optical 

modelling from. For this sake, a pool of in situ CDOM absorption spectra were collected. CDOM is stored 

by filtering seawater with 0.2 m pore size filters. A and absorption is measured through light 

transmission, as the scattering of the sample can be considered negligible. The most common 

measurement instrument is a bench spectrophotometer, where water is poured in a cuvette of a given path 400 

length, usually between 1 cm and 10 cm. In clear waters, because of the short path length that makes 

resulting data very noisy, a liquid waveguide capillary cell (LWCC) system like UltraPathTM (World 

Precision Instruments, Inc.) is preferred, as . Ttheyit allow haves a much larger path lengths, up to 2 m, 

therefore obtaining proper optical densities for a given sample, even in the clearest waters. In this article, 

only open access CDOM data measured with UltraPath were selected in open ocean waters, whereas in 405 

complex coastal and inland waters, cuvette-based measurements were accepted as well. Therefore, the 

pooled CDOM data consists consisted of the PACE datasets Schaeffer, Biosope and Mouw, Castagna’s 

measurements, as well as a large PANGAEA dataset based on several Polarstern cruises (Bracher et al., 

2021a;Bracher et al., 2021b;Bracher et al., 2021i;Bracher et al., 2021h) and some smaller campaigns in 

coastal areas (Juhls et al., 2019;Hölemann et al., 2020;Bracher et al., 2021g;Pykäri, 2022). In all cases, 410 

data had to be provided at the range from 350 nm to 750 nm and close to the surface.  

CDOM sSpectra were fitted to a decreasing exponential function with a given offset, 𝑎̂𝑔,𝑚𝑜𝑑 =

𝑎𝑔(𝜆0)𝑒−𝑆𝑔(𝜆−𝜆0) + 𝑎𝑔,𝑜𝑓𝑓  using non-linear least squares, with a bi-square weighting function to 

minimize the effect of outliers. Then, the offset was removed: 𝑎𝑔,𝑚𝑜𝑑 = 𝑎̂𝑔,𝑚𝑜𝑑 − 𝑎𝑔,𝑜𝑓𝑓. Notably, fits 

were made in linear scale, as making them in logarithmic scale would artificially raise the weight of 415 

spectral regions where CDOM is less relevant. Fits were required thatAn excellent fit between model and 

data was required (𝑟2 > 0.995), to exclude eventual anomalous shapes that did not verify the exponential 
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assumption. Then, tFinally, the offset was removed: 𝑎𝑔,𝑚𝑜𝑑 = 𝑎̂𝑔,𝑚𝑜𝑑 − 𝑎𝑔,𝑜𝑓𝑓. In total, The result of this 

procedure was 1168 (𝑎𝑔(𝜆0), 𝑆𝑔) spectra were retainedpairs. 

 420 

1.5.22.3 NAP absorption 

As with CDOM, NAP absorption spectra (𝑎𝑁𝐴𝑃) are not introduced directly in the radiative transfer 

simulations but modelled as exponential functions. Data selection again prioritized high quality as the 

data quantity was sufficient to derive the statistical relationships. Here, aA PANGAEA search delivered 

data from various Polarstern cruises (Gonçalves-Araujo et al., 2018;Liu et al., 2019a, d;Wiegmann et al., 425 

2019;Bracher et al., 2021j;Bracher et al., 2021e, d;Bracher and Liu, 2021;Soppa et al., 2013a, b) and one 

Heincke cruise (Bracher et al., 2021d). From the PACE database, 𝑎𝑁𝐴𝑃 from the cruise Biosope and the 

PIs Mouw and Schaeffer was were included. Castagna’s measurements were also included, as well as 

recent CNR data. 

As for CDOM, aAn exponential shape was fitted, 𝑎̂𝑁𝐴𝑃,𝑚𝑜𝑑 = 𝑎𝑁𝐴𝑃(𝜆0)𝑒−𝑆𝑁𝐴𝑃(𝜆−𝜆0) + 𝑎𝑁𝐴𝑃,𝑜𝑓𝑓  in 430 

linear scale, and then the offset was removed, 𝑎𝑁𝐴𝑃,𝑚𝑜𝑑 = 𝑎̂𝑁𝐴𝑃,𝑚𝑜𝑑 − 𝑎𝑁𝐴𝑃,𝑜𝑓𝑓. Tand the condition 𝑟2 ≥

0.995 was imposed, . and then tThe offset was removed thereafter, 𝑎𝑁𝐴𝑃,𝑚𝑜𝑑 = 𝑎̂𝑁𝐴𝑃,𝑚𝑜𝑑 − 𝑎𝑁𝐴𝑃,𝑜𝑓𝑓. , 

still recognizing that at least a part of 𝑎𝑁𝐴𝑃,𝑜𝑓𝑓this offset might be physically realistic and not only due to 

residual scatter errors. In such a case, it would be needed to seekpursue bio-optical relationships between 

𝑎𝑁𝐴𝑃,𝑜𝑓𝑓the offset and other variables, in order to generate its value for the dataset. In the absence of 435 

sufficient knowledge, we adopted the classical approach of removing the offset, as previous datasetSDs 

(IOCCG, 2006;Nechad et al., 2015;Loisel et al., 2023). The result of this procedure was 1349 

(𝑎𝑁𝐴𝑃(𝜆0), 𝑆𝑁𝐴𝑃) pairs.leading to a total of 1349 valid spectra. 

1.5.32.4 CSIRO’s datasetParticle backscattering 

In situ particle backscattering 𝑏𝑏𝑝 is not a Hydrolight input parameter in the configuration that was used, 440 

but it was needed for the determination of the bio-optical relationships of the particulate fraction, as it 

will be detailed below. In addition, it is desirable to collect a comprehensive dataset of 𝑏𝑏𝑝 matched to 
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fractionated absorption components to check the consistency of crossed relationships in the synthetic 

dataset respect to those found in natural waters.  

Specifically, 𝑏𝑏𝑝 at 440 nm or near wavelength was searched. The availability of such data is very limited 445 

and the quality is essentially unknown. Here, a best effort exercise was made by collecting all available 

data, of an open source or not. These were found from NOMAD (Werdell and Bailey, 2005), the PACE 

datasets Biosope and from the PI Mouw (Casey et al., 2020), and from Castagna’s dataset (Castagna et 

al., 2022). In this latter case, 𝑏𝑏𝑝  was not available, but since such data are considering especially 

important for their very high values, 𝑏𝑏𝑝 was inferred through semi-analytic closure from absorption and 450 

𝑅𝑟𝑠 (Lee et al., 2011). Finally, data Data collected in Australian waters by CSIRO researchers (Blondeau-

Patissier et al., 2009;Blondeau-Patissier et al., 2017;Cherukuru et al., 2016;Oubelkheir et al., 2023;Brando 

et al., 2012) was also included here. CSIRO’s dataset contains several IOPs and OACs at reference 

wavelengths, that were used to develop some of the bio-optical relationships that were used to produce 

the synthetic dataset. In what regards Particlesuch as  𝑎𝑝ℎ(440), 𝑎𝑁𝐴𝑃(440), 𝑎𝑔(440), backscattering 455 

specifically, 𝑏𝑏𝑝(555), is only provided at the reference wavelength 555 nm  and and with an estimated 

of its spectral slope (𝜂 ). Also, the chlorophyll concentration ( 𝐶 ) and the total suspended matter 

concentration (𝑇) contained in the dataset. For this specific dataset, the slope was not only used to shift 

𝑏𝑏𝑝 from 555 nm to 440 nm, but also for a part of the bio-optical modelling, detailed below. Importantly, 

specific NAP absorption at 440 nm, 𝑎𝑁𝐴𝑃
∗ (𝜆0) =

𝑎𝑁𝐴𝑃(𝜆0)

𝑁
. For this specific dataset, the slope was not only 460 

used to shift 𝑏𝑏𝑝 is also provided, alongside with the chlorophyll and NAP concentrations, overall making 

this dataset unique for advanced bio-optical modelling. For this specific dataset, the slope was not only 

used to shift 𝑏𝑏𝑝from 555 nm to 440 nm, but also for a part of the bio-optical modelling, detailed below. 

 

1.63. Bio-optical modelling 465 

Assuming an unpolarized submarine light field, IOPs consist of the absorption coefficient and the volume 

scattering function (VSF; symbol 𝛽), which can be broken down to the contribution of the single OAC: 

Formatted: Heading 1



19 

 

{
𝑎(𝜆) = 𝑎𝑤(𝜆) + 𝑎𝑝ℎ(𝜆) + 𝑎𝑁𝐴𝑃(𝜆) + 𝑎𝑔(𝜆)

𝛽(Ψ, 𝜆) = 𝛽𝑤(Ψ, 𝜆) + 𝛽𝑝ℎ(Ψ, 𝜆) + 𝛽𝑁𝐴𝑃(Ψ, 𝜆) 
 (2) 

This formulation implies the assumption that dissolved material does not significantly scatter light in the 

optical domain. 470 

Commonly, optical theory deals with angular integrals of the VSF. If it is integrated across all directions, 

one obtains the scattering coefficient, whereas if one integrates across the backward hemisphere, one 

obtains the backscattering coefficient: 

{
𝑏(𝜆) = 𝑏𝑤(𝜆) + 𝑏𝑝ℎ(𝜆) + 𝑏𝑁𝐴𝑃(𝜆)

𝑏𝑏(𝜆) = 𝑏𝑏𝑤(𝜆) + 𝑏𝑏,𝑝ℎ(𝜆) + 𝑏𝑏,𝑁𝐴𝑃(𝜆)
 (3) 

Given a certain constituent, whether phytoplankton or NAP, its VSF is normalized by its scattering to 475 

obtain the phase function (PF): 

𝛽𝑥 =
𝛽𝑥

𝑏𝑥
, 𝑥 = 𝑝ℎ or 𝑁𝐴𝑃 (4) 

It can be a measured phase function (He et al., 2017), but more commonly from a family of simulated 

functions after electromagnetic scattering calculations (!!! INVALID CITATION !!! (Morel et al., 

2002;Fournier and Forand, 1994);2002) 480 

For radiative transfer calculations, the PF must be a priori established for each OAC. The backscattering 

ratio is used to constraint the PF to a first order (Mobley et al., 2002): 

B𝑥 =
𝑏𝑏,𝑥

𝑏𝑥
, 𝑥 = 𝑝ℎ or 𝑁𝐴𝑃 (5) 

With this information, a phase function must be assigned to each type of particle, consistent with the 

given data, such as B𝑥. It can be a measured phase function (He et al., 2017), but more commonly from a 485 

family of simulated functions after electromagnetic scattering calculations (Morel et al., 2002;Fournier 

and Forand, 1994) 

Despite being the bio-optical modelling more accurate if the particulate material is decomposed into the 

phytoplanktonic and the non-phytoplanktonic parts (some discussion below), scattering meters do not 

measure the separate contributions of phytoplankton and NAP. Instead, their “particle” aggregates are 490 

measured: 

{
𝑏𝑝(𝜆) = 𝑏𝑝ℎ(𝜆) + 𝑏𝑁𝐴𝑃(𝜆)

𝑏𝑏𝑝(𝜆) = 𝑏𝑏,𝑝ℎ(𝜆) + 𝑏𝑏,𝑁𝐴𝑃(𝜆)
 (6) 
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This aggregation is therefore made when the bio-optical modelling of scattering is about to be evaluated 

against in situ data. 

The bio-optical modelling of the The various terms of the absorption and scattering budgets will be 495 

modelled as a function of the OACs will be explained with high detail in the following sub-sections. 

Readers interested in a comprehensive summary can find all sequential steps summarized as detailed in 

the next sections and summarized in Table 1. 

 

Table 1 Summary of the bio-optical modelling 500 

𝑎𝑝ℎ(𝜆) 𝑎𝑝ℎ(𝜆)  from a quality-controlled database, adjusted by a factor to verify 𝑎𝑝ℎ(670) =

𝐴(670)𝐶𝐸(670) , A(670) = 0.019093, E(670) = 0.95568, 

 A(670)=0.019093, E(670)=0.95568 

𝑐𝑝ℎ(𝜆) 

𝛽𝑝ℎ𝛽̂𝑝ℎ(Ψ) 

𝑐𝑝ℎ(𝜆) = 𝑐𝑝ℎ(660) (
660

𝜆
)

𝑛1

 

𝑛1 = −0.4 +
1.6 + 1.2ℜ

1 + 𝐶0.5
 

ℜ 𝒰U(0,1) 

𝛽𝑝ℎ𝛽̂𝑝ℎ(Ψ)~𝐹𝐹(𝐵𝑝ℎ) 

𝐵𝑝ℎ ← 𝒩𝑁(𝜇, 𝜎) 

𝜇 = 0.002 + (0.01 − 0.002) · exp[−0.56 log10(𝐶)] 

 𝜎 = 0.001(3 − log10(𝐶)) + 0.001 

𝑎𝑁𝐴𝑃(𝜆) 𝑎𝑁𝐴𝑃(𝜆) = 𝑁𝑎𝑁𝐴𝑃
∗ (440) · 𝑒−𝑆𝑁𝐴𝑃(𝜆−440) 

log10 𝑎𝑁𝐴𝑃
∗ (440) ← 𝒩𝑁(𝜇, 𝜎) 

𝜇 = 𝑎 𝑒(𝑏 log10
𝐶
𝑁

+𝑐) 

𝑎 = −0.1886, 𝑏 = −1.055, 𝑐 = −1.27 

 𝜎 = 0.2627 
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𝑆𝑁𝐴𝑃

← {

𝒰𝑈(0.01,0.035) if 𝑎𝑁𝐴𝑃(440) < 4 · 10−4 m−1  

Ln 𝒩N(−0.308𝑥 − 5.101, −0.0558𝑥 + 0.1164) if 𝑎𝑁𝐴𝑃(440) ∈ [4 · 10−4, 0.06) m−1

𝒩𝑁(0.011,0.016) if  𝑎𝑁𝐴𝑃(440) ≥ 0.06 m−1

 

𝑐𝑁𝐴𝑃(𝜆), 

𝛽𝑁𝐴𝑃𝛽̂𝑁𝐴𝑃(Ψ) 
𝑐𝑁𝐴𝑃(𝜆) = 𝑐𝑁𝐴𝑃(440) (

𝜆

440
)

−𝛾𝑁𝐴𝑃

 

𝛾𝑁𝐴𝑃  𝒩𝑁(𝜇, 𝜎) 

𝜇 = 0.7, 𝜎 = 0.3 

𝑐(440) = 𝑎𝑁𝐴𝑃(440) + 𝑏𝑁𝐴𝑃(440) 

𝑏𝑁𝐴𝑃(440) =
𝑏𝑏,𝑁𝐴𝑃(440)

𝐵𝑁𝐴𝑃
  

𝐵𝑁𝐴𝑃 ← 𝒰𝑈(0.01,0.02) 

𝑏𝑏,𝑁𝐴𝑃(440) = 𝑇𝑏𝑏𝑝(440) − 𝑏𝑝ℎ(440) 

𝑇 = 𝑁 + 0.07𝐶 

𝑏𝑏𝑝
∗ (440) = 𝑏𝑏𝑝

∗ (555) (
440

555
)

−𝜂

 

𝜂 ← 𝐵𝑢𝑟𝑟(𝛼, 𝑐, 𝑘) 

𝛼 = 0.854, 𝑐 = 4.586, 𝑘 = 1.108 

log10 𝑏𝑏𝑝
∗ (555) ← 𝒩𝑁(𝜇, 𝜎) 

𝜇 = 𝑚 log10 𝑎𝑁𝐴𝑃
∗ (440) + 𝑛 

𝑚 = 0.6834, 𝑛 = −0.9483 

 𝜎 = 0.2627 

𝛽𝑁𝐴𝑃𝛽̂𝑁𝐴𝑃(Ψ)~𝐹𝐹(𝐵𝑁𝐴𝑃) 

 

𝑎𝑔(𝜆) 𝑎𝑔(𝜆) = 𝑌𝑒−𝑆𝑔(𝜆−440) 
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𝑆𝑔

← {

𝒰𝑈(0.01,0.025) if 𝑎𝑔(440) < 0.02 m−1  

𝒩N(−0.00040161𝑥 + 0.017508, −0.0003012𝑥 + 0.001881) if 𝑎𝑔(440) ∈ [0.02,5) m−1

𝒰𝑈(0.0143,0.017) if  𝑎𝑔(440) ≥ 5 m−1

 

 

 

1.6.13.1 Optically active constituents 

It is set as a goalintended to generate a datasetSD that covers the widest possible range of optical water 

types. As such, Tthe historic case 1 assumption is inappropriate, and an IOP definition based on a single 

index such as chlorophyll concentration (C) is therefore not adopted. Instead, a generic three-variables 505 

model is used, in which variability is driven by: the chlorophyll concentration (C), the NAP concentration 

(N), and CDOM absorption at 440 nm (Y) C, N and Y separately. However, if C, N and Y shall not be 

were completely independent because, if that were the case, the bio-optical modelling would generate 

unrealistic IOP combinations. Instead, C, N and Yfor a hypothetical large dataset that contains such 

variables, they are may be expected that theyto have a certain degree of general relationship, tighter for 510 

the smaller values, that are found in the ocean, and more scattered for the higher values. 

Here, the partial relationship between the three variables in logarithmic scale was modelled with the 

generation of 5000 triplets, following three Burr type XII random probability density functions, 𝑥 ←

Burr(, c, k), related by a cross correlation matrix among them with the off-diagonal elements 𝜌𝐶𝑁 = 0.8,

𝜌𝐶𝑌 = 0.75, 𝜌𝑌𝑁 = 0.6. Then, the derived random numbers were transformed to the actual (C,N,Y), 515 

variables with 𝑋 = 10𝑥−𝑑, where 𝑋 is either C, N or Y, and 𝑥 is their logarithmic counterparts. This isese 

parameters are summarized in Table 2. FinallyBecause the Burr distribution does not have an upper 

bound, it generated, very few outliers 𝐶 > 1000 𝑚𝑔 𝑚−3, 𝑁 > 2000 𝑔 𝑚−3 and 𝑌 > 100 𝑚−1 (~0.2 % 

or less) that were considered excessive. Such realizations and were re-generated with a log-normal 

distribution, with the mean and standard deviation calculated from the rest of the dataset. 520 

Table 2 Parameters of the probabilistic modelling of the optically active constituents 

 Burr distribution parameters Scale coefficient 
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Variable  c Kk d 

Chlorophyll concentration (C) 3 3 2 3 

Non-algal particles concentration (N) 3 4 1 4 

CDOM absorption coefficient at 440 nm (Y) 2 6 1.3 4 

 

 

Figure 1: Upper panels: histograms of the water constituents chlorophyll concentration (C), non-algal 525 
particles concentration (N) and CDOM absorption at 440 nm (Y). Lower panels: relationships between 

among them. For the relationship case between C and Y, the relationship average regression curve by Morel 

(2009) in oceanic waters is added for comparison. 

In Fig. 1, the outcomes of OAC generation are depicted, showcasing a broad spectrumranges. The 

intentionally skeweddata distributions were are formulated skewed, to mirroring histograms observed in 530 

a broad range comprehensive global datasets: frequencies of data surge from the lower values, peak at 
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levels commonly encountered in global oceans, and gradually taper off at higher extremes. Some degree 

of Concerning Regarding interrelationships, there is observable correlation, which, in the case of C and 

Y, shows general agreement with the empirical case 1 curve identified by Morel (2009) serving as a 

typical benchmark. However, aAs values ascend, the connection diminishes, consistent with expectations 535 

for coastal waters. 

1.6.23.2 Phytoplankton absorption and scattering 

Phytoplankton absorption 𝑎𝑝ℎ was modelled using data from the pool described in section 2.12.12.1.1. In 

order to generate phytoplankton diversity, it was important to ensure that, each time, a real 𝑎𝑝ℎ spectrum 

was used. A similar approach to the 𝑎𝑝ℎ generation in the IOCCG datasetSD was followed, but first, it 540 

was found appropriate to revisit the relationship between C and 𝑎𝑝ℎ . Matched data (Valente et al., 

2022;Castagna et al., 2022) at several wavelengths (Fig. 2) revealed a tight linear relationship in log-log 

scale, though with some scatter, a part of which is attributable due to pigment variation. Following 

Bricaud et al. (1995), aA power-law model (eq. (8)) was regressed at each wavelength: 

𝑎𝑝ℎ(𝜆) ≈ 𝐴(𝜆)𝐶𝐸(𝜆) (887) 545 

Table 3 Output variables  and statistical metrics of the regression between matched chlorophyll 

concentration and phytoplankton absorption of the merged datasets Valente et al. (2022) and Castagna et 

al. (2022) at several bands. 

𝜆 (𝑛𝑚) 411 443 489 510 555 670 

A 0.043934 0.051348 0.03299 0.02132 0.0077002 0.019093 

E 0.80289 0.77654 0.76732 0.8214 0.92914 0.95568 

n 3509 3526 3525 3507 3231 2875 

RMSE (%) 58.951 59.249 57.358 52.626 56.781 47.256 

r2 0.85688 0.84553 0.84846 0.88033 0.89645 0.92553 

 

Table 3 presents the regression outcomes, including the two model parameters (A,E), data number (n), 550 

the root mean square in percent units and the coefficient of determination (𝑟2). A comparison to results 

from previous publications (Churilova et al., 2023;Bricaud et al., 1995;Zibordi and Berthon, 2024) is 
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made in Fig. 3., showing some discrepancies respect to the first three references but a high agreement 

with recent results by Zibordi and Berthon (2024). 

Our results show that the 670 nm band has the highest capability for predicting C given 𝑎𝑝ℎ. It is important 555 

to emphasize that this calculationour modelling does not model generate 𝑎𝑝ℎ for a specific C; rather, it 

associates each 𝑎𝑝ℎ with its characteristic "C", from inversion of eq. (87). This facilitates enables to the 

sorting of the 3025 𝑎𝑝ℎ spectra based on "C", dividing them into 55 pools of specific "C" sub-ranges, 

each containing 55 spectra. Consequently, for a given C value from the (C,N,Y) triplet, a random 𝑎𝑝ℎ 

spectrum from the corresponding pool is selected. Subsequently, the spectrum is adjusted by a factor so 560 

that 𝑎𝑝ℎ(670) equals the predicted 𝑎𝑝ℎ(670) from C, after eq. (887). This methodology guarantees 

consistency between 𝑎𝑝ℎ and empirical evidence for a given C while ensuring a broad diversity in 𝑎𝑝ℎ 

spectral shapes. 
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565 

 

Figure 2: Matched C and 𝒂𝒑𝒉 data (Valente et al., 2022;Castagna et al., 2022) at six wavelengths. A linear fit 

in log-log form is displayed on top. 
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570 

 

Figure 3: Regression statistics of the fit between C and 𝒂𝒑𝒉 data of Fig. 2. Left and center plots are Bricaud’s 

A and E parameters, whereas the right plot is the coefficient of determination (r2). 

Phytoplankton scattering (𝑏𝑝ℎ) modelling unfortunately has much less background knowledge, mostly 

due to the lack of instruments that can measure in situ 𝑏𝑝ℎ  or 𝑏𝑏,𝑝ℎ . Still, there are some 575 
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notableElectromagnetic modelling of light scattering by particles suspended in water can be applied, 

although the contributions, albeit notable, are limited modelling contributions based on electromagnetic 

theory (Lain et al., 2023;Poulin et al., 2018).  

Upon this lack, it is often referred to historic measurements by Loisel and Morel (1998) of non-water 

beam attenuation coefficient at 660 nm 𝑐𝑛𝑤(660)  with a transmissometer, matched to chlorophyll 580 

concentration in case 1 waters. For the surface layerwaters, they found 𝑐𝑛𝑤(660) = 0.407𝐶0.795 . 

Furthermore, the authors reasonably assumed that the dissolved contribution was secondary, so 

𝑐𝑝(660) ≈ 𝑐𝑛𝑤(660). Unfortunately, this relationship was directly exported to phytoplankton scattering 

modelling used in the Coastcolour CoastColour datasetSD (Nechad et al., 2015), replacing 𝑐𝑝(660) with 

𝑐𝑝ℎ(660), ignoring that even in open sea waters, the non-algal scattering is considerable.  585 

(IOCCG, 2006;Loisel et al., 2023)InsteadHere,  a random coefficient was used for phytoplankton 

attenuationthe same generic , while leaving the power law dependence as in the IOCCG SD the in the 

IOCCG dataset(IOCCG, 2006) is used, a random coefficient was used for phytoplankton attenuation, 

while leaving the power dependence: 

𝑐𝑝ℎ(660) = 𝑝3𝐶ℎ (998) 590 

According to the IOCCG report, ℎ = 0.57 , although application of eq. (998) to the downloadable 

datasetSD reveals ℎ = 0.63. In the CoasColour datasetSD, ℎ = 0.795. Here, ℎ = 0.7 is used as a balance 

of both. 

On 𝑝3, it was set random between 0.06 and 0.6 in the IOCCG datasetSD. Interestingly, that leaves the 

contribution of phytoplankton mostly below what found by Loisel and Morel (1998) for the total 595 

attenuation, which appears physically meaningful. The type of randomness of 𝑝3 was not disclosed, but 

an inspection to the IOCCG datasetSD revealed that it was uniform. This parameter is is left unchanged 

for the modellinged here like in the IOCCG datasetSDof the current dataset given the absence of empirical 

evidence that justifies otherwise. 

The spectral variation is set by assigning a power law to 𝑝ℎ𝑦𝑡𝑜𝑝𝑙𝑎𝑛𝑘𝑡𝑜𝑛 𝑎𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛𝑐𝑝ℎ. This choice, 600 

i.e.In fact, modelling the spectral variation of attenuation rather than of scattering, with a simple and 

featureless function, has physical justification. A power law function provides a better fit for 
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𝑐𝑝ℎattenuation than for 𝑏𝑝ℎscattering, as the latter is affected by anomalous dispersion effects, that result 

in some negative peaks with the shape of an 𝑎𝑝ℎabsorption spectrum, more evident at high phytoplankton 

concentrations (Bernard et al., 2009). Interestingly, if the power law function is imposed to 𝑐𝑝ℎ , the 605 

anomalous dispersion features 𝑏𝑝ℎ automatically appear after 𝑏𝑝ℎ = 𝑐𝑝ℎ − 𝑎𝑝ℎ. Therefore, in the current 

SD, neither 𝑏𝑝ℎ nor 𝑏𝑏,𝑝ℎ follow power law functions. 

Regarding the actual exponent of the spectral power lawIn the absence of further information, the same 

relationship as in the IOCCG datasetSD is used, that is (eq. (10)): 

𝑐𝑝ℎ(𝜆) = 𝑐𝑝ℎ(660) (
660

𝜆
)

𝑛1

, with 𝑛1 = −0.4 +
1.6+1.2ℜ

1+𝐶0.5  (10109) 610 

With ℜ being a random number that follows a uniform distribution in the interval [0,1]. 

Given the randomness of 𝑎𝑝ℎ and 𝑐𝑝ℎ, it is possible that some realizations generate cases where 𝑎𝑝ℎ ≥≤

𝑐𝑝ℎ, which is unphysical. Indeed, aA given 𝑎𝑝ℎ represents an certain community assemblage of several 

phytoplankton communities, which haveeach with their specific scattering characteristics, that could be 

somewhat predicted given 𝑎𝑝ℎ. Unfortunately, there is a lack of knowledge on how to parameterize 𝑐𝑝ℎ 615 

or 𝑏𝑝ℎ scattering when 𝑎𝑝ℎabsorption  is known. This information could be extracted from the fine 

spectral features of 𝑎𝑝ℎ. There are some simplified modelling results using electromagnetic theory for 

certain phytoplankton species (Lain et al., 2023), although a general modelling theory of phytoplankton 

scattering linked to absorption is still non-existent. Thus, in this datasetSD, as in the precedent ones 

(IOCCG, 2006;Nechad et al., 2015;Loisel and Morel, 1998), of 𝑎𝑝ℎ and 𝑐𝑝ℎ are modelled independently, 620 

yet related to the same chlorophyll concentration. To ensure a minimum degree of physical consistency, 

A condition was set, that if there were any bands at which 𝑎𝑝ℎ ≤ 𝑐𝑝ℎ, the procedure for determining 𝑎𝑝ℎ 

and 𝑐𝑝ℎ should bewas repeated until ensuring 𝑎𝑝ℎ < 𝑐𝑝ℎ at all wavelengths. 

The remaining parameter that mustto be set to run Hydrolight is the phytoplankton backscattering ratio, 

𝐵𝑝ℎ =
𝑏𝑏,𝑝ℎ

𝑏𝑝ℎ
. This parameter has not been given much importance attention in previous research, as it was 625 

considered relatively unimportant, so it is common to find it set to a constant value in the order of 0.006 

or 0.01. It is indeed secondary in semi-analytical models algorithms that model 𝑅𝑟𝑠  from 
𝑏𝑏

𝑎+𝑏𝑏
 or 
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variations, but in bio-optical modelling it can be very relevant if 𝑏𝑝ℎ is fixed first, because then, 𝑏𝑏,𝑝ℎ is 

implicitly determined through the choice of the respective phase function given 𝐵𝑝ℎ (Mobley et al., 2002), 

thereby setting thestrongly influencing the intensity of 𝑅𝑟𝑠the signal. Fixing 𝑏𝑏,𝑝ℎ first as a function of C 630 

would be another modelling option, for instance by adapting relationships between 𝑏𝑏𝑝 and C found in 

the ocean (Brewin et al., 2012) to 𝑏𝑏,𝑝ℎ. 

In an attempteffort to provide a more accurate We pursued a determination of 𝐵𝑝ℎ  than in previous 

approaches, that we propose a formula that is was consistent with the general trend that phytoplankton 

size increases with C. This In its turn, size increase has a diminishing effect onlowers 𝐵𝑝ℎ because larger 635 

larger 𝐵𝑝ℎ is associated with smaller particles, which scatter relatively more in the backward forward 

hemisphere respect to larger smaller ones, hence lowering 𝐵𝑝ℎ . Also, smaller particles have a larger 

surface area per unit volume, which enhances scattering. A single variable mechanistic model for 𝑏𝑏𝑝 that 

agrees with this principle was presented in Brewin et al. (2012). In terms of the backscattering ratio, 

Twardowski et al. (2001; Fig. 11) presented pioneering results, for 𝐵𝑝 in their case. Here, to mimic such 640 

effect, we it is set 

𝐵𝑝ℎ~𝒩𝑁(𝜇, 𝜎) 

𝜇 = 0.002 + (0.01 − 0.002) exp[−0.56 log10(𝐶)] , 𝜎 = 0.001(3 − log10(𝐶)) + 0.001 (111110) 

To avoid unlikely low 𝐵𝑝ℎ values after eq. (111110), any realization delivering 𝐵𝑝ℎ<0.001 was set to 

0.001 as a lower limit. 645 
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Figure 4: Phytoplankton backscattering ratio 𝑩𝒑𝒉 vs. phytoplankton specific backscattering coefficient at 

560 nm 𝒃𝒃,𝒑𝒉
∗ (𝟓𝟔𝟎). Black dots: new synthetic datasetSD. Red dots: data in Whitmire et al. (2010) 

Independent validation of The the modelling of phytoplankton scattering we just presented in eq. (11) has 650 

someis possible unique with data of chlorophyll concentration matched to scattering and backscattering 

for an array of phytoplankton cultures independent validation. by Whitmire et al. (2010) presented unique 

data of chlorophyll concentration matched to scattering and backscattering for an array of phytoplankton 

cultures. Their data of Calculating the chlorophyll-specific phytoplankton backscattering coefficient, i.e., 

𝑏𝑏,𝑝ℎ
∗ =

𝑏𝑏,𝑝ℎ

𝐶
 at 560 nm, and matching it tomatched to 𝐵𝑝ℎ  produces dot clouds in Fig. 4. Our new 655 

synthetic datasetSD follows the average trend displayed by the Whitmire et al. (2010) in situ data are 

fairly well on top of the data cloud of this synthetic dataset (Fig. 4), also verifying the positive correlation 

of the two variables to a first order. Fig. 4 also shows some degree of positive covariation 

betweenAccording to scattering theory, 𝑏𝑏,𝑝ℎ
∗  and 𝐵𝑝ℎ. Indeed, 𝑏𝑏,𝑝ℎ

∗  should also increasedecreases with 
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decreasingincreasing 𝐶 as well, as because smallerlarger particles have a lagersmaller surface area per 660 

unit volume, which enhancesdiminishes specific scattering. A mechanistic model for 𝑏𝑏𝑝 that agrees with 

this principle was presented in Brewin et al. (2012). All in all, this leads to the visible correlation between 

𝐵𝑝ℎ and 𝑏𝑏,𝑝ℎ
∗ , with the scatter caused by species differences. 

1.6.33.3 NAP absorption and scattering 

Bio-optical modelling of NAP absorption 𝑎𝑁𝐴𝑃 is complex, as NAP is formed by particles of very diverse 665 

nature, of biogenic and non-biogenic origin. Modelling approaches (Bengil et al., 2016) are valid as long 

as the derived relationships hold for the specific area of application. Here, it is aimed at a modelling 

approach of general validity, consistent with the in situ datasets that were collected from worldwide 

waters. 

Modelling startsbegins with requires linking 𝑎𝑁𝐴𝑃 it to the mass NAP concentration, N, through the 670 

specific absorption (to NAP concentration) 𝑎𝑁𝐴𝑃
∗ . Taking 440 nm as the reference band, other approaches 

have set it to a constant value (Nechad et al., 2015), butalthough a variability between 0.001 and 0.1 m2 

g-1 was reported by Results in Blondeau-Patissier et al. (2009) suggested that 𝑎𝑁𝐴𝑃
∗ (440) varies between 

0.001 and 0.1 m2 g-1. When looking for a predictive formula, One one may assume think that such the 

actual value depends on the type of particles. Following this consideration, here, the ratio 𝐶/𝑁 is proposed 675 

here as a first-order predictor of 𝑎𝑁𝐴𝑃
∗ (440). This dependence assumes that non-algal particlesNAP 

absorbs more efficiently in the relatively higher presence of chlorophyll, which suggests that they NAP 

may be of biogenic origin to a larger extent than if the chlorophyll concentration was relatively lower, 

where they NAP may be more of a mineral origin instead. CSIRO data confirmed some degree of 

covariation (Fig. 5). The fit to the CSIRO data was made in logarithmic scale, so 𝑦 = log10[𝑎𝑁𝐴𝑃
∗ (440)] 680 

was regressed as a function of 𝑥 = log10 (
𝐶

𝑁
), proposing a functional form of the type 𝑦 = 𝑎 exp(𝑏𝑥) +

𝑐 . A robust regression (bi-square weighting) gave 𝑎 = −0.1886, 𝑏 = −1.0551, 𝑐 = −1.2700 . The 

standard deviation of the fit was 𝜎 = 0.2627. To generate the synthetic data, given 𝐶/𝑁, the regression 

curve was applied and then a random value, generated with a normal distribution 𝒩𝑁(0, 𝜎) was added, 

in order to replicate the spread found in real data. 
𝐶

𝑁
 in our synthetic datasetSD covers a wider range than 685 
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CSIRO’s data, so, to avoid producing resulting synthetic 𝑎𝑁𝐴𝑃
∗ (440) values much out of the range of the 

measured data, the lower and upper bounds of -3 and -0.5 were set for log10[𝑎𝑁𝐴𝑃
∗ (440)]. The results are 

shown in Fig. 5. 

 

Figure 5: Non-algal particles specific absorption coefficient at 440 nm 𝒂𝑵𝑨𝑷
∗ (𝟒𝟒𝟎), plotted as a function of 690 

the chlorophyll to NAP concentrations ratio C/N. Results for CSIRO data in red dots, a best fit in blue, and 

generated data for the synthetic datasetSD (black dots). 

Posteriorly, it is necessary to project 𝑎𝑁𝐴𝑃
∗ (440) to all bands. It can be done by assuming an exponential 

spectral shape and then guessing a spectral slope (𝑆𝑁𝐴𝑃). Historic data suggested an averageshowed a 

distribution of 𝑆𝑁𝐴𝑃 with an average value of 0.0123 nm-1 (Babin et al., 2003), though with a visible 695 

significant spread. Using a single average 𝑆𝑁𝐴𝑃 for all simulations removes optical diversity and likely 

generates 𝑎𝑁𝐴𝑃
∗  spectra that are unlikely for some regions. It is a better choice to generate a prediction 

function for 𝑆𝑁𝐴𝑃 given the available information. After the exponential fits for each of the compiled 
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𝑎𝑁𝐴𝑃 spectra, detailed in section  2.32.1.3, the 1349 (𝑎𝑁𝐴𝑃(𝜆0), 𝑆𝑁𝐴𝑃) pairs𝑎𝑁𝐴𝑃(440) and 𝑆𝑁𝐴𝑃 were 

calculated and plotted together in Fig. 6. 700 

 

Figure 6: Non-algal particles absorption spectral slope (𝑺𝑵𝑨𝑷), plotted as a function of the NAP absorption 

coefficient at 440 nm (𝒂𝑵𝑨𝑷(𝟒𝟒𝟎)). Red dots: in situ data. Black dots: synthetic data. 

The data distribution in Fig. 6 shows a 𝑆𝑁𝐴𝑃 spread that largely varies depending on the 𝑎𝑁𝐴𝑃 range. For 

very small 𝑎𝑁𝐴𝑃 values, 𝑆𝑁𝐴𝑃  data shows no particular pattern between two bounds, so a uniform 705 

distribution was found adequate. For the middle range, the 𝑆𝑁𝐴𝑃  distribution somewhat narrows as 

𝑎𝑁𝐴𝑃(440) increases, and data shows some positive skewness, which is well represented by a log-normal 

curve. For the higher 𝑎𝑁𝐴𝑃(440) range, a gaussian distribution was is observedapparent, in agreement 

with Babin et al. (2003). Therefore, given 𝑥 = log10[𝑎𝑁𝐴𝑃(440)], 𝑆𝑁𝐴𝑃 was modelled as a piece-wise 

random distribution: 710 
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𝑆𝑁𝐴𝑃 ←

{

𝒰𝑈(0.01,0.035) if 𝑎𝑁𝐴𝑃(440) < 4 · 10−4 m−1  

Ln 𝒩N(−0.308𝑥 − 5.101, −0.0558𝑥 + 0.1164) if 𝑎𝑁𝐴𝑃(440) ∈ [4 · 10−4, 0.06) m−1

𝒩𝑁(0.011,0.016) if  𝑎𝑁𝐴𝑃(440) ≥ 0.06 m−1

(121211) 

Where 𝒰𝑈(𝑎, 𝑏), 𝐿𝑛 𝒩𝑁(𝜇, 𝜎) and 𝒩(𝜇, 𝑁𝜎) are the uniform, log-normal and normal distributions, 

respectively. The random parameterization for 𝑆𝑁𝐴𝑃 in eq. (121211) is rather convoluted. However, it 

ensures fitness to a high quality and large in situ dataset present in Fig. 6, and it does not generate outliers, 715 

as it can be seen when overlapping the synthetic data to the field data in Fig. 6. 

NAP scattering needs bio-optical modelling too. Approaches that model NAP absorption and scattering 

independently may generate unrealistic IOPs for that particular material. It is beneficial to look for 

relationships that link NAP scattering to NAP absorption, as it is expected to occur in realitynatural 

waters. 720 

 The CSIRO dataset provides contains 𝑏𝑏𝑝
∗ (555) data, concurrent to 𝑎𝑁𝐴𝑃

∗ (440). It must be clarified that, 

while 𝑎𝑁𝐴𝑃
∗ (440) is specific of N, 𝑏𝑏𝑝

∗  has been defined by normalizing 𝑏𝑏𝑝 to the total suspended matter 

concentration (T), not to be confused with non-algal particles concentration N, as the latter is only a 

fraction of the former, which also contains the phytoplanktonic part. Brando and Dekker (2003) proposed 

a somewhat crude relationship, 𝑇 = 𝑁 + 0.07𝐶, where both T and N are expressed in the usual units of 725 

g m-3 and C is in mg m-3. For interested readers, such relationship was derived from measurements at in 

a shallow, turbid and eutrophic lake in The Netherlands (Gons et al., 1992). 
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Figure 7: Specific particle backscattering coefficient at 555 nm 𝒃𝒃𝒑
∗ (𝟓𝟓𝟓), plotted as a function of the non-

algal particles specific absorption coefficient at 440 nm 𝒂𝑵𝑨𝑷
∗ (𝟒𝟒𝟎). Results for CSIRO data in red dots, a 730 

the best linear fit in blue, and generated data for the synthetic datasetSD (black dots). 

The relationship between 𝑎𝑁𝐴𝑃
∗ (440) and 𝑏𝑏𝑝

∗ (555) data appeared to be is very significant marked (Fig. 

7, red dots). A linear trend was a very good fit between the log-transformed variables, with a slope 𝑚 =

0.6834 and an intercept 𝑛 = −0.9483. The data spread followed a normal distribution (𝜎 = 0.2627) 

after removing the trend line. To reproduce this spread in the synthetic datasetSD, a random number 735 

following a random normal distribution 𝑁(0, 𝜎)  was added to the fit-predicted 𝑏𝑏𝑝
∗ (555) , prior to 

conversion to linear scale again. Results of the generated data cloud generated are seen in Fig. 7, black 

dots. 

Completing the bio-optical modelling for NAP requires that to project 𝑏𝑏𝑝
∗  is given at 440 nm, which 

implies projecting 𝑏𝑏𝑝
∗  from 555 nm to 440 nm with some sort of spectral parameter. CSIRO data provides 740 
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an estimate of the particle backscattering spectral slope () for every data point. For the synthetic data 

generation, a modelling function for   must be derived. No relationship between   and any other 

parameter within the CSIRO dataset was found. , so instead of simply setting  to an average value, iIts 

histogram was fitted well to with a random Burr distribution with the parameters 𝛼 = 0.854, 𝑐 =

4.586, 𝑘 = 1.108, shown in Fig. 8 Therefore,  was randomly generated using this distribution. 745 

 

Figure 8: Histogram of the particle backscattering coefficient spectral slope (). A Burr Type XII fitted 

distribution is plotted on top. 

 

ThereforeAfter, randomly generating the slopeWith 𝜂 determined, was randomly generated with such 750 

distribution, 𝑏𝑏𝑝
∗  iswas shifted to 440 nm:so that  𝑏𝑏𝑝

∗ (440) = 𝑏𝑏𝑝
∗ (555) (

440

555
)

−𝜂

. It must be noted 

remarked that this 𝑏𝑏𝑝 slope is only used in this step and it is not used to model 𝑏𝑏𝑝 with a power law in 
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the SD. propagate backscattering or any other IOP to the full spectral range. In the bio-optical modelling 

of NAP, as well as and of phytoplankton, a spectral shape is assumed for attenuation, not for 

backscattering. 755 

The NAP backscattering at 440 nm is was derived in eq. (13) by subtraction of the phytoplanktonic part, 

which is known from section 3.23.22.2.2: 

𝑏𝑏,𝑁𝐴𝑃(440) =  𝑏𝑏𝑝
∗ (440) · 𝑇 − 𝑏𝑏,𝑝ℎ(440) (131312) 

A backscattering ratio for NAP (𝐵𝑁𝐴𝑃) must be assumed to obtain 𝑏𝑁𝐴𝑃(440) and 𝑐𝑁𝐴𝑃(440). There are 

no direct measurements of 𝐵𝑁𝐴𝑃 given the current impossibility of measuring NAP scattering parameters 760 

in the field. Nevertheless, this poses a minor problem for radiative transfer calculations, especially for 

remote sensing applications. As long as 𝑏𝑏,𝑁𝐴𝑃 is fixed, 𝐵𝑁𝐴𝑃 is relatively unimportant, as one can deduct 

from simplified analytical models for reflectance or diffuse attenuation. If 𝑏𝑁𝐴𝑃 were fixed instead, 𝐵𝑁𝐴𝑃 

would be a fundamental parameter, as it would implicitly set 𝑏𝑏,𝑁𝐴𝑃, in a much less accurate fashion. 

𝐵𝑁𝐴𝑃 is was here fixed as a random number, following a uniform distribution between 0.01 and 0.02 as 765 

in eq. (1514): 

𝐵𝑁𝐴𝑃 ← 𝒰𝑈(0.01,0.02) (141413) 

Thereforen, the scattering coefficient of NAP was determined with eq. (15): 

𝑏𝑁𝐴𝑃(440) =
𝑏𝑏,𝑁𝐴𝑃(440)

𝐵𝑁𝐴𝑃
 (151514) 

Then, the NAP attenuation at 440 nm wasis expressed in eq. (16) as a function of values that are all 770 

known: 

𝑐𝑁𝐴𝑃(440) = 𝑎𝑁𝐴𝑃
∗ (440) · 𝑁 + 𝑏𝑁𝐴𝑃(440) (161615) 

The remaining step for NAP modelling is extending NAP attenuation is extended to all wavelengths. As 

for phytoplankton, a  as a power law. As for phytoplankton, is assumed, and it is preferred to impose it 

fit a power law to attenuation than to scattering, though recognizing that, given the much featureless 775 

shapes of NAP absorption, a fit to scattering may be realistic too. A 𝑐𝑁𝐴𝑃 spectral slope 𝛾𝑁𝐴𝑃 must be 

derivedassumed. This parameter is largely unknown as it cannot be measured in the field. Here, an 

educated guess is made, generating 𝛾𝑁𝐴𝑃  randomly, with 𝛾𝑁𝐴𝑃 ← 𝒩𝑁(0.7,0.3) . Therefore, eq. (17) 

completes the NAP modelling: 
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𝑐𝑁𝐴𝑃(𝜆) = 𝑐𝑁𝐴𝑃(440) (
440

𝜆
)

𝛾𝑁𝐴𝑃

 (17) 780 

 

1.6.43.4 CDOM absorption 

The 1168 (𝑎𝑔(𝜆0), 𝑆𝑔) pairsThe same procedure as for the NAP absorption coefficient is followed here, 

as detailedcalculated in section  2.22.1.2: exponential functions were fitted to the 𝑎𝑔 spectra, and from 

those regressions having very high correlation, 𝑎𝑔(440) and 𝑆𝑔 were retained ( are plotted together in 785 

Fig. 999). The middle section shows a data spread, whose mean and standard deviation decrease with 

𝑎𝑔(440). Variation in the lower and upper range ends could not be linked to any parameter, so that 𝑆𝑔 

was modelled as uniform distributions, fairly within the data range. Overall, 𝑆𝑔 was then modelled as a 

piece-wise random distribution. G given 𝑥 = log10[𝑎𝑔(440)]: 

𝑆𝑔 ←790 

{

𝒰𝑈(0.01,0.025) if 𝑎𝑔(440) < 0.02 m−1  

𝒩N(−0.00040161𝑥 + 0.017508, −0.0003012𝑥 + 0.001881) if 𝑎𝑔(440) ∈ [0.02,5) m−1

𝒰𝑈(0.0143,0.017) if  𝑎𝑔(440) ≥ 5 m−1

(181716) 
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Figure 9: CDOM spectral slope (𝑺𝒈), plotted as a function of the CDOM absorption coefficient at 795 

440 nm (𝒂𝒈(𝟒𝟒𝟎)). Red dots: in situ data. Black dots: synthetic data. 

Fig. 99 compares the field (𝑎𝑔(𝜆0), 𝑆𝑔 ) pairs to those generated with the combination of random 

distributions in eq. (1817). It is showncan be seen that the synthetic datasetSD includes many points an 

order of magnitude more of below the lower 𝑎𝑔(440) at the lower end than the in situ data in Fig. 99. 

limit. This is due to the very stringent condition of exponential variation set in section 2.2, that mostly 800 

affected the low 𝑎𝑔 spectra. This is a consequence of the well-known under-sampling of the oligotrophic 

oceans. In terms of predicting 𝑆𝑔, Eextrapolation may raise some concerns, but on one hand, 𝑆𝑔 values 

are well bounded in this part of the range, and on the other hand, one must also note that 𝑎𝑔(440) becomes 

very low, so that potential errors in 𝑆𝑔 are not relevant for the absorption budget. In terms of data range,  

it will be shown in section 4.1 that the lowest 𝑎𝑔(440) in the datasetSD are in the order of 𝑎𝑔(440) in 805 
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the most oligotrophic oceans. This is a consequence of the well-known under-sampling of the oligotrophic 

oceans. Extrapolation may raise some concerns, but on one hand, 𝑆𝑔 values are well bounded in this part 

of the range, and on the other hand, one must also note that 𝑎𝑔(440) becomes very low, so that potential 

errors in 𝑆𝑔 are not relevant for the absorption budget. 

1.6.53.5 Pure water absorption and scattering 810 

Pure liquid water absorbs electromagnetic radiation, which can be intuitively mechanistically explained 

as the energy being usedconsumption by the two O-H molecular bonds to vibrate at given resonant 

frequencies, creating an absorption spectrum 𝑎𝑤  with characteristic maxima and minima at specific 

wavelengths. In practice, 𝑎𝑤 must be measured at a wide enough spectral range and its values be tabulated 

for usage in bio-optical modelling. 815 

 However, Literature literature only offers partial spectral range 𝑎𝑤  measurements for pure water 

absorption, owing to the specific requirements and challenges inherent in such measurements across 

different spectral regions. Factors such as signal-to-noise ratio, sample purity, and instrument cleanliness 

contribute to this variability. A broad range 𝑎𝑤 must then be a merged product from individual sources. 

When compiling a comprehensive dataset spanning a broad range, aA crucial step here involves 820 

normalization to a common temperaturecompensating for the different temperatures at which 𝑎𝑤 was 

measured in different laboratories and, in the spectral ranges where different measurements are available, 

selecting those that are retained of the highest quality. Fortunately, this merging process was already 

undertaken within the framework of an ESA project (Roettgers et al., 2016), where the "water optical 

properties processor" (WOPP) produced a consolidated dataset of pure water absorption, normalized to 825 

20°C. Notably, this dataset encompasses measurements by Mason et al. (2016) from UV to green 

wavelengths, revealing lower water absorption in the UV and blue regions than previously documented, 

thanks to meticulous sample preparation and precise measurements. In other spectral regions, data from 

various authors are merged, sometimes overlapping spectrally and sometimes not. Overall, the WOPP 

pure water absorption data can be considered the state of the art. For comprehensive insights, readers are 830 

directed to the project report.  
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When marine salts are dissolved in water, the ions are dissociated and create a stable solution whose 

absorption can be related to that of pure water proportionally to the concentration of salt for the range of 

salinitiesy (Ψ𝑆) that is commonly encountered, although this proportionality coefficient is wavelength 

dependent. Temperature affects absorption in a similar manner through Ψ𝑇, thus leading to: 835 

𝑎𝑤(𝑇, 𝑆) = 𝑎𝑤(𝑇0, 0) + Ψ𝑇(𝑇 − 𝑇0) + Ψ𝑆𝑆 (191817) 

Both Ψ𝑇 and Ψ𝑆 can be empirically determined. To the WOPP pure water merged absorption, a shift to 

an average ocean salinity of S=35 PSU was made with eq. (191817), using the Ψ𝑆 coefficient provided 

by Roettgers et al. (2014) for artificial seawater. 

Scattering by pure water finds explanation with the Smoluchowski-Einstein fluctuation theory of light 840 

scattering (Zhang and Hu, 2021), according to which, a certain volume of water can be seen as made of 

smaller sub-volumes that contain, on average, the same number of water molecules. However, the 

instantaneous numbers vary among them due to random thermal motions at the molecular level, resulting 

in microscopic density fluctuations that induce scattering. In the presence of solutes such as salts, this 

effect is magnified, as fluctuations in the spatial arrangement of dissolved ions lead to variations in the 845 

overall refractive index. For common ocean salinities, scattering is augmented by approximately 30% 

respect to fresh water. Recent work by Zhang and Hu (2021) provides a comprehensive review of this 

theory, offering the most precise estimates to date (likely within ±2-4%). Nevertheless, rigorous 

experimental validation remains imperative. The formulas provided as supplementary material in their 

paper were employed to compute seawater scattering, assuming a temperature of T=20°C and a salinity 850 

of S=35 PSU, as for the absorption data. 

2.4. Results of the synthetic dataset 

2.14.1 Modelled IOPs 

The bio-optical modelling detailed in the section 32.2 generated the IOPs that determine the resulting 

light field and related AOPs, given the boundary conditions. These bio-optical relationships have been 855 

individually assessed and consistency with literature and with new data has been ensured in that section. 

However, the overall result of the bio-optical modelling can be testeda further test is desirablepossible, 
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that impliesby checking the crossed relationship between different commonly measured IOPs at specific 

wavelengths, compared to all available in situ data, in order to verify that the relationships that are found 

in the world’s waters are represented. 860 

In situ Ddatasets were searched that contained IOP data at the reference wavelength of 440 nm. The 

following publicly available in situ data were used: PACE data including the BIOSOPE Biosope cruise 

data from the clearest ultraoligotrophic waters of the south-Pacific gyre, plus some stations in coastal 

upwelling water off Perú, and Mouw’s data in Lake Superior (Casey et al., 2020), the NOMAD dataset 

(Werdell and Bailey, 2005), Castagna’s data in Belgian coastal and inland waters (Castagna et al., 2022), 865 

measurements in coastal European waters (Massicotte et al., 2023), Mouw’s data in Lake Superior (Casey 

et al., 2020), and recent measurements in Svalvard Svalbard (Petit et al., 2022) and a recently published 

dataset in European seas (Zibordi and Berthon, 2024). In addition, two datasets not yet publicly available 

were queried to the authors, who kindly sent them for use in this article: data from the Persian Gulf 

(Moradi and Arabi, 2023) and from Australian waters (Blondeau-Patissier et al., 2009;Blondeau-Patissier 870 

et al., 2017;Cherukuru et al., 2016;Oubelkheir et al., 2023;Brando et al., 2012). In this latter 

caseCastagna’s data lacked, 𝑏𝑏𝑝  was not available, but since such a dataset areis was considering 

especially important for their very high valuesunique and relevant, 𝑏𝑏𝑝  was inferred through semi-

analytic closure from absorption and 𝑅𝑟𝑠 (Lee et al., 2011). 
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 875 

 

Figure 10: IOP cross-relationship comparison between the synthetic datasetSD and various in situ datasets. 
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Fig. 10 presents relationships among various IOPs at the reference wavelengthwavelength of 440 nm. The 

upper panels study the three non-water absorption components with respect to particle backscattering and 

the two lower panels study compare the different absorption compartmentsthe CDOM and NAP 880 

absorption with respect to phytoplankton absorption. Given that any pair ofBecause two given IOPs are 

expected to linearly covary to the first degree, the vertical axis plots the ratio between the two, so that the 

linear covariation is eliminated, restricting the dynamic range and highlighting the differences among 

datasets. The plots show that available measurements in different regions geographic areas and seasons 

cover different regions of the data space, and that the synthetic datasetSD nicely globally encompasses 885 

all of them, notably extending the data volume . The plots show also areas where the synthetic dataset 

does not have correspondence to in situ data. These areas relate to in oligotrophic oceanic waters, that are 

geographically large but grossly under-sampled. Overall, this figure provides quite robust evidence that 

the synthetic datasetSD has global coverage, from the clearest oceans untilto all kinds of coastal waters, 

and that the bio-optical relationships adopted in thusthis study are in line with empirical evidence. 890 
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Figure 11: IOP cross-relationship comparison between this and other synthetic datasetSDs. 
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This dataset SD is also compared to the three publicly available synthetic datasetSDs in Fig. 11: the 

IOCCG dataset SD (IOCCG, 2006), the Coastcolour CoastColour dataset SD (Nechad et al., 2015) and 895 

Loisel’s dataset SD (Loisel et al., 2023). The plots highlight that the new dataset covers a much more 

diverse range of waters than other datasets, acknowledging that such datasets were not aimed at including 

the widest range of water as this dataset is. Some overlap in the publicly available datasets is noticeable 

for all crossed IOPs, with Loisel’s dataset SD more shifted towards clearer waters than IOCCG and 

CoastcolourCoastColour. Also, Loisel’s dataset SD shows trends that appear more consistent to our 900 

datasetSD. As an example, 𝑎𝑔(440)/𝑎𝑝ℎ(440)  appear to show a general decreasing trend with 

𝑎𝑝ℎ(440), corroborated with the in situ datasets. This is well reproduced with Loisel’s dataset, whereas 

the IOCCG dataset shows the opposite trend. The Coastcolour CoastColour dataset SD covers the upper 

part of the range, but due to its optical modelling, many dots are clustered near each other, instead of 

covering a wider range of values. The new datasetSD covers a wider range of waters than the other 905 

datasetSDs combined, a consequence not only of the broad ranges for the OACs, but also of the adequate 

amount of statistical randomness that was given to the bio-optical relationships. 

2.24.2 Radiative transfer calculations 

Radiative transfer simulations were made with Hydrolight 5.1.2 (Sequoia Scientific, Inc.). The software 

was configured with a generic “case 2” water scenario, and the input IOP parameters were set as detailed 910 

in section 2.2. Inelastic scattering effects were not considered. 

Normalized sky radiances were computed using the sky model "HCNRAD" (Harrison and Coombes 

Normalized RADiances) (Harrison and Coombes, 1988). Diffuse and Ddirect Ssky irradiances were 

computed using the "RADTRANX" (RADTRAN eXtended for 300-1000 nm) model (Gregg and Carder, 

1990). The ozone concentration was estimated from a climatology derived with binned monthly average 915 

TOMS v8 Ozone concentrations (data from 2000-2004 were averaged to give 5-year climatological 

averages for 5 latitude and 10 longitude quadrants), for the 90th day of the year, coordinates 40 º N and 

0 º E, resulting in 354.9 Dobson units. The US Navy aerosol model was fed with the values: air mass type 

5, relative humidity 80.0 %, precipitable water 2.5 cm and horizontal visibility 40.0 km. For the sSea 

surface roughness was modelled with a Hydrolight-embedded Monte Carlo module, fed with modelling, 920 

Field Code Changed
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an assumed wind speed of 5.0 m/s was assumed. Water index of refraction was calculated as a function 

of wavelength (Roettgers et al., 2016) for the given seawater T = 20.0 ºC and S = 35.0 PSU. The sea was 

considered vertically homogeneous in depth and infinitely deep. 

 The softwareIOP input was configured with a generic “case 2” water scenario, and the i. Input IOP 

parameters and phase functions were set as detailed in section 2.2Table 1. Inelastic scattering effects were 925 

not considered. Phase functions are a critical component of bio-optical modelling if the angular variability 

of the light field is considered relevant. Here, pPhase functions from the Fournier-Forand (FF) family 

were used both for phytoplankton and for non-algal particles, as they fit very well the angular pattern of 

measured phase functions. Mobley et al. (2002) documented the indexing of the FF PFs as a function of 

the backscattering ratio only, a mechanism that is included in Hydrolightparameterized as a function of 930 

their respective backscattering ratios. Inelastic scattering effects were not considered. 

The source code of Hydrolight was modified so that the “printout” output files included reflectancesthe 

remote-sensing reflectance, both above and below the surface, for the whole set of viewing zenith and 

azimuth angles defined by Hydrolight default quadrants, that is, view angle varying from 0 to 80 º in steps 

of 10 º and then a last value of 87.5º (10 values in total), and azimuth varying from 0 to 180 º in steps of 935 

15 º (13 values in total). Then, sSimulations were made for the whole range of sun zenith angles defined 

by the quadrants, that is from 0 to 80 º in steps of 10 º and then a last value of 87.5º (10 values in total). 

Therefore, for every IOP set up, directional AOPs are given at 1300 angles, and non-directional AOPs 

are given at the 10 sun zenith angles. 

4.3 (Szeto et al., 2011)Reflectance overview and classification 940 

Synthetic 𝑅rs were scrutinized to ensure that a diverse range of optical water types had been produced. 

The data underwent partitioning into twelve clusters via a k-means algorithm (Figure. 1212). Ternary 

plots were employed to visualize the absorption budget for all 𝑅rs within each class, with curves and dots 

colored based on particle backscattering. This classification is only used here as a method to show the 

extensive optical diversity within the datasetSD and does not constitute a part of the datasetit. 945 

Descriptively, the following water types are: 
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2.3 Reflectance overview and classification 

Synthetic 𝑅rs were scrutinized to ensure that a diverse range of optical water types had been produced. 

The data underwent partitioning into twelve clusters via a k-means algorithm (Figure 12). Ternary plots 

were employed to visualize the absorption budget for all 𝑅rs within each class, with curves and dots 950 

colored based on particle backscattering. This classification is only used here as a method to show the 

extensive optical diversity within the dataset and does not constitute a part of the dataset. Descriptively, 

the following water types are: 

• Classes 2 and 6 relate to clear oceanic waters. 

• Class 1 corresponds to highly absorbing waters, with little NAP content. 955 

• Classes 3,5, 7 and 8 represent coastal waters, exhibiting moderate concentrations of all 

constituents, in varying proportions. 

• Classes 4 and 9 display highly productive waters, marked by high CDOM and NAP levels, 

respectively. 

• Classes 10, 11 and 12 portray highly and very highly turbid waters. Notably, despite categorizing 960 

this water type into three classes, their cumulative occurrence is discrete. This outcome stems 

from the classification, which accentuates disparities in 𝑅rs values that are high. 
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Figure 121212 Rrs spectra (normalized geometry) of the synthetic datasetSD, divided into twelve classes using 965 
the k-means classifying algorithm, with their number (N) indicated above. Relative to each class, the ternary 

plots of the absorption budget are plotted. Line and dot color indicates particle backscattering at 440 nm, 

according to the attached color bar. Note varying vertical scale, across the classes, necessary to visualize the 

spectral variabilty across the dynamic ranges. 
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2.44.4 Angular variation 970 

Besides the wide IOP ranges, highlighted in the water classes of the following section, a unique 

characteristic of this datasetSD is the inclusion resolution of the AOPs for the whole range of sun-view 

geometries. This matter is relevant for algorithm development and validation; for instance, in either in 

situ or satellite 𝑅𝑟𝑠 , the sun is very rarely at the zenith. The view angle is off nadir in above-water 

platforms and in satellite data, and the azimuth is normally such that avoids the maximum sun glint. This 975 

𝑅𝑟𝑠 bidirectionality is very often ignored. Algorithms that use band ratios, such as the oceanic OCx, 

partially suppress the bidirectional effect because the its spectral behaviour pattern is quite flat, but 

algorithms that rely on the absolute magnitude of 𝑅𝑟𝑠 will inevitably propagate bidirectional effects as 

errors. This section showcases the anisotropy of 𝑅𝑟𝑠 for two distinct water types. The first represents very 

oligotrophic oceanic waters, while the second relates to could correspond to turbid areas with high 980 

CDOM, which can be found in shallow marginal seas such as the Azov Seamore productive waters. The 

azimuthal angle definition follows that of Hydrolight (i.e., solar photons travel in the 𝜙 = 180 ° direction, 

that is, the sun is located at 𝜙 = 0). 

A first example of the 𝑅𝑟𝑠 anisotropy for a clear water scenario is displayed in Fig. 131313, for three 

wavelengths and five sun zenith angles. Related Fig. 141414 focuses on one sun zenith angle (𝜃𝑠 = 60 °), 985 

two the sun’s meridian plane (𝜙 = 0, 180°) and its perpendicular vertical plane (𝜙 = −90, 90°), and solar 

azimuthal planes and a constant zenith view section (𝜃 = 60 °), all cases for a reference sun zenith angle 

(𝜃𝑠 = 60 °). Increasing the sun zenith lowers the azimuthal symmetry and strengthens the radiance 

anisotropy. A zone of higher values forms along the solar plane for 𝜙 = 0. It is known that, for very clear 

waters, the single-scattering approximation can, at least qualitatively, explain the results. The phase 990 

functions of both water and particles have a local maximum at a scattering angle of Ψ = 180°, leading to 

an overall maximum at 𝜃 = 60 °, that is, the back-scattering direction. The secondary maximum at 𝜃 =

−60 ° (or 𝜃 = 60 ° for 𝜙 = 180 °) can be explained by the balance between a progressive increase in the 

particle phase function and a decrease in the water phase function as Ψ decreases. 

 995 
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Figure 131313 Angular variability of Rrs for the oligotrophic water spectrum shown in Figure. 141414. The 

polar plots are divided into selected sun zenith angles (rows) and wavelengths (columns). The polar angle 

represents the azimuth (zero “looking at the sun”), while the radius represents the radiance propagation 

angle (same as the viewing zenith angle). The color represents the Rrs magnitude. The color scale among 1000 
wavelengths for visualization purposes. For θs=60° specifically, some indicated slices are presented in 1D 

plots in Figure. 141414. Section 1: sun's meridian plane. Section 2: perpendicular plane to the sun's meridian 

plane. Section 3: constant θ=60°. 
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Figure 141414 Angular variability of Hydrolight-simulated Rrs for the oligotrophic water case (spectrum 1005 
shown in a corner). The plots represent the three sections for θs=60° in Figure. 131313, in consecutive 

columns. Here, the sections are plotted in cartesian coordinates in the upper plots and polar coordinates in 

the lower ones. 

Figures. 151515 and 161616 show an analog example for a turbid productive water scenario. Notable 

is the azimuthal maximum shifts to the 𝜙 = 180 ° direction. This is explained by the dominance of the 1010 

particle phase function and the appearance of multiple scattering, which starts to become important even 

for small concentrations. This implies that the radiance at angle 𝜃 = −70 ° (or 𝜃 = 70 ° for 𝜙 = 180 °) 

is less influenced by the shape of the phase function at the particular direction given by the single 

scattering direction. Instead, multiple scattering does not randomize the light field in all directions, 

making it isotropic, but instead, makes the resulting radiances influenced by the phase function in variable 1015 

ranges reaching Ψ < 120 °, where it increases sharply. Indeed, multiple scattering does not generate 

isotropy in 𝑅𝑟𝑠 as might be believed by some, but instead changes the angular pattern of the anisotropy. 
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This behaviour, although was already documented (Loisel and Morel, 2001), but it was somehow not 

assimilated by most within the community. 

 1020 
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Figure 151515 As in Figure 17Figure 13 Fig. 13, but for the angular variability of Rrs for the turbid 

productive waterswater case.  

 

 1025 

Figure 161616 As in Figure 17Figure 13 Fig. 1414, but for the angular variability of Rrs for the turbid 

productive waterswater case. 

4.5 Reflectance validation with in situ data 

The number of relationships imposed to the IOPs, as well as the cross-checks among them give confidence 

on the realism of the datasetSD generated. Yet, to be further confident that the synthetic AOPs represent 1030 

natural waters, it is desirable to show some evidence comparison to in situ data that involves the AOPs 

themselves. 

We evaluated in Fig. 1717 the 𝑅𝑟𝑠 (normalized geometry) of our entire synthetic datasetSD through the 

spectral quality index (QWIP) by Dierssen et al. (2022). Such index aims at providing a quality estimate 

for a hyperspectral 𝑅𝑟𝑠. QWIP was developed a large dataset of in situ 𝑅𝑟𝑠, so this comparison is indirectly 1035 
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actuallycan be seen as a comparison withto real 𝑅𝑟𝑠 data. In Dierssen et al. (2022), it is mentioned that 

values within the 0.2 margins have high similarity to real spectra measured in the field, which for the case 

of the SD, is verified in are all4993 out of the 5000 but 7 spectra. Still, these 7 spectra are close to the 

limit, and may simply contain some bio-optical characteristics, that were not present in the QWIP 

calibration dataset. No spectra are clearly off from the main trend line, thus giving confidence in the 1040 

quality of our datasetSD in terms of this index and of the data from which it was derived. 

 

Figure 1717 Upper plot: scatter plot between the apparent optical wavelength (Vandermeulen et al., 2020) 

and the NDI index: 𝑵𝑫𝑰(𝟒𝟗𝟐, 𝟔𝟔𝟓) =
𝑹𝒓𝒔(𝟔𝟔𝟓)−𝑹𝒓𝒔(𝟒𝟗𝟐)

𝑹𝒓𝒔(𝟔𝟔𝟓)+𝑹𝒓𝒔(𝟒𝟗𝟐)
. Magenta lines: QWIP score (Dierssen et al., 2022) 
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and error bars. Lower plot: histogram of the QWIP score, defined as the difference respect to the QWIP 1045 
curve. 

Next assessment helps to verify the covariability between 𝑅𝑟𝑠 and the absorption coefficient. A one-

dimensional predictor 𝜒 is derived from an 𝑅𝑟𝑠 (Lee et al., 2002), as in eq. (132019): 

𝜒 = log10 (
𝑅𝑟𝑠(443)+𝑅𝑟𝑠(490)

𝑅𝑟𝑠(560)+5
𝑅𝑟𝑠

2 (665)

𝑅𝑟𝑠(490)

) (2019) 

This 𝜒 index is matched to non-water absorption spectrum at 560 nm 𝑎𝑛𝑤(560). There are several open 1050 

access, freely available in situ datasets that contain both measured variables matched together, such as 

Valente et al. (2022), Zibordi and Berthon (2024) and the PACE Schaeffer, Mouw and Biosope datasets 

(Casey et al., 2020). Figure. 1818 clearly shows the excellent average overlap between our synthetic 

datasetSD and measured data, besides differences due to the difficulties of measuring very low absorption. 

Different bio-optical characteristics produce slight deviations from the mean curvetrend, indicating 1055 

natural variability. 
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Figure 1818 A scatter plot between the 𝑹𝒓𝒔 -generated 𝝌  index and the matched non-water absorption 

spectrum at 560 nm 𝒂𝒏𝒘(𝟓𝟔𝟎). Black dots are from the synthetic datasetSD and coloured dots are from field 

data from various references (see text). 1060 

A typical benchmark is shown next, where a given chlorophyll concentration in the datasetSD is related 

to the generated 𝑅𝑟𝑠  through the maximum band ratio 𝑀𝐵𝑅𝑂𝐶4 , an index that is used to estimate 

chlorophyll in the ocean, defined in eq. (2120): 

𝑀𝐵𝑅𝑂𝐶4 =
max [𝑅𝑟𝑠(443),𝑅𝑟𝑠(490),𝑅𝑟𝑠(510)]

𝑅𝑟𝑠(560)
  (2120) 

This index has been also used to study the consistency of a given datasetSD in all kinds of water (Nechad 1065 

et al., 2015). Here, matched 𝑀𝐵𝑅𝑂𝐶4 and chlorophyll concentration from two large in situ datasets are 

plotted (Valente et al., 2022;Zibordi and Berthon, 2024), showing a good general overlap, though with 

some degree of differences among them, that are explainable due to different bio-optical characteristics 

of the seas sampled (Szeto et al., 2011). Data from our datasetSD generally agrees with the trend, that 

essentially shows high linearity in the middle section, while saturating at the extremes due to loss of 1070 
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sensitivity. The data cloud of the synthetic datasetSD also displays a spread that embraces the in situ 

datasets used for comparison, suggesting that the optical variability in the in situ datasets is well 

represented. 

 

Figure 1919 Chlorophyll concentration as a function of the maximum band ratio for OC4-type algorithms, 1075 
for the synthetic datasetSD and for data in Valente et al. (2022) and Zibordi and Berthon (2024). 

The last comparison to real 𝑅𝑟𝑠 data involves the relationship to the total suspended matter concentration 

(𝑇), a relevant parameter for coastal and inland water studies, which usually show higher turbidities. 

Interestingly, this involves the absolute value of 𝑅𝑟𝑠  and not ratios. In particular, it is known that 𝑇 

covaries with 𝑅𝑟𝑠 at long wavelengths, and 665 nm is commonly employed, due to the lesser disturbance 1080 

by CDOM. Our datasetSD does not use 𝑇 for its generation, so the estimation 𝑇 = 𝑁 + 0.07𝐶 , after 

Brando and Dekker (2003). Figure. 2020 shows that the new datasetSD follows the same trend as that 

includes that in from in situ datasets (Valente et al., 2022;Zibordi and Berthon, 2024), but also displaying 
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a level of spread that includes the in situ datasets, once more demonstrating the success in reproducing a 

range of natural variability. 1085 

 

Figure 2020 Total suspended matter concentration as a function of 𝑹𝒓𝒔(𝟔𝟔𝟓), for the synthetic datasetSD 

and for data in Valente et al. (2022) and Zibordi and Berthon (2024). 

 

3.5. Data file description 1090 

Output data is organized in netCDF files, where each file containsing a given IOP setup and all directional 

AOP output. Table 4 details the content of themfile structure. Variables have different sizes, according to 

their dependence on the following variables that can take the following number of different values: sun 

zenith angle 𝜃𝑠, 𝑛𝑠 = 10, zenithal direction of radiance propagation, 𝜃, 𝑛𝜃 = 10, azimuthal direction of 

radiance propagation 𝜙, 𝑛𝜙 = 13, wavelength of radiation in vacuum 𝜆, 𝑛𝜆 = 451. All in-water AOPs 1095 

refer to theto the zero depth, just below the surface. Diffuse attenuation coefficients instead required the 

Formatted: Normal



61 

 

choice of two depths approximate the depth derivatives, which were 0 m and 1 cm, as set by default in 

Hydrolight. 

Table 4 File description 

Parameter Description Units Size 

C Chlorophyll concentration mg m-3 1x1 

N Non-algal particles concentration g m-3 1 x 1 

Y Light absorption coefficient of coloured 

dissolved organic matter at 440 nm 

m-1 1 x 1 

theta_s Sun zenith angle (zero at zenith) º 𝑛𝑠 x 1 

theta Zenithal direction of radiance propagation 

(zero towards zenith) 

º 𝑛𝜃 x 1 

phi Azimuthal direction of radiance propagation 

(zero towards the sun) 

º 𝑛𝜙 x 1 

lambda Wavelength of radiation in vacuum nm 𝑛𝜆 x 1 

Esdir_Es_ratio Above-surface direct to total downwelling 

irradiance ratio 

- 𝑛𝑠 x 𝑛𝜆 

aw Spectral light absorption coefficient by 

seawater at 20 ºC and S=35 PSU 

m-1 𝑛𝜆 x 1 

aph Spectral light absorption coefficient by 

phytoplankton 

m-1 𝑛𝜆 x 1 

ay Spectral light absorption coefficient by 

coloured dissolved organic matter 

m-1 𝑛𝜆 x 1 

aNAP Spectral light absorption coefficient by non-

algal particles 

m-1 𝑛𝜆 x 1 

bw Spectral light scattering coefficient by 

seawater at 20 ºC and S=35 PSU 

m-1 𝑛𝜆 x 1 
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bph Spectral light scattering coefficient by 

phytoplankton 

m-1 𝑛𝜆 x 1 

bNAP Spectral light scattering coefficient by non-

algal particles 

m-1 𝑛𝜆 x 1 

bbw Spectral light backscattering coefficient by 

seawater at 20 ºC and S=35 PSU 

m-1 𝑛𝜆 x 1 

bbph Spectral light backscattering coefficient by 

phytoplankton 

m-1 𝑛𝜆 x 1 

bbNAP Spectral light backscattering coefficient by 

non-algal particles 

m-1 𝑛𝜆 x 1 

Rrs Spectral angle-dependent above-water 

remote sensing reflectance (
𝐿𝑤

𝐸𝑠
) 

sr-1 𝑛𝑠 x 𝑛𝜃 x 𝑛𝜙 x 𝑛𝜆 

rrs Spectral angle-dependent underwater 

radiance reflectance (
𝐿𝑢

𝐸𝑑
) 

sr-1 𝑛𝑠 x 𝑛𝜃 x 𝑛𝜙 x 𝑛𝜆 

Q Spectral angle-dependent underwater Q-

factor (
𝐸𝑢

𝐿𝑢
) 

sr 𝑛𝑠 x 𝑛𝜃 x 𝑛𝜙 x 𝑛𝜆 

Kou Spectral diffuse attenuation coefficient of 

scalar upwelling irradiance 

m-1 𝑛𝑠 x 𝑛𝜆 

Kod Spectral diffuse attenuation coefficient of 

scalar downwelling irradiance 

m-1 𝑛𝑠 x 𝑛𝜆 

Ko Spectral diffuse attenuation coefficient of 

scalar total (spherical) irradiance 

m-1 𝑛𝑠 x 𝑛𝜆 

Ku Spectral diffuse attenuation coefficient of 

planar upwelling irradiance 

m-1 𝑛𝑠 x 𝑛𝜆 

Kd Spectral diffuse attenuation coefficient of 

planar downwelling irradiance 

m-1 𝑛𝑠 x 𝑛𝜆 
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Knet Spectral diffuse attenuation coefficient of 

net planar irradiance 

m-1 𝑛𝑠 x 𝑛𝜆 

KLu Spectral diffuse attenuation coefficient of 

upwelling radiance towards the zenith 

m-1 𝑛𝑠 x 𝑛𝜆 

mu_u Spectral average cosine of the upwelling 

radiance 

- 𝑛𝑠 x 𝑛𝜆 

mu_d Spectral average cosine of the downwelling 

radiance 

- 𝑛𝑠 x 𝑛𝜆 

mu_tot Spectral average cosine of the total radiance - 𝑛𝑠 x 𝑛𝜆 

R Spectral underwater irradiance reflectance 

(
𝐸𝑢

𝐸𝑑
) 

- 𝑛𝑠 x 𝑛𝜆 

4.6. Data availability 1100 

Data described in this manuscript can be accessedfreely accessible at from Zenodo under at 

https://doi.org/10.5281/zenodo.11637178 https://zenodo.org/records/11637178 (Pitarch and Brando, 

2024). The repository hosts two versions of the dataset: one hyperspectral, from 350 nm to 900 nm, in 

steps of 1 nm, and a smaller, multispectral on, for the twelve Sentinel 3-OLCI bands between 400 nm and 

753 nm. 1105 

5.7. Conclusions 

With the development of the presented synthetic dataset, encompassing inherent and apparent optical 

properties alongside associated optically active constituents, we believe to haveThe presented dataset 

filled fills several gaps, as identified in our literature review of publicly available in situ and synthetic 

datasets. On one hand, tThe large quantity and high quality of the in situ data allowed the application of 1110 

stringent quality control procedures to develop novel bio-optical relationships involving parameters that 

model absorption and scattering of the optically active constituents. The spread in the data clouds used 

for bio-optical modelling was reproduced as probability density functions, resulting in a realistic depiction 

https://doi.org/10.5281/zenodo.11637178
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in the synthetic dataset of the natural variability of the in situ data. Validation exercises were provided 

for the remote-sensing reflectance, showing consistency with the benchmark in situ datasets for every 1115 

example. Our dataset is therefore representative of natural waters of varying trophic levels and optical 

complexity. As a by-product of tThe underlying the reported bio-optical relationships can be assumed to 

become a reference for future optical studies. 

Apparent optical properties are resolved at all geometric angles available by the radiative transfer 

simulations, making this one the first directional dataset ever published. This detail makes it suitable for 1120 

directional studies of reflectance, diffuse attenuation and any other derived quantity. The dataset, in its 

hyperspectral and multi-angular format, is relevant for bio-optical and directional studies applied to 

current satellite-borne sensors such as OLCI, and as well as to next-generation missions likesuch as PACE 

and CHIME. 

The synthetic dataset is distributed in the standard format netCDF format as single files for every IOP 1125 

case, files as it isenabling efficient convenient for data storage and space management, as well as 

straightforward handling with software packages. Given Despite the very fine spectral resolution step of 

1 nm between 350 nm and 800 nm and that each file contains the IOP setup as well as all directional 

AOPs for all 1300 angular configurations (and hemispheric variables such as 𝐾𝑑 are included for all 10 

sun zenith angles), each of the 5000 files only weights approximately 5700 kB. The netCDF format also 1130 

makes the dataset easy to handle using common software packages. 
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