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Comments 

This paper presents a new synthetic data set linking apparent and inherent optical properties based on a 

very substantial set of radiative transfer simulations that are intended to provide comprehensive 

representation of optical water types found in nature. The purpose is to support ocean colour algorithm 

development and there is specific effort made to cover a wide range of sun sensor geometries, high 

spectral resolution and other important features. I am generally supportive of the effort and believe that 

the ambition of the work is significant. However, there are a couple of areas where I feel there are issues 

that might be either addressed or at least acknowledged before publication goes forward. 

We thank the appreciation by the reviewer for the importance of this dataset and the amount of work that 

was put into it. 

Limitations of measured data sets: One of the key themes of the paper is an ambition to better replicate 

the true range of variability found in nature. This is particularly emphasised with respect to oligotrophic 

waters which are reasonably claimed to be relatively under-sampled. In several sections, the authors point 

to existing field data sets and attempt to replicate all of the observed variability. Whilst this appears 

sensible on first inspection, I believe there is an underlying issue that needs to be considered. Essentially 

this boils down to the quality of field data. Any measurement is going to be subject to uncertainty and in 

many (most?) cases this uncertainty will become more significant as signal levels become smaller. This has 

been explored in some papers e.g. ref 1. Examples from the current manuscript that I think need to be 

considered include Figures 6 and 9 which both show apparently very strong variations in spectral slopes 

that just happen to coincide with signa levels dropping to very low levels.  Is this real variability or is it the 

result of poor quality fits caused by limited data quality when signals are very low?  Does it make sense to 

reproduce this level of variability in a synthetic data set if it is actually effectively noise and therefore 

potentially misleading? I think this at least needs to be considered. 

This study relied on bio-optical data made publicly available in open access databases or single entries 

related to publications. Given the large amount of data that we gathered, we decided to apply stringent 

quality criteria. Specifically, for CDOM, it was required to follow an excellent fit to an exponential curve, 

thus ensuring that there were no issues with the spectral response or with the filtration. Most importantly, 

CDOM data had to be measured with Ultrapath devices, and the very long optical path should provide 

sufficient signal to noise ratio even in oligotrophic waters. Still, we acknowledge that there is an inevitable 

level of uncertainty related to in situ measurements. 

There are also known issues with aspects of filter pad absorption measurements (Ref 2 pathlength 

amplification and baseline correction - the latter can also be an issue for CDOM absorption) that are not 

discussed but that could lead to significant discrepancies in observed data sets. These issues are effectively 

being baked into the training of this synthetic data set. The description of how these data were measured is 

lacking detail and I think there is scope to at least mention that there may be issues of this nature. 

Processing differences among in situ datasets of filter pad data are not traced in the databases. That would 

require to go back to the original sources. It is, however, assumed that the practitioners, based on their 

experience, followed best practices. Indeed, most of these data come after the funding of projects by space 

agencies that involve related studies, and we believe that the groups that were involved were confident 

enough in the quality of the data before uploading. This said, the quality criteria to select valid filter pad 



data was as stringent as for CDOM, so we are highly confident also here. But to keep the readers aware, we 

will include part of this comment in the manuscript. 

Oligotrophic under-sampling: The authors make a significant play on extending coverage of oligotrophic 

waters that have been historically under-sampled. Whilst this is true, it remains the case that these waters 

have been sampled. I am concerned that Figure 9 appears to show at least a full order of magnitude of 

additional CDOM (ag440) range that has never been observed, even with Ultrapath CDOM sampling. I am 

perfectly happy to criticise measurement quality (see above) but I am a bit concerned about the 

justification for effectively inventing an additional decade of variability in this parameter? It is possible that 

community measurements have a lower limit that inhibits resolution of lower signals, but it is also 

potentially true that there is a background level of dissolved organic absorption that is a natural feature. I 

am not convinced that this aspect of the data set is as reliable as the paper currently suggests. Again, a 

more careful discussion of potential merit or otherwise would be advisable I think. 

There is some misunderstanding here, which we aim at clarifying here and in the manuscript. 𝑎𝑔(440) 

values ranging 2 · 10−3 –  1 ·  10−2 were observed in South Pacific gyre during Biosope cruise as reported in 

Figure 15 of Bricaud et al. (2010), so we are not “effectively inventing an additional decade of variability in 

this parameter”. Figure 9 in the manuscript is used for the construction of a remationship between 

parametrization of 𝑆𝑔 from 𝑎𝑔(440), so we can predict the former from the latter. Only the CDOM data 

that passed the stringent quality control mentioned above are shown in the figure. It appears that those 

Biosope spectra were excluded for the parametrization of 𝑆𝑔: the text commenting Figure 9 will be updated 

to clarify the issue. 

For the range of low CDOM values present in the synthetic dataset itself, we are in line with empirical data 

and another synthetic dataset (Loisel et al. 2023). To make it totally clear in the revised version, and clarify 

that the synthetic data set does not introduce an oligotrophic over-sampling, the lower-left panels in 

Figures 10 and 11 in the manuscript will be replotted showing 𝑎𝑔(440) in the horizontal axes, and the 

related text will be updated accordingly to state that the synthetic dataset covers appropriately the 

𝑎𝑔(440) ranges of in situ and other synthetic datasets. The two panels are reported here as Figure R2.1. 

See how Loisel’s dataset, the NOMAD dataset and our dataset have few points that down to about 

𝑎𝑔(440)~3 · 10−4 𝑚−1. 

 



Figure R2.1 Cross-relationship comparison for 𝑎𝑔(440) and the 𝑎𝑝ℎ(440)/𝑎𝑔(440)  between the synthetic 

dataset and (left) various in situ datasets (right) other synthetic datasets. 

Parameterisation: The paper takes considerable effort to describe and justify construction of the bio-

optical model and other aspects which go into parameterising the Hydrolight runs. Inevitably there are 

decisions that need to be made and options discarded as a result. This is fine, but in several cases here 

various decisions are presented as inevitable when in fact alternative option could have been chosen. I 

would not ask for these decisions to be revered or for models to be reworked in addition - that would be 

unfair. However, I think it is possible for the authors to recognise that alternatives would be available and 

might also be legitimate options. 

We will provide more context to justify the main decisions. Still, justifying all possible options would make 

the manuscript much lengthier than it already is. It is usually accepted as good practice to properly validate 

or justify the option that was taken.  

For example, they have opted to use the a version of the Hydrolight input generation where they calculate 

backscattering from  backscattering ratios applied to scattering coefficients rather than directly inputting 

backscattering SIOPs. 

Yes and no. Phytoplankton backscattering is calculated from backscattering rations applied to scattering 

coefficients as the reviewer points out, but that has been the choice for all datasets (IOCCG 2006; Loisel et 

al. 2023; Nechad et al. 2015). Just for the principle of parsimony, we stuck to the usual procedure here. Still, 

we went one step beyond them because we were able to justify this parameterization based on the 

independent data in Figure 4 of the manuscript. 

For non-algal properties, it was actually backscattering that was fixed, after knowing absorption (Figure 7 of 

the manuscript). We will revise the text in the related areas to see if we can provide some additional 

justification of the modelling choices. 

I can point to a small number of papers where there have been efforts made to directly estimate thee 

parameters (refs 3 and 4) and which would have provided alternative options that could be considered. 

Again, I would like to emphasise that I am not looking for more work to be done here, just that there is a 

slightly less emphatic description of what is possible and available (or not), taking into account material 

that is not hard to find in the literature. 

Also here, we will try to add some more context in the method description, without departing too much 

from the main topic, which is the dataset description.  

Validation: The synthetic data set produces hyperspectral remote sensing reflectance spectra that may be 

of great value for algorithm development. However, it is unclear how representative the simulated spectra 

actually are? The discussion of the outputs very rapidly branches off into cluster analysis and consideration 

of geometric effects, but there is no real analysis of how representative the spectra are of natural 

distributions. I would like to see a comparison with existing measured data sets to get a sense of where 

there are overlaps and divergences that may or may not be of interest when considering value as an 

allegedly global data set. I would emphasise that I have no trouble with the quality of the simulated 

reflectance spectra per se – Hydrolight will produce essentially the right reflectance spectrum for whatever 

conditions you tell it to work with. However, the value of this synthetic data set is very much in its ability to 

cover the range of naturally occurring variation and I would like to see harder evidence that it does this e.g. 

for turbid coastal waters as well as more open coastal and oceanic conditions. 

The reviewer has a point here. In the revised version, the reviewer will find strong evidence that the 

generated reflectances are in line with existing measured datasets in what regards absorption, chlorophyll 

concentration, total suspended matter concentration, plus an addition evaluation through a spectral quality 



index. All in all, the validation exercises support our dataset as representative of a wide range of natural 

waters. We paste them here: 

 

Figure R2.2 Upper plot: scatter plot between the apparent optical wavelength (Vandermeulen et al. 2020) 

and the NDI index: 𝑁𝐷𝐼(492,665) =
𝑅𝑟𝑠(665)−𝑅𝑟𝑠(492)

𝑅𝑟𝑠(665)+𝑅𝑟𝑠(492)
. Magenta lines: QWIP score (Dierssen et al. 2022) and 

error bars. Lower plot: histogram of the QWIP score, defined as the difference respect to the QWIP curve. 

To generate Figure R2.2, we calculated the QWIP index by Dierssen et al. (2022) for our entire synthetic 

dataset. Such index aims at providing a quality estimate for a hyperspectral 𝑅𝑟𝑠. QWIP was developed a 

large dataset of in situ 𝑅𝑟𝑠, so this comparison is actually a comparison with real 𝑅𝑟𝑠 data. In Dierssen et al. 

(2022), it is mentioned that values within the 0.2 margins have high similarity to real spectra measured in 

the field, which are all 5000 but 7 spectra. Still, these 7 spectra are close to the limit, and may simply 

contain some bio-optical characteristics, not present in the QWIP calibration dataset. This comparison, 

therefore, gives confidence in the quality of our dataset. 



 

Figure R2.3 A scatter plot between the 𝑅𝑟𝑠-generated 𝜒 index and the matched non-water absorption 

spectrum at 560 nm 𝑎𝑛𝑤(560). Black dots are from the synthetic dataset and coloured dots are from field 

data from various references (see text). 

Figure R2.3 helps to assess the covariability of 𝑅𝑟𝑠 and the absorption coefficient. A one-dimensional 

predictor 𝜒 is derived from an 𝑅𝑟𝑠: 

𝜒 = log10 (
𝑅𝑟𝑠(443) + 𝑅𝑟𝑠(490)

𝑅𝑟𝑠(560) + 5
𝑅𝑟𝑠

2 (665)
𝑅𝑟𝑠(490)

) 

This 𝜒 index is matched to non-water absorption spectrum at 560 nm 𝑎𝑛𝑤(560). There are several open 

access, freely available in situ datasets that contain both measured variables matched together, such as 

Valente et al. (2022), Zibordi and Berthon (2024) and the Schaeffer, Mouw and Biosope datasets (Casey et 

al. 2020). Figure R2.3 clearly shows the excellent average overlap between our synthetic dataset and 

measured data. Different bio-optical characteristics produce slight deviations from the mean curve, 

indicating natural variability. 

 



 

Figure R2.4 Chlorophyll concentration as a function of the maximum band ratio for OC4-type algorithms, for 

the synthetic dataset and for data in Valente et al. (2022) and Zibordi and Berthon (2024). 

Figure R2.4 shows how a given chlorophyll concentration in the dataset relates to the generated 𝑅𝑟𝑠 

through an index that is used to estimate chlorophyll in the ocean: 

𝑀𝐵𝑅𝑂𝐶4 =
max [𝑅𝑟𝑠(443), 𝑅𝑟𝑠(490), 𝑅𝑟𝑠(510)]

𝑅𝑟𝑠(560)
 

From 𝑅𝑟𝑠, we calculate the maximum band ratio 𝑀𝐵𝑅𝑂𝐶4, an index known to be a good predictor for its 

good correlation to chlorophyll concentration (C) in oceanic waters, but also used for studying the 

consistency of a given dataset in all kinds of water (Nechad et al. 2015). Here, matched 𝑀𝐵𝑅𝑂𝐶4 and 

chlorophyll concentration from two large in situ datasets are plotted (Valente et al. 2022; Zibordi and 

Berthon 2024), showing a good general overlap, though with some degree of differences among them, that 

are explainable due to different bio-optical characteristics of the seas sampled. Data from our dataset 



generally agrees with the trend.

 

Figure R2.5 Total suspended matter concentration as a function of 𝑅𝑟𝑠(665), for the synthetic dataset and 

for data in Valente et al. (2022) and Zibordi and Berthon (2024). 

The last comparison to real 𝑅𝑟𝑠 data involves the relationship to the total suspended matter concentration 

(T), relevant for coastal and inland water, which usually show higher turbidities. Our dataset does not need 

T for its generation, but it can be estimated as T=N+0.07C, after Brando and Dekker (2003), where N is the 

concentration of non-algal particles. It is known that T covaries with 𝑅𝑟𝑠 at long wavelengths, and 665 nm is 

commonly employed, due to the lesser disturbance by CDOM. Figure R2.5 shows that our dataset has a 

range of natural variability that includes that in in situ datasets (Valente et al. 2022; Zibordi and Berthon 

2024), once more confirming the suitability of this new dataset for optical studies in all ranges of water. 

The reader must note that for the new plots discussed above, the dot cloud amplitude in the in situ 

datasets is included in the synthetic dataset, meaning that the statistical treatment that was given to the 

inherent optical properties prior to radiative transfer simulations was such to ensure optical 

representativeness of many water types, as far as this plot is concerned. 

 

Final comment: I have pointed to four references that are all from my own work. I am very uncomfortable 

doing this and I am NOT looking for these to be specifically referred to. They do, however, represent the 

basis for where my opinions have been shaped on these matters and where I believe we might have some 

philosophical differences that are not, however, insurmountable. 

II would be more comfortable with a slightly less emphatic version of the paper that provides the reader 

with clear explanations of the decisions that were taken, but that notes that alternative options could have 

been taken in at least some cases. 

The decisions that were taken were properly (although it may sound “emphatically”) justified in the paper 

more than in any other similar paper before, to the limit that the preprint already has 59 pages. However, 



without prejudice to our responses to previous comments of this review, we will try to provide some more 

background and guidance to the reader on the option choice. 

I genuinely think the authors need to carefully consider the rationale for reproducing all of the observed 

variability, including measurement uncertainties, some of which are very significant indeed. 

The rationale behind this study is that not accounting for the variability would lead to a dataset that would 

be too self-similar, as was the case for the Coastcolour dataset. The choice incorporating the spread in 

crossed relationships into the bio-optical modelling goes back to the IOCCG dataset, and we applied here 

the same principle, with the difference that now we have much more data and the ability to constrain some 

crossed relationships that could not be constrained before. Unfortunately, the discussion on uncertainty is 

very difficult, since IOP measurements never come with an uncertainty estimate. We acknowledge that a 

part of the data cloud spread is due to measurement and errors and mismatches, but the validation 

exercises show that the reflectance shows patterns and dispersion that agrees with measurements. 

Ultimately I would be unlikely to use this synthetic data set as I would struggle to accept some of the 

decisions that have gone into producing it, but I can imagine it being welcomed by a significant part of the 

community more or less as is. 

We regret this reluctance as the dataset is already being used to develop the bidirectional reflectance 

correction algorithm to be operationally implemented in EUMETSAT’s processing chain of OLCI Level 2 data. 

The dataset itself is valuable for many other algorithm calibration or validation purposes, but also the 

research leading to its generation represents a relevant contribution. 

As with all of these things, the expression caveat emptor pertains. I hope that these comments will help to 

encourage a slightly less emphatic description of the data set and encourage potential users to be mindful 

of where the limitations might still be found. 

We appreciate that the reviewer took the time to help improve the manuscript. The reviewer will see 

enhanced validation and explanations in the revised version. In dubio pro reo. 
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